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CONCEPTIONS OF SAMPLE AND THEIR RELATIONSHIP TO
STATISTICAL INFERENCE

ABSTRACT. We distinguish two conceptions of sample and sampling that emerged in
the context of a teaching experiment conducted in a high school statistics class. In one
conception ‘sample as a quasi-proportional, small-scale version of the population’ is the
encompassing image. This conception entails images of repeating the sampling process and
an image of variability among its outcomes that supports reasoning about distributions. In
contrast, a sample may be viewed simply as ‘a subset of a population’ — an encompassing
image devoid of repeated sampling, and of ideas of variability that extend to distribution.
We argue that the former conception is a powerful one to target for instruction.
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1. BACKGROUND

On the basis of empirical evidence Kahneman and Tversky (1972) hypo-
thesized that people often base judgments of the probability that a sample
will occur on the degree to which they think the sample “(i) is similar
in essential characteristics to its parent population; and (ii) reflects the
salient features of the process by which it is generated” (ibid., p. 430). This
hypothesis suggests that Kahneman and Tversky’s subjects focused their
attention on individual samples. In later research, Kahneman and Tversky
(1982) conjectured that people, indeed, tend to take a singular rather than
a distributional perspective when making judgments under uncertainty. In
the former, one focuses on the causal system that produced the particular
outcome and assesses probabilities “by the propensities of the particular
case at hand” (ibid., p. 517). In contrast, the distributional perspective
relates the case at hand to a sampling schema and views an individual case
as “an instance of a class of similar cases, for which relative frequencies
of outcomes are known or can be estimated” (ibid., p. 518).

Konold (1989) found strong empirical support for Kahneman and Tver-
sky’s (1982) conjecture. He presented compelling evidence that people,
when asked questions that are ostensibly about probability, instead think
they are being asked to predict with certainty the outcome of an individual
trial of an experiment. Konold (ibid.) characterized this orientation, which
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he referred to as the outcome approach, as entailing a tendency to base
predictions of uncertain outcomes on causal explanations instead of on
information obtained from repeating an experiment.

Sedlmeier and Gigerenzer (1997) analyzed several decades of research
on understanding the effects of sample size in statistical prediction. They
argued compellingly that subjects across a diverse spectrum of studies who
incorrectly answered tasks involving a distribution of sample statistics may
have interpreted task situations and questions as being about individual
samples.

Recent instructional studies (delMas, 1999; Sedlmeier, 1999) indicated
that engagement in carefully designed instructional activities using com-
puter simulations of drawing many samples can help orient students’ atten-
tion to collections of sample statistics when making judgments involving
samples. However, analyses in these studies did not focus on characterizing
students’ evolving conceptions and imagery in relation to their engagement
in instruction.

Despite the centrality of variability in statistics, students’ understanding
of sampling variability and our comprehension of variability’s role as a
central organizing idea in statistics instruction has received little research
attention (Shaughnessy et al., 1999). Rubin et al. (1991) proposed that
a coherent understanding of sampling and inference entails integrating
ideas of sample representativeness and sampling variability to reason about
distributions. Images of the re-sampling process, however, were not at
the foreground of their conceptual analysis. Other conceptual analyses of
sampling (Schwartz et al., 1998; Watson and Moritz, 2000) characterized
the relationship between population and a randomly selected subset of it
in a way that did not entail images of the repeatability of the sampling
process nor of the variability that we can expect among sample outcomes.

In sum, substantial evidence from research on understanding sampling
suggests that students tend to focus on individual samples and statistical
summaries of them instead of how collections of sample statistics are dis-
tributed. Furthermore, students may tend to predict a sample’s outcome
on the basis of causal analyses instead of statistical patterns in a collec-
tion of sample outcomes. These orientations are problematic for learning
statistical inference because they disable students from considering the re-
lative unusualness of a sampling process’ outcome. Finally, sampling has
not been characterized in the literature as a scheme of interrelated ideas
entailing repeated random selection, variability, and distribution.
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2. PURPOSE AND METHODS

This study investigated the development of students’ thinking as they par-
ticipated in instruction designed to support their conceiving sampling as a
scheme of interrelated ideas including repeated random selection, variab-
ility among sample statistics, and distribution.

Twenty-seven 11"- and 12-grade students, enrolled in a non-AP semes
ter-long statistics course, participated in a 9-session whole-class teach-
ing experiment addressing ideas of sample, sampling distributions, and
margins of error. Our aim was to develop epistemological analyses of
these ideas (Glasersfeld, 1995; Steffe and Thompson, 2000; Thompson and
Saldanha, 2000) — ways of thinking about them that are schematic, ima-
gistic, and dynamic — and hypotheses about their development in relation
to students’ engagement in classroom instruction.

Three research team members were present in the classroom during
all lessons: one author designed and conducted the instruction; the other
author observed the instructional sessions and took field notes; a third
member operated the video cameras. Students’ understandings were in-
vestigated in three ways: by tracing their participation in classroom dis-
cussions (all instruction was videotaped), by examining their written work,
and by conducting post-experiment individual interviews.

Instruction stressed two overarching and related themes: 1) the ran-
dom selection process can be repeated under similar conditions, and 2)
judgments about sampling outcomes can be made on the basis of relat-
ive frequency patterns that emerge in collections of outcomes of similar
samples.! These themes were intended to support students’ developing
a distributional interpretation of sampling and likelihood. Though an a
priori outline of the intended teaching and learning trajectories (Simon,
1995) guided the progress of the teaching experiment, the research team
made on-line adjustments to instruction according to what they perceived
as important issues that arose for students in each session.

The teaching experiment unfolded in three interrelated phases: it began
with directed discussions centered on news reports that mentioned data
about sampled populations and news reports about populations per se (rais-
ing the issue of sampling variability). The experiment then progressed
to questions of “what fraction of the time would you expect results like
these?” This entailed having students employ, describe the operation of,
and explain the results of computer simulations of taking large numbers of
samples from various populations with known parameters (see Figure 1).

The experiment ended by examining simulation results systematically,
with the aim that students see that distributions of sample proportions are
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Figure 1. Part of an instructional activity designed to help students make sense of com-
puter simulations of drawing many random samples from a population. Simulation input
(left) and output (right) windows were displayed in the classroom and the instructor posed
questions designed to orchestrate reflective discussions about the simulations.
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Figure 2. Part of an instructional activity designed to structure students’ investigation of
the relationship between sampling distributions and underlying population proportions.
Students filled out the table on the left by organizing information (like that shown on
the right) generated by computer simulations of drawing many random samples from
populations with given proportions.

largely unaffected by underlying population proportions (see Figure 2), but
are affected in important ways by sample size.

3. RESULTS AND DISCUSSION

In this report we move toward elaborating an important distinction between
two conceptions of sample and sampling that emerged in the teaching
experiment. Our analyses revealed that some students — generally those
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who performed better on the instructional activities and those who were
able to hold coherent discourse about the mathematical ideas highlighted
in instruction — had developed a multi-tiered scheme of conceptual oper-
ations centered around the images of repeatedly sampling from a popu-
lation, recording a statistic, and tracking the accumulation of statistics as
they distribute themselves along a range of possibilities. These images and
operations were tightly aligned with those promoted in classroom instruc-
tional tasks and discussions. As such, we conjecture that these students’
engagement in the instructional activities played an important role in their
developing such a scheme. For instance, we had students practice ima-
gining and describing a coordinated multi-level process that gives rise to
sampling distributions (and to the simulations’ results):

Level 1: Randomly select items to accumulate a sample of a given size
from a population. Record a sample statistic of interest.

Level 2: Repeat Level 1 process a large number of times and accumulate
a collection of statistics.

Level 3: Partition the collection in Level 2 to determine what proportion
of statistics lie beyond (below) a given threshold value.

In classroom discussions the instructor employed a metaphor designed
to help students distinguish and coordinate these different levels. The meta-
phor entails imagining a collected sample of dichotomous opinions (“yes”
or “no”) in Level 1 as a box containing ‘1’s (for “yes”) and ‘0’s (for “no”).
It then entails labeling each box with a ‘1’ (or a “0”) if the proportion
of its contents is greater (or less) than a given threshold value. In this
metaphor, what accumulates in Level 2 is a collection of ‘1’s and ‘O’s,
each of which represents a sample whose statistic is greater (less) than the
threshold value. At Level 3, the metaphor entails calculating the percent of
the Level 2 collection that are ‘1’ or that are ‘0’, depending on the required
comparison.

The following excerpt illustrates one student’s coherent image of the
multi-tiered sampling process, the development of which appeared to have
been facilitated by his use of this metaphor. We take this student’s coher-
ent image as an expression of the stable scheme of conceptual operations
characterized above. In the excerpt, the student (D) interpreted a sampling
simulation’s command and the result of running it as he viewed familiar
simulation windows on a computer screen (see Figure 1)%:
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D: Ok. It’s asking. . .the question is. . .like “do you like Garth Brooks?”.
You’re gonna go out and ask 30 people, it’s gonna ask 30 people 4500
times if they like Garth Brooks. The uh. . .(talks to himself) what’s
this? let’s see. . .the actual. . like the amount of people who actually
like Garth Brooks are...or 3 out of 10 people actually prefer like
Garth Brooks’ music. And uh.. .for the 30...when you go out and
take one sample of 30 people, the cut off fraction means that if you’re
gonna count, you’re gonna count that sample, if like 37% of the 30
people preferred Garth Brooks. And then it’s going to tally up how
many of the samples had 37% people that preferred Garth Brooks.
So like the answer would be I don’t know, like whatever, 2000 out
of 4500 samples had at least 37% of people preferring Garth Brooks.
[...]

I: How was it that you thought about it that allowed you to keep things
straight? [...]
D: I just thought of it like ... I don’t know, I sort of thought of it like

how you were saying. Like. . .if the like 1s and the Os if you ask 30
uh if like 10 of them say they like Garth Brooks — or for every person
who likes Garth Brooks you put a 1 down, if they don’t you put a
zero. You do that 30 times and you’re gonna get like I don’t know,
15 ones and 15 zeros you add up, you add them up. Then it says the
cutoff fraction for each sample is 37% so you have like at least 37%
of the. . like those or...30 — if you add it up and divided it by the
30 and it’s at least 37% then you have like another pile of like little
papers and you put a one on like the big, the big one for the sample
or a zero if it’s less than — if the whole sample is less than 37%. The
1s and Os I don’t know. . .you said something about like. . .that sort of
helped.

A significant feature of student D’s thinking was his ability to clearly dis-
tinguish different levels of the resampling processes — never confounding
the number of people in a sample with the number of samples taken — while
coordinating the various levels into a structured whole. Additionally, and
relatedly, student D interpreted the result of the simulation as an amount
(percentage) of sample proportions, thus suggesting that he understood
that the multi-level process generated a collection of sample proportions.’

Student D’s coherent image contrasts sharply with that of many poorer-
performing students who persistently confounded numbers of people in a
sample with numbers of samples drawn. The following interview excerpt
illustrates one such student’s (M) difficulties in the context of explaining
similar computer simulations:
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Segment 1

I:

Ok, Suppose that, here’s what I’'m gonna do, uhh instead of 4500
samples I’'m gonna take uhh, 1000 samples. Everything’s gonna stay
the same — sample size is 30, population fraction is 3/10ths, but now
were’ just taking 1000 samples. What would you expect the results to
be?

[...]
M: Uhh, somewhere around like (short silence), hmm around like 25 to
30% of those 1000 samples.
I: Why 25 to 30%?
M: Because it’s uhh . . . easier to uhh, I mean
I: What are you basing that judgment on?
M: Uhh, the actual population percentage, of 30
I: Ok, so you figure it’ll be about 30%, 25 to 30, because the population
fraction is 30%?
M: Yeah, somewhere close to that.
[...]
Segment 2
I: Alright (runs simulation, result displayed on output screen is “189 of
these 1000 repetitions . ..”)
M: 2/10ths, 20%. Hmm, it’s still a little less
I: So it’s a little less than 20%, right?
M: Hmm hmm, huh (seems surprised)
[...]
Segment 3
I: Alright. Suppose that now we, let’s do this, let’s make 2500 samples
(changes parameter value in command window). What fraction of
those samples, I mean what result would you now expect, for the
number of samples that we’re going to get that exceed 37% preferring
Garth Brooks?
M: About 1/5 of those.
[...]
I: Now, before you would have said “well, 3/10ths of the 2500 samples,
the 2500 repetitions”
M: Hmm hmm
I: Do you still sort of lean that way, that you should get around 3/10ths
of the -7
M: I think it should, but I don’t understand why it’s not, why it keeps

coming out with 1/5™ rather than 1/3%.
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Alright, what is that ‘3/10ths’ 3/10ths of?
Uhh, hmm 3/10ths of the entire population
Alright, and those are people, right?

Hmm hmm (nods)

Now, if you took 3/10ths of the 2500 repetitions you’re taking 3/10ths
of what?

Of the uhh. . .people sampled (chuckles)
No, 3/10ths of the samples.
Oh. Hmm hmm

SRS

Segment 1 of the excerpt suggests that student M expected the simula-
tion to produce an amount (number) of samples and that he expected the
percentage of that amount to hover around the sampled population percent
(30%). Segment 2 illustrates his surprise at finding the actual percent being
20% of the 1000 samples generated. In segment 3 the student anticip-
ated the same (20%) result for a simulation involving a larger number of
samples, but he did not understand why this should be so because his con-
viction was that the simulation should produce a numerical value close to
the sampled population percentage. The remainder of the segment reveals
that student M had been interpreting the simulation’s result as a percentage
of people sampled rather than as a percentage of samples.

During such instructional activities most students experienced great dif-
ficulty conceiving the re-sampling process in terms of distinct levels. They
would often unwittingly shift from speaking and thinking of a number of
people in a sample to a number of samples selected. Their control of the
coordination between the various levels of imagery was unstable; from
one moment to the next their image of a number of samples (of people)
seemed to easily dissolve into an image of a total number of people. These
difficulties led many students to misinterpret a simulation’s result as a
percentage of people rather than a percentage of sample proportions. This
muddling of the different levels of the resampling process, in turn, ob-
structed their ability to imagine how sample proportions might distribute
themselves around the underlying population proportion.

A salient consequence of these students’ difficulties in imagining a
sampling distribution was their tendency to judge a sample’s represent-
ativeness only in relation to the underlying population proportion. Their
image of sampling did not entail a sense of variability that extended to
ideas of distribution: they understood that a sample statistic’s values vary,
but only to the extent that if we were to draw more samples and compute a
statistic from them, those values would differ from the ones for the samples
already drawn. Thus, judgments about the unusualness of a particular value
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Population

Figure 3. An additive image of sample entails only part-whole relationships. Resemblance
between sample and population is not a salient issue. Multiple samples are seen as multiple
subsets.

of a statistic were based largely on how they thought the value compared
to the underlying population parameter per se, instead of on how it might
compare to a clustering of the statistic’s values.

On the basis of such characteristics, we conjecture that these students’
encompassing image of sample was additive — that is, in these instructional
settings they tended to view a sample simply as a subset of a population
and to view multiple samples as multiple subsets.

A contrasting image of sample is suggested in the following excerpt of
student D explaining the purpose of simulating resampling:

D: If like. . .if you represent — if you give it like the split of the population
and then you run it through the how — number of samples or whatever
it’ll give you the same results as if — because in real life the population
like of America actually has a split on whatever, on Pepsi, so it’ll give
you the same results as if you actually went out, did a survey with
people of that split.

I: Ok, now. What do you mean by “same results”? On any particular
survey at all — you’ll get exactly what it —?

D: No, no. Each sample won’t be the same but it’s a. . .it’d be. . .could be
close, closer. ..
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I: What’s the ‘it’ that would be close?

D: If you get. . .if you take a sample. . .then the uh. . .the number of like
whatever, the number of ‘yes’s would be close to the actual population
split of what it should be.

I: Are you guaranteed that?

D: You’re not guaranteed, but if you do it enough times you can say it’s
within like 1 or 2% of error depending upon uh how many times — I
think — how many times you did it.

The resemblance between sample and population was clearly foremost in
student D’s mind, but his image was of a fuzzy resemblance bound up
with ideas of variability and proto-distributional images of a collection of
sample proportions. He did not expect a sample to be an exact replica of the
sampled population, instead he anticipated that in repeating the sampling
process many sample proportions would be ‘more or less’ close to the
population proportion. Moreover, student D’s confidence in a sample’s
representativeness was based on this anticipated image of how a collection
of similar sample proportions might be distributed around the population
proportion.

We put that student D’s description is consistent with his having con-
ceived a sample as a quasi-proportional mini version of the sampled pop-
ulation, where the ‘quasi-proportionality’ image emerges in anticipating
a bounded variety of outcomes, were one to repeat the sampling process.
It is often useful to refer to a germinating idea with suggestive termino-
logy; we call this image of sample a multiplicative conception of sample
(MCS) because its constitution entails conceptual operations of multiplic-
ative reasoning.

An elaboration of multiplicative reasoning (Harel and Confrey, 1994)
is beyond the scope of this paper. For the present discussion we draw
on Inhelder and Piaget’s (1964) broad characterization of multiplicative
reasoning as conceiving an object (quantity) as simultaneously composed
of multiple attributes (quantities). For instance, conceiving a proportion
involves multiplicative reasoning when it entails comparing two quantities
in such a way as to think of the measure of one in terms of the measure
of the other (Thompson and Saldanha, in press). An example is when one
thinks of percentage as quantifying a part of a whole in terms of the whole.
This conception entails keeping both the part and the whole simultaneously
in mind and the ability to reciprocally relate and express one in terms of
the other. This is different from thinking of measuring a subpart of a whole
only in absolute terms.

We hypothesize that MCS entails multiplicative operations on several
levels: on one level it entails conceiving a relationship of proportional-
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Figure 4. A multiplicative conception of sample entails a quasi-proportionality relation-
ship between sample and population. Multiple samples are seen as multiple, scaled quasi
mini-versions of the population.

ity between a sample and a population. On another level, imagining the
emergence of a proto-distribution of sample statistics entails structuring
statistics as subclusters within the range of an entire collection of statistics.
This involves fractional reasoning. Finally, a mature and well articulated
image of distribution supports quantifying the expectation of a particu-
lar kind of sampling outcome and thus quantifying one’s confidence in a
sampling outcome’s representativeness. This entails the operation of juxta-
posing the individual sample result against an aggregate of similar sample
results to compare the one against the many — an image of simultaneity
that is central to multiplicative reasoning.
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4. CONCLUSION

Though our elaboration of these two images of sample and sampling is
empirically grounded, our central aim in presenting it is not to imply that
students in our experiment adhered steadfastly to one or the other image.
Rather, our aim is to highlight two significantly different conceptions of
sample and sampling — perhaps exemplary of extremes in a continuum of
students’ conceptions — that provide insight into what may be more or less
powerful conceptions to target for instruction.

From our perspective, there are two reasons why the distinction between
the additive and multiplicative conceptions of sample is significant. First,
in contrast to the additive image, MCS entails a rich network of interrelated
images that supports building a deep understanding of statistical inference.
In practice, statistical inferences about a population are typically made on
the basis of information obtained from a single sample randomly drawn
from the population. This practice is common among statisticians despite
expectations of variability among sampling outcomes. In statistics instruc-
tion, however, it is uncommon to help students conceive of samples and
sampling in ways that support their developing coherent understandings
of why statisticians have confidence in this practice. We claim that MCS
empowers students to understand the why by orienting them to relate in-
dividual sample outcomes to distributions of a class of similar outcomes.
In the same way, MCS enables students to consider a sampling outcome’s
relative unusualness. As such, we propose that MCS characterizes a power-
ful and enabling conception to target for instruction; it can guide efforts to
design instructional activities and student engagements intended to support
their developing a deep understanding of sampling and inference.

The second reason why we consider the distinction between these two
conceptions of sample to be significant is that few of our students de-
veloped MCS. Instead, most students seemed oriented toward an additive
image of sample. To us, this state of affairs suggests that developing MCS
is non-trivial. The reasons for students’ difficulties in this regard are cur-
rently unclear to us. However, one plausible hypothesis grounded in our
data is that for many students the simulation and sampling distribution
activities were of such a complexity so as to essentially overshadow ideas
of sampling variability highlighted in the first phase of the teaching ex-
periment. In a subsequent teaching experiment (Saldanha and Thompson,
2001) we followed this hypothesis and engaged students in instructional
activities designed to foreground ideas of sampling variability and support
their developing a MCS.
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NOTES

1. Similar samples share a common size, selection method, and parent population. Fur-
thermore, they are selected to obtain information about a common population charac-
teristic.

2. The simulation was of sampling people’s preference for a particular musician from a
hypothetical population having a known proportion of it preferring the musician.

3. We note that student D’s prediction of the simulation result was highly inaccurate
in this excerpt. Shortly thereafter, however, he quickly revised his prediction with a
highly accurate one and continued to make such accurate predictions throughout the
rest of the interview. We thus believe that his initial prediction was not an indication
of a poor sense of how the sample proportions were distributed, rather it was merely
the result of his focus, in the moment, on explaining how the simulation worked and
what it generated.
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