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FOR TEXT DATABASES 
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A b s t r a c t  

An algorithm for document clustering is introduced. The base concept of the 
algorithm, Cover Coefficient (CC) concept, provides means of estimating the 
number of clusters within a document database. The CC concept is used also to 
identify the cluster seeds, to form clusters with the seeds, and to calculate Term 
Discrimination and Document Significance values (TDV, DSV). TDVs and DSVs 
are used to optimize document descriptions. The CC concept also relates 
indexing and clustering analytically. Experimental results indicate that the 
clustering performance in terms of the percentage of useful information 
accessed (precision) is forty percent higher, with accompanying reduction i n  
search space, than that of random assignment of documents to clusters. The 
experiments have validated the indexing-clustering relationships and shown 
improvements in retrieval precision when TDV and DSV optimizations are 
used. 

Categories and Subject Descriptors: H.3.1 [Information Storage and 
Retrieval]: Content Analysis and Indexing - indexing methods; H.3.3. 
[Information Storage and Retrieval]: Information Search and Retrieval - 
clustering, search process 
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1. INTRODUCTION 
An Information Retrieval System (IRS) tries to  find documents that are  

relevant to user queries. An IRS environment has similarities as  well as  
differences as compared to a Database Management System (DBMS) 
environment. This is mostly due to the unformated nature of data (e.g., journal 
and newspaper articles, reports, books, all of which are referred to as 
"documents" or "text") managed in an IRS. In our  modern times there have 
been efforts for  the integration of DBMS and IRS [12, 29, 30, 381. 

Because document databases are huge in s ize IRSs normally perform 
retrievals on document representatives. Documents can  be  represented in 
various forms an example of which is the vector space  model. In the vector 
space model 1361 documents are represented by a document by term matrix, 
which is referred to as the D matrix. In this matrix each row i s  a vector  that 
describes a document by means of its elements which are index terms, or  terms 
for brevity. The D matrix can be generated manually or by automatic indexing 
[30, 36,  461. The individual entries of D, d. .  (1 5 i 5 m, 1 5 j < n), indicate the 

'J 
importance of term-j (tj)  in document-i (di), where t is a member of  the 

j 
indexing vocabulary T, T= {tl,  t2, ..., tn ). If indexing is binary d . .  will be either 

'1 
0 o r  1 indicating presence or  absence of a term in a document. Otherwise (i.e., 
in the case of weighted indexing) di j  may indicate the number of occurrences 

of 1. in di. In other words, we are modelling a document by a vector  in  an n- 
J 

dimensional space defined by n terms. These descriptions are clustered t o  
narrow down search for retrieval. Documents can  also b e  represented by 
more traditional ways such as  inverted files constructed for  terms. 
Alternatively, we can map, by hashing, documents into what is called 
signature files 1301. 

These document representatives are stored in secondary storage, using a 
structure that facilitates query processing [30, 36, 46, 491. Query processing 
retains documents that are  relevant t o  the user request. Normally, relevant 
documents are determined by use of a similarity function since, unlike DBMS, 
exact match techniques are not suitable for IRS. In the vector  space model [36] 
the relatedness or similarity of a query to  documents is determined by a 
matching function such as the cosine function given in Eq. (1.1). 

In this expression X and Y are vectors of length n, Cosine (X, Y) is the cosine of 
the angle formed by the vectors X and Y in the n-dimensional space  and 
therefore gives a value between zero and one. One vector represents the query 
and the other the document being compared. Documents that are  found 
relevant (i.e., most similar with cosine value closer to  one) to the user query 
according to  the matching function are presented t o  the user. For example,  if 
Eq. (1.1.) is used as the matching function, documents with a similarity (i.e., 
cosine coefficient) value greater than a threshold will be  retrieved by the 
system. The actual relevance of the document is then decided by the user. This 
decision depends on various factors such as  user background, type of  
document, depth and style of document, author, etc.  



In Information Retrieval (IR) we can theoretically search the documents by 
brute force, that is, by full search (FS) which involves comparison of a query 
vector with the vectors of individual documents representing the database. 
Obviously, this is inefficient unless the database is too small. One way to 
increase efficiency of the FS is the clustering of documents via their 
representatives. In the context of IR, a "cluster" indicates a homogeneous 
group of documents that are more strongly associated with each other than 
those in different groups. The process of forming the groups is  referred to as 
clustering. It has been observed that "closely associated documents tend to be 
relevant to the same request" 1461 and this justifies clustering of documents in 
a database. In a Clustered Based Retrieval (CBR), the queries are first compared 
with the clusters, or more accurately with cluster representatives called 
centroids. Detailed query by document comparison is performed only within 
the selected clusters. CBR leads to efficient search spaces in comparison with 
FS [30]. To further increase the efficiency of CBR, the documents of the same 
cluster can be put into close proximity within a disk medium to minimize I/O 
delays[l7, 331. In addition to being efficient a clustering system must be 
effective in the sense of meeting user needs. In this article we will introduce a 
new clustering methodology based on the Cover Coefficient (CC) concept. In 
this regard we will first present CC concept along with the various concepts 
and methodologies based on it. It will be seen that, in contrast to most other 
clustering methods, CC methodology has a formal base and is useful in IR 
appl ica t ions .  

In the following section an overview of clustering algorithms is presented. 
The CC concept and methodologies, and the indexing-clustering relationships 
indicated by it are introduced in Section 3. The CC-based Clustering 

3 
Methodology (C M) is one of them and will be introduced here. In the fourth 
and last section, we will cover our experimental design and evaluation. The 
experiments were designed to validate the indexing-clustering relationships 

3 
indicated by the CC concept, to evaluate performances of C M and the CC-based 
D matrix optimization methodology. 

2. OVERVIEW OF CLUSTERING ALGORITHMS 
Clustering or cluster analysis has a wide spread use in various disciplines [I] .  

The vast amount of literature on cluster analysis [I, 18, 20, 23, 391 supports this 
fact. To see the diversity of the subject the reader may refer to 1181 which cites 
more than three hundred publications (over two hundred and fifty articles 
from seventyseven journals, forty books, and eighteen reports). 

At first sight one may think that an expert of a field would be able to judge 
clustering of the observations at hand by enumarating all possibilities and 
simply choosing the ones which look the best. However, the problem is not 
that simple. The number of ways clustering m observations into nc nonempty 

subsets is a Stirling number of second type and given as follows [I, p.31 

( nc) 

S = l / n  
m C 

k=O 
13 

For m= 25, and nc = 5 the number of possibilities is approximately 2.44 x 1 0  . 
If we do not know the number of clusters nc the number of possibilities 

becomes the sum of Stirling numbers [I]. For m= 25 



j= 1 

This is a very large number which indicates that all cluster possibilities 
cannot be  described with an expression having a length bounded by a 
polynomial function of the input length. It is shown that the optimum 
solution of the clustering problem is NP-complete [ 28, pp. 161-167; 45) which 
explains the existence of various heuristics instead. 

There are three elements to clustering which are the document 
representation matrix, resulting set of nonempty clusters, and the clustering 
algorithm which detects the association among documents. 

In judging suitability of clustering algorithms the following questions must 
be answered. 

(a) Are the clusters stable? That is, are they unlikely to change when new 
documents are added andlor are the clusters unaffected by small errors made 
in the description of documents [53? 

(b) Is the composition of clusters independent of the order in which 
documents are processed? 

(c) Are the clusters well defined? That is, for a given set of data, does the 
algorithm produce a single classification or a small number of compatible 
c lass i f ica t ions?  

(d) Is document distribution in clusters as uniform as possible? 
(e) Is maintenance of  clusters practical and efficient? In other words, is the 

clustering algorithm able to handle document growth efficiently [9]? 
(f) Do the clusters produced result in an effective and efficient retrieval 

e n v i r o n m e n t ?  
The answers for these questions must , of course, be affirmative for a good 
clustering algorithm. 

Clustering algorithms can be  classified in different ways. One possible 
classification is according to the pattern or structure of clusters, as in the 
following: 

(a) Partitioning type: Clusters cannot have common members, i.e., Ci n C = 0  
J 

for 1 5 i, j 5 nc , and i ir j, 0 indicates the null set. 

(b) Overlapping type: Clusters can have common members, i.e., Ci n C. ir 0 for 
J 

some 1 < i, j ( nc, and i rc j. 

(c) Hierarchical type: Clusters of the lowest level are clusters of documents. 
The higher level clusters are clusters of clusters. 

Another classification of clustering algorithms is by their implementation as 
in the following: 

(a) Single-pass algorithms: In this approach documents are handled only 
once. The first document will form the first cluster. Then the consecutive 
documents will be compared with the already formed clusters or more 
correctly with their centroids. When a document is found close enough it is 
assigned to the corresponding cluster(s) and then the centroid of the cluster is 
modified accordingly [357. 

(b) Iterative algorithms: A typical approach starts with the assignment of 
documents into existing initial clusters or  seeds. (There should be  a way of 
creating the seeds.) The centroid vectors are then modified. The documents are 
reassigned to the related clusters iteratively. Each iteration improves the 
value of an objective function measuring the qualily of clustering. The 
algorithm terminates when an acceptable quality level is reached. 



(c) Graph theoretical algorithms: The concepts like "single link", "average 
linkw, and "maximally complete graph" are used. Here, a link means a 
similarity value, greater than or  equal to a threshold, between any two 
documents. In the single link method, the members of a cluster are connected 
to each other by at least one link. In the average link, and maximally complete 
graph (clique) the number of links of a member to the other members in the 
same cluster is expected to be greater than or equal to a minimum number, and 
all the members should be connected to each other, respectively. By changing 
the similarity threshold from higher to lower values one may construct a 
hierarchical scheme called dendrogram 1461. 

2.1 Partitioning Type Clustering Algorithms 
A 

C'M clustering algorithm presented in this article is of partitioning type. 
We will, therefore, analyze partitioning type clustering algorithms in detail. 
As can be understood from the name a partitioning type clustering algorithm 
generates a partition P, where 

n 

The set P can be formed in different ways. For example, a "suitablew threshold 
value used with the single link, average link, or  maximally complete graph 
concept can lead to an acceptable partitioning. However, it is very hard, if not 
impossible, to estimate the "suitable" similarity threshold value that will lead to 
an acceptable partition. 9 

A generally accepted strategy to generate a partition is to choose a set of 
documents as the seeds and assign the ordinary (non-seed) documents to the 

3 seed documents to form the clusters. C M  uses this strategy. In the 
implementation of a seed based approach, there exists a nonempty subset Ds of 

D called the set of seed documents and a relation RM called "the member of the 

same clusterw. R is an equivalence relation, i.e., it is symmetric, transitive, 

and reflexive. This relation has the following properties: 
(a) No two distinct seeds are the member of the same cluster, i.e., 

d ,  t d. and d.  R d ---> d. €0 - D )  6, d. E@ - D )  
I 1 ] M i  I s s 

where, - and O indicate the "set difference" and Boolean "exclusive-or" 
operator, respectively. 

@) For each dE (D - Ds), there exists a seed document which is  the member of 

the same cluster. 

Corollary:: For dkE(D - Ds), there exists exactly one seed document, dl, 

satisfying dk RM dl . 
Proof: It is stated in (b) that dk has at least one seed dl satisfying dk RM dl . Let 

us consider two seeds dl and do . To test the above case, we will have dk RM dl 

and dk RM do. Since RM is an equivalence relation, dk RM dl and dk RM do--> 

dl RM do. However, this contradicts (a).D 

Because seeds determine clusters the selection or creation of seed documents 
is an important task. To contrast our seed selection method, that will be 
presented in Section 3.5, with that of the earlier studies, a non-exhaustive list 
of known seed selection methods are listed below [1, 15, 30, 36, 471, where each 
list item corresponds to a different method: 



(a) Select the first nc documents of a database as cluster seeds, where nc is 

the number of clusters to be generated. 
(b) Select the seeds randomly from the database. 
(c) Generate the initial cluster seeds by a random process. 
(d) Divide the database into partitions, then form the partition centroids as 

the seed points. 
(e) For each term, the term generality, i.e., the number of documents 

containing the term, is calculated. Then for each document, the sum of the 
term generalities of its terms is calculated. The documents with the largest sum 
are chosen as the seeds. 

( f )  Use an inverted file structure which provides a list of documents per term 
contained in the documents. Then select the documents related with the term 
as a cluster. Construct the centroid for each resulting cluster and then use this 
centroid as the initial seed. In the above process, terms containing too many or  
too few documents may be eliminated. 

2.2 Unresolved Problems of Clustering Algorithms 
The clustering research in 1R has produced various methodologies 113-16, 29, 

33, 35, 44-47]. However, as discussed in [I91 clustering has yet many unresolved 
problems. The following list summarizes some of these problems: 

(a) Time (i.e., execution time) and space (i.e., memory) complexity of the 
2 

algorithms is high; time is in O(m ) for m documents in the database. 
(b) Most graph theoretical based algorithms depend on determination of a 

similarity threshold to generate cluster links which has a time complexity of 

o(m2). A suitable threshold is hard to predict and determining it by computing 
correlations in the database is costly in time [32]. - 

(c) Any attempts of reducing O(mL) time complexity, such as using inverted 
lists, introduce additional complexities if clustering and indexing are to be 
done properly (e.g., exhaustive indexing) [22]. 

(d) Nongraph theoretical based clustering algorithms use concepts that are 
mostly arbitrary in the way of determining cluster seeds, category vectors 
(i.e., centroids), or use of inverted file structures. The result is dependence of 
clustering on the order of documents (order dependence) or nonuniform 
distribution of documents in resulting clusters. 

(e) In addition to order dependence and nonuniform distribution of 
documents among clusters, i t  is not possible to predict beforehand the number 
of clusters to be formed nor is possible to establish any relationship between 
clustering and indexing. 

( f )  Clusters can be generated independent of the document description matrix 
D. For example, the relevant documents of a query can be made a cluster. 
However, such an approach may lead to clusters containing documents with 
unsimilar document description vectors. This may be detrimental for 
processing of queries in a general environment [16, 441. 

3. CONCEPTS OF c3h3 
3 

Cover Coefficient, CC, is the base concept of C M clustering. The CC concept 
can be used for the following purposes. 

(a) to identify relationships among documents (and terms) of a database by C 
(in the case of terms, C') matrix; 

(b) to determine number of clasters within a docurnenl database; 
(c) to select the seed documents using a new concept called cluster seed 

power;  



(d) to form clusters with respect to C'M, utilizing the concepts of (a) through 

(c);  
(e) to predict the relationships between clustering and indexing; 
( f )  to calculate the importance of terms and documents within a database 

(these are referred to as term discrimination value and document significance 
value, respectively); 

(g) to increase the effectiveness of IR optimize the D matrix by use of the 
term discrimination and document significance values. 
Each of these items will be dealt with in this section. 

3.1 The CC Concept 
The CC concept has been introduced for clustering document databases [3, 61. 

In this article a probabilistic interpretation for this concept will be 
in t roduced .  

Definition: Given is a D matrix representing the database {dl, d2 , . . . ,dm) 

using the index terms T= {tl, t2, . . ., tn ). The cover coefficient matrix, C, is a 

document by document matrix whose entries c . .  (1 5 i, j 5 m), indicate the ' J 
probability of selecting any term of di from d. . 

J 

The entries of the D matrix, d. (1 ( i I m, 1 5 j 5 n) satisfy the following 
li ' 

condi t ions:  

(a) pi, > 0, 1 s i s rn (each document bas at least one am) 

m 

) d 0, I s j a n (each term is assigned to at least one document). 
I= 

We will introduce the CC concept using binary indexing. Subsequently, 
however, its behaviour will be analyzed also with respect to weighted 
i n d e x i n g .  

From the definition of CC, at first glance, i t  seems that individual entries of 
the C matrix, c..  would be equal to (number of terms common to both di and 

11, 

d.)  / (total number of document frequency of terms of di). However, this is  not 
J 

true. For the calculation of ci i  one must first select an arbitrary term (or 

column) of di (say tk )  and try io select document d from this term, i.e., check 
j 

if d. contains t k .  In other words, we have a double-stage experiment [24, p. 941 
J 

and each row of the C matrix summarizes the results of a double-stage 
experiment. Let sik indicate the event of selecting tk from di i n  the first 

stage, and s'. indicate the event of selecting d. f r o m  t k  in the second stage. 
I k J 

(The problem can be equivalent to the following: Suppose we have many urns 
-terms of di-, each containing many documents -notice that individual terms 

of di appear in many different documents-. An urn is chosen at random, and 

from it a document is drawn at random. What is the probability of getting d..) 
J 

In this experiment the probability of the simple event "sik and s i k " ,  i.e., 



P(s ik ,  s t jk )  can be represented as P(sik)xP(sl  j k ) [24]. To simplify the notation 

we will use s i r  and s; respectively for P(sik) and P(s; k), where 

h =l 
Considering the entire database (including di itself) we can represent the D 

matrix with respect to the double-stage probability model, as shown in Table 1. 

Table 1. Double-stage probability model of the D matrix, where 1 5 i I m 

1 2 1 . .  J . . .  m 

S X s' . . . .  S x s f .  ... S x s '  
i  1 2  1 i l  ~1 i 1 ml 

S X sf . . . .  S x s f .  . . .  S x s '  
i 2  2  2 i 2  ~ 2  i  2  m 2 

S X St S i n  X S' 2n  . . .  S X S ' ,  . . .  S X S '  
i n  jn i n  i n  I n mn 

Figure 1 shows the hierarhical interpretation of this model. In Figure 1, we 
start from di, and end up at one of the documents of the database. In reaching 

from di to d. (1 j 5 m) there are n possible ways (sil* si2, . .. , sin).  Choose one 
J 

of them, e.g. s ik ,  then, the intermediate stop is tk .  After this intermediate stop, 

in order to reach d j we must follow s ; ~ .  Accordingly, the probability of 

reaching d J from di via tk becomes s ik  x s) k .  

Figure 1. Hierarchical representation of the douSle-stage 
probability model for di of the D matrix 



By using Table 1 we can find c . .  ( i s . ,  the probability of selecting a term of di 
1 J 

from d. )  by summing the probabilities in the jth column of the table. 
J 

Let us present an example by using the following D matrix. 

i 
0 1 1 0 0  

0 1 1 1 0 1  '1 
To illustrate the concept let us follow the calculation of c12. According to the D 

matrix, dl contains three terms {tl ,  t2, t5) and there are a total of eight 

occurrences of these terms and three of this total appear in d2. An 

enthusiastic devotee of "equally likely cases" might argue as follows. There 
are eight occurrences of the terms of dl, any one of which may be drawn; 

since three of them is in d2, the probabiIity of getting a term of dl form d2 is  

3/8= 0.375 [24, p.921. As we have stated previously, however, this is not true. 
This is  because one has no right to treat eight terms as equally Iikely. 
According to the double-stage experiment model to calculate c12 we must first 

randomly select each one of the terms of dl and then try to select d2 from the 

outcome (term) of the first stage. In the first stage, if we select t l  or t5 then d2 

has a chance of l f2 .  However, if t2 is selected in the first stage, then the 

probability of selecting d2 in the second stage is 1f4. This is because t l  and t5 

appear in dl and d2. On the other hand t2 appears in dl, d2, and two other 

documents. In the first stage, the probability of selecting each element of {tl , 
t2, t5} from dl is 113 and for the rest the probability is 0 ( { t 3 ,  t4, t6) do not 

appear in dl). Pictorial representation of this experiment is provided in 

Figure 2 (zero s or s'.. values for 1 2 i ( 5, and 1 5 j ( 6) are not shown in the 
l j  11 

figure). According to Figure 2, 

c = Zs x s' = 1 / 3 x (1'2 + 1/1 + 1/21; 0.417 
1 2  l k  2 k  

k= 1  

The C matrix is formed from the matrices named S and Sf, i-e., C= S x s ' ~  (slT 
indicates the transpose of matrix S ,  where sik and s t ik  were defined 

previously. s and st indicate the probability of selecting tk from di, and i k  j k 
probability of selecting d. "fromn tk ,  respectively. (In s '  case we consider 

J j k 
the term definition vector, i.e., the jth column of the D matrix.) Accordingly, 
the entries of the C matrix are defined as follows, by using the definition of  S 
and S' matrices. 



c i j = 2 s  x stT = (probability of selecting tk from d.)  
ik kj I 

k= 1 

(probability of selecting d from t ) 
J k 

where s ,T 
kj=  ''jk. 

where ai and flk are the reciprocals of ith row sum and kth column sum, 

respectively, as shown below: 

Figure 2. Hierarchical representation of the double-stage probability 
model for dl of the example D matrix 

3.2 Properties of the C Matrix 
The following properties hold for the C matrix: 
(a) For i ;c j 0 2 c.. -<cii 2 0 (i.e., the values of the off-diagonal entries vary 

1J 
between 0 and c.. the vaiue of cii is always being greater than zero). 

11, 

@) c i l + c i 2 +  . . . +  c = 1  ( i . e . , s u m o f r o w - i i s e q u a l t o l f o r l ~ i s m ) .  
im 

(c) If di is unique, i.e., if rone of the terms of di is used by the other 

documents then cii = 1, otherwise c . .  < 1. 
11 



(d) If c. = 0 then c..  = 0, and similarly, if c..  > 0, then c . .  > 0, but  in general c. .  
l j  ~1 1 J ~1 'J 

t C 
i i '  
The proofs of these properties are given in [3, 61. Here we present the 

interpretation of these properties. 
Property (a): c 2 0 means that it may (c.. > 0) or may not (cij= 0) be possible to 

'J 'J 
select the terms of di from d j. cij 'cii is obvious, when one tries to select the 

terms of di from the database, di itself will have higher chance than any 

other document including d.. However, if d contains all the terms of di then 

- J j 

'ij - 'ii. We can, of course, always select a term of di from itself, ci i  > 0. 

Property (b): means that the entries of each row are the outcomes of a 
double-stage experiment, and the sum of all the probabilities will be the 
universal space with the sum being one. 

Property (c): means that if some of the terms of di appear in the other 

documents, d. ,  then those c . .  entries will be nonzero for j # i. 
J 'J 

Property (d): means that if it is not possible to draw a term of di from d then 
J '  

it is  also not possible to draw a term of d from di (since they do not have any 
j 

common terms). If di and d. have common terms, but they are not identical, 
1 

then c i j  
and 'ji 

will be greater than zero but not necessarily equal to each 

o t h e r ,  
Another property of the C matrix is  the following. If a D matrix is mapped 

into a C matrix, then pxD, where "p" is a positive real number, will be mapped 
into the same C matrix. This comes with the definition of the ci j  entries, Eq. 

(3.2). Therefore, if we shift the document vectors with the same amount in the 
vactor space, this is not going to affect the C matrix. 

To have better intuition of the meaning of the C matrix consider two 
document vectors dj and d For these document vectors we can define five 

j.  
possible relationships as shown in Figure 3. The relationships between di and 

d in terms of the C matrix entries (i.e., in terms of ci i  , c. .  , c. , and c .  ) 
j 'J J J  ~i 

are described in the following. (a) di and d. are identical: i.e., 
J 

Ci k = k 
, c k i  =$ j  for 1 s k s m  

(b) di and di have some common terms and documents do not contain each 

other: i.e., 
Cii >C.. ,C. .  >C.. ,C.. t C ,C. .  f C. 

1.1 J J  31 11 j j  1.1 ~i 
(c) di is a subset of d.: i.e., 

J 
C.. = c .  ,C. .  >C..  ,C.. >C.. , C . .  >C 

11 ij J J  j i  J J  11 1j j i  

(d) dj is a subset of di (the reverse of (c)) 

Cii > Cij 
, cjj = C.. , C.. <C. 

j1 J J  ii  "ij 'ji 
(e) di and d. have no common terms: i.e., 

3 



a) d and d .  are identical 
1 

b) d .and d , have common terms 
1 1 

C )  di subset of d d)  d. subset of d i  
f 

e) di  and d . are disjoint 
i f 

Figure 3-The possible relationships between two document vectors di and d. 
J 

From the properties of the C matrix and the CC relationships between two 
document vectors (refer to Figure 2), c . .  is given the following meaning: 

'J 

i extent with which d. is  covered by d.  for i ;t j 
(coupling o f  d.  with Id.) J 

1 J 

extent with which d, is covered by itself for i = j 
(decouplingluniquene~s o f  d . )  

Now let us revisit the interpretion of the individual entries of Figure 3. 
(a) Identical documents: uniqueness and extent with which documents cover 

each other are identical. Furthermore, the extent with which these documents 
covered by the other documents is also identical (cik 

= 'jk 
, where 1 ( k  ( m ) .  

Similarly, the extent with which these documents cover the other documents 

(Cki = Ckj, where 1 5 k ( m) is identical. 

(b) Overlapping documents: each document will cover itself more than the 
other (cii>c. ., C. .>c. .). However, this does not provide enough information to 

'I JJ J '  
compare cii with c . .  and c . .  with c . . .  This is because these values are also 

J J  11 J l  

affected by the couplings with the other documents of the database. 
(c) A document is a subset of another document: Since di is a subset of d the 

j' 
extent with which di is covered by itself (ci i)  will be identical to the extent 

with which di is covered by d.(c. . ) .  Furthermore, since d. contains all the 
J  'J J  

terms of di as well as some additional terms, then the extent with which d 
j 

covers itself will be higher than the extent with which di covers itself (i.e., c .  
J J  

> c..). Because of similar reasoning, the extent with which d.  covers di is 
11 J 

higher than the extent with which di covers d (c.. > c.. ). 
j " JJ"  

(d) Identical with the discussion in (c). 



(e) Disjoint documents: Since di and di do not have any common terms, then 

they will not cover each other (c..= c. - 0). Obviously the documents will cover 
1J ~ i '  

themselves. However, because these documents may also be coupled with the 
others cii and c . .  may not be equal to 1. 

JJ 
In a D matrix, if di (1 ( i ( m) is relatively more unique (i.e., if di contains 

terms which appear in less number of documents), then c..  will take higher 
11 

values. Because of this, c . .  is called uniquness or decoupling coefficient, Gi,  o f  
11 

di. If none of the terms of di is contained in any other document, then bi = 3 

( e . ,  d is completely unique, or "decoupled" from the other documents in the 

database). In terms of the double-stage experimentation, it is not possible to  

select a term of di from the other documents of the database. Contrary would 

mean nonzerc c.. which in turn implies nondisjointness of documents. 
1J 

The sum of the off-diagonal entries of the ith row indicates the extent of  
coupling of di with the other documents of the database and is  referred to  as 

the coupling coefficient, qi , of di. From the properties of the C matrix Vi = 1 - 

bi. The ranges for bi and qi areO<6i<1,0<11)i < 1 for I s i s m .  

By using the individual bi and qi values, the overall or average decoupling 

and coupling coefficients 6 and I$, respectively, of documents can be defined as 

and O c b s l  

y v . / m = 1 - 6  2 ,  and 0 s v  < 1 (3.6) 
i =l 

The C matrix corresponding to the example D matrix given earlier can then 
be obtained with the following values, disregarding inexactness due to 
r o u n d i n g .  

I 0.083 0.083 0.1 11 0.361 0.361 

0.063 0.188 0.083 0.271 0.396 1 
The entire C matrix is given for the sake of illustration. However, the 

implementation of C ~ M  and CC based concepts do not require complete 
construction of the C matrix. 

From this C matrix the decoupling coefficient of dl is h l=  cI1= 0.417. 

Accordingly, its coupling with the rest of the database, i.e., coupling cefficient 

*, ql = 1 - 61 = 0.583. The overall decoupling and coupling coefficients for the 

database are 



i =l 
Looking at the D matrix, we can see that dl is a subset of d2, which 

corresponds to case (c) in Figure 3. As stated in the interpretation of Figure 3 

ell= c12, cz2 > c ~ ~ ,  cZ2 > cll, and c12 >cZ1 hold as can be seen in the C matrix. 

3.3 The C' Matrix 
By following a methodology similar to the construction of the C matrix, we  

can construct a term by term C' matrix of n x n for the index terms. C' has the 
same properties of C. This time, however, each row of the C' matrix Summarizes 

the results of a double-stage experiment. C' is defined as the product of s ' ~  a n d  
S matrices the elements of which are obtained as 

ct i j  = 2 sfT x s = (probability of selecting d  from t )  x  
i k  kj k  I 

k= 1 

(probability of selecting t from dk 
J 

t T where s i k = ~ ' k i .  

Notice that in the case of C', the stages of the double-stage experiment are 
interchanged wilh respect to the order for the C matrix. By using the 
definitions of the S and S' matrices 

CI i j  = b. I X E d k i x a  k x d  kj (1 s i, j s n) (3s7) 
k= 1 - - 

The concepts of decoupling and coupling coefficients of I . ,  81j and q'. are the 
1 J 

counterparts of the same concepts defined for documents. Hence 6'.=c1 and 
J jj ' 

= 1 - 81 The concepts of overall or  average coupling and decoupling are also 
J J .  

valid for terms and represented by 6' and q ' ,  respectively. 

The C' matrix resulting from the example D matrix is (ignoring rounding 
e r r o r s )  

0.292 0.292 0.000 0.125 0.292 0.000 

0.000 0.194 0.194 0.083 0.000 0.528 

From this C' matrix the decouplind and coupling coefficients of t l  are tjfl = 

cPl1  = 0.292 and *I1= 1 - = 0.708. The overall decoupling, a' ,  and coupling, *', 

of terms are 



Yi= 1 - 6'= 0.676 
Notice that in the example D matrix t1 and t5 are identical, i.e., d i l =  di5 (1s  i 5 

5). Accordingly, from the properties of  the C' matrix c P l j  = cIsj and c*  = c i 5  j 1 
for 1 ( j ( 5 which can be easily observed in the C' matrix ( i s . ,  the first and 

fifth rows are identical, the same is valid for the first and fifth columns). 

3.4 Number of  Clusters Hypothesis 
The determination of the number of clusters for a database has been an 

unresolved problem of clustering theory[l9]. With the introduclion of the CC 

concept i t  has been possible to assert the following hypothesis. 
Hypothesis. The number of clusters within a database, nc, should be high if 

the individual documents are dissimilar and low otherwise. Furthermore, nc 

can be obtained as 

n = 
C 

i =l 

Similarly, the number of clusters implied by the C' matrix, n'c, would be  

n f  c = 2 6 '  = 6 ' x  n 
j 

(3.9) 
j= 1 

It is known that classifying documents imply classifying terms and vice versa 
{40]. This is intuitively obvious that as we classify documents, the clustering 
process will implicitly group the terms which are most frequently used by the 
members of a cluster. The reverse is also true. That is, as we  classify terms 
this will also imply a classification among documents. The idea of classifying 
terms using term clusters to form document clusters has been used in the 
literature by various researchers [14J. This leads to the fact that nc and n'c 

ould be identical and this identity has been proven [3, 61 to hold. 

The equations (3.8) and (3.9) are consistent with the statement of the number 
clusters hypothesis. This is because a database with similar documents will 

have a low 6 (decoupling) whereas a database with dissimilar documents will 

have a high 6. Let us show the conceptual validity of Eq.s 3.8 and 3.9 with the 

following propositions and corollaries. 

Proposition-1: nc= 1 if a11 documents of D are identical. 

Proof: From the properties of the D matrix d ik  > 0 for 15 i 5 m, 1 ( k 5 n. This is 

because a term exists if and only if it appears in at least one document. Since 
all documents are identical d ik  

= d ~ k  
for 1 2 i, j 2 m and 1 2 k 5 n. For simplicity 

let us use dk for dik and T k ,  1 k 5 n. Then from Eq. (3.2) 

* .  = a. x d: x pk i s i s m  
1 1  

k= 1 
2 

where P k =  1 I (m x dk), hence dk x Bk= dk/m. Accordingly, 



k= 1 

On the other hand ai = 1 I (dl + d2 + . . . + dn). Hence bi= 1 I m for 1 i < m. This 

implies that nc which is the summation of all bi is equal to m x l / m = l .  q 

Proposition-2: For a binary D matrix the minimum value of cii (ai) 15 i I m is 1 I 

m. 
Proof: If c i i  < l lm then this means that c . .  < llm for i # j (since cii 2 c. .), then 

11 1J 
C i l  + Ci2 + . . . + C. < 1 which contradicts i h e  property (b) of the C matrix, i.e., Im 
C i l  +Ci2 + . . . +  C. = 1. Hence, the minimum value of cii = 1 l m . O  tm 

Corollary-1: In a binary D matrix, nc > 1 if we have two distinct documents in D. 

Proof: Consider two documents di and d. . If they are identical then c i i  = c. If 
1 J J .  

di and d. are distinct then c . .  > c.. or c > c. .. Assume that ci i  > c. Since the 
J 11 IJ j j  i j .  

minimum value of cii is1 I m (notice that when cii = 1 1 m, then ci j  = 1 I m i c j, 

or else row sum will be greater than 1 ,  which contradicts the property (b) of  
the C matrix) then in order to have the inequality to hold cii > 1 / m. If we  

have at least one ci i  value greater than I fm it implies that nc is greater 1. 

Since the lowest value which can be assumed by ci i  is lim. 

Corollary-2: The value range of nc is 1 5 nc 2 min(m, n). 

Proof: We know that nc = n',, and nc and n'c are the summation of the 

diagonal entries of C and C' matrices, respectively. C and C' are square matrices 
with sizes m x m and n x n, respectively. Hence, the maximum value of nc is  m, 

and of n'c is n. On the other hand nc= nfc. This implies that max(nc)= min (m, 

n). D 

Notice that nc S. min(m, n) is logical, since nc 2 min(m, n) wouId violate the 

3 partitioning property of C M that will be introduced later. For instance if nc > 

m then some documents must be the member of more than one cluster, which 
contradicts the definition of partition, i.e., nonoverlapping clusters. 

After determining nc, it is easy to estimate the average number of documents 

dc within a cluster as dc = m / nc = 1 / 6. The concept of decoupling coefficient 

implies that increase in 6 or in individual lii ( 1 5 i 5 m) will increase the 

number of clusters ( nc= 6 x m) and hence decrease the average s ize  of 

clusters. The opposite is also true.The relationship between dc and 6 is shown 

in the logarithmic scale in Figure 4. The value range of dc is m/min(m, n) 5 



1 

* logd 

Figure 4. The relationship between dc and 6 in the logarithmic scale, 

log dc = 1 log 6 1 ( 0 c 6 I 1) 

Now, let us compute the number of clusters that will result from the example 
D matrix: 

n = 6. = (0.417 + 0.438 + 0.333 + 0.361 + 0.396)= 1.945 
c 2 i =l 

n = 6 x m = 0.389 x 5 = 1.945 = 2 
C 

If we use the C' matrix nfc would come out as 1.946 which agrees with nc (the 

difference between nc and nfc is due to rounding). 

Before proceeding, the peculiarities of the C matrix corresponding to a 
weighted D matrix will be pointed out. A weighted D matrix may lead to cii C c. .  

*J ' 
which is very easy to prove. Consider ci i  and c. .: 

'J 

- - 

If min(d )= di and if d. > dik for at least one k (1 5 k ( n) then c.. > c. 
j k J k ij  i i '  

Hence for a weighted D matrix ai c l /m can be observed. However, 1 c nc I 

min(m, n) is still valid since the proofs of proposition-1 and corollary-2 are 
also valid for the weighted case. The identity min(nc)= 1 for the weighted case 

is obvious. 

3.5 Cluster Seed Power 

The C ~ M  is seed oriented, i.e., nc number of documents are selected as cluster 

seeds and non-seed documents are concentrated around the seeds to form 
clusters. The seed selection process depends on the cluster seed power, pi, of di 

3 
(1 ( i 5. m) which is a concept introduced in C M. The cluster seed power of di is 

defined as 



Pi  3 

and 
1 

j= 1 

The Eqs. (3.10) and (3.11) pertain to a binary and weighted D matrix, 
respectively. In these equations ai provides the separation of clusters (inter 

cluster dispersion), q. provides the connection among the documents within a 
1 

cluster (intra cluster cohesion) and the third term (i.e., dil + di2 + . . . + din ,  Or 

dil x x qll + di2 x lY2 x vt2 + . . . + din x tYn x vvn ) provides normalization. In a 

weighted D matrix, the normalization factor (i-e., dil + di2 + . . . + d i n ,  which is 

the number terms used for the description of documents) should be 
normalized further, and this is provided by the product 6 ' .  x yl'j for individual 

1 
terms, since there might be some over estimation of the weights of some terms 
in di . By such an approach a term with a high weight, but with a skewed 

frequency (i.e., a very frequent or very rare term) will not contribute much 
to the summation, i.e., the seed power of di. 

It should be noticed that some seeds might be identical, since they may be  
described by nearly identical terms. To eliminate the identical (false) seeds 
the following algorithm is provided. 

An algorithm t o  eliminate the identical (false) cluster seeds: 

[a] Calculate the cluster seed power of all documents and sort 
documents in descending order according to their seed power 

Nc= 0; I* Nc indicates the number of equivalence classes 

in the seed document set; in this algorithm we 

want to use only one of the identical documents 
as a seed *I 

[b] repeat; 
i f N c <  nc then 

do; 
Consider the next (nc- Nc ) documents 

with the maximum cluster seed power 
as the new cluster seeds; 

end; 
Determine the number of equivalence 
classes within this cluster seed 
collection, and set hJc to this number; 

until Nc = nc . 
Y 

The equivalence classes within the set of candidate cluster seeds are found by 
using the relation "equivalent seed", Re . Two seeds, di and d are related to 

j '  
each other with respect to the relation Re, if cii = c. .  ]I , Cii = Cij 

, c j j  = c  ... It is 
J '  

obvious that the relation Re holds the requirements of an equivalence relation 

since it is reflexive, symmetric, and transitive. This relation is illustrated in 
the following: 



(a) Re is reflexive, i.c., di Re di is  trivial. 

@) Re is symmetric, since d, Re d. and d. Re di impIy that c i i  = cjj , cii = c.. 
J J IJ 

, cjj = cji, bold for both directions by changing the order of the operands at 

both sides of the equafities, therefore, Re is symmetric. 

(c) Re is  transitive, since di Re d. and d. Re % imply that di Re %. di Re 
J J 

d.  implies ci i  = c .  , c i j  = c .  
J 13 11 

, c j j = c . .  ;d j  Re 4, implies c j j  = c k k  , C j j  
J 1  

=cjk  , 

'kk = 'kj. 
These equalities also imply that ci i  = c k k ,  c i i  = c i k ,  c k k  = cki. 

Therefore, Re is  transitive. 

After showing that Re is an equivaIence relation, it is then trivial to  show 

that Re partitions the cluster seeds into equivalence classes [2 ,  pp.87-881. It is 

obvious that within an equivalence class there might be two or more 
(identical) cluster seeds. Only one of  the seeds of an equivalence class is  taken 
as a cluster seed, and the rest are considered false, since all are compatible (or 
equivalent) with the one chosen as the cluster seed. 

The above algorithm might be applied as follows. To eliminate the faise 
cluster seeds, it is necessary to compare each cluster seed with the next 
possible cluster seed. This assumes that the cluster seed powers are sorted in 
descending order, the first seed is compared with the second seed and s o  on. It 
will be enough to compare the cluster seed under consideration with the next 
(lower) cluster seed, since they will be in consecutive order due to their close 
similarity. If the seeds (documents) di and di are the members of an 

equivalence class, then the entries c i i  , c. .  , cij , and cji  will be almost 
J J 

identical, i.e., for example absolute (cii - c . . )  < E, where E is a small positive 
J J 

number chosen as a threshold. 
In various experiments 1261 i t  has been observed that documents with medium 

number of terms are selected as cluster seeds ( e .  special general or 
documents that are defined by too little or too many terms are not selected as 
cluster seeds). This is what is expected from a seed selection methodology since 
general or  special documents are not appropriate for a cluster seed. General 
documents do not provide inter cluster dispersion, and special documents do 
not attract other documents. 

Using the example D matrix the seed powers of the documents are calculated 
according to Eq. (3.10) and listed in decreasing order in the foliowing: 

p2 = 0.438 x (1 - 0.438) x 4 = 0.985 1 

p5 = 03% x (1 - 03%) x 4 = 0.957 

p1 = 0.417 x (1 - 0.417) x 3 = 0.729 

Since nc = 2, lhen d2 and dg become candidate seed documents. Our false seed 

elimination algorithm determines that they are dislinct (notice that the values 
c~~ = 0.292 and c55 = 0.528 are significantly different). Hence d2 and d5 are 

selected as the cluster seeds. Notice that in this example there is no need to 
check c25 and c ~ ~ ,  we can decide by using only cZ2 and cS5 since they are 

significantly different. 



3.6 The c 3 M  Algorithm 

C?M is  a partitioning type clustering algorithm which computes in single- 
pass. A brief description of the algorithm is as follows [3, 61. 

C ~ M :  
[a] Determine the cluster seeds of the database. 

p] i= I; 
repeat; I*  construction of clusters *I  
if di is not a cluster seed 

then 

do; 
Find the cluster seed which maximally covers di; 

if there is more than one cluster seed that meets 
this condition assign di to the cluster whose seed 

power value is the greatest among the candidates; 
end; 

i= i + I; 
until i > m; 

[c] If there remains unclustered documents group 
them into a rag-bag cluster. 

3 A multi-pass version of the C M has been introduced and compared with the 
single-pass version. In the multi-pass version cluster seeds are selected in the 
same way, however, for the assignment of documents to cluster seeds a 
similarity coefficient is used. After all documents are assigned to the seeds, the 
cluster seeds are replaced by cluster centroids. This repetitive assignment is 
performed until cluster definitions reach stability. Numerous experiments 
showed that the computationally efficient single-pass version generates 
clusters compatible with those of the multi-pass version. The compatibility of 
the generated clusters is valid in both binary [4, 63 and weighted [26] D 
mat r i ces .  

Now, consider the construction of clusters for the example D matrix. In the 
database Do = {dl, %, d4 ) is the set of documents to be clustered and Ds= id2, d5) 

is the set of seed clusters. To construct the clusters we need only to calculate 
c . . s  where diEDo and d.EDS . For example, for dl  , c12= 0.417 and CI5 = 0.083 

'I J 
since c12 > c15. dl will join the cluster initiated by d2. If we proceed in  this 

manner the generated clusters will be: C1 = (dl, d2] md C2 = (9, d4, d5). 

C?M satisfies the desirable characteristics of good clustering algorithms as in 
the following: 

(a) It has been experimentally shown [5, 6 ,  263 that the clusters produced are 
stable. That is, small errors in the description of documents lead to small 
changes in clustering since small changes in the D matrix will lead to small 
changes in the C matrix. 

(b) The algorithm is independent of the order of documents. This is because 
the coupling between two documents is not affected by the place of the 
respective documents in the D matrix. Accordingly, the algorithm generates a 
well defined clustering pattern, i.e, it produces unique classification. 
(c) Implementation of the algorithm requires very small memory for the data 

structures. a s  and ps require m and n memory locations, respectively. m 

memory locations are also needed for the diagonal entries of the C matrix and 
to calculate seed powers. In the case of  weighted indexing we need to calculate 



the diagonal entries of the C' matrix, requiring n memory entries (they are 
required for seed power calculation). After determining cluster seeds a11 we 
need are a s  and $s,  i.e., we can free the memory locations used for the other 

data structures. Assignment of documents is done one by one and in this we  
consider only the non-seed documents. Therefore, we calculate only nc x (m - 
n c )  many entries of the C matrix. On the other hand, a graph theoretical 

approach to clustering would require calculation of similarity coefficients and 

this requires (m2-m)/2 memory entries plus the cost of cluster generation. 
(d) The algorithm distributes documents uniformly among clusters, in other 

words it does not create a few "fat" clusters and a lot of singletons (i.e., clusters 
containing only one document), a classical problem encountered in 
c l u s t e r i n g .  

3 2 The average complexity of C M is  O(m /log m) and it is shown that [3, 61 the 
worst case behavior of the algorithm wouId not be worse than the average 
case. This complexity compares favorably with the complexity of the other 
clustering algorithms 1331. 

3.7 Indexing-Clustering Relationships Obtainable from the CC 

Concept 
The CC concept indicates some relationships between indexing and clustering. 

In this section we will show the analytical derivation of these relationships 
using binary indexing. In Section 4.2 i t  will be experimentally shown that 
these relationships are observable using either binary or weighted indexing. 

For the derivation of the relationships consider Eqs. (3.2) and (3.8) for nc : 

In the case of binary indexing d 2 
i j=  d. . .  

By substituting the values of ai (Eq. 
IJ  

(3.3)) and $. (Eq. (3.4)) in Eq. (3.12) we obtain the following: 
J P 1 

In the IR literature the summations 

d i k  a d  E d  
k= 1 k= 1 

k j 

are called, respectively, the depth of indexing xdi for document di and term 

generality t for term t .  [27]. With these definitions Eq. (3.13) becomes 
g j J 

. -  . -  

In order to proceed we need to define the average depth of indexing (xd) and 

term generality (t ) for a database: 
g 



We can approximate xdi .tgj with x d .  tg and rewrite (3.14) as follows: 

Eq. (3.16) indicates the relationships among number of clusters, nc, total 

number of term assignments, t ,  average depth of indexing, xd, and average 

term generaIity, t 
g ' 

If we substitute tjn for t and tjm for xd in Eq. (3.16), nc could be written in 
g 

the following way: 

n = ( m . n ) / t  = m / t Q = n / x d  
C 

(3 .17)  

Using dc and dlc to indicate the average size of a document and term cluster, 

respectively, we can write the following equations: 

d' = n / n t  = 1 / 6 ' = n / ( n / x d ) = x d  
C C 

( 3 . 1 9 )  

Equations (3.18) and (3.19) show that t and xd are the basic determinants of  
f! 

document and term cluster size, respeciively. In other words, they determine 
the policy of indexing. 

The value range of nc, indicated by the indexing-clustering relationships, i s  

consistent with the theoretical expectation, i.e., 1 2 nc I: min (m, n) (see 

corollary-2 of Section 3.4). To show this consider Eq. (3.17), i.e., nc = t / (m . n) 

along with the possible max(t) and min(t) values, respectively. Obviously 
max(t) = m . n which can be observed only if all documents of the database are 
identical. On the other hand min(t)= max(m, n) holds if each term is assigned 
to only one document and the document is described by more than one term 
(i.e., n > m: consider Figure 5.a) or each term is assigned to more than one 
document and all documents are described by only one term (i-e., m > n: 
consider Figure 5.b). Accordingly, the minimum value of nc will be observed if 

we have the maximum value of t. Hence: 

min (nc)= (m . n) / max(t)= 1 

Similarly, the maximum value of nc will be observed if we have the minimum 

value for t: 

m a x ( n  )= [(m . n) / min(t)]= [(m . n) / max(m, n)]= min(m, n) 
C 

a) n > rn: 3 > 2; t= n= 3 b) m > n: 3 > 2; t= m= 3 
Figure 5. Example D matrices for observing of min(t)= max(m, n) 



For example, if we consider matrices Dl and D2 shown in Figure 5, Eqs. (3.8) 

and (3.9) indicate that nc= nqc= 2. (In Figure 5.a, documents are unique, on the 

other hand in Figure 5.b the terms are unique.) For Dl, document clusters are  

{dl) and {d2}; the term clusters are {tl, 5 )  and it3). For D2, the 

document and term clusters are {dl, d2), Id3), and ( t l ) ,  {t2) respectively. The 

indexing-clustering relationships also indicate the same value for nc since t=  

max(m, n)= max(3, 2)= 3, and nc= (m x n)/ t: (3 x 2) 1 3= 2= min(m, n). 

If we apply Eq. (3.16) to the example D matrix the foilowing will be obtained 
n c  = 1 5 / ( 3 x 2 ) = 2  

Similarly, by using the expression in Eq. (3.17) 
n c  = ( 5 x 6 ) / 1 5 = 5 / 2 5 = 2  

In other words, the number of clusters depicted by the indexing-clustering 
relationships is very close to the theoretically expected value, under the CC, 
which is 1.95 (refer to Section 3.4). The same is also valid for Eqs. (3.18) and 
(3.19). 

In this section we have derived the indexing-clustering relationships (Eqs. 
(3.16) through (3.19)) indicated by the CC concept. To do this we have used a 
binary D matrix. However, as will be shown in Section 4.2, these relationships 
are also valid for weighted indexing, with the exception of a little distortion 
introduced by the noise effect of the weights. 

It goes without saying that the indexing;cgustering relationships are very 
valuable for practical purposes. They can be used to control the number (or 
equivalently the size) of individual clusters so that the cluster sizes can be set  
according to the user requirements. In general, a user can be either recall or  
precision sensitive and thus the indexing policy can be tuned in such a way 
that higher user satisfaction can be obtained. (Recall and precision are, 
respectively, the proportion of relevant documents that are retrieved and 
proportion of retrieved documents that are relevant.) Furthermore, we can 
vary nc 

1 )  to accommodate physical storage constraints; 
3 2) to control the computational requirements of C M. 

3.8 Use of CC Concept for D Matrix Optimization 
3.8.1 Term Discrimination Value Calculation 

In IR, an indexing concept called Term Discrimination Value (TDV) is used to 
optimize representation of documents by index terms ( e . ,  D matrix) to 
increase the retrieval performance of the retrieval system 133, 34, 36, 373. A 
TDV indicates the effect of an index term on the distinquishability (or 
separation) of documents from each other. TDVs of individual terms can b e  
calcuIated by looking at the average similarity among documents, Q, which is 
also referred to as document space density 1361 and given by 

I' C x s ( d i ,  4) O r  Q a  I, tar O r  s a I Q = 2 x L  m x  (m-I)]  x 

i=l i=i +l 
where s(di, d.) and Qh indicate similarity between document pairs di and d 

1 j 
(calculated b y  an expression such as in Eq. (1.1)) and the document space  
density after the deletion of term th from the indexing vocabulary. 

respectively. If the assignment of th makes the documents more separated 

from each other, then this assignment will decrease the document space  



density, hence Q < Qh.  In the vice versa, i.e., if the assignment of th makes the 

documents more closer to each other, then its assignment will increase the 
document space density and hence Q > Q h .  Accordingly, TDV of  th is calculated 

as follows [ 3 6 ] :  

TDVh = Qh - Q 

(Qh - Q), i.e., TDVh, will be greater than zero and less than zero if the 

assignment of th makes documents more separated from each other, and closer 

to each other, respectively. A term th with no significance will have TDV rn 0 

and hence it is referred to as an indifferent discriminator. Higher separation 
of documents helps to distinguish the relevant and irrelevant documents from 
each other in retrievals based on user queries[36]. Therefore, for an effective 
IR we must have an indexing system whose terms have high, positive TDVs. 
Such terms are referred to as good discriminators. 

We can exploit the CC concept also in the computation of TDVs [8]. If we  
consider the notions of document (term) coupling and decoupling we can 
easily realize that the concepts of document space density (Q) and average 
decoupling of documents (6 or nc) are inverse to each other. (Even though 

coupling is the direct counterpart, use of decoupling is computationally more 
convenient.) Table 2 shows the interpretation of the related quantities with 

respect to TDVh (where 6 and 6h are the average decoupling of documents 

before. and after the deletion of th ) .  

Table 2. Effects of type of index term(th) on 

the values of Q, 6 and (n,). 

TDVh of th (1 ( h ( n) is defined as the difference: 

TDV h = n - n 
c c h  

Eq. (3.21) uses the same approach as Eq. (3.20). However, a deleted term will 
have a reverse effect on nc with respect to Q as can be observed from the 

respective expressions and Table 2 .  By Eq. (3.21) good, poor, and indifferent 
discriminators will, respectively, have a TDV of positive, negative, or 
approximately zero values. 

To implement Eq. (3.21) we need nc and nc h .  These are provided by the 

decoupling coefficients as follows: 

2 
n = Eq = x a i  x ( d i l  x Bl 

2 2 
+ d i 2 X B 2 + . . . + d .  x p  ) 

c ~n n 
i =l i =l 



In the formula of rich, the superscripts of bib and ai notate the absence of 

th in di (1 5 i 2 m). Also, aih can be easily defined as 

- 1 

a ! = [ x d i ]  1 =[a;' d i h Y  j # h  (3.22) 
j=l 

As can be seen, the two expressions for nc and nch differ only in the term 

belonging to t h .  nch can also be expressed as: 

2 
In Eq. (3.23) , the term -d ih . gh eliminates the contribution of th on nc via its 

individual term generality (Ph = l /  tg h) .  $ / a i  eliminates the contribution of 

t to nch due to its effect on depth of indexing (a i=l /xdi) ;  ai h reintroduces the 

effect of the modified depth of indexing. Notice that not all of the documents 
contain the deleted term th . By using this fact and Eqs. (3.22) and (3.23), 

fi 

where fh = IDh 1 and D h =  {di/ d i E  D and d i h #  0}, i.e., fh is the document 

frequency of t h ,  i.e., tg h .  Obviously, TDVh is nothing but the change in the 

number of clusters aft& the deletion of t h .  

For a binary D matrix, the expression of Eq. (3.24) will take the following 
simplified form: 

i =l 
The above simplification comes from the fact that for a binary D matrix 

d 2  i h  = d  and a : ' - a b = 1  if d = l  
i h  i h  

It should be noticed that the CC approach for TDV calculation yields exact 
values. On the other hand, approximation techniques are based on centroids 
rather than the individual document vectors. 

The consistency of CC approach for TDV has been tested and compared with 
other methods [ l l ,  481. These tests revealed very satisfactory results f421. 
Furthermore, the computational cost of the CC based approach is favorably 
comparable [8] with the other approaches available in the literature 111, 481. 



3.8.2 Optimization of Document Representatives 
Conventionally TDVs are used for the optimization of document descriptions. 

Representing a TDV by the ratio of densities Q./Q, instead of their difference, 
J 

as in 134, 361 each index entry in a document description is readjusted as 

d l . = T D V  x d  ( i s m ,  lsjsn) 
1 J j i j 

In Eq. (3.26) good, bad, and indifferent terms will have TDVs of greater than 
one, less than one, and approximately one, respectively. It has been observed 
that optimizing document representations in this manner helps improve IR 
performance [36]. 

We are proposing another concept which we call Document Significance 
Value (DSV) to be used together with TDV in the optimization of document 
representation, i.e., the D matrix. As in TDV, deletion of a document may 
change nc. Obviously, documents exist a priori and cannot be deleted from a 

database. However, conceptually, we may think of deletion of a document to 
compute its significance value DSV. 

Similar to that of TDV, DSV of dh is defined as (nc - rich) where 

nc : number of clusters in D, 

rich : number of clusters in {D - dh ). 
Computing DSV in a way similar to TDV, but this time using n'c Eqs. (3.7) and 

(3.9) instead of nc, we an obtain the following for DSV of dh as: 

where fh = fTh I and Th = {t. 1 t .E  T and &n . ~t 0), i.e., fh is the number of terms 
J J J - 1 

used for the description of dh ,  and pjh = ( - d )  (i.e., pjh is  the 

reciprocal of the column-j sum of the matrix that excludes dhj) .  

As in TDV Eq. (8.25), Eq. (3.27) can be rewritten for a binary D matrix as: 

C 

Then the proposed approach for D matrix optimization uses the adjustment of  

d  i j  ' = DSV I x TDV. x d 
J i j  

In the above expression DSVi and TDV are taken as n c / n c i  and nc/ n cj ,  
j 

respectively. In this way DSVi and TDVi will assume values of < I ,  >I, = I. This 

approach for the calculation of TDV A d  DSV does not prohibit she use of  
equations (3.241, (3.25) and (3.27), (3.28), respectively. Eq-s (3.24) through 
(3.28) can be used to obtain the change in the number of clusters. The new 
number of clusters can be calculated by using the old nc and the change in  n 

c,  
which is indicated by Eq.s (3.24), (3.25), (3.27), and (3.28). 

The product 

L 

DSV, xTDV. = ( n  / n , ) x ( n  / n .) = n  / ( n .  x n ) 
t C C 1 

(3 .30)  
J c c I c CJ c j  

2 6  



is referred to as the "weight modification factor" for the weight of t in di and 
j 

is abbreviated as A . . .  Accordingly, the D matrix wili be redefined as 
'J 

d = A  xd.. forlsism, lsjsn (3.31) 
ij  i j  i j  

The weight modification factor, A . . ,  modifies the weight of n in di b y  
13 j 

observing 1)  the importance of the term and 2) the significance of the 
document d j  with respect to the other documents of the database. 

Let us illustrate TDV and DSV using the example D matrix. 

1 TDV = al x (PI - 4) + a: x (PI - 4 ) 
1 

DSV 1 = $: x (al - 6 ; )  + (al - 6;) +$:.(a 1 - 6 ; )  

= 1 x (113 - 0.292) + 1/3 x (113 - 0.292) + 1 x (113 - 0.292) 

DSV1 = 0.092 - -- 
- -- 

DSV, = -0.042 
- 

DSV2 = -0.098 TDV5 = -0.195 

DSV, = 0 .93  

For the optimization of the D matrix consider entry dS3. The conventional 

optimization approach ( i . .  Eq. (3.26)) would increase dS3 since TDV3 > 0. 

However, our proposed optimization (i.e., Eqs. (3.30), (3.31)) observes both the 
values of DSV5 and TDV3 According to Eq. (3.28), d5 is considered insignificant 

(DSV5 c 0). Hence A53 will assume a value greater than one only if the 

insignificance of d5 is compansated by TDV3. A53 is calculated as follows: 

TDV. = n c  
J - 'cj "> ' ~ 3  = nc 

- TDV3 = 1.945 - 0.104 = 1.841 Ij= 3) 

DSVi = nc - nc ==> nc = nc - DSV5 = 1.945 - (- 0.195)= 2.14 (i= 5) 

This shows that A53 < 1. In other words, in contrast to the conventional 

approach our approach, decreases dST In the experiments section i t  is  shown 

that the proposed approach is superior to the conventional approach Eq. 
(3.26). 

4. EXPERIMENTAL DESIGN AND EVALUATION 
In this section we will present two sets of experiments: 
(a) Validity experiments: to test the validity of the indexing-clustering 

relationships; 
(b) IR Experiments: 

3 
1) to measure the performance of C M ; 
2) to evaluate the effectiveness of D matrix optimization by adjusting 

term and/or document represantations. 



Dealing with item (b) involves evaluation of  effectiveness as well as 
efficiency. In an IR environment, efficiency involves issues such as cost ,  
time, and volume of operations (CPU cycles, disk accesses per retrieved 
document) etC. 136, 461, which fall within the realm of a separate performance 
study. The goal of this paper is to evaluate the validity and effectiveness of 
the concepts andlor methodologies that have been introduced so far. In our  
effectiveness evaluations we will consider the number of relevant documents 

retrieved at various points during retrieval and effectiveness of C ~ M  in 
placing the relevant documents into fewer number of clusters. 

4.1 Document Database 
The document database used for the experiments contains the collection of  

papers published in the journal of Association for Computing Machinery 
Transactions on Database Systems (ACM-TODS), in the issues March-1976 
through September-1984. The database consists of 214 documents. Each paper  
in the database (we will call TODS214) contains the title, keywords given by the 
author(s), and the abstract. 

The index of this database is drawn from a set of terms obtained after the texts 
are cleaned out of the noise words (is.,  stop words) and remaining words 
stemmed. The details of the stemming algorithm and indexing software can be  
found in [31]. For a stem in TODS214 database, to qualify as an index term, the 
stem should appear within a range of frequencies in the documents. Af te r  
determining an indexing vocabulary, T, we have generated both a binary and 
a weighted D matrix. For the binary and the weighted case d.. indicates the 

11 

existence or non-existence of term t. in di and the number of oicurrences o f  t 
I j 

in di, respectively. 

4.2 Experimental Validation of Indexing-Clustering Relationships 

Table 3 provides the information pertaining to the generation of D matrices. 
In Table 3 the frequency pair (min, max) indicates the frequency constraints 
that establish a stem as an index term. For example, the first row of the table 
indicates that a stem which appears at least in two and at most forty documents 
will be selected as a term. For this case the cardinality of T is 1060, which is  
indicated by n. t is the number of non-zero entries in the corresponding D 
matrix. In the rest of this paper the D matrices of Table 3 will be identified by 
their frequency constraints, e.g., the D matrix corresponding to the first row 
of the table will be referred to as D2-40. 

The results of the experiments on indexing-clustering relationships are 
shown in Table 4. The second column of the table gives the estimated number 
of clusters --refer to Eq. (3.17). ncw and ncb indicate the number of clusters 

calculated by the CC concept, Eq. (3.8), for the weighted and binary versions of  
the corresponding D matrix, respectively. The quantities 



indicate the weighted depth of indexing and term generality, respectively. 
Similarly, dcw and dcb indicate the average size of a document cluster for  the 

weighted and binary cases, respectively. The average size of a term cluster i s  
shown by dlcw and d'cb for the respective term clusters. This table also 

presents other information to observe the indexing-clustering relationships 
of Eqs. (3.16) through (3.19). The results of the experiments show that the 
indexing-clustering relationships hold very closely in the case of binary 

indexing (the reader can compare estimated nc (second column) versus neb, tg 

versus deb, and xd versus dPcb).  

Experiments with the weighted D matrices also show that indexing-clustering 
relationships hold in the case of weighted indexing. However, the weights 
have slightly perturbed the indexing-clustering relationships, For example, in  
Table 4, on the average the ncw values are 15.4% higher than the estimated nc 

values. Notice that in the binary case the estimated and actual nc values are 

identical in six of the nine experiments. 

Table 3. Char zteristics of the generated D 
Frequency 

Min  ' M ~ X  n t 

2 40 1060 7446 

matrices 

Table 4. Results of the indexing-clustering relationships experiments 

r - t I 
Matrix (214.n) n,, n,b t, t g  dew Xdw Xd d'cw d 'cb  

D 31 34 30 10.70 7.02 6.29 7.13 53.02 34.79 31.18 35.33 



4.3 Retrieval Experiments 
4.3.1 Retrieval Performance Evaluation Measures 

In CBR, the first step is to select the appropriate clusters, Cs, by using a 

matching function fm.  As indicated in Section 1, in the IR literature there are  

many different matching functions 1361. In this study, a CC-based matching 
function [6 ,  7, 291, will be used. Basically, this matching function indicates the 
mutual coupling between query and the individual documents of the 
collection. It is experimentally observed that IR performance with the CC- 
based matching function is comparable with the well know matching (or 
similarity) function which uses Eq. (1.1) 110, 31, 421. Its compatibility with the 
Dice matching function 130, 36, 461 has been observed in [7, 31, 421. 
C, is  the set of clusters having enough correlation (in our case coupling) 

with the particular query, that is 

Cs={Ci I fm (Ci , q) > 0 and r(Ci) < nsm , l l i s n c )  

w h e r e ,  

ns m : number of clusters to be expanded (i.e., fully examined) 

fm (Ci , q) : correlation of Ci with the query, 

'(Ci > : rank of Ci in the sorted list (clusters are assigned a rank 

in the decreasing order of the fm (Ci , q) values). 

After ranking the clusters, the same is done to the Ds documents of the 

selected nsm clusters: 

Ds = { d E C  and C E C s  ). 

The set of documents examined by the user, Dsr, is defined as follows: 

Dsr = ( d f  Ds j r(d) ( r  and fm(d, q) > 0 )  

The members of Dsr are the documents coming from Cs and having a rank, 

r(d), which is less than or equal to the r number of documents that the user 
wants to examine, and that the matching function must yield a correlation 
value greater than 0. By increasing r(d) from 1 to r we can obtain different 
recall, Rc , and precision, PC , values which are described below. 

R c = / D s r  n Dr I / I D r  I 
PC = I D s r  n Dr I / l D s r I  

where Dr is the set of documents relevant to the query ( i . . ,  relevant 

documents set, or relevant set). To obtain standard evaluation results, the 
precision values are given at the predetermined recall levels, i.e., Ri (I  s i c 10) 

at 0.1, 0.2, . . ., 1.0. When a computed recall value, Rc, falls in a range between 

two consecutive recall levels Ri and Ri+l (1 I i 5 9) then the precision value PC 

corresponding to Rc is taken as the precision at Ri [36, p. 1671. 

If one replaces the definition of Dsr with D (ie., all documents), then the 

foregoing discussion for recall and precision will be valid for full search, FS. 
The maximum recall value (i.e., Rc when r= IDs/ and r=m for CBR and FS, 

respectively) that can be observed for a query is called the "recall ceiling". 
In our CBR experiments, if recall ceiling for a query is greater than zero and 

less than one, then the precision values Pi of Ri > RC are set to the average 

precision value of all queries obtained at recall level equal to I in FS [143. If 
RC= 0 then Pi = 0 for 1 5  i 5 10. 



For the similar case in FS, Pi is set to the precision value calculated at R C  of 

the query under processing. If RC is zero, then Pi= 0 for 1 ( i s 10. 

After calculating the precision values at Ri ( 1  ( i 2 lo) ,  then the average 

system performance is obtained by computing the average precision value Pi 

at each corresponding recall level by using the precisions of all fifty e i g h t  
queries used in the experiments. This is done both for FS and CBR. 

The foregoing evaluation approach is to obtain the effectiveness w h e n  a 
fixed number of clusters are examined. We will also obtain the changes in 
recall and precision as we expand more and more clusters. In the experiments 
section nsm will be varied from 1 to 1 0  (Tables 8 and 9). 

Target Clusters: 
In CBR, assuming that ideal conditions hold for document description, q u e r y  

formulation, centroid generation, and matching function we expect to s e l e c t  
the clusters that contain only the relevant documents for our query. T h e s e  
clusters will be referred to as "target clusters." If Ci and C. are two t a r g e t  

J 
clusters containing the same number of relevant documents and if (Cil < lCjl 
then Ci will be preferable since its size is smaller. Therefore, the best t a rge t  

cluster for a query is the one that 1)  contains the highest number of 
documents relevant to the query, and at the same time 2) has the smal les t  
c a r d i n a l i t y .  

In the target cluster experiments we will first expand the best cluster f o r  the 
- 

query under consideration then calculate recall, precision, and the percent of 
the database to be expanded. This will be repeated until we retrieve all the 
target clusters containing all the documents relevant for the query. Then we 
will calculate average performance for all queries. 

In the target cluster experiments (i) For a query with relevant set size of k, 
the maximum number of target clusters is  k; (ii) Smaller cluster size will 
increase precision; in the extreme case, i.e., each cluster containing only one 
document, the precision will be one for all target clusters of a query. If 
cluster size is two for all the clusters, then for any target cIuster the minimum 
precision will be 0.5; (iii) If the relevant set size for a query is one, then  the 
recall will be one upon retrieving only one target cluster. This indicates that 
if the average relevant set size for all queries is small, then the average  
number of target clusters to be retrieved will be small; (iv) For a q u e r y  of 
relevant set size k the average number of clusters to be retrieved c a n  be 
approximated as k/dc, where dc is the average cluster size. 

In our experiments we will also compare the performance of C ~ M  with 

random clustering. Comparisons of the performance of a clustering algori thm 
urith that of the random case have been made in previous studies 125, 28, 44, 
451. TO perform this comparison we will obtain averages of the following 
quantities for all the queries: number of clusters to be expanded, percentage 
of the database to be expanded, and precision when all target clusters are 
r e t r i eved .  

To obtain the random performance we will use the theorem given in [43]. 
Given are m records (documents) grouped into n, number of blocks (clusters)  

where l < n c t m  with each cluster containing m/nc number of documents. If k 

documents !k ( m - m / nc) are randomly selected from the m records (in o ther  



words if the relevant set size of a query is k), then the expected number of 
blocks with at least one record selected is given by - - 

where d= 1 - 1 I nc 
C 

i =l 

This formula assumes that all blocks (in our case clusters) have the same size. 

6~ distributes documents uniformly among clusters [ S ,  6,  261. However, as i t  
would be expected, cluster sizes are not identical. To employ the above theorem 
we may force documents into equally sized clusters. However, such an 
approach will impose adverse effects on our performance results. To alleviate 
the problem, in random clustering we will place documents randomly in the 

3 clusters of the partition formed by C M using the given D matrix in a n  
experiment. To justify this the following corollary of the foregoing theorem is 
in t roduced .  

Corollary: Given is a partition of m documents with nc number of clusters 

and each cluster having a size of 1C.j for 1 ( j  5 nc. If k documents are randomly 
J 

selected from m documents, the probability P. that cluster C will be selected is  
J j  

given by 

where m. = m - 1C.I _ _ - 

m - i + l  J J 
i =l 

Accordingly, in random clustering with varying sizes of clusters and a query 
with relevant size of k we will have the following: 

a) the number of target clusters= 

b) expected size of the database to be expanded 
(i.e., the total size of all target clusters) 

4.3,2 Experimental Environment 
In the retrieval experiments we used the weighted D matrix as defined in the 

second row of Table 3. The reason for using a weighted matrix is  its generality 
as compared to a binary matrix. - 

3 
In cluster base retrieval (CBR) after clusters are formed by C M we generate 

the centroids of the clusters by following the CC approach [4, 61. This 
approach for centroid generation will emphasize the terms with higher 
uniqueness values. The terms which have a uniquecess value ( i . ,  the 
diagonal entries of the C' matrix, 6'.  = c..') greater than or equal to the sverage 

J JJ 



uniqueness value of the terms, a', will appear at least i n  one of  the centroid  
vectors. Weighted centroids are generated making the weight of a term, ti, 

J 

appearing in a centroid equal to the total weight of ti in the member  

documents divided by the corresponding cluster size.   he statistics for the 
clusters and centroids are provided in Table 5 under the heading "original Dm. 
This table shows that the indexing constraints of D3-40 yield an average  

cluster size of 7.93 which is approximately equal to log2m (log2m= 7.74). T h i s  is 

the expected size of a cluster for a database of the size of TODS214 [33]. The t a b l e  
shows similar information also for the optimized D matrix. 

Table 5. Statistics for the clusters and the centroids 
used in the retrieval experiments 

Quantity Original D Optimized with A 

Number of Clusters 27 2 8  
Average Number of DocumentsfCluster 7.93 7.64 

The query set contained a total of fifty-eight queries. We will refer to this 
query set as Q58. Thirty nine of these queries are constructed from f ive  
textbooks on databases. If a chapter contained two or more references to a 
TODS214 article the titles and subtitles of that chapter are used as the q u e r y  
text. The documents corresponding to these references are assumed to b e  
relevant to the query. The query set is almost evenly distributed among the 
five texts. The other set of eighteen queries are taken from [31]. The na tu ra l  
language text of the queries is mapped into a query vector. A query vector Q is  
obtained from the intersection of Qs and T where Qs and T are, respectively, 

the stems corresponding to the query text and indexing vocabulary. In the 
experiments, binary query vectors are used and this is reasonable since mos t  
terms appear only once in a query text. 

In the target cluster experiments we used the query set Q58. To validate the 
results obtained with respect to Q58 we have augmented the query set in Q58 
with another query set containing 110 queries. This query set will be referred 
to as Q110. Ql lO is created by using the citations of the papers published in the 
journal of ACM-TODS. If a TODS article cites three or more papers which are 
contained in our TODS214 collection, then it is taken as a query. We are 
interested only in the relevant set of the individual queries of Q110, i.e., Q l l O  i s  
used only in target cluster experiments. Q l l O  queries almost e v e n l y  
distributed in the year range of 1979 through 1987. The detailed information 
for the query sets are given in Table 6. Table 6.A indicates that in Q58 t h e r e  is  
one query with relevant set size of one while for Ql lO the number of quer ies  
with relevant set size of one or two is zero. The number of queries wi th  
relevant set size of three is eleven and thirtyone for Q58 and Q110. Q168 is the 
union of Q58 and Ql lO respectively. Table 6.B indicates the number of quer ies  
that will retrieve all of the relevant documents if we expand suff ic ient  
number of clusters. For example, if we expand one target cluster at least one  
query will be satisfied for Q58, and therefore in Q l 6 8  since there is only one 
query with a relevant set size of one (refer to Table 6.A). The number  of 

Average Number of Terms Used in Clusters 253.33 244.29 

Average Number of Distinct Terms in Clusters 172.37 167.25 

Average Number of Terms Used in Centroids 58.00 56.82 
Number of Distinct Terms in Centroids 445 447 
Proportion of Terms Used in Centroids 0.588 0.591 , 



queries with relevant set size of one or two is twelve, hence if we expand two 
target clusters obviously twelve queries will retrieve all of their relevant 
documents. (Notice that target clusters contain at least one  relevant document 
for the query under consideration.) An effective clustering algorithm must 
satisfy high number of queries with less number of target clusters expanded. 
The entries of Table 6.C are self explanatory. 

B. Number of queries that will be satisfied when h number of clusters 
e x ~ a n d e d  

Table 6 - Characteristics of the queries 
A. Relevant set size statistics for the queries 

Query Set 
I n f o r m a t i o n  

Tota 1 no of relevant docs. 816 

5.259 4.645 4.875 

Relevant set size 
1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

1 1 1 1 1 5  6 5 5 3 5 2 3 1 0  0 
0 0 3 1 3 2 1 9 1 6 8 0 2 0  1 0  0 1 
1 1 1 4 2 3 7 2 5 2 1 1 3 3  7 2 4 1 0  1 

Query 
Set 

4.3.3 Experimental Results 
Using the Conventional Measures: 

In order to see the effectiveness of CBR, first the average precision values a t  
the recall levels are obtained and the values are compared with those of  FS. 
Then CBR is repeated for the D matrices optimized with respect to Eqs. (3.26) 
and (3.31). In these experiments nsm (the number of clusters expanded) is 

three. In a database of the size of TODS214 the user is assumed to be e i ther  
completely satisfied or dissatisfied after examining about twenty documents. 
He (she) would either quit using the system afterwards or reformulate a new 
query for the same request. (Notice that in the experimental environment the 
average cluster size is 7.93 and nsm= 3 which will provide the user 

approximately twenty documents to examine.) The results of the CBR 
experiments are provided in Table 7. The table also shows the percentage 
difference with respect to FS. As can be seen, CBR with both the ordinary D 
matrix (designated as CBR) and the optimized D matrix (designated as CBR', and 
the other primed entries are also associated with optimization) is worse than 
those in FS. However, CBR' is  slightly better than CBR. In these and i n  the 
following experiments, it is observed that D matrix optimization with TDV alone 
(Eq. (3.26)) did not have any improving effect on CBR behavior. 

Number o f  
Quer ies  

No of Clusters Expanded (h) 

1 2 3 4 5 6 7 8 9 10 11 1 2  13 1 4  

1 12  2 3  28 34 3 9  44 47 5 2  54 57 5 8  - . - 
1 12  54 91  116 137 150 153 160 162 166 167 1 6 7  168 

Query 
Set 

Q58 
QllO 
Q168 

Number of 
Queries 

Q58 
Q168 



Table 7. Precision vs recaI1 for FS, CBR, and CBR' 

I Recall  FS CBR CBR' 

1 .O 0.16585 0.14038 0.14609 

96 differnc. w.r.t. FS: -8.51 -6.12 

Table 8. Recall ceiling vs nsm 

n s m  RC RC' 

1 0.27818 0.25963 
2 0,35623 0.36094 
3 0.40938 0.41675 
4 0.46655 0.46464 
5 0.48915 0.51019 
6 0.53399 0.53762 
7 0.55125 0.56136 
8 0.57294 0.59158 
9 0.58656 0.60364 

10 0.59037 0.60058 

Table 9. Precision vs nsm 

n s m  Prec i s ion  P r e c i s i o n '  

1 0.28598 0.27306 
2 0.21904 0.23345 
3 0.21436 0.22571 
4 0.19955 0.22049 
5 0.19117 0.21437 
6 0.18301 0.20229 
7 0.18543 0.20518 
8 0.19232 0.21626 
9 0.18580 0.21 173 

10 0.16745 0.18840 

% improvement: 8.92 

Table 8 shows the behavior of CBR and CBR' in terms of recall ceiling (RC) 
with respect to different nsm. (Average RC for all queries in the case of FS is  

0.69.) These experiments showed that RC' values are slightly better than RC 
values. In other words, the matrix optimizalion using Eq. (3.31) slightly 
improves the performance of the system in terms of recall ceiling. However, 
the improvement is negligible as expected. This is because, D matrix 
optimization does not introduce anything to improve the performance of the 
system in terms of recall (e.g., it does not introduce new terms to describe the 
documents) .  



In order to see the precision improvement of D matrix optimization we have  
performed a set of experiments for finding the average precision for various 

n s m .  The results are provided in Table 9. This table shows that our D matrix 

optimization is effective for precision improvement. The average CBRf 
precision values are 9.01% higher than those of CBR. 

Using Target  Clusters: 
Table 1 0  shows the results of the target cluster experiments. The experiments 
are performed for all D matrices defined in Table 4. Since the results are qui te  
similar for all matrices, we will give only the results for three D matrices wi th  
the number of clusters varying from 27 to 43 to show the effect of cluster s ize  
on performance. The results of the experiments are given both with Q58 and 
Q168. As we have indicated earlier, Q58 is a subset of Q168. Table 1 0  contains 
the following information: number of target clusters expanded, number of  
queries satisfied ( e . ,  the queries that retrieved all of their relevant se t ) ,  
average recall and precision, and the percentage of the database expanded. 
Let us look at Table 10.A for D3-40 of Q58. We are able to retrieve a11 of the  

relevant set for eight queries by expanding only one cluster. The same is  valid 
for twenty-six queries with two target clusters. The reader can compare these  
values with the values provided in Table 6.B. The comparison indicates that  

3 the clustering of C M is effective in putting the relevant documents of a query  
into the same cluster. 

The results of Table 10  show that relevant sets of queries are concentrated in  
a very few clusters. For example in the case of D3-40 of Q58, if we expand o n e  

cluster, or on the average 4.9% of the database, recall is 0.537 and precision is 
0.267. 

3 
For D3-40 C M generates 27 clusters and the average cluster size is 7.93 

documents. In the other extreme, i.e., with D2-20, there are 4 3  clusters and the  

average cluster size is 4.98, which is 63% of the case with D3-40. However, 

notice that when we expand one target cluster, the recail in the case of D2-20 

is 0.430 which is still high. That is, although our cluster size is now 60% of that  
of D3-40, we are still able to obtain 80% (0.430/0.537= 0.801) of the recall va lue  

of D3-40. Also, because the cluster size is smaller with D2-20 the percentage of 

the database to be expanded drops and precision increases. The results of Table 
3 10 indicate a good performance for C M since relevant sets of documents are  

concentrated in a small number of clusters. 

The comparison of the results of c3h4 with those of the random case (RnC) is 
provided in Tables l l . A  and 11.B for the query sets of 0 5 8  and Q168, 
respectively. In this table, the columns "Avg. nc", "5% DB", and "Avg. Pre." 

indicate, respectively, the average number of target clusters, the percentage 
of the database expanded, and precision when the relevant set of all queries is 

3 retrieved. The improvement due to C M is  computed as the percentage of 

performance differential with respect to C ~ M .  
3 The results of Table 1l .A indicate that C M decreases the number of clusters to 

be expanded in comparison with the random case. The percentage decrease 
varies between 17% and 29% with the average being 25%. The clusters 

3 generated by C M are almost uniform (equally sized). Thls can be seen from 
Ihe decrease in the percentage of database to be expanded. The decrease in  the 



Table 10. Retrieval with target clusters 
A. For Q58 

No of  Target No o f  Qry. % Database 
D-matr ix  Clusters Exp. Sat is f ied  Recall  P r e c i s i o n  E x p a n d e d  

D3-40 1 8 
0.537 0.267 4.9 

( n c =  27) 2 2 6 0.769 0.222 8.4 

Table 10. Retrieval with target clusters (cont.) 

3 9 1 0.858 0.245 7.7 

4 130 0.939 0.231 9.2 

5 155 0.971 0.226 10.0 

database size to be expanded is approximately equal to the decrease in the - 

number of clusters to be expanded. The increase in precision due to C ~ M  
compared to the random case varies between 33% and 60% with the average  
being 50%. With query set Q168 the decreases in the number of target c lus te r s  
and the size of the database to be expanded are 22% and 20%, respectively. The 
increase in precision with respect to the random case is 42%. In other words ,  
the performance figures for Q168 are worse than those of Q58. This might b e  
due to the diversity of citations in the queries of Q110. In other words, some of 



the references cited in an article may be less relevant than others. (Not ice  
that QllO is constructed using TODS articles.) 

The results of C'M are significantly better than those of the random case. 

This can be  explained by about 20% decrease in the number of clusters to b e  
expanded and about 40% improvement in precision, as compared to the random 
case. It is our belief that a comparison such as the one provided in Table 11 

can be used as a standard benchmark in the evaluation of a clustering 
a l g o r i t h m .  

3 Table 11. The comparison of C M and random clustering (RnC) when we 
retrieve all relevant documents for all queries 
A. For Q58 

r - 

I RnC imp. of C'M 
Avg nc %DB Avg Pre n %DB A v g  Pre 

4.757 18.4 0.129 -29 -28 60 

3 Average 5% improvement of C M over RnC: -25 -24 50 I 
B. For 0168 

The target cluster experiments are repeated for the binary version of the  
same D matrices. The performance results for the binary case are sl ightly 
worse than those of the weighted case. D matrix optimization is also tested fo r  
the target clusters. The results obtained are almost the same as those given in  



Tables 10 and 11. This is because, the clusters obtained with the ordinary D and 
optimized D matrices are almost identical. The effect of D matrix the 
optimization is observed in the document and centroid vectors. The results of  
FS retrieval with the optimized D matrix are the same as FS retrieval using the 
original D matrix. This means that optimization improves CBR. 

As we indicated earlier the comparisons of the performance of  a clustering 
algorithm with that of the random case can be found in other s tudies  
especially in those on record clustering. In these studies the records likely to  
be retrieved for the same query are put into as few as blocks possible 125, 28, 
451. The study of [45] reported 100% improvement over random clustering for 
an adaptive clustering algorithm. The same algorithm is also tested in [28] and 
various improvements over the random case ranging between 5 %  and 52% 
with an average of 40% have been reported. For the same data the same s t u d y  
reported an average improvement of 59% over the random case using its own 
algorithm. Although these results are impressive, some comments a r e  in  
order. The algorithm given in [45] is  affected by the order of query execution. 
The algorithm given in [28) "deteriorates when there is an increased over lap  
of records between several queriesn as quoted from the same study 128, p. 711. 

This might be the case in a real life environment if we consider the 80-20 rule 
[45]. More importantly, the same set of queries are used [28 ,  451 for both  
generation of clusters and goodness test of the generated clusters in terms of  
percentage decrease in the number of clusters to be expanded. Approaches 
similar to that of [45] were used also by others [44, 16). However, the approach 
used in this study is more generic. Furthermore, use of queries for c lus te r  
generation may produce undesirable performance for a different application. 

5. CONCLUSION 
The NP-completeness of the clustering problem has lead to heurist ic 

approaches. In the study reported here a new clustering methodology ca l l ed  

C?M has been introduced. C ~ M  relies on its heuristic called the c o v e r  
coefficient (CC) concept which is used in various aspects of  clustering theory.  
A few examples are 1) the number of clusters within a document database can 
be determined, 2 )  a new method for selection of cluster seeds i s  introduced, and 
3) new methods are introduced for the optimization of the document 
description matrix. The CC concept also relates indexing and clustering 

3 analytically. The computational cost of C M is comparable with that of  the 

other clustering algorithms available in the literature. C ~ M  has all the 
desirable properties of good clustering algorithms. More importantly, with 

C?M it is possible to analytically determine the number of clusters and c lus te r  
size beforehand. 

In the experiments conducted, the indexing-clustering relationships 
indicated by the CC concept are validated. And, these relationships are 
strongly observed in the case of binary indexing. In the case of weighted 
indexing, the relationships are slightly distorted due to the noise effect of the 
w e i g h t s .  

3 
The retrieval experiments have shown that CBR using C M improves the 

retrieval effectiveness and efficiency of an IR system. The comparisons made 
with respect to random distribution of documents among clusters have s h o w n  

3 that, on the a\lerage, C M provides 40-50% improvement with respect t o  the 
random case in terms of precision. The improvement in terms of the reduction 
of the search space is 22-25%. This reduction can be significantly extended 
with hierarchical clustering [29]. The CC concept has been used also in index 



vocabulary construction and optimization [31]. Also, advanced optimization 
techniques such as term discrimination value and document significance 
value, a concept introduced in this study, have been constructed using C C  
concepts [8]. The retrieval experiments performed using the document 
matrices optimized using both of these advanced optimization techniques have 
shown improvements in retrieval precision, as shown in  the paper. 
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