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Abstract. Based on a reinterpretation of the square-error criterion for classical clustering, a “separate-and-
conquer” version of K-Means clustering is presented and a contribution weight is determined for each variable of
every cluster. The weight is used to produce conjunctive concepts that describe clusters and to reduce or transform
the variable (feature) space.

Keywords: Clustering, variable weights, conjunctive concepts, feature selection, feature space transformation

1. Introduction

The classical approach to clustering based on the entity-to-entity similarities or distances
has significant limitations in concept learning contexts. Michalski and Stepp (1992) indicate
that a major difficulty is that the “classical approach has no mechanisms for selecting and
evaluating attributesin the processof generating clusters” (p.169).

This paper presents a modified approach to classical cluster analysis that exploits a natural
mechanism for evaluating the cluster-specific importance of variables. The approach is
based on a known, but reinterpreted decomposition of the variance of the data explained by
the classification structure. The approach determines a cluster-specific contribution of each
variable to the variance of the data. The contribution weight of a variable is proportional
to the deviation (squared) of the variable’s within-cluster mean from its grand mean, which
goes in line with suggestions in data mining that the more deviant a feature is from a standard
(the grand mean, in this case), the more interesting it is (Fayyad, Piatetsky-Shapiro & Smyth,
1996). Each contribution weight is a part of a clustering criterion to be maximized, not a
posterior quality measure. Based on these insights, a “separate-and-conquer” version of the
K-Means clustering method produces clusters one by one, not simultaneously, and relaxes
the problem of defining a partition size in advance.

Contribution weights can be evaluated for any category structure, both for a determined
one (e.g., through clustering) and a predefined one (e.g., as in supervised learning). The
variables with greatest contribution towards a cluster (or cluster structure) may be used to
form a conjunctive concept that approximately describes the cluster. When the clusters are
based on the square-error criterion, a small number of the variables in a concept is sufficient
to well approximate the clusters. When the clusters are predefined, as in a learning-from-
examples task, some of them can be spread over the variable space so they “interfere”
with each other. In this case, no simple conjunctive concepts can describe the clusters
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distinctively, and it may be desirable to transform the variable space to allow a better
conjunctive description of the classes.

The most contributing variables can be used in variable space reduction or transforma-
tion. The approach utilized is related to the so-called Forward/Backward Search Selection
(FSS/BSS) algorithms for feature selection in machine learning (e.g., Aha & Bankert, 1995).
There are some distinctions, however, based on the evaluation function and intermediate
criteria involved.

In Section 2 the clustering approach and a separate-and-conquer version of K-Means
clustering are described. In Section 3, the contribution weights are defined and the directions
outlined above for exploiting them are fleshed out. Section 4 concludes by highlighting
some positive and questionable aspects of the approach.

2. A Separate-and-Conquer Partitional Clustering Procedure

This section discusses the square-error clustering criterion in the context of the square data
scatter decomposition. The section then describes and illustrates a separate-and-conquer
version of K-Means clustering that sequentially extracts clusters from the “main body” of
the entities.

2.1. Data Representation

Let us consider a data matrixX = (xik), i ∈ I, k ∈ K, where rowsxi = (xik) correspond
to entities (instances),i, and their componentsxik are corresponding values of quantitative
variables (features),k. Moreover, assume these entities are partitioned into groups (classes,
clusters).

Such a data set is presented in Table 1, where the entities are “archetypal psychiatric
patients” fabricated by experienced psychiatrists from Stanford University. Each datum is
described by seventeen variables: [w1.] Somatic concern. [w2.] Anxiety. [w3.] Emotional
withdrawal. [w4.] Conceptual disorganization. [w5.] Guilt feelings. [w6.] Tension. [w7.]
Mannerisms and posturing. [w8.] Grandiosity [w9.] Depressive mood. [w10.] Hostility.
[w11.] Suspiciousness. [w12.] Hallucinatory behavior. [w13.] Motor retardation. [w14.]
Uncooperativeness. [w15.] Unusual thought content. [w16.] Blunted effect. [w17.]
Excitement.

The values of the variables are 0-6 severity ratings. The patients are partitioned into four
classes of mental disorders: depressed (manic-depressive illness), manic (manic-depressive
illness), simple schizophrenia, and paranoid schizophrenia. Each class contains eleven
consecutive individuals that are considered typical of that class. The table is published in
Mezzich and Solomon (1980, pp. 60-63), along with a detailed description of the data.

Such a data set is traditionally standardized into data matrixY = (yik),

yik =
xik − ak

bk
, i ∈ I, k ∈ K, (1)

whereak is the mean of observed values of variablek (that is,ak =
∑
i∈I xik/|I|) andbk

is equal to unity or the standard deviation,σk = (
∑
i∈I(xik − ak)2/|I|)1/2, depending on

the user’s decision.
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Table 1.Disorder data: archetypal patients measured on 17 psychopathological items from Mezzich and Solomon (1980), p.62.

No w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17

1 4 3 3 0 4 3 0 0 6 3 2 0 5 2 2 2 1
2 5 5 6 2 6 1 0 0 6 1 0 1 6 4 1 4 0
3 6 5 6 5 6 3 2 0 6 0 5 3 6 5 5 0 0
4 5 5 1 0 6 1 0 0 6 0 1 2 6 0 3 0 2
5 6 6 5 0 6 0 0 0 6 0 4 3 5 3 2 0 0
6 3 3 5 1 4 2 1 0 6 2 1 1 5 2 2 1 1
7 5 5 5 2 5 4 1 1 6 2 3 0 6 3 5 2 3
8 4 5 5 1 6 1 1 0 6 1 1 0 5 2 1 1 0
9 5 3 5 1 6 3 1 0 6 2 1 1 6 2 5 5 0

10 3 5 5 3 2 4 2 0 6 3 2 0 6 1 4 5 1
11 5 6 6 4 6 3 1 0 6 2 0 0 6 4 4 6 0

12 2 2 1 2 0 3 1 6 2 3 3 2 1 4 4 0 6
13 0 0 0 4 1 5 0 6 0 5 4 4 0 5 5 0 6
14 0 3 0 5 0 6 0 6 0 3 2 0 0 3 4 0 6
15 0 0 0 3 0 6 0 6 1 3 1 1 0 2 3 0 6
16 3 4 0 0 0 5 0 6 0 6 0 0 0 5 0 0 6
17 2 4 0 3 1 5 1 6 2 5 3 0 0 5 3 0 6
18 1 2 0 2 1 4 1 5 1 5 1 1 0 4 1 0 6
19 0 2 0 2 1 5 1 5 0 2 1 1 0 3 1 0 6
20 0 0 0 6 0 5 1 6 0 5 5 4 0 5 6 0 6
21 5 5 1 4 0 5 5 6 0 4 4 3 0 5 5 0 6
22 1 3 0 4 1 4 2 6 3 3 2 0 0 4 3 0 6

23 3 2 5 2 0 2 2 1 2 1 2 0 1 2 2 4 0
24 4 4 5 4 3 3 1 0 4 2 3 0 3 2 4 5 0
25 2 0 6 3 0 0 5 0 0 3 3 2 3 5 3 6 0
26 1 1 6 2 0 0 1 0 0 3 0 1 0 1 1 6 0
27 3 3 5 6 3 2 5 0 3 0 2 5 3 3 5 6 2
28 3 0 5 4 0 0 3 0 2 1 1 1 2 3 3 6 0
29 3 3 5 4 2 4 2 1 3 1 1 1 4 2 2 5 2
30 3 2 5 2 2 2 2 1 2 2 3 1 2 2 3 5 0
31 3 3 6 6 1 3 5 1 3 2 2 5 3 3 6 6 1
32 1 1 5 3 1 1 3 0 1 1 1 0 5 1 2 6 0
33 2 3 5 4 2 3 0 0 3 2 2 0 0 2 4 5 0

34 2 4 3 5 0 3 1 4 2 5 6 5 0 5 6 3 3
35 2 4 1 1 0 3 1 6 0 6 6 4 0 6 5 0 4
36 5 5 5 6 0 5 5 6 2 5 6 6 0 5 6 0 2
37 1 4 2 1 1 1 0 5 1 5 6 5 0 6 6 0 1
38 4 5 6 3 1 6 3 5 2 6 6 4 0 5 6 0 5
39 4 5 4 6 2 4 2 4 1 5 6 5 1 5 6 2 4
40 3 4 3 4 1 5 2 5 2 5 5 3 1 5 5 1 5
41 2 5 4 3 1 4 3 4 2 5 5 4 0 5 4 1 4
42 3 3 4 4 1 5 5 5 0 5 6 5 1 5 5 3 4
43 4 4 2 6 1 4 1 5 3 5 6 5 1 5 6 2 4
44 3 5 5 5 2 5 4 5 2 4 6 5 0 5 6 5 5
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For the data in Table 1, all the variables are expressed in the same 7-grade scale; there is
no need for further normalization; allbk = 1 in this case.

Two other data sets considered below are taken from the Irvine public repository. These
are Iris (150 by 4 matrix partitioned in three 50-element classes) and small Soybean (47
by 35 data matrix partitioned in four classes and reduced to 47 by 21 format since 14
of the columns [variables] are constant and are not used in the following computations;
in the subsequent computations, one more variable, 27, has been excluded as coinciding
with another one, 26). Although the Soybean data are represented primarily by categorical
variables, their codes will be considered quantitative in this paper. Both of the data sets
involve rather different variables and will be normed bybk = σk.

2.2. Representation of Clusters and Clusterings

Assume that the clustering structure for a data setY = (yik), i ∈ I, k ∈ K, is a
partition ofI intom nonoverlapping clusters,St. Each clusterSt is presented along with
its “standard” pointct = (ctk), which is a vector of variable value means within clusterSt:
ctk =

∑
i∈St yik/|St| (t = 1, ...,m). Each subsetSt represents an extensional description

of a clustering, while each mean vector,ct, is an intensional cluster representation.
It is well known (e.g., Jain & Dubes, 1988, p.95; Mirkin, 1990) that the following equality

holds for any clustering(S, c) = {St, ct| t = 1, ...,m}.

∑
i∈I

∑
k∈K

y2
ik =

m∑
t=1

∑
k∈K

c2tk|St|+
m∑
t=1

∑
i∈St

∑
k∈K

(yik − ctk)2 (2)

The left part in this equation represents the total variance of the data (up to the constant
factor1/|I|) since the variables have been centered by (1). Obviously, it is the sum of the
variances of the individual variables; each of the variables contributes the same value|I| in
the sum whenbk = σk in (1), which implies that∑

i

∑
k

y2
ik = |K||I|

whenbk = σk.
The two terms of equation (2) are usually interpreted according to terminology of analysis

of variance (ANOVA) in statistics: the inter-group and within-group variance, respectively
(Hand & Taylor, 1987; Jain & Dubes, 1988). Yet another interpretation is possible: the first
term is the contribution of the cluster structure to the total variance while the second is the
unexplained part of the variance (Mirkin, 1990).

The unexplained (or within-group) variance in the right part of (2) is the well-known
square-error clustering criterion (Jain & Dubes, 1988). This is to be minimized with respect
to the clustering,(S, c), that is sought. The square-error criterion can be rewritten in terms
of the Euclidean distances between row-vectorsyi = (yik) and corresponding standard
points:

L(S, c) =
m∑
t=1

∑
i∈St

d2(yi, ct) (3)
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whered(x, y) = (
∑
i∈I(xi − yi)2)1/2 is Euclidean distance between vectorsx = (xi),

y = (yi), i ∈ I.

2.3. The Clustering Procedure

The moving-center method (K-Means, ISODATA) is one of the most popular classical
clustering techniques for alternating minimization of the square-error criterion (3). Starting
with am class partition ofI, or withm tentative standard points or ‘seeds’,ct, selected
somehow, the algorithm repeatedly performs the following two-step iteration: (1) update
the partition based on the standard points: when allct are given, make eachSt the set ofyi
that are nearest (by Euclidean distance) toct, t = 1, ...,m; (2) update the standard points:
when allSt are given, computect as the mean of the within-cluster vectors. The algorithm
stops when the updating procedure does not change the clustering. The method also can be
employed incrementally by updating the centers and clusters after each particular instance
is processed.

The moving-center method requires prior information about the number of clusters and
initial standard points (seeds) or clusters. A method that exploits many of the same mech-
anisms as the moving-center method, but which mitigates the need for prior knowledge,
separates clusters from the set of instances one by one. In machine learning this has
been called a “separate-and-conquer” strategy (Pagallo & Haussler, 1990). The separate-
and-conquer procedure extracts an initial clusterS1 ⊂ I with its standard pointc1; the
complementary set represents the main “body” of the instances, which serves as the source
for separating additional clusters one by one. This is reflected in that fact that the main
body’s standard point is fixed at0, given the normalization of (1), and it is not changed
during the entire clustering computation.

Table 2.Algorithm SCC (Separate-and-Conquer Clustering).

Step 0.t← 1.

Step 1. (Selecting an extreme). Pick a point,yi∗ , maximizingd(0, yi), i ∈ I.
Takect = yi∗ as the initial center (seed) ofSt.

Step 2. (Updating the cluster). Define clusterSt = {i : d(yi, ct) ≤ d(yi, 0)}
of pointsyi aroundct to separate them from the origin.

Step 3. (Updating the center). Compute gravity centerc′t for St.
Comparec′t with the previous centerct.
If there is no difference,ct andSt aret-th cluster.
Else letct ← c′t and go to Step 2.

Step 4. (Excluding the entities). SetI ← I − St.
If I = ∅, end. Else sett← t+ 1 and go to Step 1.

Algorithm SCC of Table 2 fleshes out this separate-and-conquer procedure. Clustering
terminates when all objects have been placed in a cluster (i.e., separated out).

As an intuitive example, let us consider when there is only one variable, uniformly
distributed across its range. Then, having the zero point in the midrange, SCC initially
separates one fourth of the range at one extreme, then one fourth at the other extreme, with
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one half of the range left to be cut at extremes again. In contrast, a traditional divisive
version of the method, with both of the standard points updated, will initially produce a
split just in the midrange, splitting then each of the clusters by half, and so forth.

This example reflects a general property that the size of a SCC-designed cluster depends
on its distance from the origin as stated in Step 2: the nearer to the origin, the less the
diameter of the cluster! Thus, SCC could be modified to allow the user to specify the origin
based on user’s knowledge of the variable space: the better the knowledge, the smaller the
classes. This bias can be useful, for instance, for a robot-planning system: the robot must
learn and classify the nearest part of the world in more detail than more distant objects.

Placing the origin as the grand mean point initially causes SCC to separate the subset
of instances corresponding to extreme combinations of the variable values. Thus, the
separated subset can be considered on its own as “interesting” in the sense of Fayyad,
Piatetsky-Shapiro & Smyth (1996).

This interpretation can be supported with the mathematics underlying the method. At
any step of SCC, for two classes found around 0 andct, decomposition (2) looks like∑

i∈I

∑
k∈K

y2
ik =

∑
k∈K

c2tk|St|+
∑

i∈I−St
d2(yi, 0) +

∑
i∈St

d2(yi, ct).

SCC alternately minimizes the sum of the last two items in that expression; thus, it maxi-
mizes the contribution of the cluster separated,

∑
k∈K c

2
tk|St| = d2(ct, 0)|St|, to the total

variance of the data (for the currentI).
This suggests yet another stopping rule for SCC: the separate-and-conquer process may

terminate when the cumulative contribution of the separated clusters becomes greater than a
user-specified threshold (e.g., 70% of the variance), rather than continuing until no unclas-
sified entities remain in the main body. This stopping rule leads to discovery of “extreme”
clusters and a residue around the grand mean. When the user wants no entities unclassified,
the standard points of discovered clusters can be considered as the tentative standard points
(seeds) for follow-up application of the general moving-center method.

It can be proved that SCC is a nonoverlapping version of the principal cluster analysis
method (Mirkin, 1987; Mirkin, 1990). In these publications, however, each cluster is
separated out by an instance-by-instance addition method, not the version of the moving-
center method described here.

Example: When SCC was applied to the Disorder data, the algorithm produced four
clusters coinciding with the four mental disorder classes in Table 1 (in the same order)
except that entity 21 was clustered with the fourth class; the same phenomenon has been
reported in Mezzich and Solomon (1980), p. 69 - 73, using complete linkage, ISODATA
and K-Means clustering.

For the small Soybean data set SCC produced six clusters; two of them coincide with pre-
defined classes. The other four clusters are splits of the other two predefined classes in two
subclasses each. With the number of clusters fixed at 41, SCC and subsequent application
of the moving-center (K-Means) method gives exactly the four predefined classes.

For the Iris data set, the algorithm sequentially finds 6 clusters, some of which are parts of
the predefined ones while the others are mixed. A confusion matrix for the 6 SCC discovered
clusters and 3 predefined classes is presented in Table 3. The fact that predefined classes
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2 and 3 are spread over 4 SCC clusters confirms the well-known property that they are not
compact.

Table 3. Confusion matrix for the SCC clusters and predefined
classes of the Iris data.

Predefined classes SCC discovered clusters
of the Iris data 1 2 3 4 5 6 Total

1 49 1 50
2 12 17 2 19 50
3 26 2 7 15 50

Total 26 49 15 24 17 19 150

3. Contribution Weights and Their Uses

In this section, a cluster-specific measure of variable salience is suggested based on decom-
position (2). The measure is employed for approximate conceptual description of clusters
and for two-stage forward/backward feature selection along with transformation of the
variable space when necessary.

3.1. Determining Variable Weights

An “importance weight” of a variable as a term in an overall additive evaluation measure is
not uncommon in machine learning: Gennari (1989) and Fisher, Xu, Carnes, Reich, Fenves,
Chen, Shiavi, Biswas and Weinberg (1993) show how to exploit each variable’s contribution
toward a category utility score function as its “salience”. Based on the formula in (2), we
suggest an extension of this idea that determines a cluster-specific salience weight for each
variable.

The total contribution of the clustering towards variance is equal to

V =
m∑
t=1

∑
k∈K

c2tk|St|, (4)

which can be presented as the sum of cluster contributions,vt =
∑
k∈K c

2
tk|St|, or as the

sum of variable contributions,v(k) =
∑m
t=1 c

2
tk|St|. These contributions can be employed

as salience weights of either clusters or variables. Still smaller items in the sum,c2tk|St|,
lead to the relative contributions of variables,k, due to clusters,t:

v(k/t) = c2tk|St|/vt = c2tk/
∑
k∈K

c2tk. (5)

Example: In Table 4, the standard point values (means)ctk are presented for class 2 of the
Disorder data (Table 1), along with corresponding relative contribution weights,v(k/t).
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Table 4.Cluster 2 described with 17 psychopathological variables:
the central value in the original scale, the central value in the stan-
dardized scale, and the relative contribution, per cent.

Variable Mean value Mean valuectk Contribution
(original scale) (standardized scale) weight (%)

w1 1.27 -0.95 8.20
w2 2.27 -0.61 3.42
w3 0.18 -1.45 19.08
w4 3.18 0.03 0.01
w5 0.45 -0.71 4.58
w6 4.82 0.90 7.42
w7 1.09 -0.41 1.52
w8 5.82 1.15 11.94
w9 0.82 -0.81 6.00

w10 4.00 0.52 2.49
w11 2.36 -0.29 0.76
w12 1.45 -0.34 1.07
w13 0.09 -0.85 6.62
w14 4.09 0.35 1.13
w15 3.18 -0.32 0.96
w16 0.00 -0.97 8.54
w17 6.00 1.34 16.26

The meaning of these variable-to-cluster contribution weights can be seen from Table 4:
as far as the standardized valuectk measures deviation of the mean of the variablek in
the t-th cluster from the grand mean (in the standard deviation scale), its contribution is
proportional to the deviation squared (which is equivalent to what the analysis of variance
methodology does when the variables are considered uncorrelated, see Hand and Taylor
(1987)). Loosely speaking, the fartherctk from zero (which is the grand mean here), the
more separated the cluster from the other entities based on the variablek. In terms of Fayyad,
Piatetsky-Shapiro and Smyth (1996),v(k/t) measures the “degree of interestingness” of
the variablek in clustert with respect to its “standard” mean value.

Example: Decomposition (4) of the explained part of the data scatter by 17 variables
and 4 classes in Table 1 is shown in Table 5. The entries are of format “contribution
of a variable-to-class pair,c2tk|St| / its relative contribution,v(k/t), per cent”, obviously
extended in the marginal column and row according to their contents.

Weights can be employed in various learning problems including (a) concept learning,
(b) feature selection, and (c) space transformation, which will be considered in subsequent
sections.

3.2. Representing Clusters Approximately by Conjunctive Concepts

There are many systems that learn logical descriptions of a subset of the instances (e.g.,
Michalski, 1992; Quinlan, 1986; Wnek & Michalski, 1994). Cluster-specific contribution
weights give yet another way of finding approximate conjunctive descriptions for every
cluster separately.
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Table 5. Decomposition of the explained part of the data scatter according to Table 1 by 17
variables and 4 classes; the entry 12.35/8.06 in the left corner means: pair Variable w1/Class
1 contributes 12.35 to the scatter and w1 contributes 8.06% to “explanation” of the data by
Class 1.

Variable Class Class Class Class General,
1 2 3 4 v(k)

w1 12.35/8.06 9.94/8.20 0.40/0.48 0.07/0.06 22.76/4.86
w2 6.59/4.31 4.15/3.42 7.83/6.59 4.15/3.78 21.48/4.59
w3 3.68/2.40 23.15/19.08 7.43/8.83 0.03/0.03 34.29/7.32
w4 6.71/4.38 0.01/0.01 0.85/1.00 2.52/2.30 10.09/2.15
w5 25.73/16.81 5.56/4.58 1.15/1.37 2.70/2.46 35.14/7.50
w6 3.50/2.28 9.00/7.42 7.50/8.92 2.59/2.36 22.59/4.82
w7 3.68/2.40 1.84/1.52 3.33/3.96 2.10/1.92 10.95/2.34
w8 11.60/7.58 14.49/11.94 9.38/11.15 7.09/6.45 42.56/9.09
w9 25.88/16.91 7.28/6.00 0.62/0.73 2.58/2.35 36.35/7.76

w10 8.40/5.49 3.02/2.49 6.59/7.83 13.88/12.64 31.88/6.81
w11 3.40/2.22 0.92/0.76 3.40/4.04 21.58/19.66 29.30/6.26
w12 3.61/2.36 1.30/1.07 1.30/1.54 17.47/15.91 23.67/5.05
w13 24.37/15.92 8.04/6.62 0.12/0.15 6.01/5.48 38.55/8.23
w14 4.61/3.01 1.37/1.13 6.44/7.66 12.35/11.25 24.78/5.29
w15 1.57/1.02 1.16/0.96 1.16/1.38 11.62/10.59 15.52/3.31
w16 0.00/0.00 10.36/8.54 18.34/21.80 1.20/1.09 29.90/6.39
w17 7.37/4.81 19.73/16.26 9.52/11.31 1.84/1.68 38.46/8.21

Total 153.05/32.68 121.33/25.91 84.11/17.96 109.78/23.44 468.26/100.00

Based on the right column in Table 4, let us pick the features that most contribute to class
2 in Table 1, to form a conjunctive conceptual description of the cluster. Initially, let us
take the range of the most salient variable, w3 (contribution 19.08%), within the cluster 2:
it is interval[0, 1], the boundary points included. Conceptual descriptionW : 0 ≤ w3 ≤ 1
covers all 11 individuals belonging to class 2; however, there are two other individuals, 4
from class 1 and 35 from class 4, which also satisfy conditionW . This relates to what could
be called ‘precision error’, PE, of the conceptW with respect to a classS ⊂ I. The PE is
defined as the number of elements from outsideS satisfyingW , divided by the number of
all elements outsideS. Actually, PE is just the proportion of false positives for the concept
W as a description ofS.

To decreasePE(W ) = 2/33, let us pick the next most contributing variable, w17
(contribution 16.26%), and consider the conjunctive concept formed by the within-cluster
ranges of both, w3 and w17:W : 0 ≤ w3 ≤ 1 & w17 = 6. Obviously, precision error
of this combined category equals zero. Moreover, it is easy to see that the first term of the
concept is not necessary; conceptW : w17 = 6 corresponds to all 11 individuals from
class 2 and no one else.

This is an example of the situation when a less contributing variable (w17) gives a bet-
ter conceptual description than a more contributing variable (w3), which shows that the
statistics-based contribution weights reflect only tendencies of the logical relations rather
than exact patterns of them.

A general algorithm, ACCL, for approximate conjunctive conceptual descriptionW (S) of
a classS ⊂ I is presented in Table 6. The data matrix is assumed normalized with formula
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Table 6.Algorithm ACCL (Approximate Conjunctive Concept Learning).

Step 0.Find the means,ck, of the variablesk ∈ K within S and consider listL
of the variables in descending order by their contribution weights,c2k.
LetW (S) be empty andPE = 1.

Step 1.Remove the first variable,xk, from listL and consider combined
conceptW ′ = W (S) & mk ≤ xk ≤Mk wheremk andMk are minimum
and maximum ofxk within S, respectively. ComputePE(W ′).

Step 2. If PE(W ′) < PE(W (S)), putW (S)⇐W ′ andPE(W (S))⇐ PE(W ′).
If PE(W ′) = PE(W (S)), thenW (S) andPE(W (S)) are left unchanged.

Step 3. If L = ∅ orPE(W (S)) = 0, go to Step 4. Otherwise, go to Step 1.

Step 4.For every conjunctive termwh of W (S) (h = 1, ..., H whereH
is the number of terms inW (S)), consider conjunctive conceptW (S)|wh
which isW (S) with wh removed. Pick thath which makes
ph = PE(W (S)|wh) minimum over allH terms (if there are several suchhs,
take that one corresponding to the least contributing variable).

Step 5. If ph = PE(W (S)) orH > n (wheren is a user-specified threshold
for the number of conjunctive terms), go to Step 6; otherwise, end.

Step 6.Removewh fromW (S) by puttingW (S)⇐W (S)|wh,
PE(W (S))⇐ ph andH ⇐ H − 1. Go to Step 4.

(1). The degree of approximation is characterized by the precision errorPE(W (S)).
A standard stopping criterion, the maximum number of conjunctive terms in the concept
W (S), may be also involved as a user-defined integern.

In its steps 1 through 3, the algorithm ACCL in Table 6 one-by-one adds features to produce
a conjunctive descriptionW (S) (forward-selection strategy FSS). Then, in steps 4 through
6, it one-by-one removes those terms that minimally affect the precision error ofW (S)
(backward-selection strategy BSS). If no maximum number of terms,n, is prespecified,
only those terms are removed that do not changePE(W (S)) at all.

Since ACCL is a local search algorithm, its resulting conjunctionW (S) may have a
non-minimum precision error.

Example: Let us apply the algorithm ACCL to class 3 of Table 1 based on the variable
weights presented in the corresponding column of Table 5. The maximum weight variable
with regard to class 3 is w16 (contribution 21.80%). Its within-cluster rangeW : 4 ≤
w16 ≤ 6 covers 5 individuals in the other classes (one in class 4 and four in class 1), which
makesPE(W ) = 5/33. Adding the within-cluster range of the next most contributing
variable, w17 (contribution 11.31%), we haveW : 4 ≤ w16 ≤ 6 & 0 ≤ w17 ≤ 2, which
makesPE(W ) = 4/33 since the previously covered individual from class 4 does not
satisfy the combined condition. Variable w16 cannot be removed from the concept (Step 2)
since this makes precision error grow. Then, considering each of the next most contributing
variables, w8, w6, and w3, we can see that adding none of them decreasesPE(W ). For
example, the within-cluster range of w6 is[0, 4] which is compatible with values of w10
for all the four individuals from class 1 (2, 9, 10, and 11) satisfyingW . However, the next
contributing variable, w2, has its within-cluster range,[0, 4], incompatible with the values of



CONCEPTS, FEATURES AND SQUARE-ERROR CLUSTERING 35

w2 for individuals 2, 10, and 11, which makes the conceptW : 4 ≤ w16 ≤ 6 & 0 ≤ w17 ≤
2 & 0 ≤ w2 ≤ 4 havePE(W ) = 1/33. Moreover,w17 now can be removed fromW at
Step 2, withPE(W ) = 1/33 unchanged. This leads toW : 4 ≤ w16 ≤ 6 & 0 ≤ w2 ≤ 4
as a two-term solution to the problem. Subsequently adding w5 toW reducesPE(W ) to
zero.

The concepts found for the other Disorder classes are:w9 = 6 (class 1, PE=0),w17 = 6
(class 2, PE=0),5 ≤ w11 ≤ 6 & 4 ≤ w10 ≤ 6 (class 4, PE=1/33).

Predefined classes of the small Soybean data set are exactly described (with PE=0) by the
within-class ranges of variables v23 (class 1), v26 (class 2), v4 & v24 (class 3), and v35 &
v12 (class 4).

In the Iris data set, predefined classes can be described by the following concepts found
with algorithm ACCL:1 ≤ w3 ≤ 1.9 (class 1, PE=0),3.0 ≤ w3 ≤ 5.1 & 1.0 ≤ w4 ≤ 1.8
(class 2, PE=0.08), and1.4 ≤ w4 ≤ 2.5 & 4.5 ≤ w3 ≤ 6.9 (class 3, PE=0.18). Precision
errors of the two latter conjunctions cannot be reduced by adding other variables’ ranges.
Large precision error for two of the Iris classes supports the conclusion that they are dispersed
in the variable space.

Table 7 overviews the results found by algorithm ACCL for all the clusterings considered,
with n = 2 (i.e., with only two conjunctive terms permitted).

Table 7. Mean precision error (per cent) over all clusters in each of the six clusterings
considered.

Disorder Soybean Iris
SCC Predefined SCC Predefined SCC Predefined

clusters classes clusters classes clusters classes

Number 4 4 6 4 6 3
Mean PE, % 1.5 1.5 0.0 0.0 4.6 8.7

3.3. Feature Selection

The problem of reducing the space dimensionality by selecting a most informative variable
(feature) subset has attracted considerable attention in machine learning (see John, Kohavi &
Pfleger, 1994; Aha & Bankert, 1995). Feature (variable) selection algorithms for learning a
class or partition (clustering) involve two major components: an evaluation function, which
evaluates performance of feature subsets, and a search algorithm, which searches the space
of feature subsets.

The algorithm ACCL can be considered as a procedure of forward/backward feature space
search to learn a class (cluster) along with the precision error as an evaluation function.
The set of variables occurring in the approximate conjunction describing the class forms a
feature space. The set-theoretic union of these sets over all clusters of a partition forms a
feature space selected for learning the partition.

Example: Predefined classes of the small Soybean data set have been exactly learnt (with
PE=0) by the variables v23 (class 1), v26 (class 2), v4 and v24 (class 3), and v35 and v12
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(class 4), which leads to a six-dimensional subspace (generated by these variables) in the
original 20-dimensional space.

Subset{w2, w8, w9, w11, w16, w17} corresponds to the conjunctive concepts found for
four predefined Disorder classes (up toPE = 1/33) in the original 17-dimensional space.

Three predefined classes of the Iris set have been described, in the previous example,
with two variables,w3 andw4, as the only ones occurring in the conjunctive descriptions
found with algorithm ACCL. Although the precision errors of the conjunctions describing
classes 2 and 3 are high, addition of the remaining variables,w1 andw2, does not improve
the quality of approximate conjunctive description.

3.4. Transforming the Feature Space

The ACCL based method for finding approximate conjunctive descriptions of classes and
selecting feature subspaces does rather well when the classes are located in different zones
of the original feature space. The method works poorly in domains like the Iris data where
classes are intermingled in the feature space so that a class cannot be separated into that
box-like cylinder volume which corresponds to an ACCL output conjunction.

However, the method’s performance can be improved by transforming and combining the
variables. A generator of the compound variables can be utilized as follows.

Denote the set of original variables byB and the set of ACCL selected variables byA.
For everyx ∈ A andy ∈ B, computex ∗ y, and, also, ifx 6= y, x+ y, x− y, x/y andy/x.
Consider all the variables found (plus those inA) as the resulting feature spaceF (A,B).

Applying ACCL to the resulting spaceF (A,B) may only improve the quality of conjunc-
tive descriptions of the classes. Reiterating the procedure (withA being the set of ACCL
selected variables on the previous iteration, while maintainingB as the set of original vari-
ables), we can arrive at conjunctive descriptions of the classes with as small a precision
error as needed. This should be considered a hypothesis-driven (actually, cluster-driven)
constructive induction system (Wnek & Michalski, 1994).

Example: Let us consider the set of four original Iris variables asB and the set of two
variables found with ACCL, w3 and w4, asA. Algorithm ACCL, applied toF (A,B) for
description of classes 2 and 3 (do not forget, class 1 has been distinctively separated byw3
alone), produces conjunctions1.18 ≤ w1/w3 ≤ 1.70 & 3.30 ≤ w3 ∗ w4 ≤ 8.64 (class
2, PE=0.04) and7.50 ≤ w3 ∗ w4 ≤ 15.87 & 1.80 ≤ w3− w2 ≤ 4.30 (class 3, PE=0.02)
(with the number of conjunctive terms restricted to be not larger than 2). The errors have
become much smaller, but still they may be considered too high. Can the precision errors
be reduced to just 1 percent?

Putting the compound variables involved,w1/w3, w3 ∗ w4, andw3 − w2, asA and
leavingB as it is, an updateF (A,B) is computed to give rise to the following ACCL
produced conjunctions:2.86 ≤ w1 ∗ w2/w3 ≤ 4.77 & 3.30 ≤ w3 ∗ w42 ≤ 15.55 (class
2, PE=0.04) and3.24 ≤ (w3 − w2) ∗ w4 ≤ 9.89 & 1.35 ≤ w3 ∗ w4 − w1 ≤ 8.70 (class
3, PE=0.02). Although the errors of the two-term conjunctions have not changed, the new
feature space leads to a better four-term description of class 2 (with PE decreased to 0.01).

TakingA as consisting of the four new variables,w1∗w2/w3,w3∗w42, (w3−w2)∗w4,
andw3 ∗ w4 − w1, andB unchanged, the algorithm ACCL applied toF (A,B) leads
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to the following final conjunctions:0.64 ≤ w2 ∗ (w3 − w2) ∗ w4 ≤ 4.55 & 0.21 ≤
w2/(w3 ∗ w42) ≤ 0.74 (class 2, PE=0.01) and4.88 ≤ w3 ∗ w42 − w1 ≤ 31.20 &
−2.85 ≤ (w3−w2) ∗w4−w1 ≤ 2.19 (class 3, PE=0.01). It should be added that class 1
can be distinctively separated with one of these variables,w2 ∗ (w3− w2) ∗ w4 ≤ −3.07
(class 1, PE=0.00).

The process of combining of variables is stopped at this point to underscore a trade-
off needed between the exactness and complexity of cluster descriptions, which parallels
similar trade-offs in other description techniques such as regression analysis.

The predefined three Iris classes are somewhat more “compact” in the final four-dimensional
feature space. Not only have the precision errors of conjunctive descriptions been reduced,
but also clustering results have been improved. Reclustering the Iris data set in the final
feature space with the algorithm SCC produces 4 clusters with the confusion matrix in
Table 8. Obviously, the predefined classes are more visible here than in the original-space
clustering shown in Table 3.

Table 8. Confusion matrix for the SCC clusters
in the transformed feature space and predefined
classes of the Iris data.

Predefined classes SCC discovered clusters
of the Iris data 1 2 3 4 Total

1 5 45 50
2 50 50
3 42 8 50

Total 5 42 45 58 150

4. Conclusion

Classical square-error clustering can be employed as an effective tool for machine learning
since there are additive items in the criterion that can be interpreted as cluster-specific
contributions of the variables to explain the data. Based on properties of the least-squares
criterion, a separate-and-conquer clustering procedure is suggested to design clusters one
by one while keeping the center of the “data body” unchanged. Both the contribution
weights of the variables and the clustering procedure appear compatible with the concept of
“interestingness” in data mining since both concentrate on the items that are farthest from
the average.

The cluster-specific contribution weight is utilized as an intermediate easy-to-calculate
scoring function to address the following problems: (a) cluster description; (b) feature
selection; (c) feature space transformation. The approach is illustrated with small datasets
from public domains. Fisher (1996) and Hanson, Stutz, and Cheeseman (1991) describe
very different ways of identifying variables relevant to a cluster’s description, though neither
approach is concerned with formulating conjunctive descriptions from such variables.

There is no explicitly expressed relationship between the least-squares criterion and the
evaluation criterion utilized, the precision error. Thus, the approach should be considered as
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a useful heuristic rather than a comprehensive methodology in solution the machine learning
tasks. Another approach to post-clustering characterization is to apply a well-established
supervised learning system such as C4.5 (Quinlan, 1993) to the clusters. An approach like
this, but using AQ15 (Michalski, Mezetic, Hong & Lavrac, 1986) as the supervised system,
was taken by Lu and Chen (1987).

In this paper, only the quantitative data case has been considered, although the square-
error approach could be extended to the case when the variables may be Boolean or nominal,
via the so-called bilinear clustering model (Mirkin, 1990). However, such a development
is associated with some supplementary aspects (as the problem of standardization of mixed
data) which should be treated in another place.

Finally, feature selection and transformation have been used primarily in post-clustering
characterization of clusters. An obvious direction for future work is to integrate selection
and transformation into the clustering process itself (as demonstrated informally with the
Iris data, Table 8). Similar, but distinct ideas of tightly coupling automatic feature selection
and unsupervised learning have been explored by Devaney and Ram (1997).
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Notes

1. Here we assume that yet another termination condition is used for SCC; the algorithm terminates when a
user-specified number of clusters has been separated out – 4 clusters in this case (i.e., whent ← 5 in step 4
of SCC).

References

1. Aha, D.W., & Bankert, R.L. (1995). A comparative evaluation of sequential feature selection algorithms. In
D. Fisher and H.-J. Lenz (Eds.),Learning from Data: AI and Statistics. Springer-Verlag: New York.

2. Devaney, M., & Ram, A. (1997). Efficient feature selection in conceptual clustering.Proceedings of the
Fourteenth International Conference on Machine Learningpages 92-97, Morgan Kaufmann: Nashville,
TN.

3. Fayyad, U.M., Piatetsky-Shapiro, G., & Smyth P. (1996). From data mining to knowledge discovery: An
overview. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.),Advances in Knowl-
edge Discovery and Data Mining. AAAI Press/The MIT Press: Menlo Park, CA.

4. Fisher, D. (1996). Iterative optimization and simplification of hierarchical clusterings.Journal of Artificial
Intelligence Research, 4: 147-180.

5. Fisher, D., Xu, L., Carnes, J.R., Reich, Y., Fenves, S.J., Chen, J., Shiavi, R., Biswas, G., & Weinberg, J.
(1993). Applying AI clustering to engineering tasks.IEEE Expert, 8: 51-60.

6. Gennari, J.H. (1989). Focused concept formation.Proceedings of the Sixth International Workshop on
Machine Learningpages 379-382, Morgan Kaufmann: Ithaca, NY.

7. Hand, D.J., & Taylor, C.C. (1987).Multivariate Analysis of Variance and Repeated Measures. Chapman &
Hall: London.



CONCEPTS, FEATURES AND SQUARE-ERROR CLUSTERING 39

8. Hanson, R., Stutz, J., & Cheeseman, P. (1991). Bayesian classification with correlation and inheritance.
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence(pp. 692-698). Morgan
Kaufmann: San-Mateo, CA.

9. Jain, A.K., & Dubes, R.C. (1988).Algorithms for Clustering Data. Prentice Hall: Englewood Cliffs, NJ.
10. John, G., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset selection problem.Proceedings

of the Eleventh International Machine Learning Conferencepages 121-129, Morgan Kaufmann, New-
Brunswick, NJ.

11. Lu, S.C., & Chen, K. (1987). A machine learning approach to the automatic synthesis of mechanistic
knowledge for engineering decision making.Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 1: 109-118.

12. Mezzich, J.E., & Solomon, H. (1980).Taxonomy and Behavioral Science. Academic Press: London
13. Michalski, R.S. (1992). Concept learning. In S.C. Shapiro (Ed.),Encyclopedia of artificial intelligence. J.

Wiley & Sons: New York.
14. Michalski, R.S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multipurpose learning system AQ15 and

its testing application to three medical domains.Proceedings of the Fifth National Conference on Artificial
Intelligence(pp. 1041–1045). Morgan Kaufmann: Philadelphia, PA.

15. Michalski, R.S., & Stepp, R.E. (1992). Clustering. In S.C. Shapiro (Ed.),Encyclopedia of artificial intelli-
gence. J. Wiley & Sons: New York.

16. Mirkin, B.G. (1987). Method of principal cluster analysis.Automation and Remote Control, 48(10): 1379-
1386.

17. Mirkin, B.G. (1990). A sequential fitting procedure for linear data analysis models.Journal of Classification,
7: 167-195.

18. Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning.Machine Learning, 5:
71-99.

19. Quinlan, J.R. (1986). Induction of decision trees.Machine Learning, 1: 81-106.
20. Quinlan, J.R. (1993).C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.
21. Wnek, J., & Michalski, R.S. (1994). Hypothesis-driven constructive induction in AQ17-HCI: A method and

experiments.Machine Learning, 14: 139-168.

Received September 26, 1994
Accepted August 17, 1998
Final Manuscript August 17, 1998


