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ABSTRACT

Single cell genomics has become a popular approach to uncover the

cellular heterogeneity of progenitor and terminally differentiated cell

types with great precision. This approach can also delineate lineage

hierarchies and identify molecular programmes of cell-fate acquisition

and segregation. Nowadays, tens of thousands of cells are routinely

sequenced in single cell-based methods and even more are expected

tobeanalysed in the future.However, interpretationof the resultingdata

is challenging and requires computational models at multiple levels of

abstraction. In contrast to other applications of single cell sequencing,

where clustering approaches dominate, developmental systems are

generally modelled using continuous structures, trajectories and trees.

These trajectory models carry the promise of elucidating mechanisms

of development, disease and stimulation response at very high

molecular resolution. However, their reliable analysis and biological

interpretation requires an understanding of their underlying

assumptions and limitations. Here, we review the basic concepts of

such computational approaches and discuss the characteristics of

developmental processes that can be learnt from trajectory models.

KEY WORDS: Computational approaches, Developmental

trajectories, Single cell genomics, Trajectory inference, Pseudotime

Introduction

Cell specification, proliferation, differentiation and

morphogenesis are processes that are essential for the

development of an adult organism from a single cell, the zygote.

Individual progenitor cells commit and differentiate into lineage-

restricted cell types during development and thereby follow paths

to distinct fates with perfect precision. Coordinated temporal and

spatial gene regulation and multiple signalling pathways

orchestrate these cell fate decisions and are key for the

development of a zygote into a healthy individual (McGinnis

and Krumlauf, 1992). A central endeavour in biomedical sciences,

therefore, is to understand these developmental processes and

identify how they are mis-regulated in disease. This knowledge can

also be harnessed for in vitro generation of cells or tissues from stem

cells for cell-replacement therapy and drug screens.

The advent of single cell-based sequencing now allows us

to study how cellular heterogeneity in previously assumed

homogeneous cell populations leads to different cell fate

decisions (Griffiths et al., 2018; Pijuan-Sala et al., 2018). With

single cell resolution, we can monitor an arising population from its

earliest emergence onwards. Thus, we can gain detailed insight into

the differentiation path that individual cells follow and the

underlying molecular programmes executed, which is impossible

on the bulk level. However, given that we can generally only

measure each cell once, we need computational models to deduce

these cellular trajectories and changes in molecular programmes

from static snapshot data. Once we have inferred such a trajectory,

we can potentially identify the (transcriptional) cell states at which

fate decisions are made and the factors driving these decisions.

However, a good understanding of the concepts, limitations and

scope of such computational models is crucial for drawing robust

and reliable biological conclusions.

In this Review, we describe the mathematical concepts of

pseudotemporal ordering and trajectory inference as well as recent

advances in computational biology that increase the robustness and

flexibility with which these concepts can be applied. In particular,

we focus on single cell transcriptomic data because this type of

data is abundantly available and has profited from the

commercialisation of experimental platforms; other important

single cell data types, which mirror multiple levels of cellular

information, are summarised in Box 1. Furthermore, we highlight

current applications of pseudotime algorithms and point out their

promises and limitations for studying developmental processes.

Finally, we summarise important aspects in the application of

pseudotime to disease modelling.

The concepts of pseudotime and trajectory inference

Current single cell protocols require cell lysis before sequencing,

which means that we cannot follow cells over time but can only

obtain static snapshots of the developmental process we wish to

investigate. One approach to overcome this limitation is to infer a

pseudotemporal ordering (see Box 2) of the cells according to their

similarity in gene expression, such that each cell is assigned a one-

dimensional coordinate that reflects its state in the developmental

process. It is assumed that this transcriptomic similarity is

dominated by the process of interest, and that the more similar

two cells are the closer is their stage of progression along this

process. First, a similarity measure is defined that quantifies the

similarity between the gene expression profiles of two cells. Then,

by ordering the cells according to this similarity measure, a

hypothetical trajectory – the pseudotime – of the cells’ development

can be inferred. In other words, each cell is projected to one point

along a one-dimensional process using the information available

from its gene expression profile. Thus, although we only obtained a

static snapshot, i.e. one measurement of each cell at one time point,
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we can investigate developmental processes such as cellular

differentiation or maturation.

In such applications of pseudotemporal ordering, the

experimental time is the same for all measurements, whereas the

internal time, or state, is different for all cells. Pseudotime inference

also assumes sampling of a continuum of cellular states independent

of sampling time, which implies that all cells following the same

(undirected) process will be collapsed onto one trajectory. This

means that even if cells from consecutive (developmental) time

points are measured, this time information is lost. In addition, it is

important to note that the inferred ordering does not convey any

information about real elapsed time nor the progression rate of cells.

The pseudotime should therefore rather be interpreted as a sequence

of cellular states. Moreover, because the ordering is only based on

similarity, we need prior knowledge or additional data to assign a

direction to the process, i.e. to define which end of the process is

‘early or immature’ and which one is ‘late or mature’.

During development, cells do not follow one single trajectory but

commit and differentiate into multiple lineages (Fig. 1A). A

simplistic view is that such cell fate decisions occur when

transcriptional states diverge, which is represented by branching

events. Such diverging lineages can be modelled by tree-like

structures. A commonly used analogy for this is Waddington’s

landscape, where cells are marbles that start at the peak of this

landscape and roll down paths into multiple valleys representing

different fates (Waddington, 1957). In such tree-like structures and

models, cells with different cell fates can be assigned to different

paths that segregate at different time points in development

(Fig. 1B). To include branching in these models, early trajectory

inference methods (see Box 3) have been extended such that they

can embed cells not only along linear paths but also along bi- or

multi-furcating, or even more complex, paths.

Multiple methods exist for inferring one-dimensional orderings or

complex branching trees. They all include two basic steps. First, cells

are projected to a simplified embedding through dimensionality

reduction (Fig. 1C), graph construction or clustering. Second, cells

are ordered within this simplified embedding (Fig. 1D) and can be

further abstracted to a graph (Fig. 1E). The best choice of method

heavily depends on the topology of the trajectory in question

(e.g. whether it is a linear, bi- or multi-furcated process, see Fig. 1F)

(Saelens et al., 2019). For a comprehensive overview and guidelines,

we refer the reader to Saelens et al. (2019), who benchmarked the

performance of 45 trajectory inference algorithms in different

situations. The authors found PAGA (Wolf et al., 2019), Slingshot

(Street et al., 2018) and SCORPIUS (Cannoodt et al., 2016) to

perform best across all tested datasets. They also propose to both

confirm and complement the inferred results by using multiple

methods. As a support for end-users to easily apply trajectory

inference to their data, and as a resource for developers to evaluate

their method, a comprehensive and user-friendly website was

compiled (https://dynverse.org/).

Modelling undirected cell trajectories and lineage

relationships in development

Pseudotime and lineage tree inference from single cell

transcriptomic data can be broadly applied in the study of

developing organisms. For example, pseudotime can be applied to

reduce the complex molecular interplay in development to a one-

dimensional trajectory that cells follow and can be examined

separately by cell fate (Fig. 1G). On Waddington’s landscape, this

corresponds to the path from a stem cell to just one of its

differentiated progenies. Along this path, a continuous spectrum of

cellular states is observed, instead of the distinct cell clusters

observed in most mature tissues. Thus, the cell types derived from

pseudotemporal ordering are fuzzy and overlap. Nonetheless,

pseudotime allows the mapping of cell subtypes such as stem

cells, differentiating progenitor cells and terminally differentiated

cells (i.e. root cells, intermediate states and final states). Using this

approach, lineage hierarchies and cellular differentiation trajectories

Box 1. Types of single cell data
‘Omics’ (RNA, protein, methylation, chromatin accessibility). Omics

experiments measure a set of molecular species, or a layer of molecular

regulation, within a sample and, in the case of ‘single cell omics’, at single

cell resolution. Such experiments include RNA-seq for measuring

RNA, mass cytometry/spectrometry for measuring proteins, bisulphite

sequencing for measuring methylation, and ATAC-seq for measuring

chromatin accessibility.

Multi-omics in a single cell (protein/RNA, methylation/RNA). Single

cell multi-omics assays measure multiple omics layers simultaneously in

single cells. Examples include protein concentration read-outs (in single

cell RNA-seq via DNA-barcoded antibodies; Stoeckius et al., 2017), and

DNA- andRNA-library separation followed by both bisulphite sequencing

and RNA-seq, either in wells (Clark et al., 2018) or via split and pool

strategies (Cao et al., 2018).

Spatially resolved ‘omics’. Several novel methods have been

developed that capture both gene expression and spatial information

from single cells (Salmén et al., 2018; Satija et al., 2015; Chen et al.,

2015) (reviewed by Lein et al., 2017; Moor and Itzkovitz, 2017; and, in

this issue, by Mayr et al., 2019).

Single cell knockout screens. Cas9-based knockout allows genetic

perturbation in individual cells. This is now applied in single cell knockout

screens, such as CROP-seq, PERTURB-seq and CRISP-seq (Dixit

et al., 2016; Datlinger et al., 2017; Adamson et al., 2016; Jaitin et al.,

2016). However, sensitivity of these early methods is greatly decreased

owing to uncoupling of the barcode and sgRNA by viral recombination

(Xie et al., 2018), which urges for technical improvements (Feldman

et al., 2018 preprint; Hill et al., 2018; Adamson et al., 2018 preprint).

Lineage tracing. Lineage-tracing assays are used to gather ancestral

information about a cell and uncover clonal structures in a population.

Current methods that apply lineage tracing at the single cell level include

genetic scarring and SNP tracing (Spanjaard et al., 2018; Frieda et al.,

2017; Raj et al., 2018; Alemany et al., 2018; Yao et al., 2017; and

reviewed by McKenna and Gagno, 2019 in this issue).

Box 2. Pseudotemporal ordering
Mathematically, pseudotime estimation is an algorithm that identifies a

one-dimensional, latent representation of cellular states, or simply a

distance function from the progenitor cell state to all downstream cells.

Each high-dimensional gene expression profile of a cell, equivalent to a

vector in the original space, is assigned one single number in the low-

dimensional space that reflects the cells’ progression status along a

continuous manifold (see Glossary, Box 4). Methods to infer the one-

dimensional representation typically make use of the Gaussian Process

Model (Buettner and Theis, 2012; Campbell and Yau, 2015 preprint;

Ahmed et al., 2019; Lönnberg et al., 2017), Minimum Spanning Trees

(Trapnell et al., 2014) or random walks (see Glossary, Box 4) on graphs

(Haghverdi et al., 2016). The Gaussian Process-based class of methods

is often likelihood-based and therefore allows information about

experimental time and computing uncertainties to be included in the

inferred pseudotemporal ordering. The latter two classes are graph-

based approaches that aim to find a distance measure in the space of

observations that is biologically meaningful. All of these approaches

assume that the similarity of cells in the observed space corresponds to

cells being at similar stages of the developmental process, and that the

entire process (i.e. all transitions) has been captured in the data.
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have been catalogued in the mouse pancreas (Byrnes et al., 2018;

Scavuzzo et al., 2018), in zebrafish embryos (Wagner et al., 2018),

and even in whole complex animals such as planaria (Plass et al.,

2018). These studies revealed that pseudotime as a proxy for a

developmental process and real time can be closely connected.

For example, Byrnes et al. and Scavuzzo et al. studied mouse

pancreatic development, which is characterised by a successive

increase in complexity (Byrnes et al., 2018; Scavuzzo et al., 2018).

By simply aggregating data from several time points, they were able

to connect early, undifferentiated cell states with more mature cell

populations. Importantly, the authors identified several lineage

segregation events that lead to multi-lineage formation and

endocrine/exocrine compartmentalisation of the pancreas.

Similarly, Wagner et al. sequenced full zebrafish embryos at

seven different time points within the first 24 h post-fertilisation

(Wagner et al., 2018). Here, the authors reconstructed a coarse-

grained developmental lineage tree from the expression profiles of

92,000 cells. The inferred lineage tree immediately suggests that

lineage decision making is a tightly timed process. Strikingly, by

tracing cell clones using a transposon-based barcode, they found

converging/diverging behaviours undiscovered by pseudotime.

Therefore, the developmental routes in zebrafish could not be

fully represented by a tree structure. Converging behaviour of cell

populations can be described as alternative paths in differentiation

processes or as shortcuts in a lineage hierarchy. These shortcuts

represent a generalisation of the tree structure, called a directed

acyclic graph (Fig. 1H), as reported in a study of hematopoiesis

(Moignard et al., 2013). Directed acyclic graphs and convergent

developments represent a particular challenge for trajectory

inference (see Box 3 for details). Most trajectory inference

methods expect fixed starting and end points, which are difficult

to define in the loop structure. Furthermore, the detection of

branching points is similarly difficult. Both challenges are

addressed by specific cyclic methods for trajectory inference or

graph-based methods (Saelens et al., 2019).

In contrast to mice and zebrafish, adult planaria are immortal and

consist of a considerable number of pluripotent stem cells that are

able to regenerate the whole organism. In other words, an adult

planaria is approximately in steady-state, i.e. all cell types remain in

the same proportions. Therefore, studying the whole organism over
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Fig. 1. Pseudotemporal ordering can reconstruct lineage trees. (A) Waddington’s landscape (Waddington, 1957) illustrates the state-space of differentiation

and cell fates, where likely cell states are depicted as valleys and unlikely cell states as hills, similar to the free energy landscape.We highlight the positions of four

different cell fates and two intermediate cell stages, indicated by coloured circles. Lines connecting all cell stages highlight potential differentiation paths. (B) In a

high-dimensional space, cell states correspond to specific expression profiles, with all cell samples lying on the high-dimensional data manifold. (C) The high-

dimensional data manifold can be reconstructed via low-dimensional embedding of the data to represent the data manifold in two dimensions (Dim 1 and Dim 2).

(D) Important regions (e.g. root, branching and tip regions; indicated by coloured rings) and pseudotime inference (indicated by arrows) can be identified and

visualised on the low-dimensional embedding. Pseudotime direction depends on the choice of the root population. (E) An abstracted graph (without directionality)

can be constructed from the data based on pseudotime inference and clustering. This is a discretised representation of the data manifold and indicates lineage

relationships. (F) Different graph topologies can be inferred from the data. These topologies include (from left to right) continuous transition, bifurcation and

trifurcation. (G) Pseudotime inference and lineage tree reconstruction are essential for the analysis of gene expression changes on several cell differentiation

paths. The scatter plot of gene expression versus pseudotemporal ordering illustrates how gene expression changes over pseudotime. The scaling of pseudotime

depends on the similarity measure (i.e. the amount of changes from root to tip cells) and differs between each branch. (H) Multiple branching events with

alternative loops (shortcuts) and a cyclic architecture can also be observed and are special cases of differentiation, reflecting convergent differentiation paths.
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time does not yield any new insight into cell differentiation because

we cannot observe the emergence of new cell types and structures as

in other developmental model organisms such as mice and

zebrafish. In a couple of recent studies, the full, complex lineage

tree of planaria was reconstructed in an unbiased way using

pseudotime and partition-based graph abstraction (PAGA) (Plass

et al., 2018; Wolf et al., 2019). The estimated lineage tree, rooted in

pluripotent stem cells, described the transitions into all mature

tissues of planaria. Here, pseudotemporal ordering along one

lineage path in the abstracted graph is interpreted as a differentiation

coordinate, which can be used to examine cell fate decision

processes in the fully developed, adult organism.

Limitations of pseudotemporal ordering

The examples discussed above demonstrate that pseudotemporal

ordering is a versatile tool that can be used to connect

developmental regimes and to describe cell fate decision making.

However, there are several important aspects to be aware of when

trying to extrapolate the correct biological interpretation. Firstly,

pseudotemporal ordering requires sufficient sampling from the

underlying biological process, i.e. the more cells sequenced, the

higher the resolution of the continuous differentiation path.

Unbiased sampling, such as sequencing a complete organ, yields

the most abundant cell types. The less frequent a cell type, the more

cells should be sequenced to ensure that all cell types are covered.

Enrichment for known markers by fluorescence-activated cell

sorting (FACS) is a common approach to obtain sufficient amounts

of rare cell types. For example, Scavuzzo et al. enriched the

Neurog3+ endocrine lineage in the pancreas to study cell fate

priming towards α and β cells (Scavuzzo et al., 2018). However, to

distort the developmental landscape as little as possible, prior

sorting should be minimised, or could be ameliorated by

resampling, and the combination of several sorted subpopulations

avoided (Weinreb et al., 2018b). Hence, there is a trade-off between

sampling a sufficient amount of (rare) cells for continuous trajectory

inference and deforming the developmental landscape.

An important aspect to capture cell fate decisions and the

emergence of new populations via pseudotemporal ordering is to

decide how often to sample a developmental process. For example,

Wagner et al. sampled zebrafish embryos every 2-4 h to monitor

their fast development (Wagner et al., 2018). Fischer et al. resolved

T-cell maturation in the mouse thymus based on daily samples

(Fischer et al., 2019). Scavuzzo et al. sampled mouse pancreas cells

from embryonic day (E) 14.5 and E16.5, i.e. used a 48 h interval, to

capture the lineage allocation of α and β cells (Scavuzzo et al.,

2018). Therefore, these sampling times depend largely on the

developmental speed and accessibility of the respective tissues.

Other factors that are key to the success of any trajectory inference

method are the input features, which must be informative for the

developmental process we wish to model. This means it is important

how we filter the measured features or information relating to a cell.

Usually, a subset of genes or components of a lower-dimensional

representation of the entire gene space (‘low-dimensional

embedding’; see Glossary, Box 4) are included for the modelling.

However, although such feature selection can reduce noise or remove

biological variation irrelevant for the developmental process, it can

also introduce a strong bias, as cells will be ordered based only on the

selected factors. Similarly, methods that include any prior clustering

of cells assume that the input clustering is correct. For example, we

cannot finely resolve a branching point and decompose a population

into cells with distinct fates if the clustering is too broad. Therefore, if

we put toomuchprior knowledge into amodel,wewill not unbiasedly

generate novel information but will simply recapitulate known

information, reducing pseudotime to a visualisation tool.

Besides considering these more technical elements, the general

assumptions underlying pseudotime inference need to be carefully

checked. Most importantly, we assume that (transcriptomic)

similarity between two cells implies a developmental relation.

This is certainly reasonable, as many examples including the

Box 3. Lineage trees and graph abstraction
For the inference of branching trajectories, the one-dimensional

representation (discussed in Box 2) is extended in order to incorporate

more complex topologies. A variety of methods exist to uncover these

often tree-like structures. Most methods start with embedding the cells in

a K-nearest neighbour graph (KNN; see Glossary, Box 4), where nodes

represent cells and edges indicate that the expression profile of the two

connected cells are similar. A subgraph with a tree-like structure, which

represents the developmental process, can then be inferred (Qiu et al.,

2017b; Setty et al., 2016). Another approach is to cluster cells based on

this graph into relevant cell subtypes or ‘metacells’, and to infer lineage

relationships between these subtypes based on a statistical measure of

cluster connectivity (Baran et al., 2018 preprint; Wolf et al., 2019). The

resulting ‘abstracted graph’ only includes the detected cell clusters and

their relatedness. An advantage is that this graph uncovers cellular

lineage hierarchies without assuming a tree-like structure a priori. Thus, it

does not exclude the possibility of loops or alternative paths leading to

the same cell type and also detects disconnected cell types that are not

close to other parts of the data. An alternative approach to clustering the

KNN graph directly is to simulate random walks on this graph, i.e. to

simulate possible trajectories cells can follow, and to infer the branching

tree by clustering a large ensemble of these trajectories (Farrell et al.,

2018). Furthermore, dimensionality reduction techniques based on

neighbourhood relationships (Becht et al., 2018) or autoencoders (Ding,

Condon, and Shah, 2018) can be used to reveal the global branching

structure in the embedding.

Box 4. Glossary: the jargon of single cell modellers
Dynamic time warping (DTW). DTW was originally developed for

speech recognition (Vintsyuk, 1968). Here, DTWmeasures the similarity

of two time series datasets, which may vary in speed, such as audio

tracks. In genomics, DTW allows two pseudotime trajectories to be

mapped to one coordinate.

K-nearest neighbour graph. A neighbourhood graph consists of a set

of vertices and connecting edges among the vertices; each vertex

connects to its k closest neighbours where k is a constant.

Low-dimensional embedding.High-dimensional data can be projected

on a low-dimensional space via dimensionality reduction methods such

as PCA, t-SNE, diffusion map or UMAP. Whereas the high-dimensional

data reflects the entire (biological) variation, the low-dimensional

embedding only preserves important features of the data and removes

noise, i.e. the relations between cell populations are recovered.

Manifold. A manifold is the mathematical term for a (topological) space,

which locally looks like Euclidean space. For example, a city map locally

approximates Earth’s surface, which altogether is a two-dimensional

manifold different from a linear plane.

Random walk. A random walk is a stochastic process that is used to

describe various phenomena such as diffusion. For example, during

diffusion, a particlemovesa fixed step size in a randomdirectionat discrete

time points. At each time point, a new direction is chosen. If the choice of

directions is uniform, the particle moves around its starting point forever.

Spline-basis. A non-linear function can be decomposed into a weighted

sum of pre-defined non-linear (‘wave’-like) functions. This set of pre-

defined functions is the spline-basis space and allows the fitting of a non-

linear gene expression trajectory in the context of a linear model as a

weighted sum of its dimensions.
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aforementioned have shown, but is only testable by experimental

validation. This assumption also raises several other points that we

must consider. First, inferred trajectories depend on global

similarities in the transcriptomic profile. Highly expressed genes

may dominate over lowly expressed factors in these profiles. Thus,

the similarity derived from all genes potentially does not take into

account the expression of a specific gene relevant for cell fate

commitment. Second, the developmental process can be masked by

another more dominant continuous expression pattern. This can

distort pseudotime estimation and it is important to account for, and

potentially correct for, such confounding effects. A typical example

of a confounding process is cell cycle progression (Singh et al.,

2014; Buettner et al., 2015; Blasi et al., 2017). Indeed, the inferred

pseudotime may differ if cell cycle effects are removed or not. Other

confounding effects include, for example, spatial patterning,

cellular stress or cell size. However, this also implies that the

concept of pseudotime can be directly adopted to non-temporal

continua of cell states. For example, cells can be ordered along an

axis in pseudospace that is characterised by gradual changes in gene

signatures (Pijuan-Sala et al., 2019; Scialdone et al., 2016).

The ordering may also be inaccurate if gene expression

oscillations are the main driver of fate decisions (Weinreb et al.,

2018b). Oscillations in cell state cannot be distinguished from

non-directed and non-periodic fluctuations. Still, for processes

determined not only by oscillations we should in principle be able to

find oscillating genes via feature selection. For instance, if only the

genes that show gradual expression changes are used for the

pseudotemporal ordering, oscillatory patterns of other genes not

included at first could be described. Such an approach has been

applied to find wave-like expression along the anteroposterior

pseudospace axis during murine somitogenesis (Ibarra-Soria et al.,

2018) and could be transferred to temporal trajectories. Finally, it

should be noted that the simple ordering of cells from snapshot data

cannot capture cell dynamics, i.e. in which direction and at which

pace a cell and its progeny transitions and traverses a trajectory

(Haghverdi et al., 2016; Weinreb et al., 2018b). A common

metaphor for a trajectory is a route in the (high-dimensional)

transcriptomic landscape that connects the spots reflecting

measured cell states. It is up to us to define the starting point of

the route and the direction of transitioning cells. Also, in the case

of stochastic fluctuations, only state-space normalised time

differences, also known as universal time, and not actual temporal

dynamics, can be expected to be learnt (Haghverdi et al., 2016). The

pseudotime coordinate, a point along such a route, should therefore

be interpreted as a measure of cellular differentiation state, or

maturity, rather than one of real time.

When a developmental process is not linear but diverges into

multiple lineages, the cell fate decisions are often viewed as

branching points in the transcriptomic landscape. Trajectories

are then modelled as trees or, in more general terms, as graphs.

A branching point in the graph – a single spot or cell state in the

transcriptomic landscape – is a zero-dimensional node, which

implies that lineage commitment happens instantaneously at that

point. Graph-based trajectory inference methods, such as PAGA

(Wolf et al., 2019), use this assumption to reduce the complexity of

the developmental process. However, they are therefore limited to

describe fate decisions as an immediate event, and gradual lineage

commitment cannot be modelled. This assumption certainly

requires careful checking in the future as it was challenged by two

recent studies (Setty et al., 2019; Schiebinger et al., 2019). On a side

note, it should also be mentioned here that many pseudotime

methods assume a fixed topology of the trajectory or are restricted in

the type of topology they can model (Saelens et al., 2019). This can

be important, as recently the classical definition of cell lineage, a

tree, was questioned (Wagner et al., 2018). Cells can follow more

complex topologies, including loops or alternative paths during

development, and only few methods can model such trajectories.

The basic idea of pseudotime – that a transition likely occurs from

a cell state to its most related state – also relies on the assumption

that we observe a continuum of cellular states. It presumes that from

each cell there could, in principle, be a transition to all other

measured cells, i.e. the cells co-exist. This is not necessarily the case

if cells are sampled over multiple time points or from multiple

locations, and if the distribution of cells changes over time or space.

A simple example would be if the same cell types emerge at

different time points during development, e.g. the primary and

secondary transition of endocrine cell birth in the pancreas, or in

separated spatial domains, such as in the dorsal and ventral

pancreatic bud (Johansson et al., 2007; Bramswig and Kaestner,

2011; Bastidas-Ponce et al., 2017). Thus, this concern is highly

relevant in a scenario in which timing or location of cell state

transitions matter and are thereby constrained (Schiebinger et al.,

2019; Fischer et al., 2019). It is certainly also an issue for the

inference of complex trajectories and lineage trees from an

embryonic time series. Classical pseudotime methods do not

perform well here; this is apparent, for example, in the large

disagreement between the predicted developmental trajectories

during zebrafish embryogenesis (Wagner et al., 2018; Farrell

et al., 2018). By including additional covariates, such as

experimental time or spatial information, this limitation could

be overcome (Schiebinger et al., 2019); any inferred trajectory

must go forward in experimental time or, similarly, cannot jump

across tissue locations.

The restriction to transcriptional cell states is another limitation

that is important to consider. In pseudotime inference, cellular

trajectories are often defined solely by the current state of a cell, as

defined by its gene expression profile. However, gene expression

alone might not completely reflect a cell’s state. For example, it is

clear that morphogenetic movements and the location of a cell are

important for cell fate decisions in development, but this type of

spatial information is usually not available in scRNA-seq. Likewise,

cell memories (e.g. chromatin state, metabolic state or post-

translational modifications) are not considered. Also, processes

such as asymmetric cell division can give rise to transcriptionally

closely related cells with distinct fates (Knoblich, 2008). Indeed, it

was shown that bifurcations in the transcriptomic landscape can lag

behind real fate decisions because the relevant aspects of a cell’s

state are not measured by scRNA-seq alone (Weinreb et al., 2018a

preprint). Thus, combining pseudotime with different pieces of

information, such as lineage tracing, chromatin state, protein

expression and phosphorylation, real time or spatial arrangement

(see Box 1 and, also in this issue, McKenna and Gagnon, 2019;

Ludwig and Bintu, 2019, Mayr et al. 2019) will eventually provide a

more complete picture across multiple molecular levels and is

crucial for the identification and validation of novel cell transitions

and lineage relationships (Colomé-Tatché and Theis, 2018;Weinreb

et al., 2018b).

Inferring directionality and dynamics by superimposing

additional data

To move towards more predictive trajectory models, in particular

with regards to inferring dynamic information from snapshot data,

we need to constrain the space of possible dynamics that could give

rise to the same (undirected) trajectory (Weinreb et al., 2018b).
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Recently, several experimental and computational approaches have

been devised to mitigate the identifiability issues of the underlying

models by superimposing additional information. These include

cell labelling through lineage-tracing assays, incorporation of

experimental time, distinction of mRNA from precursor mRNA,

and integration of population size measurements (Fig. 2).

Lineage tracing is important not only to determine the direction of

a process but also to validate the existence of predicted cell

transitions. In lineage-tracing assays, the offspring of a cell are

tracked via heritable marks. In general, one can distinguish between

marks that are initially introduced and label cells over a certain time

span, and marks that are successively introduced over multiple cell

divisions or states and accumulate over time (Fig. 2A). Cell labels

that are induced once, e.g. using reporter transgenes, can provide

information about clonal expansion and, in combination with single

cell phenotyping, cell fates. Using an elegant way to genetically

barcode single cells and by measuring both their ‘early’ and ‘late’

daughter cells Weinreb et al. were even able to map cell fates from a

continuous set of starting cell states (Weinreb et al., 2018a preprint).

By contrast, the repeated barcoding of single cells at multiple time

points enables researchers to track back fate decisions at different

steps of development allowing reconstruction of multilevel clonal

trees. In these clonal trees, a node represents a cell and an edge a

mother-daughter cell relationship. If clonal information and gene

expression profiles are measured simultaneously, we can quantify

the clonal relationships between differentiated cell states or types

that are defined by their transcriptomic profile. The number of

shared barcodes provides additional information for lineage tree

inference: cell states that share few barcodes have diverged earlier

during development than states that have many overlapping

barcodes. Vice versa, we can also map transcriptional fates, i.e.

the cell state of the cells that show a certain genetic barcode, onto the

clonal tree, and thereby reconstruct cell fate decision hierarchies.

Moreover, it should, in principle, be possible to condense such a

clonal tree to resemble a lineage tree, if the clonal hierarchy aligns

with the average differentiation path cells follow over time (Weinreb
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Fig. 2. Superimposing additional data layers for predictive trajectory models. Several approaches can be taken to infer directionality and dynamics in

trajectories and graphs. (A) In lineage-tracing assays, cells are tracked experimentally via heritable marks to uncover genetic relationships. In combination

with single cell genomics, fine-grained clonal trees can be reconstructed and experimentally verified. Cells are either initially labelled at a specific time point to

study their clonal expansion and fates, or genetic marks are successively introduced at multiple time points, allowing computational reconstruction of the origin

and fate of any cell. (B) The general direction of a developing population is implicit in time-course data and can be directly deduced from superimposing the

sampling time on the trajectory. When experimental time is integrated into the trajectory model, more complex dynamic information can be extracted, such as

population dynamics. Diff., differentiation. (C) mRNA splicing dynamics add an additional temporal dimension and are directly estimated from single cell

transcriptomics data. The timescale of cellular development is comparable to the kinetics of the mRNA life cycle, from the transcription of precursor mRNA to the

production of mRNA via splicing to mRNA degradation (La Manno et al., 2018). The ratio of unspliced to spliced mRNA can be leveraged to predict the rate and

direction of change in gene expression (i.e. the RNA velocity). A balance indicates homeostasis (steady state) whereas imbalance indicates induction or

repression in gene expression. Thus, RNA velocity is an estimate of how mRNA levels evolve over time and can be used to predict the future cell state.

The RNA velocity vector of each individual cell can then be projected into a low-dimensional embedding to predict the direction and speed of potential cell

movement. For the embedding, the probabilities for each possible cell transition in the neighbourhood graph are computed. A high probability corresponds to a

high correlation with the actual velocity vector and indicates a likely transition. The projection is then obtained by the expected mean direction given these

transition probabilities. The arrows in an RNA velocity plot, therefore, show the directional flow of cells in the low-dimensional embedding.
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et al., 2018a preprint). Note that this requires continuous cell

division along the trajectory, such that single clones can expand.

This also implies that fate decisions faster than one cell cycle cannot

be inferred (Weinreb et al., 2018a preprint). Accordingly, it is likely

that some information is lost in the trajectories inferred from clonal

hierarchies alone. Recent methods have indeed showcased the

potential to unite the phenotypic information obtained from single

cell genomics and randomly induced genetic marks (Spanjaard

et al., 2018; Frieda et al., 2017; Raj et al., 2018; Alemany et al.,

2018; Yao et al., 2017). However, so far they are still technically

limited, e.g. because of low labelling efficiency and small clone

sizes, and are restricted to a specific experimental system and one

time point. Clonal groups also span multiple tissues of origin/germ

layers or are spatially organised instead of completely reflecting

lineage relationships (Wagner et al., 2018; Spanjaard et al., 2018).

Moreover, the clonal tree inference problem scales badly with the

size of the system, highlighting that reconstruction of genetic

relationships requires advanced computational methods. For a

detailed discussion of lineage tracing approaches, we refer the

reader to Kester and van Oudenaarden (2018), and to McKenna and

Gagnon (2019) in this issue.

Time series experiments offer alternative approaches for learning

the dynamics of cell differentiation in non-steady state systems such

as developing tissues (Fig. 2B). The simplest way is to overlay time

upon the trajectory to derive the direction of cell transitions, or use it

as a constraint in the visualisation (Buettner and Theis, 2012). More

elegantly, temporal information can be integrated into the trajectory

inference. For example, Schiebinger et al. recently leveraged single

cell time-course data to reconstruct both an approximation to

Waddington’s landscape and probabilistic single cell trajectories

along a developmental time course (Schiebinger et al., 2019). In

contrast to trajectory inference methods based only on

transcriptomic profiles, their ‘Waddington’s-OT’ tool computes

the distribution of cell states in adjacent time points and matches

them. To that end, they built upon the mathematical concept of

optimal transport (OT), which efficiently computes a distance

between distributions. This concept can be leveraged to compute

state-resolved cell flux between adjacent time points and allows a

cell to be mapped to its most probable progenies in the

consecutive time points. Thus, it exactly addresses the issue of

directionality across space and time. Schiebinger et al. used

Waddington’s-OT to characterise a multitude of developmental

programmes during the reprogramming of mouse embryonic

fibroblasts into induced pluripotent stem cells. Moreover, it

allowed them to predict cell fate decisions of downstream

progenitors at consecutive time points. This framework is limited

by effects (other than cell flux) that change the distribution of

cells between time points, for example proliferation and death

(Fischer et al., 2019). Moreover, time is treated as a categorical

variable, so uniform sampling of the time course needs to be

ensured to adequately capture the range of fluxes. Likewise, fine

granularity of the time course is needed to preclude large cell

state changes between consecutive time points. Furthermore,

OT may produce erroneous directionality when data are

asynchronous, e.g. when a fully differentiated cell is already

sampled at the first time point and thus is forced to find its

descendant at a later stage of differentiation.

In an alternative approach, La Manno et al. explored inference of

directional trajectories by examining mRNA metabolism (La

Manno et al., 2018) (Fig. 2C). Individual cells contain both newly

transcribed, unspliced precursor mRNA and spliced mRNA; the

former can be detected in many scRNA-seq assays by the presence

of introns. Intuitively, if a gene shows high amounts of precursor

mRNAs, this implies a recent induction of transcription of the

particular gene. Conversely, low levels or absence of precursor

mRNAs but high amounts of mature mRNAs imply the absence of

transcription of that particular gene. Leveraging this intuition in a

dynamic model, the authors showed that the change in expression,

called RNA velocity (the change in cell state over time), can be

approximated from the relationship of mRNA production and its

degradation (Fig. 2C). Consequently, RNA velocity gives a local

approximation of the behaviour of the system in time, which allows

prediction of the future state of a cell. Note that this approximation

of the time dependence of the cell state is completely absent in

single cell RNA-seq data alone. RNA velocity was successfully

applied to inform the directionality of differentiation in regenerating

planaria and, in combination with partition-based graph abstraction

(Wolf et al., 2019), to reconstruct the lineage tree for the whole

animal with all identified cell types rooted in a single stem cell

group (Plass et al., 2018). However, the RNA velocity model uses

several simplifications. In order to quantify the relationship of

mRNA production and degradation, the same constant rate of

splicing and degradation is considered in all cells. Furthermore, the

estimation of these rates is based on the assumption that the cells

come from steady-state populations, which may be realistic only

for genes expressed in populations of terminally differentiated

cells. Finally, velocities are computed on a gene-wise level.

Thus, although the velocity vector can be projected onto a

lower-dimensional embedding to show the direction and speed of

movement of individual cells, whether the vector field in the

embedding truthfully retains the velocities of the high-dimensional

space usually depends on sampling, i.e. whether predicted future

states are represented adequately by actual cells in the data (see

Fig. 2C). Taken together, RNA velocity can greatly aid trajectory

analysis, although gene-specific results and low-dimensional

representations have to be interpreted with care.

In addition to directionality inference, a recent approach utilised

by Fischer et al. leveraged the concept of population dynamics to

infer how cells transition between states in a time-resolved manner

(Fischer et al., 2019). In this example, the authors modelled the

distribution shifts along a pseudotemporal trajectory and the total

number of cells in a system with a set of partial differential

equations. Including the total number of cells allowed the authors

to infer state-resolved birth-death rates in addition to the population

dynamics, and deconvolve cell flux from proliferation and

death events. The combined modelling approach revealed how

proliferative bursts, fast developmental phases and population

shrinkage through selection pressure drive T-cell maturation in

the mouse thymus (Fig. 2B).

The identification of genes, pathways and networks driving

cell fate decisions

Trajectory or graph descriptions of lineages yield gene

expression profiles along a developmental coordinate. These

gene expression profiles often correlate with fate decisions and

differentiation states (Fig. 3A). It is therefore possible to identify

novel marker genes for particular stages of development based on

gene expression profiles (Farrell et al., 2018; Plass et al., 2018).

Moreover, differential expression can be used to describe the

expression changes along a lineage (Qiu et al., 2017a). These

changes in gene expression can be summarised to describe

changes in gene modules, pathways or annotated gene sets

through gene set enrichment tests (Cordero and Stuart, 2017; Fan

et al., 2016; Farrell et al., 2018).
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Gene expression profiles are relatively easy to fit to trajectories.

One can divide a trajectory into intervals and fit piecewise constant

models via generalised linear models or similar frameworks.

Alternatively, one can fit the expression of each gene as a

continuous function of the trajectory. Such a continuous fit can be

achieved with generalised linear models and a spline-basis (see

Glossary, Box 4) transformed continuous cell state. Here, the

continuous cell state could, for example, be pseudotime along a

trajectory. Sequential gene activation along trajectories can be

described based on fits of expression as a function of the trajectory;

this was recently employed to characterise the expression of

maturation markers along pseudotime in a trajectory model of T-cell

maturation (Fischer et al., 2019). Note that one can achieve a higher

resolution of sequential gene activation based on continuous cell

states compared with discretised approximations of trajectories

(Fischer et al., 2019).

Although high-resolution profiling of gene expression in

developmental space can provide key insights into a given system,

it should be noted that gene expression profiles only yield

descriptive information and cannot be used for causal inference of

gene regulatory networks. Several methods have been proposed for

single cell regulatory network inference (Aibar et al., 2017;

Matsumoto et al., 2017; Chan et al., 2017), of which some are

even based on pseudotemporally ordered cell states (Hamey et al.,

2017). Still, these are merely correlative and based on co-expression

networks, and have been shown to perform relatively poorly in

predicting accurate network structures (Chen and Mar, 2018). In

principle, one could use perturbation screens (Dixit et al., 2016;

Datlinger et al., 2017; Adamson et al., 2016; Jaitin et al., 2016) to

gain causal insights into gene regulatory networks along trajectories

(Tanay and Regev, 2017), although this has not yet been

successfully shown. However, from these early CRISPR-Cas9-

based methods only the CROP-seq technology (Datlinger et al.,

2017) performs well in large-scale experiments, whereas the others

suffer from very low sensitivity due to technical problems (Xie

et al., 2018), which demand for experimental improvements

(Feldman et al., 2018 preprint; Hill et al., 2018; Adamson et al.,

2018 preprint). We anticipate that single cell knockouts will yield
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regulation and mechanistic insights into fate decisions.
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the first proof-of-concept studies for gene regulatory network

inference in the near future, as experimental and computational

methods mature (Fig. 3B).

Alterations in lineage allocation and cell differentiation:

insights into disease

Diseases often arise due to, or result in, novel or altered cell type states

as well as changes in tissue composition and differentiation defects.

Although multiple methods have been developed for identifying

differential expression between discrete states, approaches for

comparing continuous structures such as pseudotime or lineage

trees to unravel altered lineage allocation are still largely unexplored.

Here, we discuss examples in which embeddings, such as

pseudotime, and subtype distributions within lineages trees have

been compared between different conditions.

Using the lineage tree derived from healthy zebrafish embryos as

a control, Wagner et al. derived a highly resolved map to examine

the effect of a chordin mutation on the patterning of the zebrafish

dorsal-ventral axis (Wagner et al., 2018). In particular, they

projected mutant samples onto the wild-type map to compute an

over-/under-representation score for each cell type (Fig. 4A). As

expected, ventral tissue cell types were expanded at the expense of

dorsal tissue cell types, but no novel cell types emerged. Such

changes in patterning are only detectable via unbiased sampling of

the complete tissue or embryo. Furthermore, projecting a new

dataset into the embedding of control data could be problematic

because the transcriptomic profile of a potential new cell type could

be orthogonal to the control data; in this case, projection of the new

cell type could result in a lower-dimensional embedding to a

neighbourhood of cells, which are transcriptionally different, and

the new cell type could remain undiscovered. Thus, recomputing a

new embedding from a joint dataset may yield better results than

projecting new datasets to a pre-existing reference. Note that, in this

context, the analysis only used cell-type clustering of the lineage

tree for comparison and did not involve a differential pseudotime

trajectory (see Box 4) analysis of the two conditions.

In general, it is difficult to map pseudotime trajectories to a

universal time unit (Haghverdi et al., 2016) to enable comparisons

between conditions, especially if the cell density in the data does not

fully reflect the dynamics of the developmental process. An

intuitive approach to match time courses involves using the dynamic

time warping (DTW) algorithm (see Glossary, Box 4; Fig. 4B). The

a

B  Developmental timing

Species B

Species A

Pseudotime

matching 

Pseudotime B

Pseudotime A

Differences in activation time

‘Global’ pseudotime (aligned)

G
e
n
e
/
g
e
n
e
 m

o
d
u
le

e
x
p
re

ss
io

n
 

Activation in 

species A

Activation in 

species B

C  Divergence

In vitro

differentiation 

In vivo

A  Expansion or loss

Compositional analysis

(e.g. by comparing cell state distributions or

over-/under-representation on the

neighbourhood graph) 

Healthy

Diseased

Selection

pressure

D  Developmental arrest

Wild type

Knockout

Checkpoint

Dynamic

model 
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tool cellAlign uses DTW to match two pseudotime trajectories and

compute a global alignment (Alpert et al., 2018). Such an alignment

can reveal timing differences in embryonic development across

species. Moreover, cellAlign allows researchers to compare

biologically similar processes, such as the response to different

stimuli, and unrelated processes such as differentiation of myoblasts

and neurogenesis (Fig. 4C). In a similar approach, DTW has been

used to match a differentiation and reprogramming process,

respectively, to identify a ‘failure to exit’ branching point in the

reprogramming process (Cacchiarelli et al., 2018). However,

the identification of such branching points depends on the size

of the input gene set, and DTWalgorithms are thus yet to be tested for

robustness. Notably, the authors of this study also provided a detailed

discussion of other caveats of DTWanalysis.Most importantly, DTW

may remove toomuchof the biologically relevant information, similar

to batch effect correction (Büttner et al., 2019).

In addition to identifying the emergence of new populations, the

study of disease models has been used to characterise

developmental arrest (Fig. 4D). For example, using a dynamical

model along the pseudotime coordinate, Fischer et al. showed that T

cells arrest at the beta-selection point during development, based on

data from Rag1/2 knockout mice (Fischer et al., 2019). This

example illustrates how pseudotime analysis not only facilitates the

observation of changes in cell type composition upon perturbation,

but also can serve as a landscape of cell states onto which

developmental events can be mapped.

Finally, in order to compare differentiation and development in

different conditions, all data should ideally be processed together

with a single embedding to reduce systematic biases such as batch

effects. Indeed, an extensive evaluation of batch effect correction

methods and their applicability for reliable data integration has

shown that current batch effect correction methods do not remove

experimental bias or tend to overcorrect (Büttner et al., 2019). Thus,

the increasing amount of single cell data, and global efforts such as

the Human Cell Atlas (Regev et al., 2017), will hopefully encourage

the development of robust, scalable and conservative data

integration methods.

Conclusions and perspectives

Single cell omics has been revolutionising the way dynamic

developmental processes and cellular lineage hierarchies are being

studied. Using trajectory models, the process of cell specialisation

can be elucidated. By incorporating a series of interesting concepts

from machine learning and computational biology, these models

now allow us to precisely track cells and gene expression during

differentiation, and reconstruct cell lineage maps of tissues and even

whole, complex animals. Still, the largely descriptive and

phenomenological information contained in trajectory models

offers only a glimpse of the complex processes occurring during

development.

From correlation alone, specifically transcriptional similarity of

cells or gene expression correlation, we cannot infer causal links but

merely can generate hypotheses. A sequential gene expression

pattern does not necessarily imply a cell state transition, nor does

correlated (coordinated) gene expression a regulatory mechanism.

The most direct approaches for the validation of trajectories and

causal inference of gene regulation are perturbation experiments and

lineage tracing, which now can be combined with single cell

transcriptomics. Advances in functional perturbation screening in

combination with computational trajectory inference will no doubt

play an important role in the future to reconstruct gene regulatory

networks controlling cell fates.

The sample size of single cell sequencing data has steeply

increased in the past years (Angerer et al., 2017). With increasing

sample size, we gain statistical power to fit more complex models,

but we also face classical ‘big data’ challenges, such as the

scalability of algorithms and memory-efficient implementation,

especially when we aim to integrate data from various sources.

Therefore, data integration is moving to the forefront of the single cell

field (Stuart and Satija, 2019; Butler et al., 2018; Haghverdi et al.,

2018). This will play an important role for developmental research as,

by integrating multiple data sets – potentially at some point

generating a cell atlas and a road map of development (Regev

et al., 2017) –more robust estimates of cell states can bemade. Recent

work on mouse development have highlighted the potential to obtain

such a global view of developmental processes from single cell

sequencing data (Cao et al., 2019; Pijuan-Sala et al., 2019;

Nowotschin et al., 2018). Moreover, with neural network models

for estimating a latent state slowly coming to fruition in single cell

omics (Eraslan et al., 2019; Lopez et al., 2018), we can potentially

combine data sets using dimension-reduced latent spaces, which

represent biologically relevant features. Moreover, understanding

dynamic transitions using neural networks is on the horizon. The first

examples of applying such deep-learning approaches to integrate

distinct datasets and simulate differentiation (Ghahramani et al.,

2018preprint) and perturbation effects (Lotfollahi et al.,

2018preprint) have shown exciting outcomes and pave the way for

future research.

Moving forward, another grand challenge remains the study of

the additional layers of regulation that are involved in generating a

functional tissue or organ. Recent advances in single cell

technologies and computational methods have illustrated the

potential to integrate spatial information (Salmén et al., 2018;

Satija et al., 2015; Chen et al., 2015), cell-cell interactions (Vento-

Tormo et al., 2018 preprint; Schapiro et al., 2017) or population size

dynamics (Fischer et al., 2019). Together with our knowledge on

cell fates, these pieces of information will give us a more complete

perspective of the essential processes that create a whole body from

a single cell during development.
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