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Conception and limits of robust perceptual hashing: towards

side information assisted hash functions

Sviatoslav Voloshynovskiy∗, Oleksiy Koval, Fokko Beekhof and Thierry Pun

University of Geneva, Department of Computer Science,

7 route de Drize, CH 1227, Geneva, Switzerland

ABSTRACT

In this paper, we consider some basic concepts behind the design of existing robust perceptual hashing techniques
for content identification. We show the limits of robust hashing from the communication perspectives as well as
propose an approach capable to overcome these shortcomings in certain setups. The consideration is based on
both achievable rate and probability of error. We use a fact that most of robust hashing algorithms are based
on dimensionality reduction using random projections and quantization. Therefore, we demonstrate the corre-
sponding achievable rate and probability of error based on the random projections and compare with the results
for the direct domain. The effect of dimensionality reduction is studied and the corresponding approximations
are provided based on Johnson-Lindenstrauss lemma. A side information assisted robust perceptual hashing is
proposed as a solution to the above shortcomings.

Notations: We use capital letters to denote scalar random variables X and X to denote vector random
variables, corresponding small letters x and x to denote the realizations of scalar and vector random variables,
respectively. All vectors without sign tilde are assumed to be of the length N and with the sign tilde of length
L with the corresponding subindexes. The binary representation of vectors will be denoted as bx with the
corresponding subindexing. We use X ∼ pX(x) or simply X ∼ p(x) to indicate that a random variable X is
distributed according to pX(x). N (µ, σ2

X) stands for Gaussian distribution with mean µ and variance σ2
X . ||.||

denotes Euclidean vector norm and Q(.) stands for Q-function.

1. INTRODUCTION: BASIC DESIGNS

The robust perceptual hashing was originally considered as an alternative to the classical crypto based hashing
algorithms known to be sensitive to any content modification. The main distinguishable feature of the robust
perceptual hashing is the ability to withstand certain modifications while producing the same or at least very
close (in a defined distance space) hash value. The applications of robust perceptual hashing are numerous
and include content management (content identification, indexing and retrieval), content security (tracking of
illegal copies, verification of authenticity, anticounterfeiting) as well as used as an assisting functionality for
synchronization and alignment.

A common principle in the design of most of robust perceptual hashing is a mapping of the original data x

to some secure but at the same time robust domain. This step is unavoidably accompanied by a dimensionality
reduction also known as feature extraction:

x̃ = Wx, (1)

where x ∈ R
N , x̃ ∈ R

L, W ∈ R
L×N and L ≤ N and W = (w1,w2, · · · ,wL)T consists of a set of projection basis

vectors wi ∈ R
N with 1 ≤ i ≤ L. The second step uses also possibly a key-dependent labeling or the Grey codes

to ensure the closeness of labels for the close vectors. Such kind of labeling is known as a soft hashing when
only the most significant bit of the Grey code is used (achieved by a simple comparison with the threshold), it
is known as binary or hard hashing.

The most simple quantization or binarization of extracted features is known as sign random projections:

bxi
= sign(wT

i x), (2)

∗The contact author is S. Voloshynovskiy (email: svolos@cui.unige.ch). http://sip.unige.ch



where bxi
∈ {0, 1}, with 1 ≤ i ≤ L and sign(a) = 1, if a ≥ 0 and 0, otherwise. The vector bx ∈ {0, 1}L computed

for all projections represents a binary hash computed from the vector x.

The example of mapping W used in the robust perceptual hashing are numerous and we will only mention
some of them: Fridrich7 uses block-based random projections generated from the uniform distribution and
compares the resulted scalars with the threshold that can be considered as the second level bitplane in the
Gray labeling (to enhance the robustness the projection vectors/fields are low-pass filtered that corresponds
to the extraction of low-pass coefficients from the data x); to enhance the security by randomized sampling
Mihcak et. al.18 use overlapping rectangles with the key dependent weights to compute the local statistics for
further quantization (the overlapping rectangles can be also considered as the projection vectors/fields with zeros
besides the support, where the random weights are generated, that makes them conceptually very close to Fridrich
design); F. Lefebvre and B. Macq suggest to use Radon projections12; Kalker at. al.8 consider overlapping blocks
for audio hashing.

The performance analysis of robust perceptual hashing was mostly performed using computer simulation.
Therefore, there is a real need in the thorough investigation of theoretical limits of robust hashing. The first
efforts in this direction have been reported in.3, 6, 16, 17, 24 However, the simultaneous impact of dimensionality
reduction and binarization still remains uncovered in terms of both identification rate and average probability
of error.

Another important aspect of robust perceptual hashing is security. The main belief behind the construction of
good hashing algorithms was a randomization property, i.e., the good hash should have largest possible entropy.
Swaminathan et. al. considered the entropy of different featured used in the state-of-the-art robust hashing
algorithms22 and later this analysis was extended to the crypto-based measures such as equivocation and unicity
distance.11, 14 The main analysis is performed along the line of investigating transformations that are difficult to
invert. This links the robust perceptual hashing based on non-invertible transformations with similar transforms
applied in biometric database protection against impersonation attack. At the same time, the growing number
of publications in the recently emerged domain of compressive sensing demonstrates a possibility to accurately
reconstruct some classes of sparse signals from low-dimensionality projections.4, 20 This also raises certain
security concerns about some transformations and their corresponding level of security.

Not less important problem of robust perceptual hashing is related to the fact that the entropy of source H(X)
exceeds the maximum number of reliably identifiable sequences under the certain distortions. The situation is
inherently different to those in the digital communications where the construction of codebook is quite flexible.

Therefore, in this paper, we will make an attempt to consider the basic construction of state-of-the-art robust
hashing techniques, evaluate the loss in performance in terms of achievable identification rate and probability of
error and suggest alternative design capable to overcome the shortcomings of existing robust hashing methods.

2. SOURCE AND CHANNEL MODELS: DIRECT DOMAIN IDENTIFICATION
CAPACITY AND PROBABILITY OF ERROR

To illustrate the limitations of robust perceptual hashing, we will refer to the identification setup in the scope
of communication framework where some sequence should be identified based on its noisy observation on the
output of channel. We will assume that the source is memoryless and produces the sequences that follow
pX(x) =

∏N

i=1 pX(xi). Assuming N is sufficiently large, we will use the concept of typicality,5 according to
which the maximum number of uniquely distinguishable sequences is limited by M ≤ 2NH(X).

The robust hashing in the communication framework can be represented as in Figure 1. All sequences
generated by the above source are indexed by the index m, 1 ≤ m ≤ M . The sequences are communicated via
a channel. We will assume the channel to be discrete memoryless channel (DMC), which is characterized by

pY|X(y|x) =
∏N

i=1 pY |X(yi|xi). This channel is characterized by some capacity Cid. The decoder has to establish
the index of input sequence x based on the channel output y. The corresponding identification scheme based on
practical implementation of robust hashing described in Section 1 is shown in Figure 2.
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Figure 1. Robust hashing in the communication framework.
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Figure 2. Robust hashing based identification with the corresponding identification capacities at each stage of processing.

2.1. Direct domain identification capacity

To estimate the maximum achievable errorless identification rate for the above channel pY|X(y|x), we will use
the notion of identification capacity Cid defines as:

Cid =
1

N
I(X;Y), (3)

where I(X;Y) is the mutual information between the input and output of channel25 †. Accordingly, the maximum
number of reliably distinguishable sequences on the output of such a channel is limited by 2NCid . Since, the
identification capacity (3) is upper bounded by:

Cid =
1

N
(H(X) − H(X|Y)) ≤

1

N
H(X), (4)

and for the case of i.i.d. sequences it means that about 2NH(X|Y ) sequences will not be distinguished due to the
channel distortions. Therefore, the channel loss H(X|Y ) plays an essential role for the identification that will
be addressed in our further analysis.

We demonstrate it on the example of i.i.d. Gaussian statistics assuming X ∼ N (0, σ2
XIN ). The differential

entropy of this source is h(X) = 1
2 log2(2πeσ2

X). For the memoryless additive white Gaussian noise (AWGN)
channel y = x(m) + z with Z ∼ N (0, σ2

ZIN ), the identification capacity is5:

Cid =
1

2
log2

1

1 − ρ2
XY

=
1

2
log2

(

1 +
σ2

X

σ2
Z

)

, (5)

†Note the difference with the channel capacity C = maxpX (x) I(X; Y ), where the maximization is performed with
respect to the channel input distribution that is more flexible contrarily to the considered fixed input distribution identi-
fication setup.



where ρ2
XY =

σ2
X

σ2
X

+σ2
Z

is a squared correlation coefficient between X and Y . Here, h(X|Y ) = 1
2 log2(2πeσ2

X|Y )

represents the conditional entropy with σ2
X|Y =

σ2
Xσ2

Z

σ2
X

+σ2
Z

. This variance also corresponds to the variance of

minimum mean square error (MMSE) estimator of x based on y.

This situation can be presented graphically, if one assumes that N is sufficiently large for X ∼ N (0, σ2
XIN ).

All the realizations x will be almost uniformly distributed on the surface of sphere of radius
√

Nσ2
X with the

probability close to one.5 For the above AWGN channel, the noise will create a sphere of ambiguity around
the communicated sequence x(m) with the radius

√

Nσ2
Z that is schematically shown in Figure 3(a). The noisy

realizations y with be located on the surface of this sphere. Under the proper codebook construction, the MMSE

estimate should ensure the presence of a unique x(m) in the sphere of radius
√

Nσ2
X|Y around y. In the classical

digital communications, this requirement is easily met by constraining the rate of source using optimal source
coding, which minimizes source reconstruction distortion for a given rate, and by selecting a proper codebook of
channel code for the specified statistics of energy constrained channel ‡. In the robust hashing, the situation is
inherently different due to inability to control the rate of source that is defined by nature. Moreover, the source
output serves directly as an input to the channel, whose distribution is not necessarily optimal for specified
channel statistics. Similar situation can be also considered for the sphere packing counterpart of the above
considered coding framework that is presented in Figure 3(b) and corresponds to another interpretation of (3) in
the form of I(X;Y ) = h(Y )−h(Y |X). In this case, the restriction is coming from the number of spheres of radius
√

Nσ2
Z concentrated around all possible codewords that can be packed into the sphere of radius

√

N(σ2
X + σ2

Z).
Obviously, under the above conditions many codewords will be located within the sphere of ambiguity and can
not be distinguished.
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Figure 3. The origin of identification ambiguity in robust hashing for the Gaussian setup: (a) coding with MMSE
estimate-base decoder and (b) sphere packing.

2.2. Average probability of error

We will continue the analysis of theoretical limits of robust hashing algorithms by a performance analysis of
robust hashing in terms of average probability of error. First, we will provide the analysis in the direct domain
that goes along the line of classical communications and then extend it to the random projections domains.

The average probability of error is defined as:

Pe =
1

M

M
∑

m=1

Pr[m̂ 6= m|M = m] =
1

M

M
∑

m=1

Pe|x(m), (6)

i.e., that the decoded index m̂ is not equal to the true index m, with Pe|x(m) to be the probability of error for
the codeword x(m), which is computed according to:

‡It will be shown below that it is also equivalent to satisfying the proper minimum distance between codewords in the
codebook.



Pe|x(m) =

∫

Rc
m

pY|X(y|x(m))dy, (7)

where Rc
m is the complementary decision region for the codeword x(m). This decision region is defined as:

Rc
m =

M
⋃

n=1,n 6=m

Dm,n, (8)

where the sets Dm,n = {y : pY|X(y|x(m)) ≤ pY|X(y|x(n))}, m,n = {1, · · · ,M} m 6= n correspond to the
maximum likelihood (ML) decision region for the case of two codewords. We will also define the corresponding
pairwise error probability of falsely accepting x(n) instead of x(m) as Pe|[x(m)→x(n)].

The exact average probability of error can be computed as19:

Pe = 1 −

∫ +∞

−∞

(

1 − Q

(

t + 1
2ǫx

√

σ2
Zǫx

))M−1
1

√

2πσ2
Zǫx

exp

[

−
1

2σ2
Zǫx

(

t −
1

2
ǫx

)2
]

dt, (9)

where ǫx = ‖x‖2
.

It is also useful to introduce the bounds on the above probability of error and investigate the identification
performance in terms of minimum distance among the codewords for a given codebook. In particular, using the
maximum pairwise probability and union bound, one can show that the probability of error Pe|x(m) in (6) can
be bounded as:

max
n,n 6=m

Pe|[x(m)→x(n)] ≤ Pe|x(m) ≤
M
∑

n=1,n 6=m

Pe|[x(m)→x(n)]. (10)

For the AWGN channel, the pairwise error probability can be computed as19:

Pe|[x(m)→x(n)] = Q

(

dm,n

2σZ

)

, (11)

where dm,n = ‖x(m) − x(n)‖ is the distance between two codewords x(m) and x(n).

Assuming the symmetric construction of the codebook and the worst case distance among all codewords to
be dmin = minm 6=n ‖x(m) − x(n)‖, one can combine (11) with (10) and substitute them to (6) to introduce the
bounds on the average probability of error:

Q

(

dmin

2σZ

)

≤ Pe ≤
1

M

M
∑

m=1

M
∑

n=1,n 6=m

Q

(

dm,n

2σZ

)

. (12)

Assuming Q
(

dm,n

2σZ

)

≤ Q
(

dmin

2σZ

)

, the bounds on the average probability of error finally can be reduced to:

Q

(

dmin

2σZ

)

≤ Pe ≤ (M − 1)Q

(

dmin

2σZ

)

. (13)

Therefore, the average probability of error is determined by the worst case distance. Similarly to the analysis
presented in the previous section for the achievable identification rate, there is no possibility to control and
actually maximize ‖x‖2

in (9) or dmin in (13) for the fixed M and N by the best codebook construction as in the
digital communication since all codewords are generated by the source (natural randomness) with the statistical
distribution defined by nature and their number is only limited by the source entropy.

3. IDENTIFICATION RATE AND PROBABILITY OF ERROR AFTER BINARY
FEATURE EXTRACTION

In this section, we will consider the setup presented in Figure 2 using key-dependent mapping as defined in (1):

ỹ = Wy. (14)



We will try to introduce a formal approach to the random projections considered by Fridrich,7 Mihcak et. al.,18

F. Lefebvre and B. Macq.12 Instead of following a particular consideration of mapping W, we will assume that
W is a random matrix. The matrix W has the elements wi,j that are generated from some specified distribution
known as a random projections. L × N random matrices W whose entries wi,j are independent realizations of
Gaussian random variables Wi,j ∼ N (0, 1

N
) represent a particular interest for our study. In this case, such a

matrix can be considered as an orthoprojector, for which WWT ≈ IL (almost orthogonal) §.

The performed above analysis of identification capacity and probability of error concerns the so-called direct
domain where the decision about the codeword index is deduced directly using the N -length sequences. Contrar-
ily, practically all robust hashing algorithms use the above dimensionality reduction (1) thus converting all pairs
of sequences (x,y) into the projections (x̃, ỹ). In this section, we will demonstrate that the mutual information
between the projected sequences is now redefined as R̃id = L

N
I(X̃; Ỹ ) and R̃id ≤ Cid, with the equality if and

only if the transformation is invertible. Since it is not obviously a case for most of dimensionality reduction
or feature extraction transforms where L << N , one is additionally facing the loss in performance in terms of
maximum amount of uniquely distinguishable sequences. It should be pointed out that an extra loss is coming
from the binarization stage that results in RBSC

id for the binary sequence representation.

3.1. Identification rate and probability of error in random projection domain

According to the definition of identification capacity (3), we will consider the transformation of random vectors
X̃ = WX and Ỹ = WY that results into the identification rate:

R̃id =
1

N
I(X̃; Ỹ). (15)

For the Gaussian assumptions considered above X̃ ∼ N (0, σ2
XIL) and Ỹ ∼ N (0, (σ2

X + σ2
Z)IL), the identifi-

cation rate in the random projections domain is:

C̃id =
1

N

L

2
log2

(

1 +
σ2

X

σ2
Z

)

=
L

N
Cid. (16)

Therefore, the dimensionality reduction transform W based on orthoprojector introduces a loss proportional to
the ratio of signal dimensions after and before projection, i.e., L

N
.

The average probability of error (9) will be the same with the only replacement of norm ǫx = ‖x‖2
by

ǫ̃x = ‖x̃‖2
= ‖Wx‖2

. The bounds on the average probability of error in the direct domain (13) can be readily
rewritten for the random projections domain as:

Q

(

d̃min

2σZ

)

≤ P̃e ≤ (M − 1)Q

(

d̃min

2σZ

)

, (17)

where d̃2
min = minm 6=n (x(m) − x(n))

T
WT

(

WWT
)−1

W (x(m) − x(n)) is the worst case squared distance

among all pairs of codewords. Moreover, in the case of orthoprojection (WWT = IL), it reduces to d̃2
min =

minm 6=n (x(m) − x(n))
T

WT W (x(m) − x(n)) = minm 6=n ‖W (x(m) − x(n))‖2
.

Therefore, it is important to point out that the distance between the codewords in the random projections
domain has reduced from dmin to d̃min, and d̃min ≤ dmin.

To introduce the bounds on the norm ‖x̃‖2
and distance d̃2 we will use the results of Johnson-Lindenstrauss

lemma,10 which states that with high probability the geometry of a point cloud is not disturbed by certain
Lipschitz mappings onto a space of dimension logarithmic in the number of points. In particular, some existing
proofs of the lemma show that the mapping W can be taken as a linear mapping represented by an L×N matrix
whose entries are randomly drawn from certain probability distributions. More particularly, M vectors in the
Euclidean space can be projected down to L = O(ζ−2 log2 M) dimensions while incurring a distortion of at most
1 + ζ in their pairwise distances, where 0 < ζ < 1. In principle, this can be achieved by a dense L × N matrix
and such a mapping takes O(N log2 M) (for fixed ζ). We refer interested readers to1 for more details.

§Otherwise, one can apply special orthogonalization techniques to ensure perfect orthogonality.



According to Johnson-Lindenstrauss result,10 one can use use the approximation for the random orthopro-
jector W as:

(1 − ζ)

√

L

N
||x|| ≤ ||Wx|| ≤ (1 + ζ)

√

L

N
||x||. (18)

Thus, with high probability one can approximate (17) as follows:

Q

(

√

L

N

dmin

2σZ

)

≤ P̃e ≤ (M − 1)Q

(

√

L

N

dmin

2σZ

)

. (19)

Therefore, the random projections introduce the loss in the norm of projected codewords and distance between

them proportional to
√

L
N

that also reflects the corresponding loss in terms of achievable identification rate.

3.2. Identification rate and probability of error after binarization

The next step in binary feature extraction according to Figure 2 corresponds to the binarization. In this section,
we will consider binarization based on sign random projections introduced by (2). The link between the binary
representation bx of vector x and its noisy counterpart by of vector y is defined according to binary symmetric
channel (BSC) model. It is assumed that noise in the direct domain might cause a bit flipping in the binary
domain with a certain average probability P̄b. The corresponding identification rate can be readily found as5:

RBSC
id =

1

N
I(Bx;By) =

L

N
(1 − H2(P̄b)), (20)

where H2(P̄b) = −P̄b log2 P̄b − (1 − P̄b) log2(1 − P̄b) is the binary entropy.

The bit error probability indicates the mismatch of signs between x̃i and ỹi, i.e., Pr[sign(x̃i) 6= sign(ỹi)]. For
a given vector x and defined projection vector wi, one can find the probability of bit error as:

Pb|x̃i
=

1

2
Pr[Ỹi ≥ 0|X̃i < 0] +

1

2
Pr[Ỹi < 0|X̃i ≥ 0], (21)

or by symmetry as:
Pb|x̃i

= Pr[Ỹi < 0|X̃i ≥ 0]. (22)

For a given x̃i and Gaussian assumption about the noise, the distribution of the projected vector is Ỹi ∼
N (x̃i, σ

2
ZwT

i wi) that reduces to Ỹi ∼ N (x̃i, σ
2
Z) for the orthoprojection case (wT

i wi = 1) and:

Pb|x̃i
=

∫ 0

−∞

1
√

2πσ2
Z

e
−(ỹi−x̃i)

2

2σ2
Z dỹi = Q

(

x̃i

σZ

)

. (23)

Thus, the average bit error probability is:

P̄b = 2

∫ ∞

0

Pb|x̃i
p(x̃i)dx̃i = 2

∫ ∞

0

Q

(

x̃i

σZ

)

1
√

2πσ2
X

e
−x̃2

i

2σ2
X dx̃i =

1

π
arccos(ρXY ), (24)

with the statistics of projection X̃i ∼ N (0, σ2
X). Remarkably, the average probability of error depends on the

correlation coefficient between the direct domain data and is completely determined by the channel and source
statistics. Similar result is also confirmed by McCarthy et. al.17 and Doets and Lagendijk6 for audio hashing
based on binary fingerprinting method proposed in.8

Summarizing the above consideration, one can conclude that the identification rate deceases with each stage
of processing Cid ≥ R̃id ≥ RBSC

id that is obviously a source of serious restriction. To avoid such kind of ambiguity,
it is well known according to the Shannon channel coding theorem that the number of codewords M should be
restricted to M ≤ 2NCid .5 Therefore, there does not exist any robust hashing algorithm in the considered
decoding sense capable to reliably distinguish more codewords than it is allowed by the identification capacity.
The same conclusions are valid for the average probability of error.

Therefore, there is a high demand in solutions capable to resolve the above problem. We envision two possible
solutions:



• Solution 1: list decoding when more than one index is allowed to be produced by a system; in this case,
the task is to ensure that the correct index is always on a list, i.e., to minimize a probability of miss while
controlling a list size;

• Solution 2: side information assisted hashing when the decoder produces only one index but it has an
access to some side information that resolve the ambiguity created by the channel; in this paper, we will
concentrate on this solution.

4. SIDE INFORMATION ASSISTED ROBUST PERCEPTUAL HASHING

As it was shown above for both identification capacity and average probability of error, the only way to decrease
the probability of error for a single candidate decoder is to reduce the number of codewords in the codebook
(or actually to expurgate the codewords with the smallest distance up to the limit defined by the identifica-
tion capacity). This approach, typically used in the digital communications, is not acceptable for the content
identification/authentication due to the main requirement to avoid collisions for M > 2NCid .
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Figure 4. Side information based robust hashing: (a) identification system with the side information assisted robust
hashing and (b) codebook construction and decoding based on binning.

That is why, we advocate an alternative approach based on side information for collision-free robust hash-
ing (Solution 2 above). This approach is essentially inspired by Slepian-Wolf distributed source coding21 and
schematically presented for the binary data in Figure 4. The basic idea behind this approach consists in the
partitioning (binning) of the entire codebook on the sets (bins) indexed by s. The bin index s, considered as
the side information, is communicated to the decoder, which makes the decision about a particular sequence
index m matched with the binary data By within the bin s. For the binary data 1 ≤ s ≤ 2L(H(Bx)−RBSC

id )

and 1 ≤ m ≤ 2LRBSC
id and the corresponding codebook design is shown in Figure 4(b). The efficient practical

implementation of this theoretical decoding can be achieved using low-density parity check (LDPC) codes.

Similar interpretation can be introduced for the Gaussian data (considered in Section 2) that is shown in
Figure 5. The codewords shown in the upper part of Figure can not be uniquely distinguished in the presence
of noise. However, one can easily distinguish all of them (given that the number of codewords does not exceed
2NCid) by knowing that the codewords belong to the certain set indexed by s. To achieve this goal, one can
label the codewords in several groups (in this particular example 3) with the index s that are represented by
triangles, circles and squares. Given the index s, one performs the identification by the ML decoding in the
direct or random projections domains.
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Figure 5. Side information based robust hashing: the codebook is partitioned on 3 sets labeled by triangles, circles and
rectangles.

Summarizing the above consideration, one needs to compensate H(X|Y ) loss in I(X;Y ) = H(X)−H(X|Y )
by providing this side information via some auxiliary channel to the decoder. The main question is how to
provide this side information. In our belief, it is highly determined by a particular application and here we will
provide only some examples:

1. Content identification:

• Content based image retrieval (CBIR) systems: the codebook construction can be considered based on
binning with the index s provided in the form of text annotations about the groups or categories such
as for example, people, trees, animals, vehicles, nature, etc.; it is important to note that the clustering,
typically required by the existing CBIR systems (that naturally disappears with the growth of the
codebook cardinality), is not needed in the advocated approach; the samples from different groups can
be mixed and overlapped in the direct space; additionally, the system can provide the list of indexes
on the output contrarily to strict identification; other modalities can be used as the side information;

• DNA/RNA sequence and mass spectrometry protein identification: the entire database is partitioned
into groups according to the domain specific classification;

• Brand protection (item identification, tracking and tracing): the item identification features (e.g.,
microstructure images) are partitioned into the bins according to some classification information such
as for example serial number, date of production, country of destination, etc.;

• Multimedia identification: image, audio, video content identification is based on the robust hashing
but the index of set s is communicated to the decoder as the hidden watermark; it should be pointed
out the main difference with the known schemes such as for example proposed by Fridrich7 where the
hash is stored as a watermark as opposed to what is considered in the paper;

2. Content authentication:

• Authentication architectures are designed in the similar way as identification with the only difference
that consists in the providing additional authentication information to the decision device about the
sequence index m within the set specified by the index s. In the authentication applications it is also
known as common randomness extraction2 and practically used in various architectures as reported
in.9, 13, 15, 23



5. RESULTS OF COMPUTER MODELING

In this section, we will first demonstrate the loss in performance due to the dimensionality reduction and bina-
rization for both identification rate and average probability of error. In the second part of modeling, we will
highlight the impact of side information on the average probability of error for the Gaussian and binarized data.

We will start with the demonstration of loss in performance introduced by the different signal processing
transformations in the procedure of robust hash computation. For this, we present identification capacity Cid

(3) and identification rates R̃id (15) and RBSC
id (20) for the dimensionality reduction factors L

N
= 1

8 and 1
16 as

the functions of signal-to-noise ratio (SNR) defined as SNR = 10 log10
σ2

X

σ2
Z

. The resulting curves are shown in

Figure 6(a). As expected, the achievable rate decreases with each stage of processing. The first rate loss from the
direct domain to the random projections domain is caused by the dimensionality reduction and is proportional to
L
N

. The second rate loss is additionally caused by the mapping of real data into binary counterparts. It is evident

that for the errorless identification one should satisfy the condition M ≤ 2NCid and since Cid ≥ R̃id ≥ RBSC
id the

number of uniquely distinguishable sequences is reducing with each stage of hash computation.

To demonstrate the same impact on the average probability of error, we investigated the average probability
of error in the direct domain, after sequential dimensionality reduction and binarization. The results of this
study are presented in Figure 6(b). At the first stage, the average probability of error for the direct domain
was computed according to the exact formula (9), upper bound (12) and experimentally simulated by averaging
over 10 randomly generated Gaussian codebooks of size M = 23 and length N = 1024 with σ2

X = 1 under
50000 random noise realizations. The average minimum distance was estimated to be dmin = 43. At second
stage, the same simulations were performed for the randomly projected data with L = 128 that are shown in
the same Figure. The average minimum distance was d̃min = 15. Both theoretical exact formula and upper
bound on the average probability of error as well as the experimental results confirm the conclusion about the
distance decrease proportional to

√

L/N that causes the corresponding deterioration of performance. At the
final stage, the randomly projected data were binarized thus preserving its dimensionality L = 128 and the
experimentally computed average probability of error is presented to characterize the identification performance
based on binary (hard) hashed values. These results are in the good match with the corresponding performance
in terms of achievable identification rate.

The last part of simulation addresses the impact of side information on the identification system performance
in terms of average probability of error. The results of simulation are shown in Figures 6(c) and (d). Figure 6(c)
represents the results obtained for the Gaussian codebooks of size M = 210 and length N = 1024 with σ2

X = 1
under 50000 random noise realizations. The curve with label “0 bit” corresponds to the case when no side
information is used for the identification in both direct and binary domains, i.e., the rate of side information
is Rsi = 0, and the rest of curves indicate the graduate increase in the side information up to 6 bits. The
codebook was partitioned onto 2Rsi bins during simulation with the random allocation of codewords. The same
simulation was also performed for the binary codebooks obtained by the random projections and binarization
with L = 128 of the the previous Gaussian codebooks. In both cases, the presence of side information makes
possible to decrease the average probability of error with the SNR gain about 2.5 dB.

6. CONCLUSIONS

In this paper, we investigated the fundamental restrictions of basic robust perceptual hashing algorithms based on
dimensionality reduction and binarization in the identifications setup. Based on the well-known communication
results we have linked the identification setup with the identification capacity and demonstrated the maximum
number of uniquely identifiable sequences without any processing. Then we showed the gradual decrease of
this number with each stage of hash computation as well as presented the accuracy of identification in terms
of average probability of error. Due to the inherent necessity to identify larger number of sequences than those
enabled by the identification capacity and taking into account the above loss due to dimensionality reduction and
binarization in the hash computation, we suggested two possible solutions based on the list decoding and side
information assisted hashing that was the subject of our study. The results of computer simulation performed
for both Gaussian random codebooks and binary hashes demonstrate the positive impact of side information on
the performance enhancement. In part of future research, we will concentrate on the alternative approach based
on list decoding and compare the results with those obtained in this paper.
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Figure 6. Side information based robust hashing: (a) achievable rates at different stages of hash computation, (b) the
corresponding average probabilities of error for M = 23, (c) impact of side information on average probability of error in
the direct domain (N = 1024) and (d) binary domain (L = 128) for M = 210.
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