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A b s t r a c t 

Ideally, definitions induced from examples 
should consist of al l , and only, disjuncts that 
are meaningful (e.g., as measured by a sta­
tistical significance test) and have a low error 
rate. Exist ing inductive systems create defini­
tions that are ideal wi th regard to large dis­
juncts, but far from ideal wi th regard to small 
disjuncts, where a small (large) disjunct is one 
that correctly classifies few (many) training ex­
amples. The problem with small disjuncts is 
that many of them have high rates of misclassi-
fication, and it is difficult to eliminate the error-
prone small disjuncts from a definition without 
adversely affecting other disjuncts in the defi­
ni t ion. Various approaches to this problem are 
evaluated, including the novel approach of us­
ing a bias different than the "maximum gen­
erality" bias. This approach, and some oth­
ers, prove part ly successful, but the problem of 
small disjuncts remains open. 

1 T h e P r o b l e m of Smal l D is junc ts 

Systems that learn from examples do not usually suc­
ceed in creating a purely conjunctive definition for each 
concept. Instead, they create a definition that consists 
of several disjuncts, where each disjunct is a conjunc­
tive definition of a subconcept of the original concept. 
Table 1 (column 2) shows the number of disjuncts in 
definitions induced by several different systems. 

The "coverage" of a disjunct is defined as the number 
of training examples it correctly classifies. A disjunct is 
called "small" if its coverage is low. Table 1 (column 3) 
shows the coverage of disjuncts in induced definitions. 

There are several reasons for paying special attention 
to the methods by which small disjuncts are created. 
First, many concepts include rare or exceptional cases 
and it is desirable for induced definitions to cover these 
cases, even if they can only be covered by augmenting 
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the definitions with small disjuncts. Secondly, small dis­
juncts constitute a significant portion of an induced def­
ini t ion, in the sense that often they collectively match 
more than 20% of the examples that satisfy a definition. 

The problem with small disjuncts, and the main rea­
son for reviewing the methods by which they are created, 
is that they are much more error prone than large dis­
juncts. Table 2 illustrates this phenomenon with the 
definitions created by CN2 [Clark and Niblett , 1987] in 
a chess endgame domain [Shapiro, 1987]. The error rate 
of small disjuncts is high, whereas the error rate of large 
disjuncts is almost zero. Disjuncts of coverage 10 or less 
commit 95% of the errors (column 6) even though they 
match only 41%> of the examples (column 5). This pat­
tern of errors is not unique to CN2, or to this domain. A 
similar pattern occurs in the definitions created by ID3 
[Quinlan, 1986] in this domain, and in the definitions 
created by CN2 in the lymphography domain [Clark and 
Niblett, 1987] (see Table 3). 

Ideally, induced definitions should consist of all, and 
only, disjuncts that are meaningful (e.g., as measured by 
a statistical significance test) and have a low error rate. 
Definitions created by existing methods are ideal with 
regard to large disjuncts, but far from ideal with regard 
to small disjuncts. The remainder of this paper evalu­
ates three approaches to eliminating error-prone small 
disjuncts from a definition without adversely affecting 
other disjuncts in the definition. 

2 Approach 1: E l im ina te A l l Smal l 
D is juncts 

The most direct means of eliminating error-prone small 
disjuncts is to eliminate all small disjuncts by explicitly 
refusing to create disjuncts whose coverage is below a 
certain threshold.1 An immediate objection to this pol­
icy is that it has the undesirable effect of creating defini­
tions that do not include the unusual cases of a concept 
(represented by small but significant disjuncts). 

A second objection to eliminating all small disjuncts 
from a definition is that doing so may significantly in-

1The Nmin parameter in CART [Breiman et a/., 1984] 
is this type of threshold. ASSISTANT [Cestnik et a/., 1987] 
specifies this threshold as a percentage of the original training 
set. In both CART and ASSISTANT this cutoff is used in 
building a decision tree that is subsequently pruned. 
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Tab le 1: Th is table indicates the number of disjuncts and the coverage of disjuncts in definit ions induced by different systems 
in different domains. Th is in format ion is gathered from several sources (see [Tlolte et a/., 1989] for details). A Q l 1 is d escribed 
in [Michalski and Chilausky, 1980], PHOTOS in [Bareiss et a/., 1987] and [Porter et a/., 1989], and M E T A D E N D R A L in 
[Buchanan et a/., 1976]. 

Tab le 2: Data about disjuncts of different coverages in the definit ions produced by CN2 (w i th a significance threshold of 99%) 
in the chess endgame domain. These numbers do not include the disjuncts corresponding to CN2's default rule, which all are 
small and have error rates around 50%. 9 t ra in ing sets of 200 examples each were independently drawn from the dataset of 
3196 examples. The definit ions produced were evaluated on the entire dataset. Column 2 gives the number of test examples 
matched, column 3 the number of misclassifications, by disjuncts wi th the coverage. These numbers are the totals over all 
the definit ions. Column 4 gives the rat io of misclassifications to matches. Column 5 gives the percentage of test examples 
matched by disjuncts whose coverage is equal to or less than the value in column 1. This value, for row X, is calculated by 
summing the entries in column 2 in rows X and above, and d iv id ing by the sum of all entries in column 2. Column 6 gives 
the percentage of misclassifications made by disjuncts whose coverage is equal to or less than the value in column 1. 
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Table 3: Data corresponding to columns 4, 5, and 6 in Table 2 for the definitions produced by ID3 in a chess endgame 
domain (left side), and the definitions produced by CN2 (with a significance threshold of 99%) in the lymphography domain 
(right side). This version of ID3 did no pruning. In the chess endgame domain, 5 training sets of 200 examples each were 
independently drawn from the same dataset used in the experiment in Table 2. The 5 definitions produced were evaluated on 
the entire dataset. In the lymphography domain, 10 runs were made. In each run, the dataset of 142 examples was divided 
into two equal parts, one for training, the other for testing. 

crease the definition's error rate. The net effect of elimi­
nating all small disjuncts is difficult to predict, because it 
depends on the fate of the "emancipated" examples - the 
examples that were classified by the disjuncts that have 
been deleted. Table 2 (column 5) and Table 3 (columns 3 
and 6), indicate the percentage of examples emancipated 
by el iminating all disjuncts up to a certain coverage. 

Some emancipated examples wil l match disjuncts that 
have not been deleted. These may be classified correctly 
or incorrectly, and a disjunct's error rate on emancipated 
examples may be much higher than its original error rate. 
Emancipated examples that fail to match any disjunct 
may be assigned a default classification, or allowed to 
pass as errors of omission. Most existing systems have 
rules, called default rules, for assigning a default clas­
sification. These rules often have very high error rates. 
Consequently, in these systems, there is a considerable 
chance that emancipated examples wi l l be misclassified. 
The only examples that ought to be emancipated are 
those that match disjuncts wi th high error rates, say, 
25% or more. Small disjuncts, although much more 
error-prone than large disjuncts, do not consistently have 
error rates high enough to just i fy a policy of eliminating 
all small disjuncts. 

An error of omission occurs when a test example is 
not assigned a classification. It is a indication that sev­
eral classifications of the example are equally strongly 
supported by the training set. In many circumstances, 
errors of omission are more desirable than extremely 
error-prone default classifications. For this reason, the 
discussion of "approach 3" gives equal consideration to 
definitions wi th default rules and those without. 

3 A p p r o a c h 2: E l i m i n a t e Undesi rab le 
D is junc ts 

Techniques that directly measure, or estimate, the signif­
icance and error rate of disjuncts are used in several sys­
tems (e.g., CN2, CART [Breiman et al, 1984], ASSIS­

T A N T [Cestnik etal, 1987], and recent versions of ID3). 
These techniques reliably eliminate undesirable large dis­
juncts (i.e., ones that are not meaningful, or have a high 
error rate), but, as currently used, do not reliably elimi­
nate undesirable small disjuncts. This section considers 
the prospects of strengthening these techniques so that 
they reliably eliminate undesirable disjuncts, small and 
large alike. 

3.1 Signi f icance Tes t ing 

Tests of statistical significance are used in some systems 
to determine whether or not to include a disjunct in a 
definition. Definitions produced using these tests tend 
to have fewer disjuncts, larger disjuncts, and slightly 
lower error rates than definitions produced without using 
them. 

Disjuncts whose coverage is too low do not pass sig­
nificance tests. The coverage at which disjuncts become 
"insignificantly small" is determined by the significance 
threshold chosen for the test (typically 90-99%), the 
number of concepts, and the distribution of training ex­
amples among concepts. For example, if a training set 
has an equal number of examples of two concepts, a dis­
junct is 99% significant if and only if its coverage is 7 or 
more. Because significance tests eliminate all small dis­
juncts, they are subject to the objections raised in the 
preceding section. 

A further problem arises with systems that do not use 
true significance tests. Most systems use tests that accu­
rately approximate significance tests only for large dis­
juncts. Some of these systems, such as CN2, apply the 
approximate tests to small disjuncts despite their inaccu­
racy. Others, such as ID3, refrain from testing the signif­
icance of small disjuncts2. In any case, the significance 
of small disjuncts is not reliably estimated, wi th the un­
desirable result that significant small disjuncts may be 

2[Quinlan, 1986, page 154]. The action taken in lieu of a 
significance test is not described. 
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e l i m i n a t e d and ins ign i f i can t ones re ta ined . T h i s p r o b l e m 
is no t insuperab le : [ N i b l e t t , 1987] gives an exact test for 
s igni f icance. 

3 .2 E r r o r - R a t e E s t i m a t i o n 

E r r o r ra te canno t be tested exac t l y : i t can on l y be es­
t i m a t e d . L i ke a p p r o x i m a t e tests o f s igni f icance, tech­
niques for e s t i m a t i n g e r ro r ra te are no t en t i re ly re l iab le 
for sma l l d i s junc ts . For examp le , [Cestn ik et a/., 1987] 
repor ts t h a t the techn ique o f N i b l e t t and B r a t k o 3 "seems 
to make ra the r pessimist ic e s t i m a t i o n abou t the i n f o r m a ­
t i o n con ta ined in l ea rn ing d a t a ( i t overest imates the er­
ror ra te of subtrees) ... p o s t - p r u n i n g is t o o drast ic when 
the n u m b e r o f l ea rn ing examples per class per a t t r i b u t e 
is l ow . " (page 43) . 

3 .3 T h e N e e d f o r B o t h S i g n i f i c a n c e a n d 
E r r o r - R a t e T e s t i n g 

No ex i s t i ng sys tem tests b o t h s igni f icance and error ra te . 
" P r e - p r u n i n g " systems use s igni f icance t es t i ng ; "pos t -
p r u n i n g " systems use e r ro r -es t ima t i on [ N i b l e t t , 1987]. 
I ndeed , p o s t - p r u n i n g systems have a ra ther s t r ong disre­
gard for the s igni f icance of d i s junc ts , the i r sole ob jec t i ve 
be ing to e l im ina te f r o m a de f in i t i on as m a n y d is junc ts 
as possible w i t h o u t su f fer ing t oo great an increase in er­
ro r ra te . A one-test approach is suff ic ient to e l im ina te 
undes i rab le large d i s junc ts , because for large d is junc ts , 
s igni f icance and er ror ra te are h i gh l y cor re la ted . 

However , in o rder to e l i m i n a t e a l l undesi rab le smal l 
d i s junc ts , i t is necessary to test b o t h s igni f icance and er­
ror ra te . T h i s is because, for sma l l d i s junc ts , er ror ra te 
is no t re la ted to s igni f icance in any s imp le way. Ne i ­
the r is i t re la ted to " e n t r o p y " , a measure t h a t is o f ten 
used in c o n j u n c t i o n w i t h s igni f icance tests. T h e lack o f 
a s imp le re la t ion between er ror ra te and en t ropy is ev i ­
dent i n the de f in i t i ons p roduced by C N 2 4 . C N 2 creates 
d is junc ts one at a t i m e , eva lua t i ng , at each s tep, the 
en t ropy o f a l l passible new d is junc ts on the p o r t i o n o f 
the t r a i n i n g set no t covered by ex i s t i ng d is junc ts . T h e 
new d i s j unc t w i t h t he lowest en t ropy i s i nc luded in the 
de f i n i t i on o n l y i f i t passes a s igni f icance test . T h u s , the 
d i s junc t selected at a g iven step had lower en t ropy , at 
t h a t s tep , t h a n the d is junc ts selected a t la ter steps, and 
i t was s ta t i s t i ca l l y s ign i f i can t . I f e r ror ra te were re la ted 
to en t ropy , d i s junc ts in ne ighbou r i ng steps w o u l d have 
s im i la r e r ro r ra tes. T h a t t h i s does no t occur is ev ident in 
the f o l l ow ing d a t a , wh i ch describes a t yp i ca l d e f i n i t i o n . 

4 Approach 3: Make Small Disjuncts 
Highly Specific 

T h e techniques considered in the prev ious sect ions have 
a l l been based on p roper t ies (coverage, s igni f icance, en­
t ropy , and error ra te ) t h a t are def ined in te rms of the set 
o f t r a i n i n g examples t h a t m a t c h a d i s junc t . T h e r e w i l l 
usua l l y be m a n y d i f ferent d is junc ts t h a t m a t c h the same 
set o f t r a i n i n g examples , and these w i l l a l l be i nd i s t i n ­
gu ishable by the p rev ious techniques. T h a t is, t hey w i l l 
a l l have iden t i ca l es t imates o f er ror r a te , s igni f icance, 
en t ropy , and so o n . 

To select a m o n g d i s junc ts t h a t are ind is t ingu ishab le 
on the basis o f the t r a i n i n g set, i n d u c t i v e systems em­
p loy an ex t ra -ev iden t i a l preference c r i t e r i on , or "b ias" 
[ M i t c h e l l , 1980]. De f in i t i ons p roduced us ing di f ferent b i ­
ases, w i l l usua l l y have d i f ferent er ror rates and di f ferent 
d i s t r i b u t i o n s of er rors across d is junc ts . I t is possible t ha t 
the p r o b l e m of e r ro r -p rone sma l l d i s junc ts is caused by 
the use of the " m a x i m u m genera l i ty ' 1 bias (def ined be-
l o w ) . T h i s bias is used by many i nduc t i ve systems, in-
c l u d i n g I D 3 and C N 2 . T h e use o f a d i f ferent bias m i g h t 
resul t in de f in i t i ons in wh i ch all d is junc ts , large and smal l 
a l ike, have low error rates. T h i s approach has been ex­
p lo red expe r imen ta l l y , by c o m p a r i n g the de f in i t ions pro­
duced by C N 2 when i t is biased in d i f ferent ways. 

T h r e e biases are compared in th is sect ion. A l l are 
def ined in te rms of a d i s junc t ' s " spec i f i c i t y " , wh ich is 
def ined as the number of cond i t ions in a d is junc t (re­
cal l t h a t a d i s junc t is the con junc t i on of one or more 
cond i t i ons ) . " G e n e r a l i t y " is the oppos i te of speci f ic i ty. 
To compare the de f in i t ions p roduced by the d i f ferent bi­
ases, a t r a i n i n g set of abou t 200 examples was d rawn at 
r a n d o m f r o m the 3196 examples in the K P a 7 K R (chess 
endgame) dataset . C N 2 , us ing each bias, was r u n on the 
t r a i n i n g set. T h e de f in i t i ons p roduced were evaluated 
us ing the en t i re dataset . T h i s procedure was repeated 
for 9 i ndependen t l y d r a w n t r a i n i n g sets. T h e cumu la t i ve 
resul ts of these 9 runs are g iven in Tab le 4 (see [Acker, 
1988] for more de ta i l s ) . 

CN2 ' s o r i g i na l bias is the m a x i m u m genera l i ty bias. 
An i nduc t i ve sys tem us ing th i s b ias, hav ing decided to 
create a d i s junc t t h a t matches a pa r t i cu l a r set of t r a i n ­
ing examples , selects a m a x i m a l l y general d i s junc t t h a t 
matches those examples and no o thers . T h e def in i t ions 
p roduced by C N 2 us ing th i s bias are descr ibed in Tab le 2 
and the top ,row o f Tab le 4 . T h e p r o b l e m o f e r ro r -p rone 
sma l l d is junc ts is ev iden t in th i s da ta . Sma l l d is junc ts 
(coverage 5 or less) have an er ror ra te of 16%, whereas 
large d i s junc ts have an er ror ra te o f 6 . 1 % . I gno r i ng ex­
amples classif ied by the de fau l t ru le , sma l l d is junc ts com­
m i t abou t 25%) o f the errors even t h o u g h they ma tch on ly 
a b o u t 10%) of t he examples. 

T h e m a x i m u m genera l i t y bias works wel l fo r large dis­
j u n c t s , b u t no t for smal l d i s junc ts . T h i s suggests re­
s t r i c t i n g i ts use to large d i s junc ts , and us ing a differ­
ent bias for sma l l d i s junc ts . T h e m a x i m u m speci f ic i ty 
bias seems, on the face of i t , to be app rop r i a te for smal l 
d i s junc ts . An i nduc t i ve sys tem us ing th i s bias, hav ing 
decided to create a d i s j unc t t h a t matches a pa r t i cu la r 
( sma l l ) set o f t r a i n i n g examples , selects the d i s junc t con-
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sisting of all the conditions that are satisfied by those 
examples. 

The middle row in Table 4 describes the definitions 
produced by CN2 using the maximum generality bias 
for large disjuncts and the maximum specificity bias for 
small disjuncts. In these definitions, the large disjuncts 
are identical to those in the original definitions, but the 
small disjuncts are maximally specific instead of being 
maximally general. The small disjuncts created using 
this bias match many fewer examples than are matched 
by the small disjuncts created using the original bias 
(1707 compared to 3128). The error rate of small dis­
juncts has decreased considerably, indicating that the 
1421 examples emancipated by using maximally specific 
disjuncts were a major source of error. 

Unfortunately, use of the maximum specificity bias for 
small disjuncts has adverse affects on other parts of the 
definition. The emancipated examples, 75% of which are 
classified by large disjuncts, are misclassified at a rate of 
almost 50%, which is double the rate at which they were 
misclassified by the small disjuncts. Consequently, there 
is a net increase in the error rate of the definitions that 
is unacceptably large. 

The maximum specificity bias moves in the right di­
rection, but it goes too far. Using a "selective speci­
ficity" bias, an inductive system, having decided to cre-
ate a disjunct that matches a particular (small) set of 
training examples, would select the disjunct consisting 
of the conditions that are satisfied by those examples 
and that meet certain other requirements. These other 
requirements are what make the specificity selective. A 
disjunct produced using this type of bias may be maxi­
mally specific, maximally general, or neither, depending 
on whether all, none, or some of the conditions meet the 
requirements. 

The particular selective specificity bias used in this 
experiment required the conditions in the disjunct for 
subset S of training set T to match no more than 25%> 
of the examples in T — S whose class differs from that of 
the major i ty of 5. For example, suppose there are two 
classes, C1 and C2, that the majori ty of examples in S 
are in C1, and that G is a maximally general disjunct 
for S. Then a condition matching all the examples in 
S is added to G, according to this selective specificity 

bias, if and only if it matches fewer than 25% of the C2 

examples in T — S. 
The bottom row in Table 4 describes the definitions 

produced by CN2 using the maximum generality bias for 
large disjuncts and the selective specificity bias for small 
disjuncts. The small disjuncts produced using the selec­
tive specificity bias are superior to those produced using 
the other biases. They have a reasonably low error rate, 
which they did not have when the maximum generality 
bias was used, and they are doing a significant amount 
of the classification, which they did not do when the 
maximum specificity bias was used. When the selective 
specificity bias is used for small disjuncts, large disjuncts 
have a slightly higher error rate than when the maximal 
generality bias is used. Likewise, the error rate of defini­
tions is slightly higher using the selective specificity bias 
than it is using the maximum generality bias. However, 
this difference is due entirely to the error rates of the 
default rules. Ignoring the default rules, the definitions 
produced by both biases match almost the same number 
of examples (95% of the test set) and have almost identi­
cal error rates (7.2%). Thus, the problem of error-prone 
small disjuncts is solved, to a significant degree, by using 
the maximum generality bias for large disjuncts and the 
selective specificity bias for small disjuncts. 

The success of this approach depends, to some extent, 
on having defined "small" as coverage < 5. Table 5 gives 
the results of repeating the preceding experiments wi th 
"small" defined as coverage < 9. These results are sim­
ilar to the previous ones in three important ways. First, 
the error rate of small disjuncts is reasonably low when 
the selective specifity bias is used for small disjuncts but 
not when the maximal generality bias is used. Secondly, 
both biases produce large disjuncts wi th low error rates. 
Thirdly, the error rate of definitions is higher when the 
selective specifity bias than when the maximal general­
ity bias is used, and this difference is entirely due to the 
increased use and error rate of the default rule. 

There are also significant differences between the 
definitions produced using the different definitions of 
"small" . The error rate of definitions is considerably 
lower using coverage < 5. However, if default rules are 
ignored, the opposite is true. Using coverage < 9, the 
collective error rate of large and small disjuncts is only 
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5.2%, compared to 7.2% using coverage < 5. On the 
other hand, using coverage < 9, the large and small dis­
juncts collectively match only 90% of the test examples, 
compared to 95%) using coverage < 5. 

5 Conclusions 

This paper has demonstrated that existing concept 
learning systems do well at creating large disjuncts, but 
poorly at creating small ones. Some of the causes of 
this poor behaviour have been identified. Improvements 
that are suggested by this analysis are (1) use exact sig­
nificance tests; (2) test both significance and error-rate; 
and (3) use errors of omission instead of default classi­
fications whenever possible. A fourth suggestion, that 
different biases ought to be used for large and small dis­
juncts, was investigated experimentally. The use of the 
maximum generality bias for large disjuncts and a se­
lective specificity bias for small disjuncts part ly solved 
the problem of small disjuncts. This result is relatively 
insensitive to the exact definition of "smal l" . 
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