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Abstract: Energy storage plays an important role in the adoption of renewable energy to help solve
climate change problems. Lithium-ion batteries (LIBs) are an excellent solution for energy storage
due to their properties. In order to ensure the safety and efficient operation of LIB systems, battery
management systems (BMSs) are required. The current design and functionality of BMSs suffer from
a few critical drawbacks including low computational capability and limited data storage. Recently,
there has been some effort in researching and developing smart BMSs utilizing the cloud platform. A
cloud-based BMS would be able to solve the problems of computational capability and data storage
in the current BMSs. It would also lead to more accurate and reliable battery algorithms and allow the
development of other complex BMS functions. This study reviews the concept and design of cloud-
based smart BMSs and provides some perspectives on their functionality and usability as well as their
benefits for future battery applications. The potential division between the local and cloud functions
of smart BMSs is also discussed. Cloud-based smart BMSs are expected to improve the reliability and
overall performance of LIB systems, contributing to the mass adoption of renewable energy.

Keywords: lithium-ion battery; battery modeling; battery management system; smart systems; cloud
infrastructure; Internet of things

1. Introduction

Since the energy demand is projected to increase significantly in the future, the need
for renewable energy is as high as ever nowadays. With that, the role of energy storage in
the power grid is becoming more and more important [1,2]. As an enabling technology,
it can help integrate more renewable energy sources such as solar and wind into the grid,
lowering electricity costs and reducing environmental impact [3–5]. Lithium-ion batteries
(LIBs) have recently gained increasing interest as excellent energy storage systems (ESSs)
due to their high energy and power density, long lifespan, and low self-discharge [6,7]. In
recent years, over 90% of large-scale energy storage capacity was provided by LIBs annually
in the United States [8]. LIBs are used in many real-world applications, such as electric
vehicles (EVs), battery energy storage systems (BESSs), and small portable devices such
as laptops and smartphones [9]. Due to the increasing interest in LIBs, researchers have
been focusing on increasing the energy density and lowering the costs of LIBs, allowing
the battery technology to advance further [10–12].
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In most real-world applications, the battery management system (BMS) is a mandatory
component, serving the purpose of monitoring the battery’s health and safety. The role
of the BMS becomes more significant in applications that have a large number of battery
cells such as electric vehicles and battery storage power stations [13,14]. The BMS is a
battery monitoring device, combining electronic hardware and software, that monitors
and takes actions to protect the battery from certain usage or other conditions that could
damage or shorten the life of the cells [15,16]. Originally, the main functions of the BMS
were battery safety and protection by setting operational voltage, current, and temperature
thresholds, as well as cell balancing. Over the years, research has been conducted on BMSs,
resulting in further developments in improvement in performance, functionalities, and
capabilities. Currently, there are more functions in BMSs that help the battery perform
better and safer, including cell monitoring, battery safety and protection, state of charge
(SOC) estimation, state of health (SOH) estimation, cell balancing, thermal management,
and charging control [17,18]. Since there are concerns regarding the safety, reliability, and
performance of LIBs, especially in standalone systems, a well-designed battery management
system (BMS) is critical. In addition, battery models are used in the BMS to predict working
voltage, power, and energy capability, estimate SOC and SOH, detect faults, and control
battery operation [19]. They have a significant role in ensuring reliable performance
and safety, improving the usage efficiency of the batteries, and avoiding malfunctions
and catastrophic failures. It is important to have accurate and reliable battery models in
the BMS.

Despite the recent works in developing better BMSs, there are still many downsides
to the current design. For example, the current infrastructure of the BMS only allows it to
utilize simple battery models like the equivalent circuit models or simplified electrochemical
models, since it is limited in computing capability and data storage. There have been
other proposed algorithms, using data-driven and machine learning techniques with more
detailed electrical electrochemical models, but they cannot be implemented in the current
BMS design due to the limited local computing resources [20,21]. Another disadvantage of
the current BMS design is the lack of flexibility in its usage, as its algorithms are often hard
programmed into the BMS, and changing the firmware requires a great effort. The current
BMS also does not allow for a plug-and-go style and needs to be programmed specifically
for different battery applications. These negative aspects of the BMS are mainly caused
by the locality of the applications, and can be eliminated by a software and hardware
infrastructure of the BMS that allows for the use of the Internet of things (IoT) and cloud
applications. Recently, there has been some initial research into using IoT and cloud
computing and storage in BMS applications [22–24]. However, the concept of cloud-based
BMS has not been properly reviewed and introduced. In this study, the concept of a
cloud-based smart BMS, utilizing the advantages of cloud computing and cloud storage,
is reviewed. This study also provides some perspectives on the potential design, usage,
benefits, and drawbacks of the cloud-based smart BMS for future battery applications.
As well, there are discussions about the potential division between the local and cloud
functions of the smart BMS. The rest of the study is as follows. Section 2 describes the
current BMS application in more detail while Section 3 outlines the cloud-based smart BMS
concept and design. Section 4 discusses the potential functionalities and capabilities of the
smart BMS, as well as its integration approach and potential risks. Section 5 gives some
concluding remarks about the concept of cloud-based BMSs.

2. Review of the Current Battery Management System (BMS)

Usually, the BMS for Li-ion battery systems has different layers for cells, modules, and
packs. There is the “master” unit which is the main control and computing device, and
there are many “slave” units that are used to monitor the voltage, current, and temperature
of individual cells [25–27]. The “master” and “slave” units are constantly in communication
with each other. The “slave” units monitor the cells and modules and collect data through
sensors, then send the data to the “master” unit for processing and further control actions.
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The BMS also communicates with the contactors, in order to assure safety and also to
regulate the input and output current for the battery system. The “master” unit can also be
in communication with a user interface for applications that require more involved control
and monitoring. The current BMS design is offline and local, meaning that it is operating
without connection to the Internet or any servers. The data are usually stored locally in
the “master” unit, or sometimes a separate unit if the data are exchanged asynchronously,
and old data are deleted regularly to make room for newer data. The firmware is also hard
programmed into the BMS, which means that the BMS has to be application specific and
cannot be a one-size-fits-all solution.

The original two main functions of the BMS were monitoring and protecting the
battery [28]. The monitoring function refers to the measurement of current, voltage, and
temperature of the battery while the protecting function is responsible for bringing the
system to a safe state when the measured values fall above or below their safe operational
ranges [29,30]. The current and more modern BMS is relatively more complex and in-
cludes functions such as cell monitoring, cell balancing, battery safety and protection, state
estimation, and thermal management [27,28,31]:

• Cell monitoring: This function involves the acquisition of the current, voltage, and
temperature of each cell in the system. The measurements need to reach a certain
degree of accuracy, as the data are often used to perform other functions in the BMS.
Moreover, the BMS is also responsible for communication.

• Cell balancing: The imbalance of cell capacity can be caused by inconsistency in
capacity and material quality during operation. Cell balancing is to redistribute the
energy and maintain all cells at a similar SOC level. There are two cell balancing
approaches: active and passive balancing. Active balancing is to transfer excess energy
in higher SOC cells into lower SOC cells until they reach the same level. Passive
balancing dissipates excess energy of higher SOC cells directly into heat to be removed.
The function of cell balancing is necessary because battery capacity and lifetime will
be reduced without it.

• Battery safety and protection: A main function of the BMS is to ensure the safety of
the battery and protect it from operating at conditions that are harmful to both the
battery and the users. Hazardous conditions are sometimes caused by the chemical
characteristics of the battery. Fault diagnosis is a significant function of the BMS
to ensure safe operation. Fault diagnosis algorithms detect the fault, identify its
location and type, and perform necessary actions to reduce the effect of the fault. Fault
diagnosis methods can be categorized into model-based, knowledge-based, and data-
driven methods. The BMS also sets safety limits to protect the battery from working
beyond the safe operating range of current, voltage, and temperature.

• State estimation: This mainly refers to the estimation of SOC and SOH. An accurate
estimation of the battery SOC is necessary because it enables long battery life, pre-
vention from battery failure, efficient operation, and accurate calculations of SOH
and cell balancing. SOC estimation methods can be classified into the look-up table
method, the coulomb counting method, model-based estimation methods, data-driven
estimation methods, and the hybrid method. SOH estimation is crucial in selected
energy management strategies to prolong battery life and appropriately arrange for
the replacement of the battery. SOH can be estimated by direct measurement methods,
indirect analysis methods, adaptive algorithms, and data-driven methods. Despite the
importance of state estimation, the SOC and SOH values cannot be measured directly
from the battery. Therefore, algorithms need to be developed to estimate the SOC and
SOH of the battery based on the measurable data.

• Thermal management: The performance of the battery is usually affected by its
temperature due to the effect of temperature on degradation and internal resistance.
The battery thermal management system (BTMS) can help decrease maximum battery
temperature and temperature differences inside the pack. There are three classes of
BTMS, including active, passive, and hybrid. Active BTMS are air-based, liquid-based,
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and thermoelectric, whereas passive BTMS are phase change material (PCM)-based
and heat-pipe-based. Hybrid BTMS use combinations of active and passive approaches
such as PCM with air circulation, PCM with liquid circulation, and PCM with heat
pipe. Without proper thermal management, the battery pack is susceptible to thermal
runaway propagation as overheating is a direct trigger of thermal runaway.

Figure 1 shows the current BMS design and some of its limitations. A major issue with
the offline BMS is the unreliability of state estimation algorithms [32]. Various model-based
condition monitoring algorithms have been proposed to estimate battery states, includ-
ing the Kalman filter [33,34] and the dual sliding mode observer [35]. Some commonly
used battery models in the BMS are electrical models [36,37], electrochemical models [38],
thermal models [39], and coupled models [40]. However, due to the complex internal
principles and uncertain working conditions, it is difficult to establish a battery model
that can represent the battery’s dynamic characteristics accurately [41]. Therefore, more
complex data-driven algorithms are required to accurately estimate SOC, SOH, and RUL
throughout the entire lifespan of the battery [42–44]. However, despite the achievable
development of these algorithms, they cannot be integrated into the BMS due to its limited
computing capability and data storage [45,46].
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Another major issue in the current BMS is the lack of reliable real-time fault diagnosis
algorithms [31,47]. Some battery faults include sensor faults, cell connection defects, inter-
nal short-circuiting, external short-circuiting, overheating, and thermal runaway [48,49].
These faults can cause major performance and safety issues, and hence they need to be
identified as early as possible [50]. Various model-based methods currently used in the
BMS utilize battery models and algorithms such as sliding mode observer [51], adaptive
unscented Kalman filter [52], and structural analysis and sequential residual generator [53]
to estimate parameters or residuals to detect battery faults. However, using these methods,
many fault features are not reflected in the early stage of system failure. Some data-driven
methods using signal processing [54,55] and machine learning [56–58] have been proposed
to enable early and reliable fault detection but at the expense of high computing effort.
Due to the data computing and storage limitations of the BMS, more reliable and accurate
real-time fault diagnosis algorithms cannot be implemented.

3. Concept of the Cloud-Based Smart BMS

The limitations of the current BMS design have hindered the integration of large-scale
LIB systems, thus slowing down the wide adoption of renewable energy [59,60]. The main
reason for these issues is the computational capability and data storage constraints, as the
BMS is currently designed to be locally integrated into the battery system [27]. Battery
algorithms have been researched and developed while considering these constraints, and
hence despite significant research efforts to improve these algorithms, they are not able to
be practically implemented to improve the real-life performance of the BMS due to their
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higher complexity. The trade-off between accuracy and complexity has always been a
problem for BMS developers. However, with the recently proposed design of a cloud-based
smart BMS utilizing the advantages of cloud computing and cloud storage, this problem
can potentially be resolved [22–24].

Kim et al. [22] proposed a novel battery monitoring and fault diagnosis approach
using the cloud platform for large-scale lithium-ion BESSs. The proposed approach utilized
a cyber-physical platform consisting of IoT components and cloud infrastructure. Battery
algorithms for condition monitoring and fault diagnosis were built in the cloud-based BMS
and then validated using a cyber-physical testbed and computational cost analysis. Li
et al. [23] presented a cloud-based BMS, using IoT components to measure and transmit
all relevant battery data to the cloud smoothly. The data were further used to build
a digital twin for the battery system, where battery diagnostic algorithms evaluate the
data to give a better understanding of the battery’s charge and aging level. A state of
charge estimation method using an adaptive extended H-infinity filter and a state of
health method using particle swarm optimization were also developed, both suiting the
application of cloud-based BMS. The hardware and software of the proposed BMS were
validated with prototypes in various experiments as well as under field operation for
both stationary and mobile applications. Yang et al. [24] proposed a cyber hierarchy and
interactional network (CHAIN) framework utilizing an end–edge–cloud architecture for a
cloud-based BMS. The CHAIN framework can provide multi-scale insights, and with that,
more advanced and efficient algorithms can be developed for the state of charge and state
of health estimation, thermal management, cell balancing, fault diagnosis, and other BMS
functions. The proposed cloud-based BMS presented battery performance better visually,
stored more battery data to help develop more accurate algorithms, and provided support
for the development of optimal battery system control strategies.

Data mining and machine learning methods, which require large computation and
memory, have been implemented in various fields, as the IoT systems and cloud plat-
forms such as Amazon Web Services, Google Cloud Platform, and Microsoft Azure have
become progressively more advanced, available, and affordable [61–63]. Support-vector ma-
chine [64,65], Gaussian process regression [66], neural networks [67–69], Markov chain [70],
and fuzzy logic [71–73] are methods that have been used for battery state estimation and
fault diagnosis, giving promising results, yet being considered impractical due to the limi-
tations of the BMS. The cloud-based BMS will have high computational power, limitless
data storage capability, and great system reliability. It can perform battery managing
functions, like monitoring, diagnostics, prognostics, and optimization, more accurately
and reliably. Some advantages of the cloud-based BMS are shown in Table 1. In terms of
hardware, the cloud solution will reduce some components required for local computing
resulting in smaller devices yet with much greater computing power from the cloud and
unlimited data storage. In terms of software, the cloud-based BMS will be more efficient for
control and optimization of the system, have better monitoring and data visualization, and
perform more accurate and reliable battery prognostics and diagnostics. The development
of the cloud-based smart BMS will potentially enable a new level of smart controls toward
the next generation of energy storage technologies, paving the way for mass adoption of
renewable energy globally.

Table 1. Advantages of the cloud-based smart BMS.

BMS Components Advantages

Hardware
Potentially smaller devices
Significantly greater computational capability
Virtually unlimited data storage

Software
More efficient operational control and optimization
Better and more interactive monitoring and visualization
More accurate and reliable prognostics and diagnostics
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The cloud-based smart BMS design is outlined in Figure 2. The hardware and software
requirements for this type of BMS are more demanding than the current BMS design since
it would need some extra components for cloud connection. The new design still has a
local BMS consisting of the “slave” units. These “slave” units perform data acquisition by
measuring the voltage, current, and temperature of battery cells in the pack using sensors
at different sampling rates. There is also a “master” unit in the local BMS, but it would only
perform basic safety functions such as cell balancing and fault threshold detection. These
functions are better locally since they need to be performed fast in real time.
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As outlined in [22–24], extra components for cloud connection include an IoT com-
ponent, a cloud infrastructure, an application programming interface (API), and a user
interface (UI). For the IoT component, a fast and stable Internet connection like 5G is vital
for real-time data transfer between the battery system and the cloud. As well, Raspberry
Pi, which is a small single-board processing unit, can be utilized for data transfer and
communication. The measured battery data can be sent to the IoT component by the “slave”
units using the controller area network (CAN) protocol, and then forwarded to the cloud
by the IoT component under the TCP/IP and message queuing telemetry transport (MQTT)
protocol to ensure security and privacy. The cloud infrastructure usually consists of a
data logger and a database. The data logger captures a large amount of non-structured
or semi-structured data from the battery system and enables a secure gateway and data
transfer into the cloud database. The database serves to store all the data to be used in the
advanced battery data-analytic algorithms. The API, another component of the cloud-based
BMS, acts as a bridge between the cloud database and the battery data analytics tools and
algorithms, using popular programming applications such as Matlab and Python. The UI
component of the BMS is necessary for the users to inspect and visualize the operation
and state of the battery pack in real time, as well as investigate historical operation data
which can help the users schedule maintenance and repair. This is a significant addition
compared with the current BMS design which offers little data visualization. The users
can be informed by the UI as soon as any battery system fault is identified through alarms,
which help to reduce damaging effects to the batteries, ultimately improving the safety and
reliability of the battery system and reducing maintenance costs.

4. Perspectives on the Functionality and Usability of Cloud-Based Smart BMS

The development of an efficient, reliable, and accurate BMS plays a very significant
role in safe and effective battery management and control. The cloud-based smart BMS is
a step in the right direction for future battery applications. However, there are still many
points to address before it can become practical. For example, there should be a logical split
of BMS features and functionalities to utilize both the local processing unit and the cloud
platform effectively and efficiently. The functions of a smart BMS, mentioned in previous
sections, include data acquisition, cell monitoring, cell balancing, charge control, SOC and
SOH estimation, thermal management, fault detection, and fault prognosis. The risks and
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integration approaches for this type of BMS are other points that should also be brought up
in discussion.

The local functions of the BMS should include data acquisition, cell balancing, charge
control, thermal management, and fault detection. Some of these functions, however, can
be supplemented by the use of the cloud platform. Data acquisition must be performed
locally since it is done through physical sensors connected to the battery system. The
data cannot be stored locally, therefore, it is transferred to the cloud and stored there to be
used to perform other BMS functions. Cell balancing is required as the inconsistency and
discrepancy among the cells may negatively affect the pack’s capacity, lifespan, and other
important performance. Cell balancing for voltage can be done effectively with the local
unit, and therefore does not have to utilize the cloud. However, cell balancing for SOC and
capacity could benefit from data-driven equalization strategies which would require cloud
computing and storage. Charge control prevents the battery system from overcharging
and overdischarging and is another function that can be done effectively with the local
BMS unit. Thermal management often involves cooling fluids or materials of which flow is
controlled and adjusted based on the measured temperature, using control and feedback
algorithms. Even though this function can be done locally, the use of the cloud can help
improve it for future use, such as selecting a better cooling material or optimizing the
control algorithms. Fault detection is another function that should stay in the local BMS
units since it needs to be reliable and done in real time. The cloud platform depends largely
on the Internet connection which may not be completely reliable at all times, and hence, it
is better and inherently safer to have the fault detection function offline.

The cloud functions of the BMS should include but are not limited to, cell monitor-
ing, SOC and SOH estimation, and fault prognosis. The cell monitoring function can be
improved significantly with the help of the cloud platform, as it has better visualization,
user interface, and more historical data, instead of a black-box solution such as the current
offline BMS. As the current BMS has limited data storage, the cloud-based solution would
essentially offer an unlimited amount of data storage. The estimation of SOC and SOH
has always been a problem for the offline BMS, as it relies on the accuracy of the battery
model and the estimation algorithms, which cannot be complex due to the computing
limitations. With the cloud platform enabling high computing capability, users can develop
and implement more accurate battery models (electrochemical models) and estimation
algorithms (machine learning algorithms) for the SOC and SOH of battery systems. Fault
prognosis is a supplementary function to the local fault detection function of the BMS.
Instead of detecting faults as they occur, fault prognosis would use historical data and
machine learning to predict where and when a fault might happen in the battery system,
and notify the users to anticipate or prevent the fault. This function is also useful in terms
of user behavior warnings as well as warranty tracking. There are other potential BMS
functions that are not possible with the current offline BMS, such as lifetime prediction,
economic optimization, etc., that can be developed with the implementation of cloud-based
smart BMSs. Since this is a relatively new concept, there should be more discussions and
research efforts going toward the efficient and effective split of the local and cloud functions
for the smart BMS.

There exist some drawbacks associated with the cloud-based solution for the smart
BMS. Firstly, a fast and reliable Internet connection is a mandatory component of the system.
However, this might not be feasible at certain locations or for certain applications, such
as mining or remote areas exploration. Moreover, even for common battery applications,
Internet outages might affect the performance of the smart BMS. Backup power and
Internet connection are thus necessary to ensure the smooth operation of the battery
systems. Secondly, costs are also an important component of the cloud-based BMS that
needs to be investigated more thoroughly. The costs of operating and maintaining the
cloud platform depend largely on the amount of data and algorithms used on the cloud.
Therefore, researchers need to identify useful battery data and optimal data collection
frequency in order to minimize the costs of the cloud operation without sacrificing the
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accuracy and reliability of the BMS functions. Finally, since it is a relatively new concept
for LIB systems, it needs to be implemented and tested in a small number of battery
applications first, before it can be used widely in other applications. Applications that
can benefit greatly from cloud-based smart BMS include EVs and large-scale BESSs due to
the scale of data collection and the complexity of desired battery algorithms, and in these
applications, a cloud solution implementation would also be easier and more sound.

5. Conclusions

With the rise of LIBs, BMSs play an important role in ensuring safety and optimizing
the operation of battery applications. However, the current BMS design shows several
critical drawbacks. Recent developments in cloud-based smart BMS design will address
a major issue of the current BMS, which is the unreliability and inaccuracy of its battery
algorithms due to limited computational capability and data storage. This study reviews
the concept of the cloud-based BMS and its potential functionalities and usability. The
cloud solution will provide a better solution for condition monitoring, fault prognosis, and
optimization of LIB systems. The flexibility of the cloud system will also allow it to be
used with minimal modifications in future ESS solutions such as solid-state LIBs, lithium–
sulfur batteries, or metal–air batteries. By improving the reliability and performance of LIB
systems, the cloud-based smart BMS will contribute to the mass adoption of renewable
energy, making energy cheaper, cleaner, and more accessible to the public. With such
benefits, there are still several drawbacks, such as the need for fast and reliable onsite
Internet, prevention of outages, potentially higher yet unoptimized costs, and further
proof-of-concept work and developments. Future research should focus on implementing
advanced battery models and algorithms onto the cloud-based BMS and validating them
in real-life battery applications.
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