CONCEPTS AND METHODS OF 2D INFRARED SPECTROSCOPY

2D infrared (IR) spectroscopy is a cutting-edge technique, with applications in subjects as diverse as the energy sciences, biophysics and physical chemistry. This book introduces the essential concepts of 2D IR spectroscopy step-by-step to build an intuitive and in-depth understanding of the method.

Taking a unique approach, this book outlines the mathematical formalism in a simple manner, examines the design considerations for implementing the methods in the laboratory, and contains working computer code to simulate 2D IR spectra and exercises to illustrate the concepts involved. Readers will learn how to accurately interpret 2D IR spectra, design their own spectrometer and invent their own pulse sequences. It is an excellent starting point for graduate students and researchers new to this exciting field. Computer codes and answers to the exercises can be downloaded from the authors' website, available at www.cambridge.org/9781107000056.

PETER HAMM is a Professor at the Institute of Physical Chemistry, University of Zurich.

MARTIN ZANNI is Meloche-Bascom Professor in the Department of Chemistry, University of Wisconsin-Madison.

They specialize in using 2D IR spectroscopy to study molecular structures and dynamics.

Cambridge University Press 978-1-107-00005-6 - Concepts and Methods of 2D Infrared Spectroscopy Peter Hamm and Martin Zanni Frontmatter More information

CONCEPTS AND METHODS OF 2D INFRARED SPECTROSCOPY

PETER HAMM University of Zurich

and

MARTIN ZANNI University of Wisconsin-Madison

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107000056

© P. Hamm and M. Zanni 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Hamm, Peter, 1966– Concepts and methods of 2d infrared spectroscopy / Peter Hamm and Martin T. Zanni. p. cm. Includes bibliographical references and index. ISBN 978-1-107-00005-6 1. Infrared spectra. I. Zanni, Martin T. II. Title. QC457.H35 2011 543'.57–dc22 2010041962

ISBN 978-1-107-00005-6 Hardback

Additional resources for this publication at www.cambridge.org/9781107000056

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-1-107-00005-6 - Concepts and Methods of 2D Infrared Spectroscopy Peter Hamm and Martin Zanni Frontmatter More information

> Dedicated to Robin M. Hochstrasser. We appreciate the help of our students, postdoctoral researchers, colleagues, mentors and families.

Cambridge University Press 978-1-107-00005-6 - Concepts and Methods of 2D Infrared Spectroscopy Peter Hamm and Martin Zanni Frontmatter More information

Contents

1	Introduction			
	1.1	Studying molecular structure with 2D IR spectroscopy	3	
	1.2	Structural distributions and inhomogeneous broadening	10	
	1.3	Studying structural dynamics with 2D IR spectroscopy	12	
	1.4	Time domain 2D IR spectroscopy	14	
	Exercises			
2	Designing multiple pulse experiments			
	2.1	Eigenstates, coherences and the emitted field	18	
	2.2	Bloch vectors and molecular ensembles	23	
	2.3	Bloch vectors are a graphical representation of the density		
		matrix	27	
	2.4	Multiple pathways visualized with Feynman diagrams	31	
	2.5	What is absorption?	37	
	2.6	Designing multi-pulse experiments	38	
	2.7	Selecting pathways by phase matching	42	
	2.8	Selecting pathways by phase cycling	44	
	2.9	Double sided Feynman diagrams: Rules	46	
	Exercises			
3	Mukamelian or perturbative expansion of the density matrix			
	3.1	Density matrix	48	
	3.2	Time dependent perturbation theory	52	
	Exercises			
4	Basics of 2D IR spectroscopy			
	4.1	Linear spectroscopy	61	
	4.2	Third-order response functions	65	
	4.3	Time domain 2D IR spectroscopy	69	

vii

viii		Contents		
	4.4	Frequency domain 2D IR spectroscopy	82	
	4.5	Transient pump-probe spectroscopy	84	
	Exer	cises	86	
5	Pola	rization control	88	
	5.1	Using polarization to manipulate the molecular response	88	
	5.2	Diagonal peak, no rotations	92	
	5.3	Cross-peaks and orientations of coupled transition dipoles	93	
	5.4	Combining pulse polarizations: Eliminating diagonal peaks	99	
	5.5	Including (or excluding) rotational motions	100	
	5.6	Polarization conditions for higher-order pulse sequences	106	
	Exer	cises	108	
6	Mole	ecular couplings	109	
	6.1	Vibrational excitons	109	
	6.2	Spectroscopy of a coupled dimer	114	
	6.3	Extended excitons in regular structures	120	
	6.4	Isotope labeling	128	
	6.5	Local mode transition dipoles	133	
	6.6	Calculation of coupling constants	134	
	6.7	Local versus normal modes	137	
	6.8	Fermi resonance	140	
	Exer	cises	142	
7	2D I	R lineshapes	145	
	7.1	Microscopic theory of dephasing	145	
	7.2	Correlation functions	149	
	7.3	Homogeneous and inhomogeneous dynamics	152	
	7.4	Nonlinear response	155	
	7.5	Photon echo peak shift experiments	161	
	Exer	cises	164	
8	Dynamic cross-peaks			
	8.1	Population transfer	166	
	8.2	Dynamic response functions	172	
	8.3	Chemical exchange	174	
9	Experimental designs, data collection and processing			
	9.1	Frequency domain spectrometer designs	176	
	9.2	Experimental considerations for impulsive spectrometer		
	_	designs	180	
	9.3	Capabilities made possible by phase control	191	

	Contents	ix
	9.4 Phase control devices	197
	9.5 Data collection and data workup	201
	9.6 Experimental issues common to all methods	214
	Exercises	216
10	Simple simulation strategies	217
	10.1 2D lineshapes: Spectral diffusion of water	217
	10.2 Molecular couplings by <i>ab initio</i> calculations	226
	10.3 2D spectra using an exciton approach	229
	Exercises	232
11	Pulse sequence design: Some examples	233
	11.1 Two-quantum pulse sequence	233
	11.2 Rephased 2Q pulse sequence: Fifth-order spectroscopy	236
	11.3 3D IR spectroscopy	239
	11.4 Transient 2D IR spectroscopy	243
	11.5 Enhancement of 2D IR spectra through coherent control	245
	11.6 Mixed IR–Vis spectroscopies	247
	11.7 Some of our dream experiments	249
	Exercises	252
App	pendix A Fourier transformation	254
	A.1 Sampling theorem, aliasing and under-sampling	256
	A.2 Discrete Fourier transformation	257
App	<i>bendix B</i> The ladder operator formalism	260
App	pendix C Units and physical constants	262
	C.1 Physical constants	262
	C.2 Units of common physical quantities	262
	C.3 Emitted field $E_{sig}^{(3)}$	263
App	<i>bendix D</i> Legendre polynomials and spherical harmonics	265
App	<i>bendix E</i> Recommended reading	267
	References	269
	Index	281