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Concepts, Control, and Context: A Connectionist Account of Normal and
Disordered Semantic Cognition
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Semantic cognition requires conceptual representations shaped by verbal and nonverbal experience

and executive control processes that regulate activation of knowledge to meet current situational

demands. A complete model must also account for the representation of concrete and abstract words,

of taxonomic and associative relationships, and for the role of context in shaping meaning. We

present the first major attempt to assimilate all of these elements within a unified, implemented

computational framework. Our model combines a hub-and-spoke architecture with a buffer that

allows its state to be influenced by prior context. This hybrid structure integrates the view, from

cognitive neuroscience, that concepts are grounded in sensory-motor representation with the view,

from computational linguistics, that knowledge is shaped by patterns of lexical co-occurrence. The

model successfully codes knowledge for abstract and concrete words, associative and taxonomic

relationships, and the multiple meanings of homonyms, within a single representational space.

Knowledge of abstract words is acquired through (a) their patterns of co-occurrence with other

words and (b) acquired embodiment, whereby they become indirectly associated with the perceptual

features of co-occurring concrete words. The model accounts for executive influences on semantics

by including a controlled retrieval mechanism that provides top-down input to amplify weak

semantic relationships. The representational and control elements of the model can be damaged

independently, and the consequences of such damage closely replicate effects seen in neuropsycho-

logical patients with loss of semantic representation versus control processes. Thus, the model

provides a wide-ranging and neurally plausible account of normal and impaired semantic cognition.

Keywords: semantic diversity, imageability, parallel distributed processing, semantic dementia, semantic

aphasia

Our interactions with the world are suffused with meaning. Each

of us has acquired a vast collection of semantic knowledge—

including the meanings of words and the properties of objects—

which is constantly called upon as we interpret sensory inputs and

plan speech and action. In addition to storing such conceptual

information in a readily accessible form, we must call upon dif-

ferent aspects of knowledge to guide behavior under different

circumstances. The knowledge that books are heavy, for example,

is irrelevant to most of our interactions with them but becomes

important when one is arranging a delivery to a library. These
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twin, intertwined abilities—the representation of acquired knowl-

edge about the world and the controlled, task-oriented use of this

knowledge—we refer to as semantic cognition.

The representation of semantic knowledge has long been the

target of statistical and computational modeling approaches. One

popular perspective, prevalent in cognitive neuroscience, holds

that representations of object concepts arise from associations

between their key verbal and nonverbal properties (Barsalou,

1999; Damasio, 1989; Martin, 2016; Patterson, Nestor, & Rogers,

2007; Pulvermuller, 2001; Simmons & Barsalou, 2003; Tyler &

Moss, 2001). Another, rooted in computational linguistics, holds

that semantic representation develops through sensitivity to the

distributional properties of word usage in language (Andrews,

Vigliocco, & Vinson, 2009; Firth, 1957; Griffiths, Steyvers, &

Tenenbaum, 2007; Jones & Mewhort, 2007; Landauer & Dumais,

1997; Lund & Burgess, 1996; Rohde, Gonnerman, & Plaut, 2006).

To date, these two approaches have made limited contact with one

another. However, as we will demonstrate in the present work,

these approaches are mutually compatible and considerable theo-

retical leverage can be gained by combining them. The second

element of semantic cognition—its flexible and controlled use—

has been investigated extensively in functional neuroimaging,

transcranial magnetic stimulation and neuropsychological studies

(Badre & Wagner, 2002; Gold et al., 2006; Jefferies, 2013; Jef-

feries & Lambon Ralph, 2006; Robinson, Shallice, Bozzali, &

Cipolotti, 2010; Thompson-Schill, D’Esposito, Aguirre, & Farah,

1997) but has rarely been incorporated formally into computa-

tional models.

In this article, we present an implemented computational

model that synthesizes the two distinct approaches to semantic

representation and, furthermore, we propose a mechanism by

which control processes interact with the knowledge store. Our

primary tests of this model were its ability: (a) to generate a

unified account of semantic representation and control spanning

concrete and abstract items; and (b) to account for the contras-

tive impairments observed in two neuropsychological syn-

dromes, semantic dementia and semantic aphasia, which have

been attributed to representational and control damage, respec-

tively (Jefferies & Lambon Ralph, 2006; Rogers, Patterson,

Jefferies, & Lambon Ralph, 2015). The main strengths of our

model are (a) its ability to represent a range of semantic

information, including the meanings of abstract as well as

concrete words, in a perceptually embodied and context-

sensitive format, and (b) its ability to regulate activation of this

knowledge in a way that meets changing task demands.

The article is structured as follows. We begin by considering the

key challenges in knowledge representation that motivated this

work. We describe the architecture of the model and illustrate how

it meets these challenges. We then move on to consider the

important but neglected issue of semantic control and describe

how we have implemented a controlled retrieval process, which

interacts with the knowledge store to direct semantic processing in

a task-appropriate fashion. With these representational and control

elements in place, we next present three simulations of perfor-

mance on semantic tasks. We demonstrate that damage to the

model’s representations and control processes induces divergent

patterns of performance that closely replicate those of patients with

hypothesized deficits in these abilities. We conclude by consider-

ing implications for theories of the neural basis of semantic cog-

nition and by noting some challenges for future work.

Part 1: Representation of Semantic Knowledge

In cognitive neuroscience, there is widespread agreement that

verbal, sensory, and motor experience, and the brain regions that

represent such information, play an integral role in conceptual

representation (Allport, 1985; Barsalou, 2008; Binder & Desai,

2011; Kiefer & Pulvermuller, 2012; Martin, 2016; Paivio, 1986;

Lambon Ralph, Jefferies, Patterson, & Rogers, 2017). This em-

bodied semantics position is supported by functional neuroimaging

studies indicating that particular sensory and motor processing

regions are activated when people process concepts which are

linked to them (Chao, Haxby, & Martin, 1999; Goldberg, Perfetti,

& Schneider, 2006; Kellenbach, Brett, & Patterson, 2001; Martin,

Haxby, Lalonde, Wiggs, & Ungerleider, 1995; Thompson-Schill,

Aguirre, D’Esposito, & Farah, 1999) and by neuropsychological

and neurostimulation studies that link impairments in sensory-

motor (S-M) processing with deficits for particular classes of

semantic knowledge (Campanella, D’Agostini, Skrap, & Shallice,

2010; Farah & McClelland, 1991; Pobric, Jefferies, & Lambon

Ralph, 2010; Warrington & Shallice, 1984). For example, damage

to frontoparietal regions involved in representing actions dispro-

portionately affects the semantic representations of tools and other

manipulable objects (Buxbaum & Saffran, 2002). The degree of

embodiment varies across theories (Meteyard, Cuadrado, Bahrami,

& Vigliocco, 2012), with the most strongly embodied approaches

proposing little distinction between the processes involved in

direct S-M experience and those involved in representing knowl-

edge acquired from such experiences (e.g., Gallese & Lakoff,

2005). Other theories hold that activation of S-M information is

necessary but not sufficient for semantic representation, and that

an additional, transmodal layer of representation is also needed

(Binder, 2016; Blouw, Solodkin, Thagard, & Eliasmith, 2015;

Damasio, 1989; Mahon & Caramazza, 2008; Patterson et al., 2007;

Simmons & Barsalou, 2003). This rerepresentation is thought to be

necessary because the mapping between the observable properties

of objects and their conceptual significance is complex and non-

linear. As such, the development of coherent, generalizable con-

ceptual knowledge requires integration of information from mul-

tiple modalities through a shared transmodal hub (Lambon Ralph,

Sage, Jones, & Mayberry, 2010).

Rogers et al. (2004) provided a demonstration of the importance

of transmodal representation, in an implemented neural network

model known as the hub-and-spoke model, which is the starting

point for the present work. The model consisted of several sets of

“spoke” units representing sensory and verbal elements of expe-

rience. There were also a set of hidden units (the hub) which did

not receive external inputs but instead mediated between the

various spokes. The model’s environment consisted of names,

verbal descriptions, and visual properties for 48 different objects.

When presented with a particular input (e.g., the name dog), it was

trained to activate other forms of information associated with that

concept (its visual characteristics and verbal description) by prop-

agating activation through the hub. During training, a learning

algorithm applied slow, incremental changes to the connections

between units, such that over time the network came to activate the

correct information for all of the stimuli. In so doing, it developed
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distributed patterns of activity over the hub units that represented

each of the 48 concepts. The similarity structure among these

representations captured the underlying, multimodal semantic

structure present in the training set.

To test the model further, Rogers et al. (2004) progressively

removed the hub unit connections, which resulted in increasingly

impaired ability to activate the appropriate information for each

concept. These impairments closely mimicked the deficits ob-

served in patients with semantic dementia (SD). SD is a form of

frontotemporal dementia in atrophy centered on the anterior tem-

poral lobes accompanies a selective erosion of all semantic

knowledge—verbal and nonverbal (Hodges & Patterson, 2007;

Hodges, Patterson, Oxbury, & Funnell, 1992; Snowden, Goulding,

& Neary, 1989). SD patients exhibit deficits across a wide range of

tasks that require semantic knowledge, including naming pictures,

understanding words, using objects correctly, and identifying ob-

jects from their tastes and smells (Bozeat, Lambon Ralph, Patter-

son, Garrard, & Hodges, 2000; Hodges, Bozeat, Lambon Ralph,

Patterson, & Spatt, 2000; Luzzi et al., 2007; Piwnica-Worms,

Omar, Hailstone, & Warren, 2010). Deficits in SD have long been

considered to result from damage to a central store of semantic

representations (Warrington, 1975). Damage to the hub component

of the Rogers et al. (2004) model produced the same pattern of

multimodal impairment.

The close correspondence between the deficits of SD patients

and the performance of the damaged hub-and-spoke model suggest

that damage to the transmodal “hub” is the root cause of these

patients’ deficits. Indeed, the pervasive semantic deficits in SD

have been linked with damage to, and hypometabolism of, one

particular area of the cortex: the ventrolateral anterior temporal

lobe (Butler, Brambati, Miller, & Gorno-Tempini, 2009; Mion et

al., 2010). Investigations using functional neuroimaging, transcra-

nial magnetic stimulation and intracranial recordings have all

confirmed that this region is selectively involved in many forms of

verbal and nonverbal semantic processing, as one would expect of

a transmodal semantic hub (Humphreys, Hoffman, Visser, Binney,

& Lambon Ralph, 2015; Marinkovic et al., 2003; Pobric, Jefferies,

& Lambon Ralph, 2007; Shimotake et al., 2015; Visser, Jefferies,

Embleton, & Lambon Ralph, 2012).

The hub-and-spoke model, with its commitment to the embod-

ied view that S-M experience plays an important role in shaping

semantic representation, provides a parsimonious account of a

range of phenomena in normal and impaired semantic processing

(Dilkina, McClelland, & Plaut, 2008; Patterson et al., 2007; Lam-

bon Ralph et al., 2017; Rogers et al., 2004; Rogers & McClelland,

2004; Schapiro, McClelland, Welbourne, Rogers, & Lambon

Ralph, 2013). Its core principle, that semantic knowledge requires

interaction between modality-specific and supramodal levels of

representation, is also integral to a number of other theories of

semantic cognition (Allport, 1985; Binder & Desai, 2011; Dama-

sio, 1989; Simmons & Barsalou, 2003) and has been employed in

other connectionist models (Blouw et al., 2015; Garagnani &

Pulvermüller, 2016; Plaut, 2002). There are, however, some crit-

ical and challenging aspects of semantic representation which have

not been accommodated by these theories, and which we address

in this work. First, the representation of abstract concepts is a

significant challenge to embodied semantic theories (Binder &

Desai, 2011; Leshinskaya & Caramazza, 2016; Meteyard et al.,

2012; Shallice & Cooper, 2013). Because abstract words are not

strongly linked with S-M experiences, it is unclear how a semantic

system based on such experience would represent these concepts.

A number of alternative accounts of abstract word knowledge have

been put forward, which are not mutually exclusive. First, it is

likely that some information about abstract words can be gleaned

from the statistics of their use in natural language, an important

mechanism that is central to our model and which we will consider

in more detail shortly. Second, abstract words often refer to aspects

of a person’s internal experiences, such as their emotions or

cognitive states (Kousta, Vigliocco, Vinson, Andrews, & Del

Campo, 2011; Vigliocco et al., 2014), and it is likely that these

internally generated sensations make an important contribution to

the representations of some abstract words. These influences were

not a specific target of our model, though they are compatible with

the approach we take. Finally, it has been suggested that, although

abstract words do not represent S-M experiences directly, some

abstract words might become grounded in this information through

linkage with concrete situations with which they are associated

(Barsalou, 1999; Pulvermüller, 2013). For example, the abstract

word direction might become associated with S-M information

related to pointing or to steering a car. However, it remains unclear

exactly how abstract words might become associated with S-M

experiences. In this study, we make an important advance on this

issue by demonstrating how a neural network can learn to associate

abstract words with S-M information indirectly, even if its training

environment does not include such associations in any direct form.

The representation of associative relationships between items

also represents a challenge to embodied semantic models that

represent semantic structure in terms of similarity in S-M proper-

ties. Such models are highly sensitive to category-based taxonomic

structure, because objects from the same taxonomic category (e.g.,

birds) typically share many S-M characteristics (e.g., have feath-

ers, able to fly; Cree & McRae, 2003; Dilkina & Lambon Ralph,

2012; Garrard, Lambon Ralph, Hodges, & Patterson, 2001). In

hub-and-spoke models, for example, as the units in the hub layer

learn to mediate between different S-M systems, so objects with

similar properties come to be represented by similar patterns of

activation (Rogers et al., 2004). However, semantic processing is

also strongly influenced by associative relationships between items

that are encountered in similar contexts but may have very differ-

ent properties (e.g., knife and butter; Alario, Segui, & Ferrand,

2000; Lin & Murphy, 2001; Perea & Gotor, 1997; Seidenberg,

Waters, Sanders, & Langer, 1984). To represent these relation-

ships, the semantic system must be sensitive to patterns of spatio-

temporal co-occurrence among words and objects.

For this reason, some researchers have suggested that taxonomic

and associative relations are represented in two distinct systems,

rather than a single semantic hub (Binder & Desai, 2011; Mirman

& Graziano, 2012; Schwartz et al., 2011). On this view, only the

extraction of taxonomic, category-based semantic structure is

served by the anterior temporal cortex (ATL). A separate system,

linked with ventral parietal cortex (VPC), processes information

about actions and temporally extended events and is therefore

sensitive to associations between items. An alternative perspective,

adopted in the present work, is that both types of relationship are

represented within a single semantic space (Jackson, Hoffman,

Pobric, & Lambon Ralph, 2015). To do so, the hub must be

simultaneously sensitive to similarities in S-M properties and to

temporal co-occurrence. As we shall go on to explain in more
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detail, this can be achieved by training the model to predict

upcoming words on the basis of context, in addition to learning the

S-M patterns associated with words. Previous computational work

by Plaut and colleagues demonstrated that a single semantic sys-

tem can simulate semantic priming effects for both taxonomic and

associative relationships, through sensitivity to item co-occurrence

as well as S-M similarity (Plaut, 1995; Plaut & Booth, 2000). That

work focused on understanding the timing of access to semantic

representations under different conditions. Our focus in the present

work is on the structure of the learned semantic representations;

we investigate whether the hub-and-spoke architecture develops

sensitivity to both types of relationship within a single hub layer.

The final phenomenon we consider is that of context-sensitivity

in the processing of meaning. Some words, termed homonyms,

take on entirely different meanings when used in different situa-

tions (e.g., bark). Many more words are polysemous: Their mean-

ing changes in a more subtle and graded fashion across the various

contexts in which they appear (consider the change in the meaning

of life in the two phrases “the mother gave him life” and “the judge

gave him life”). While a number of implemented computational

models have explored consequences of this ambiguity for lexical

processing (Armstrong & Plaut, 2008; Hoffman & Woollams,

2015; Kawamoto, 1993; Rodd, Gaskell, & Marslen-Wilson, 2004),

few have considered how context-dependent variation in meaning

is acquired or how a contextually appropriate interpretation of a

word is activated in any given instance. In order to address such

issues, a model must have some mechanism for representing the

context in which a particular stimulus is processed. Previous

hub-and-spoke models were not developed with this in mind and

thus has no such mechanism. Another class of connectionist mod-

els have, however, made progress on these issues. Simple recurrent

networks process stimuli sequentially and include a buffering

function, which allows the network to store the pattern of activity

elicited by one input and use this to influence how the next input

in the sequence is processed (Elman, 1990). In so doing, simple

recurrent networks become highly sensitive to statistical regulari-

ties present in temporal streams of information, such as those

found in artificial grammars or in sequences of letters taken from

English sentences, and can make accurate predictions about up-

coming items (Cleeremans, Servan-Schreiber, & McClelland,

1989; Elman, 1990). St. John and McClelland (1990) used a simple

recurrent network to represent the meanings of sentences that were

presented to the network as a series of individual constituents.

Upon processing each constituent, the model was trained to make

predictions about the content of the sentence as a whole. Following

training, the same word could elicit radically different patterns of

activity depending on the particular sentence in which it appeared.

This model demonstrated that a simple recurrent network could ac-

quire context-sensitive representations of the meanings of words. The

potential value of recurrent networks in developing context-sensitive

semantic representations has also been noted by other researchers

(Yee & Thompson-Schill, 2016). In the present work, we harness this

powerful computational mechanism by integrating it within a hub-

and-spoke framework.

To summarize, a number of embodied semantic models hold

that concepts are acquired as the semantic system learns to link

various verbal and S-M elements of experience through an addi-

tional transmodal level of representation. This model is compatible

with a range of empirical data but there are three key theoretical

issues that remain unresolved. How does such a framework rep-

resent the meanings of abstract words? How does it represent

associative relations between concepts? And what mechanisms

would be necessary to allow its representations to vary depending

on the context in which they occur? In tackling these questions, we

took inspiration from a different tradition in semantic representa-

tion that provides a useful alternative perspective. The distribu-

tional semantics approach developed in computational linguistics

and holds that patterns of lexical co-occurrence in natural language

are key determinants of word meanings. Firth (1957) summarized

this principle with the phrase “You shall know a word by the

company it keeps.” Words that are frequently used in the same or

similar contexts are assumed to have related meanings. Modern

computing power has allowed this theory to be applied to large

corpora of real-world language, with considerable success (Grif-

fiths et al., 2007; Jones & Mewhort, 2007; Landauer & Dumais,

1997; Lund & Burgess, 1996). These statistical models represent

words as high-dimensional semantic vectors, in which similarity

between the vectors of words is governed by similarity in the

contexts in which they are used. Similarity in contextual usage is

assumed to indicate similarity in meaning. Representations derived

in this way have been shown to be useful in predicting human

performance across a range of verbal semantic tasks (Bullinaria &

Levy, 2007; Jones & Mewhort, 2007; Landauer & Dumais, 1997).

The distributional semantics approach is well-suited to address-

ing the challenges in semantic representation we have already

identified. Because it is based on linguistic and not S-M experi-

ences, it is possible to code abstract words in exactly the same way

as for concrete words. Because its representations are based on

contextual co-occurrence, it is highly sensitive to associative rela-

tionships between concepts, irrespective of whether they share

S-M properties (Hoffman, 2016). Finally, because its central tenet

is that meaning is determined by context, it naturally allows for

variation in meaning when the same words are used in different

contexts (Kintsch, 2001; Landauer, 2001).

The distributional approach has come under heavy criticism

because, unlike embodied approaches to semantics, it makes no

connection with S-M experiences (Barsalou, 1999; Glenberg &

Robertson, 2000). Because the representation of each word is

determined solely by its relationships with other words, the system

as a whole lacks grounding in the external world. The distribu-

tional account would thus seem to provide no insights into the

considerable neuroscientific evidence for S-M embodiment of

semantic knowledge. Recently, however, some promising efforts

have been made to modify distributional models so that they take

into account information about S-M properties as well as the

statistics of lexical co-occurrence (Andrews et al., 2009; Durda,

Buchanan, & Caron, 2009; Johns & Jones, 2012; Steyvers, 2010).

These have, for example, shown that S-M properties of concrete

words can be accurately inferred by analyzing their patterns of

lexical co-occurrence with other words whose S-M characteristics

are already known (Johns & Jones, 2012). In addition, a number of

researchers have advocated a hybrid view of semantic representation

in which embodied and distributional aspects both play a role (Bar-

salou, Santos, Simmons, & Wilson, 2008; Dove, 2011; Louwerse &

Jeuniaux, 2008; Vigliocco, Meteyard, Andrews, & Kousta, 2009). We

took a similar position in developing our model.

In the present study, one of our key goals was to develop a

connectionist model that combined the distributional approach
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with the principle of embodiment in S-M experience. Critically,

we implemented this synthesis within the hub-and-spoke concep-

tual framework, which has proved successful in addressing other

aspects of semantic representation. In so doing, we addressed

another, perhaps more basic limitation of the distributional ap-

proach, namely that it provides minimal insights into the mecha-

nisms underpinning acquisition of conceptual knowledge. We will

take the most well-known statistical model, latent semantic anal-

ysis (Landauer & Dumais, 1997), as an example. This technique

involves the construction of a large matrix of word occurrence

frequencies, aggregating data from a corpus of several million

words. When this matrix has been fully populated, it is subjected

to singular value decomposition in order to extract the latent

statistical structure thought to underpin semantic knowledge.

While the resulting representations appear to bear useful similar-

ities to human semantic knowledge, this process by which they are

derived bears little relation to the way in which conceptual knowl-

edge is acquired by humans. Children do not accumulate vast

reserves of data about which words they have heard in which

contexts, only to convert these data into semantic representations

once they have been exposed to several million words. In reality,

acquisition of conceptual knowledge is a slow, incremental pro-

cess, in which knowledge is constantly updated on the basis of new

experiences (McClelland, McNaughton, & O’Reilly, 1995). Some

researchers have addressed this concern, proposing distributional

models in which representations are gradually updated online as

linguistic information is processed (Jones & Mewhort, 2007; Rao

& Howard, 2008). Nevertheless, the distributional approach to

semantic knowledge has yet to be integrated with neurally inspired

embodied approaches to semantic cognition.

In this article, we present a model that simultaneously assimi-

lates the embodied and distributional approaches to semantic rep-

resentation. The basic tenet of the model is that semantic knowl-

edge is acquired as individuals learn to map between the various

forms of information, verbal and nonverbal, that are associated

with particular concepts (Patterson et al., 2007; Lambon Ralph et

al., 2017; Rogers et al., 2004; Rogers & McClelland, 2004). The

“hub” that mediates these interactions develops representations

that code the deeper, conceptual relationships between items. To

this framework, we have added the distributional principle, which

holds that sensitivity to context and to the co-occurrence of items

is an important additional source of semantic information. To

achieve this synthesis, we added two ingredients to the model. The

first was a training environment in which concepts are processed

sequentially and in which the co-occurrence of concepts in the

same sequence is indicative of a semantic relationship between

them. The second was a buffering function, inspired by work with

simple recurrent networks (Elman, 1990; St. John & McClelland,

1990), that allowed the model’s hub to be influenced by its own

previous state. To encourage the model to become sensitive to item

co-occurrences, upon processing each stimulus, it was trained to

predict the next item in the sequence. This is in tune with the

widely held view that prediction is an important mechanism in

language processing (Altmann & Kamide, 2007; Dell & Chang,

2013; Pickering & Garrod, 2007) and with recent interest in the use

of predictive neural networks to learn distributed representations

of word meaning (e.g., Mikolov, Chen, Corrado, & Dean, 2013).

The Model

Overview. The model is shown in Figure 1. Inputs are pre-

sented to the model sequentially. Inputs may be verbal, analogous

to hearing words, or they may be constellations of S-M properties,

analogous to interaction with objects in the environment. The

model learns to perform two tasks simultaneously in response to

these inputs. First, following the presentation of each stimulus, it

is required to make predictions about which word will appear next

in the sequence, taking into account recent context. Second, when

presented with a concrete word as a stimulus, it is also required to

activate the S-M properties of the word’s referent.

Architecture. The model is a fully recurrent neural network,

consisting of 590 units organized into five pools. Sixty-four verbal

input units represent the 64 words in the model’s vocabulary.

Activation of these units is controlled by external input from the

environment. In contrast, the 64 verbal prediction units never

receive external inputs, but are used to represent the model’s

predictions about the identity of the next word in the sequence.

There are 162 units representing S-M properties. These can either

activated externally, representing perception of an object in the

environment, or they can be activated by the model in the course

of processing a particular verbal input. This latter process can be

thought of as a mental simulation of the properties of an object

upon hearing its name.

The connections between the three layers are mediated by 150

hidden units, known collectively as the “hub.” Activation patterns

over the hub layer are not specified directly by the modeler and are

instead shaped by the learning process. As the hub is trained to

map between verbal inputs, verbal predictions and S-M properties,

it develops patterns of activation that reflect the statistics under-

Figure 1. Architecture of the representational model. Black layers com-

prise visible units that receive inputs and/or targets from the environment.

Gray layers represent hidden units. Solid arrows indicate full, trainable

connectivity between layers. The dashed arrow represents a copy function

whereby, following processing of a stimulus, the activation pattern over the

hub layer is replicated on the context layer where it remains to act as the

context for the next stimulus.
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lying these mappings. Words that are associated with similar

verbal predictions and/or similar S-M properties come to be rep-

resented by similar activation patterns in the hub.

Finally, at each step in the sequence, the 150 context units are

used to store a copy of the hub activations elicited by the previous

input (see Processing section for more detail). This information is

an additional source of constraint on the hub, allowing its process-

ing of each input to be influenced by the context in which it occurs.

Processing. The model is presented with sequences of stimuli

consisting of words and S-M properties, arranged in “episodes” of

five inputs. An example episode is shown in Figure 2. As we were

primarily concerned with comprehension of individual words, se-

quences have no syntactic structure and consist entirely of nouns. The

word sequences therefore do not represent sentences as such; instead,

they represent a series of concepts that one might encounter while

listening to a description of an event or a scene. At some points in the

sequence, a set of S-M properties representing a particular concrete

object is presented in lieu of a word. This reflects the fact that when

we are listening to a verbal statement, we often simultaneously ob-

serve objects in the environment that are relevant to the topic under

discussion. In the model, this concurrent experience of verbal and

nonverbal stimuli is implemented as a sequential process, with the

nonverbal perceptions interspersed within the verbal stream.

Each stimulus is processed for seven time steps, with unit

activations updated four times in each time step. To present the

model with a word, the corresponding verbal input unit is clamped

on for the full seven time steps and activation is allowed to

propagate through the rest of the network. No direct input is

provided to the prediction or S-M units; instead, their activity

develops as a consequence of the flow of activation through the

network in response to the word. At the end of this process, the

activation states of the prediction and S-M units can be read off as

the model’s outputs. Once fully trained, the model produces a

pattern of activation over its prediction units that represents its

expectation about the identity of the next word, given the word just

presented and the preceding context. Activation of S-M units

represents the S-M properties that the model has come to associate

with the presented word.

During the training phase, the model is presented with targets

that are used to influence learning. During the final two time steps

for each stimulus, it receives targets on the prediction layer and,

optionally, on the S-M layer. The prediction unit representing the

next word in the episode is given a target value of one (all other

prediction units have targets of zero). When the input is a concrete

word or homonym, the model is also given S-M targets corre-

sponding to the S-M properties of the word’s referent. If the input

is an abstract word, no S-M targets are provided and the model is

free to produce any pattern of activity over the S-M units. The

actual activation patterns over the prediction and S-M layers are

compared with their targets so that errors can be calculated and the

connection weights throughout the network adjusted by back-

propagation (see training and other model parameters). When

abstract words are presented, there are no targets on the S-M units.

When the model is presented with a S-M pattern as stimulus, the

process is similar. The S-M units are clamped for the full seven

time steps and the verbal input units are clamped at zero. Activa-

tion propagates through the network and targets are provided for

the prediction layer during the final two time steps. The prediction

target again represents the next word in the episode.

Following the processing of each stimulus, the activation values

of the hub units are copied over to the context units. The context

units are then clamped with this activation pattern for the duration

of the next stimulus. The context units provide an additional input

to the hub layer, allowing it to be influenced by its previous state.

This recurrent architecture allows the model to develop represen-

tations that are sensitive to context.

Model vocabulary. In common with other connectionist ap-

proaches to semantics, the model was trained in a simplified artificial

environment designed to capture the key features of semantic pro-

cessing that are relevant to our goals. The 64 concepts in the model’s

vocabulary comprise 22 concrete concepts, 32 abstract concepts, and

10 homonyms (see Figure 3). The concrete and abstract words were

used to investigate how knowledge for abstract concepts could be-

come embodied in S-M experience (see below and Simulation 2). The

  1 2 3 4 5 

INPUTS 

verbal car journey  distance cashier  

S-M     <TRUCK>  

TARGETS 

prediction journey cashier cashier distance

S-M <CAR>    cashier  <CASHIER>

TIME

Figure 2. An example episode. The 10 inputs for the episode are shown

from left to right, along with the targets provided at each point. For

example, at the first point in this sequence, the verbal input unit for car is

activated and the model is trained to turn on the S-M units associated with

cars and the prediction unit for journey (as this is the next item in the

sequence). �ITEM � represents the S-M properties of a concrete item.

Figure 3. The model’s vocabulary.
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concrete words were also used to explore the model’s ability to

represent taxonomic and associative semantic relationships (Simula-

tion 3). The homonyms, which we define as words that have two

meanings associated with distinct contexts, were used to investigate

the model’s sensitivity to context (Simulation 1).

S-M properties. The 162 S-M units represent the sensory and

motor properties of objects. Many studies have investigated how

the structure of S-M properties varies across different categories of

object (e.g., Cree & McRae, 2003; Garrard et al., 2001) and

insights from these studies have been incorporated into models that

seek to explain dissociations between particular categories (e.g.,

Farah & McClelland, 1991; Tyler, Moss, Durrant-Peatfield, &

Levy, 2000). Such effects were not germane in the present study so

we only implemented the most robust general finding in this

domain: that members of the same category tend to share more

S-M properties than items from different categories. Concrete

concepts were organized into six taxonomic categories (see Figure

3). Each item was associated with six properties that it shared with

its category neighbors and three that were unique to that item.

Abstract concepts were not assigned S-M properties, on the basis

that these concepts are not linked directly with specific S-M

experiences. In natural language, the meanings of homonyms can

be either concrete or abstract. In the model, we assumed for

simplicity that all homonyms had concrete meanings.1 We as-

signed two different sets of S-M properties to each homonym,

corresponding to each of its meanings. Each set consisted of six

properties shared with other concrete concepts and three properties

unique to that meaning.

Training corpus. Our construction of a training corpus for the

model was inspired by a particular class of distributional semantic

models known as topic models (Griffiths et al., 2007). These models

assume that samples of natural language can be usefully represented

in terms of underlying topics, where a topic is a probability distribu-

tion over a particular set of semantically related words. To generate a

training corpus for our model, we constructed 35 artificial topics. An

example topic is shown in Figure 4. Each topic consisted of a list of

between 10 and 19 concepts that might be expected to be used

together in a particular context. There was also a probability distri-

bution that governed their selection. The construction of topics was

guided by the following constraints:

1. Topics were composed of a mixture of concrete, abstract

and homonym concepts (although two topics, ELECTION

and REFERENDUM, featured only abstract concepts).

2. Abstract concepts were organized in pairs with related

meanings (see Figure 3). Word pairs with related meanings

frequently occurred in the same topics, in line with the

distributional principle. That is, words with related mean-

ings had similar (but not identical) probability distributions

across the 35 topics. For example, journey and distance

could co-occur in seven different topics, but with differing

probabilities, and there were an additional five topics in

which one member of the pair could occur but the other

could not.

3. Concrete concepts belonging to the same category fre-

quently occurred in the same topics, in line with distribu-

tional data from linguistic corpora (Hoffman, 2016) and

visual scenes (Sadeghi, McClelland, & Hoffman, 2015). In

addition, particular pairs of concrete concepts from different

categories co-occurred regularly in specific topics (e.g., deer

and hunter both appeared with high probability in the

HUNTING topic). This ensured that the corpus included

associative relationships between items that did not share

S-M properties.

4. Each homonym occurred in two disparate sets of topics. For

example, bank regularly occurred in the FINANCIAL topic,

representing its dominant usage, but also occasionally in the

RIVERSIDE topic, representing its subordinate meaning.2

Some additional constraints, required for Simulation 2, were

also included and are described as they become relevant.

The topics were used to generate episodes consisting of 5 stimuli.

To generate an episode, a topic was first chosen in a stochastic

fashion, weighted such that eight particular topics were selected five

or 10 times more often than the others. This weighting ensured that

some concepts occurred more frequently than others (necessary for

Simulation 2). Next, a concept was sampled from the probability

distribution for the chosen topic. If a concrete concept or homonym

was chosen, it was presented either verbally or as a S-M pattern (with

equal probability). For concrete words, the S-M pattern used was

always the same. For homonyms, the S-M pattern varied depending

on whether the word was being used in its dominant or subordinate

sense. Another concept was then sampled and the process continued

until a sequence of five stimuli had been generated. The same concept

could be sampled multiple times within an episode.

A total of 400,000 episodes were generated in this fashion; this

served as the training corpus for the model. The corpus was

presented as a continuous stream of inputs to the model, so there

was no indication of when one episode ended and the next began.

On the last stimulus for each episode, however, no prediction

target was given to the model.

Training and other model parameters. Simulations were

performed using the Light Efficient Network Simulator (Rohde,

1999). The network was initialized with random weights that varied

between �0.2 and 0.2. All units were assigned a fixed, untrainable

bias of �2, ensuring that they remained close to their minimum

activation level in the absence of other inputs. Activation of the hub

units and S-M units was calculated using a logistic function. Error on

the S-M units was computed using a cross-entropy function. As the

prediction units represented a probability distribution, their activation

was governed by a soft-max function which ensured that their com-

bined activity always summed to one. These units received a diver-

gence error function.

The model was trained with a learning rate of 0.1 and momentum

of 0.9, with the condition that the premomentum weight step vector

was bounded so that its length could not exceed one (known as

“Doug’s momentum”). Error derivatives were accumulated over stim-

1 This choice had no major effect on the results reported in this article:
Similar results were obtained in alternative model in which homonyms
were abstract.

2 In addition, as we describe in Simulation 2, all concepts were associ-
ated with some contextual variability, as they all occurred in at least three
different topics (M � 7.6; the most variable word, problem, occurred in 23
topics).
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uli and weight changes applied after every hundredth episode. Weight

decay of 10�6 was applied at every update. The model was trained for

a total of five passes through the corpus (equivalent to 20,000 weight

updates, two million episodes, or 10 million individual stimuli).

Ten models were trained in this way, each with a different set of

random starting weights. All the results we present are averaged

over the 10 models.

Results: Representational Properties of the Model

Context-sensitivity. Once trained, the model is able to take a

word as input and predict which other words it is likely to encounter

subsequently. Due to its recurrent architecture, these predictions are

shaped by the context in which the word is presented. To illustrate

this, we presented the word pump to the model immediately after one

of three other words. Two of these words, truck and shoe, represent

the two disparate types of context in which pump appeared during

training. The third, deposit represents a novel context. The left-hand

panel of Figure 5 shows activation of some of the network’s predic-

tion units in each context. The model demonstrates context-

sensitivity, appropriately biasing its predictions toward petrol-related

words in the first case and clothing-related words in the second. When

the word appears in a novel context, the model hedges its bets and

assigns intermediate probabilities to both types of word.

The model is able to shift its behavior in this way because the

learned representations over the hub layer are influenced by prior

context. This is illustrated in the right-hand panel of Figure 5, which

represents graphically the relationships between the network’s repre-

sentations of particular words in the three different contexts. We

Topic: PETROL STATION 

Topic frequency: 10 

Concept Probability 

car 0.19 

truck 0.18 

bus 0.11 

journey 0.11 

juice 0.08 

measurement 0.07 

pump 0.05 

problem 0.05 

footballer 0.04 

distance 0.03 

cashier 0.03 

hunter 0.02 

difficulty 0.01 

information 0.01 

direction 0.01 

production 0.01 

Topic: CLOTHES SHOP 

Topic frequency: 1

Concept Probability 

pump 0.23 

foot 0.20 

boot 0.15 

option 0.12 

gown 0.07 

shoe 0.06 

cashier 0.05 

jacket 0.04 

duchess 0.04 

quantity 0.02 

decision 0.02 

Figure 4. Example topic distributions. Concepts with S-M features are shown in italics. The PETROL

STATION topic was used to generate the episode shown in Figure 2.

300 HOFFMAN, MCCLELLAND, AND LAMBON RALPH



presented the network with various words, each time immediately

after one of the three context words, and recorded the pattern of

activity over the hub units. We performed multidimensional scaling

on these representations, so that each word could be plotted in a

two-dimensional space in which the proximities of words indicates

the degree of similarity in their hub representations. When presented

in the context of truck, the model’s representation of pump is similar

to that of journey, distance and other petrol-related words. Con-

versely, when pump is presented after shoe, the model generates an

internal representation that is similar to that of foot and other items of

clothing. In a novel context, the pump representation lies in the midst

of these two sets. In other words, by including context units that retain

the network’s previous states, the model has developed semantic

representations for words that take into account the context in which

they are being used. This context-dependence is a key feature of

models with similar recurrent architectures (Elman, 1990; St. John &

McClelland, 1990).

It is worth noting that these context-dependent shifts in represen-

tation are graded and not categorical. In other words, the model’s

representation of a word’s meaning varies continuously as a function

of the context in which it is being used. This graded variation in

representation is consistent with a proposition from the distributional

semantics approach, which holds that any two uses of the same word

are never truly identical in meaning. Instead, their precise connotation

depends on their immediate linguistic and environmental context

(Cruse, 1986; Landauer, 2001). This means that, in addition to hom-

onyms, the model is well-suited to the representation of polysemous

words, whose meanings change more subtly when they are used in

different contexts. We consider this aspect of the model in more detail

in Simulation 2, where we simulate the effects of semantic diversity

Figure 5. Context-sensitive representation of the word pump. The model was presented with pump immediately

following either truck, shoe, or deposit. Results are averaged over 50 such presentations. Left: Activation of prediction

units, indicating that the model’s expectations change when the word appears in these different contexts. Right:

Results of multidimensional scaling analyses performed on the hub representations of words presented in each context.

In these plots, the proximity of two words indicates the similarity of their representations over the hub units (where

similarity is measured by the correlation between their activation vectors). The model’s internal representation of

pump shifts as a function of context. See the online article for the color version of this figure.
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on comprehension (Hoffman, Lambon Ralph, & Rogers, 2013b;

Hoffman, Rogers, & Lambon Ralph, 2011b).

Representation of abstract words and taxonomic and asso-

ciative semantic structure. A key feature of the model is that all

concepts, concrete and abstract, are associated with characteristic

patterns of activity over the same hub units and are therefore

represented in a common semantic space. To explore the charac-

teristics of this space, we performed multidimensional scaling

on the hub’s representations of all concrete and abstract words.

In this case, we were interested in the general structure of the

semantic space, independent of any specific context. We there-

fore presented each word to the network 64 times, each time

preceded by a different word from the model’s vocabulary. To

obtain context-independent representations for each word, we

averaged the activation patterns elicited on the hub units over

these 64 presentations. The resulting activation patterns for all

words were used to compute a pairwise distance matrix between

words. The process was repeated 50 times and the averaged

distance matrix was used to generate the multidimensional

scaling plot shown in Figure 6.

The model acquires internal representations that allow it to

generate appropriate patterns of activity over the S-M and predic-

tion units. As a consequence, words that are associated with

similar S-M features come to be associated with similar hub

representations, as do those that elicit similar predictions about

upcoming words. Several consequences of this behavior are evi-

dent in Figure 6.

1. Taxonomic structure emerges as an important organiza-

tional principle for concrete words. There are two reasons

why the model learns this representational structure.

First, concrete items from the same category share a

number of S-M features. Second, items from the same

category regularly occur in the same contexts and are

therefore associated with similar predictions about which

words are likely to appear next.

2. Abstract words that occur in similar contexts have similar

representations. The corpus was designed such that par-

ticular pairs of abstract words frequently co-occurred (see

Figure 2). In Figure 6, it is clear that these pairs are

typically close to one another in the network’s learned

semantic space. When the model is presented with ab-

stract words, it is only required to generate predictions;

therefore, the representation of abstract words is gov-

erned by the distributional principle. Words that fre-

quently occur in the same contexts come to have similar

semantic representations because they generate similar

predictions.

3. The units in the hub make no strong distinction between

concrete and abstract words. Concrete and abstract words

can be represented as similar to one another if they occur in

similar contexts (e.g., journey and distance and the vehi-

cles). Of course, concrete and abstract words are more

Figure 6. Hub representations of concrete and abstract concepts. Concrete concepts are color-coded by

category. Abstract concepts are shown in greyscale, where shading indicates pairs of semantically related words.

See the online article for the color version of this figure.
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strongly distinguished in the S-M units, where only concrete

words elicit strong patterns of activity (though abstract

words come to generate some weaker activity here too; see

below).

4. Associative relationships between concrete items are also

represented. Although taxonomic category appears to be the

primary organizing factor for concrete concepts, the struc-

ture of these items also reflects conceptual co-occurrence.

For example, the fruits, plants, and animals are all close to

one another because they regularly co-occur in contexts

relating to the outdoors/countryside (in addition, some of the

animals and fruits co-occur in cooking contexts).

To investigate the degree to which the model acquired associa-

tive as well as taxonomic relationships, we performed further

analyses on pairwise similarities between the hub representations

of the concrete items. The mean similarity between item pairs from

the same category was 0.44 (SD � .061) while for between-

category pairs it was 0.01 (SD � .056; t(229) � 40.5, p � .001).

This confirms our assertion that items from the same category have

much more similar representations than those from different cat-

egories. To investigate the effect of associative strength on repre-

sentational similarity, we considered the between-category pairs in

more detail. We defined the associative strength A between two

words x and y as follows:

A �
1
2�

Nxy

Nx
�

Nyx

Ny
�

Where Nxy indicates the number of occasions x was immediately

followed by y in the training corpus, Nyx is the number of times y

was followed by x and Nx and Ny represent the total number of

occurrences of x and y, respectively. There was a significant

positive correlation between the associative strength of two items

and the similarity of their hub representations, �(199) � 0.39, p �

.001. In other words, the more frequently two items occur together

during training, the more likely the model is to represent them with

similar patterns in the hub. The average similarity for strongly

associated between-category pairs (defined with an arbitrary

threshold of A � 0.07) was 0.10 (SD � .08).

Acquired embodiment of abstract concepts. As discussed

earlier, the representation of abstract concepts is a contentious

issue. Some researchers have suggested that knowledge of abstract

words is derived solely through their use in language. Others have

argued that abstract concepts must be grounded in perceptual

experience (e.g., Barsalou, 1999) but it is not clear how such

grounding would take place. When being trained to process ab-

stract words, our model only receives verbal distributional infor-

mation; it is not trained to associate abstract words with S-M

experiences. However, abstract words come to be linked to S-M

information by virtue of their associations with concrete words—a

process we refer to as “acquired embodiment.” Figure 7A provides

some examples of this. We have plotted activations for the S-M

features shared by all members of a category when the network is

presented with some representative concrete and abstract words.

For concrete words, the network is trained to activate the S-M

features of the item whenever it is encountered. Each of the

concrete words therefore elicits a clear, binary pattern of S-M

activation. For abstract words, the S-M units do not receive any

targets during training, in line with the idea that abstract concepts

are not directly associated with S-M experiences. The activity of

these units is entirely unconstrained by the learning process. As

seen in Figure 7A, however, when presented with abstract words,

the network comes to partially activate the S-M features of the

concrete items with which they regularly co-occur. For example,

journey elicits partial activation of the S-M features of vehicles

and company partially activates the features of humans.

This acquired embodiment is an emergent consequence of the

requirement for the model to represent the statistics of conceptual

co-occurrence and S-M experience in a single system. As we saw

earlier, the model represents concrete and abstract words in a

single semantic space and both can elicit similar patterns of activ-

ity on the hub layer if they are associated with similar verbal

predictions. For example, journey has a similar representation to

bus because both words are found in contexts in which words like

car, distance, and pump are likely to occur. Because the activity of

the S-M units is determined by the inputs they receive from the

hub units, words with similar hub representations generate similar

patterns of S-M activity. So journey comes to partially activate

vehicular S-M features as a by-product of its regular co-occurrence

with vehicle names.

A number of alternative modeling approaches have also merged

S-M information with distributional statistics from natural lan-

guage (Andrews et al., 2009; Durda et al., 2009; Steyvers, 2010)

and have shown how S-M knowledge linked with a particular word

can be indirectly extended to its lexical associates (Johns & Jones,

2012). One important way in which our model differs from these

other approaches is that, in our model, the embodiment of abstract

words is context-dependent. This is illustrated in Figure 7B, which

shows the different S-M activations elicited by the same abstract

words in two different contexts. When journey occurs immediately

after cashier, vehicle S-M units are strongly activated because

journey and cashier regularly co-occur in contexts in which modes

of transport are discussed. In contrast, journey presented after

duchess elicits only weak activation because in the topics in

which these two words co-occur, vehicles are rarely. Thus, the

type of S-M information activated by abstract words depends on

the particular context in which they appear, which is consistent

with data showing that context affects the types of S-M knowl-

edge participants retrieve in response to words (Wu & Barsalou,

2009).

Summary

In this section, we have described how our model acquires

semantic representations under the simultaneous pressure to

predict upcoming words based on preceding context (thus learn-

ing the distributional properties of the language) and to asso-

ciate concrete words with S-M experiences (thus embodying

conceptual knowledge in the physical world). Importantly, both

of these challenges are met by a single set of “hub” units, whose

activation patterns come to represent the underlying semantic

structure of the concepts processed by the model. We have

demonstrated that this architecture has a number of desirable

characteristics. The recurrent architecture allows the network’s

predictions about upcoming words to be influenced by prior

context. As a consequence, the model’s internal representations

of specific concepts also vary with context. This is an important
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property, because most words are associated with context-

dependent variation in meaning (Cruse, 1986; Klein & Murphy,

2001; Rodd, Gaskell, & Marslen-Wilson, 2002). Second, the

model represents concrete and abstract words in a single rep-

resentational space, and is sensitive to associative semantic

relationships as well as those based on similarity in S-M fea-

tures. This is consistent with neuroimaging and neuropsycho-

logical evidence indicating that all of these aspects of semantic

knowledge are supported by the transmodal “hub” cortex of the

ventral anterior temporal lobes (Hoffman, Binney, & Lambon

Ralph, 2015; Hoffman, Jones, & Lambon Ralph, 2013a; Jack-

son et al., 2015; Jefferies, Patterson, Jones, & Lambon Ralph,

2009). Finally, the model provides an explicit account of how

abstract words can become indirectly associated with S-M

information by virtue of their co-occurrence with concrete

words. This process of acquired embodiment demonstrates how

representations of abstract words based on the distributional

principle can become grounded in the physical world.

At the outset of this article, we stated that a comprehensive

theory of semantic cognition requires not only an account of how

semantic knowledge is represented but also how it is harnessed to

generate task-appropriate behavior. In the next section, we turn our

attention to this second major challenge: The need for control

processes that regulate how semantic information is activated to

complete specific tasks.

Part 2: Executive Regulation of Semantic Knowledge

The semantic system holds a great deal of information about

any particular concept and different aspects of this knowledge

are relevant in different situations. Effective use of semantic

knowledge therefore requires that activation of semantic knowl-

edge is shaped and regulated such that the most useful repre-

sentation for the current situation comes to mind. An oft-quoted

example is the knowledge required to perform different tasks

with a piano (Saffran, 2000). When playing a piano, the func-

tions of the key and pedals are highly relevant and must be

activated in order to guide behavior. However, when moving a

piano, this information is no longer relevant and, instead, be-

havior should be guided by the knowledge that pianos are

heavy, expensive and often have wheels. The meanings of

homonyms are another case that is germane to the present work.

When a homonym is processed, its distinct meanings initially

compete with one another for activation and this competition is

thought to be resolved by top-down executive control pro-

cesses, particularly when context does not provide a good guide

to the appropriate interpretation (Noonan, Jefferies, Corbett, &

Lambon Ralph, 2010; Rodd, Davis, & Johnsrude, 2005;

Zempleni, Renken, Hoeks, Hoogduin, & Stowe, 2007).

These top-down regulatory influences are often referred to as

semantic control (Badre & Wagner, 2002; Jefferies & Lambon Ralph,

Figure 7. S-M unit activations for a selection of concrete and abstract words. (A) Activations of S-M units

shared by the members of each category, in response to a selection of words. Each word was presented to the

network 50 times (with a different random pattern of activity on the context units) and the results averaged to

generate this figure. (B) Activation of S-M units in response to the same abstract word in two different contexts.

See the online article for the color version of this figure.
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2006) and are associated with activity in a neural network including

left inferior frontal gyrus, inferior parietal sulcus and posterior middle

temporal gyrus (Badre, Poldrack, Paré-Blagoev, Insler, & Wagner,

2005; Bedny, McGill, & Thompson-Schill, 2008; Noonan, Jefferies,

Visser, & Lambon Ralph, 2013; Rodd et al., 2005; Thompson-Schill

et al., 1997; Whitney, Kirk, O’Sullivan, Lambon Ralph, & Jefferies,

2011a, 2011b; Zempleni et al., 2007). One long-standing source of

evidence for the importance of semantic control comes from stroke

patients who display semantic deficits following damage to these

areas (Harvey, Wei, Ellmore, Hamilton, & Schnur, 2013; Jefferies,

2013; Jefferies & Lambon Ralph, 2006; Noonan et al., 2010; Schnur,

Schwartz, Brecher, & Hodgson, 2006). These patients, often termed

semantic aphasics (SA, after Head, 1926), present with multimodal

semantic impairments but, unlike the SD patients described earlier,

their deficits have been linked with deregulated access to semantic

knowledge rather than damage to the semantic store itself. Moreover,

these patients’ performance on semantic tasks is strongly influenced

by the degree to which the task requires executive regulation and the

severity of their semantic impairments is correlated with their deficits

on nonsemantic tests of executive function (which is not the case in

SD; Jefferies & Lambon Ralph, 2006). Indeed, there is ongoing

debate as to the degree to which semantic control recruits shared

executive resources involved in other controlled processing in other

domains (we consider this in the General Discussion).

Semantic control deficits have been linked with the following

problems.

1. Difficulty tailoring activation of semantic knowledge to

the task at hand. This is evident in picture naming tasks,

in which SA patients frequently give responses that are

semantically associated with the pictured object but are

not its name (e.g., saying “nuts” when asked to name a

picture of a squirrel; Jefferies & Lambon Ralph, 2006). In

category fluency tasks, patients are also prone to name

items from outside the category being probed (Rogers et

al., 2015).

2. Difficulty selecting among competing semantic represen-

tations. SA patients perform poorly on semantic tasks

that require selection among competing responses, par-

ticularly when the most obvious or prepotent response is

not the correct one (Jefferies & Lambon Ralph, 2006;

Thompson-Schill et al., 1998). This problem is also ev-

ident in the “refractory access” effects exhibited by this

group, in which performance deteriorates when compe-

tition between representations is increased by presenting

a small set of semantically related items rapidly and

repeatedly (Jefferies, Baker, Doran, & Lambon Ralph,

2007; Warrington & Cipolotti, 1996). These deficits are

thought to reflect impairment in executive response se-

lection mechanisms.

3. Difficulty identifying weak or noncanonical semantic as-

sociations. SA patients find it difficult to identify weaker

semantic links between concepts (they can identify neck-

lace and bracelet as semantically related but not necklace

and trousers; Noonan et al., 2010). They have difficulty

activating the less frequent meanings of homonyms (see

Simulation 1). In the nonverbal domain, SA patients have

difficulty selecting an appropriate object to perform a

task when the canonical tool is unavailable (e.g., using a

newspaper to kill a fly in the absence of a fly swat;

Corbett, Jefferies, & Lambon Ralph, 2011). These results

may indicate deficits in top-down “controlled retrieval”

processes that regulate semantic activation in the absence

of strong stimulus-driven activity (see below).

4. High sensitivity to contextual cues. Performance on ver-

bal and nonverbal semantic tasks improves markedly

when patients are provided with external cues that boost

bottom-up activation of the correct information, thus

reducing the need for top-down control (Corbett et al.,

2011; Hoffman, Jefferies, & Lambon Ralph, 2010; Jef-

feries, Patterson, & Lambon Ralph, 2008; Soni et al.,

2009). For example, their comprehension of the less

common meanings of homonyms (e.g., bank-river) im-

proves when they are provided with a sentence that biases

activation toward the appropriate aspect of their meaning

(e.g., “They strolled along the bank;” Noonan et al.,

2010). These findings indicate that these individuals re-

tain the semantic representations needed to perform the

task but lack the control processes necessary to activate

them appropriately.

Despite the importance of control processes in regulating se-

mantic activity, this aspect of semantic cognition has rarely been

addressed in computational models. Where efforts have been

made, these have been based on the “guided activation” approach

to cognitive control (Botvinick & Cohen, 2014). On this approach,

representations of the current goal or task, often assumed to be

generated in prefrontal cortex, bias activation elsewhere in the

system to ensure task-appropriate behavior. The best-known ex-

ample of this approach is the connectionist account of the Stroop

effect, in which task units represent the goals “name word” and

“name color” and these potentiate activity in the rest of the

network, constraining it to produce the appropriate response on

each trial (Cohen, Dunbar, & McClelland, 1990). In the semantic

domain, models with hub-and-spoke architectures have used task

units to regulate the degree to which different spoke layers partic-

ipate in the completion of particular tasks (Dilkina et al., 2008;

Plaut, 2002). Although semantic control was not the focus of these

models, they do provide a plausible mechanism by which control

could be exercised in situations where the task-relevant informa-

tion is signaled by an explicit cue. For example, one task known to

have high semantic control demands is the feature selection task,

in which participants are instructed to match items based on a

specific attribute (e.g., their color) while ignoring other associa-

tions (e.g., salt goes with snow, not pepper; Thompson-Schill et

al., 1997). SA patients have great difficulty performing this task

(Thompson, 2012) and it generates prefrontal activation in a region

strongly associated with semantic control (Badre et al., 2005). To

simulate performance on this task in a hub-and-spoke architecture,

a task representation could be used to bias activation toward units

representing color and away from other attributes, thus biasing the

decision-making process toward the relevant information for the

task and avoiding the prepotent association.

In the present study, we consider a different aspect of semantic

control which, to our knowledge, has yet to receive any attention
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in the modeling literature. It is well-known that detecting weak

semantic associations (e.g., bee-pollen), compared with strong

ones (bee-honey), activates frontoparietal regions linked with se-

mantic control (Badre et al., 2005; Wagner, Paré-Blagoev, Clark,

& Poldrack, 2001). SA patients with damage to the semantic

control network also exhibit disproportionately severe deficits in

identifying weak associations (Noonan et al., 2010). However, the

cognitive demands of this task are rather different to the ones

described in the previous paragraph. In the Stroop and feature

selection tasks, participants are instructed to avoid a prepotent

response option in favor of a less obvious but task-appropriate

response. But in the weak association case, the difficulty arises

from the fact that none of the response options has a strong,

prepotent association with the probe word. For example, a partic-

ipant may be asked whether bee is more strongly associated with

knife, sand, or pollen. When one thinks of the concept of a bee, one

may automatically bring to mind their most common properties,

such as buzzing, flying, making honey, and living in hives. Be-

cause these dominant associations do not include any of the

response options, the correct answer can only be inferred by

activating the bees’ less salient role in pollinating flowers.

In this situation, when automatic, bottom-up processing of the

stimuli has failed to identify the correct response, it has been

proposed that participants engage in a top-down “controlled re-

trieval” process (Badre & Wagner, 2002; Gold & Buckner, 2002;

Wagner et al., 2001; Whitney et al., 2011b). Badre and Wagner

(2002) describe this process as follows:

Controlled semantic retrieval occurs when representations brought

online through automatic means are insufficient to meet task demands

or when some prior expectancy biases activation of certain conceptual

representations. Hence, controlled semantic retrieval may depend on a

top-down bias mechanism that has a representation of the task context,

either in the form of a task goal or some expectancy and that facilitates

processing of task-relevant information when that information is not

available through more automatic means. (p. 207)

Although various authors have discussed the notion of a con-

trolled retrieval mechanism for supporting the detection of weak

associations, no attempts have been made to specify how such a

process would actually operate. This is, we believe, a nontrivial

issue. Task representations of the kind described earlier are un-

likely to be helpful since the task instruction (“decide which option

is most associated with this word”) provides no clue as to what

aspect of the meaning of the stimulus will be relevant. In some

cases, prior semantic context may provide a useful guide (e.g., the

bee-pollen association may be detected more easily if one is first

primed by reading “the bee landed on the flower”). Indeed, Cohen

and Servan-Schreiber (1992) proposed a framework for cognitive

control in which deficits in controlled processing stemmed from an

inability to maintain internal representations of context. The same

mechanism was used to maintain task context in the Stroop task

and to maintain sentence context in a comprehension task. For

these researchers, then, the role of top-down control in semantic

tasks was to maintain a representation of prior context that can

guide meaning selection. However, in most of the experiments that

have investigated controlled retrieval, no contextual information

was available and thus this account is not applicable. Furthermore,

as we have stated, SA patients show strong positive effects of

context, which suggests that an inability to maintain context rep-

resentations is not the source of control deficits in this group.

How, then, do control processes influence activity in the seman-

tic network in order to detect weak relationships between con-

cepts? In the next section, we address this issue by describing an

explicit mechanism for controlled retrieval in our model. The core

assumption of our approach is that, in order to reach an appropriate

activation state that codes the relevant semantic information, the

semantic system must be simultaneously sensitive to the word

being probed and to its possible associates. Controlled retrieval

takes the form of a top-down mechanism that forces the network to

be influenced by all of this information as it settles, and which

iteratively adjusts the influence of each potential associate. In so

doing, the network is able to discover an activation state that

accommodates both the probe and the correct associate.

Controlled Retrieval of Semantic Information

To illustrate the controlled retrieval process, we need to intro-

duce an experimental task (Noonan et al., 2010) that will later form

the basis for Simulation 1. Figure 8 shows some example stimuli.

The experiment probes comprehension of homonyms using a 2

(meaning dominance) � 3 (context) design. On each trial, partic-

ipants are presented with a probe (head in Figure 8) and asked to

select which of four alternatives has the strongest semantic rela-

tionship with it. Half of the trials probe the dominant meanings of

the homonyms (e.g., head-foot) and half their subordinate mean-

ings (head-company). The subordinate trials represent a case in

which controlled retrieval is thought to be key in identifying the

correct response, because bottom-up semantic activation in re-

sponse to the probe will tend toward its dominant meaning. Fur-

thermore, each trial can be preceded by one of three types of

context: either a sentence that primes the relevant meaning of the

word (correct cue), a sentence that primes the opposing meaning

(miscue), or no sentence at all (no cue). These conditions are

randomly intermixed throughout the task so that participants are

not aware whether the cue they receive on each trial is helpful or

not. The context manipulation allows us to explore how external

cues can bias semantic processing toward or away from aspects of

meaning relevant to the task.

The top-left panel of Figure 9 shows performance on the task by

seven SA patients studied by Noonan et al. (2010; see Simulation

1 for more further details). In the no-cue condition, patients were

more successful when dominant, prepotent meanings were probed,

relative to subordinate ones, and this result was attributed to

impairment of controlled retrieval. Provision of correct contextual

information improved performance for the subordinate meanings,

so that these items reach a similar accuracy level to the dominant

trials. This is thought to occur because the guiding context elicits

strong, bottom-up activation of the trial-appropriate meaning, re-

ducing the need for controlled retrieval. Incorrect contextual in-

formation, in contrast, had a negative effect.

To explore the effects of these manipulations in our model, we

must first adopt a procedure by which the network can complete

the task. We believe that responses in lexical association tasks of

this kind are heavily influenced by the co-occurrence rates of the

various response options in natural language contexts (see Barsa-

lou et al., 2008). In the model, this information is represented by

the activations of the prediction units. To simulate the task in
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the model, we therefore present a probe word as input, allow the

model to settle and then read off the activations of the predic-

tion units representing the four response options. The option

with the highest activation is the one that the model considers

most likely to co-occur with the probe and should be selected as

the response.

Response selection is, however, a complex process. Human

decision-making processes are typically stochastic in nature (e.g.,

Usher & McClelland, 2001) and, in the semantic domain in par-

ticular, regions of prefrontal cortex have been linked with resolv-

ing competition between possible responses (Badre et al., 2005;

Thompson-Schill et al., 1997). To simulate the potential for error

at the response selection stage, we add a small amount of noise,

sampled from a Gaussian distribution, to each of the activations

before selecting the option with the highest activation. The effect

of this step varies according to the difference in activation between

the most active option and its competitors. When the most active

option far exceeds its competitors, the small perturbation of the

activations has no effect on the outcome. But when two options

have very similar activation levels, the addition of a small amount

of noise can affect which is selected as the response. Therefore,

this stochastic element introduces a degree of uncertainty about the

correct response when two options appear similarly plausible to

the model.

Finally, we also manipulate context as in the original experi-

ment. On no-cue trials, the context units are assigned a random

pattern of activity. On cued and miscued trials, the model pro-

cesses a context word prior to the probe, which is consistent with

either the trial-appropriate or inappropriate meaning of the word.

For example, a trial where the model is required to match bank

with cashier could be preceded by either economics or plant.

What happens when we use this procedure to test the model’s

abilities using stimuli analogous to those shown in Figure 8?

Figure 10 shows the mean activations of the prediction units

representing the dominant and subordinate targets in this task, as

well as the alternative options (these results are averaged across

trials probing all 10 of the model’s homonyms; for further details,

see Simulation 1). The results from the uncued condition illus-

Figure 8. Example trials from the homonym comprehension task.
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trate the limitations of the model (which, at this stage, has no

mechanism for controlled retrieval). As expected, the target

relating to the dominant meaning is strongly activated such that,

even when the stochastic response selection process is applied,

the model is likely to distinguish the correct response from the

foils. The subordinate target, however, is much less differenti-

ated from the foils, so there is a greater chance that one of the

three foils might be incorrectly selected. Context can modulate

these effects in either direction. On correctly cued trials, the

model’s expectations are shifted toward the trial-appropriate

interpretation of the probe. Subordinate targets therefore be-

come just as strongly predicted as dominant targets and are

unlikely to be confused with foils. Conversely, when context

primes the incorrect meaning of the word, the model fails to

activate the target very strongly for either trial type. Thus, like

the SA patients, the model’s ability to discriminate the target

from its competitors is highly dependent on the degree to which

the target receives strong bottom-up activation.

One of the reasons for this pattern of performance is that there

are a range of activation states that the network can adopt for any

given word, depending on the context in which it is processed. An

appropriate context boosts the prediction signal for the subordinate

targets because it constrains the model to reach an activation state

for the probe that is consistent with its subordinate meaning. Our

controlled retrieval process involves an internally generated source

of constraint over the network that has a similar effect. Specifi-

cally, we force the model to process the probe and the various

response options simultaneously. Our model has no prior experi-

ence of processing multiple words at the same time: During

training, words are presented sequentially but not simultaneously.

However, due to the graded, constraint-satisfaction properties of

neural networks, at any given moment, the model attempts to settle

into a state that is compatible with all of the inputs it is receiving.

If, for example, the network is presented with both bank and

cashier simultaneously, the hub units will settle into a hybrid state

that is close to a viable representation of both words. As we show

later on, this state is very different to that obtained if the network

were presented with bank and river.

The effects of simultaneous processing of multiple inputs form

the basis of the controlled retrieval process. We introduce an

executive regulation mechanism that ensures the network’s activ-

ity is influenced by the response options as well as the probe

during each trial. The goal of this mechanism is to ensure that the

model settles into a state that is compatible with the probe and

target but not with the other options. Of course, to begin with the

model is not aware which of the four alternatives is the target.

Controlled retrieval therefore takes the form of an iterative process

that ensures that the model’s processing is initially influenced

equally by all four alternatives, but as evidence accrues for one of

the four options, this option is given greater influence over pro-

cessing.

An example of this process is shown in Figure 11, in which

the model is required to select river as being linked to bank (see

Figure 9. Target data and model performance for Simulation 1.

Figure 10. Activation of response options in the model with no control processes. The bars in the bottom right

corner of each plot show the standard deviation of the Gaussian function used to add noise to each activation.

See the online article for the color version of this figure.

308 HOFFMAN, MCCLELLAND, AND LAMBON RALPH



Panel A). Panel B shows the inputs to the model as it processes

this trial and Panel C shows the activations of the prediction

units for the four possible responses. Panel D provides a graph-

ical illustration of the network at three points during processing.

At any point in time, the input to the hub consists of bank and

a weighted combination of the four response options. The

weighting of the options, which is subject to top-down control,

is determined by the values of their prediction units in the

previous timepoint (for full implementation details, see Simu-

lation 1). Before the network begins to settle, it considers each

of the four options equally probable and they are all given equal

weight as inputs to the model. This means that the model is

constrained to settle into a state that is primarily influenced by

bank but is also as compatible as possible with bus, river,

orange and boot. Because there are states for bank that are

rather close to river but no such states for the other options, the

network begins to move toward an interpretation of bank that

fits with river. As the network moves toward this state, the

prediction value for river begins to increase while the values for

the other options decrease. As a consequence, the control mech-

anism affords greater influence to this item, weighting it more

heavily in the input to the hub. This in turn pushes the model

further toward the river-compatible state, increasing its predic-

tion value further. By the end of the trial, two things are

apparent. First, the prediction value for river far outstrips that

of the other options. This means that when the model comes to

respond, it has no difficulty in identifying that river is the

correct response. Note that this would not be the case without

the application of the controlled retrieval process (see dashed

line in Panel C).

Figure 11. The controlled retrieval process. (A) The model is asked to decide which of four alternatives is most

semantically related to bank. (B) Input to the model during settling. The model receives sustained input of the

probe and a weighted combination of the possible responses. As the prediction for river strengthens, it comes

to dominate the input. (C). Activation of prediction units during settling. The controlled retrieval process boosts

the activation of river, relative to the level it would receive from processing of the probe alone (dashed line). (D)

Graphical representation of settling. Elements of the controlled retrieval mechanism are shown in red. See the

online article for the color version of this figure.
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The second feature is that the input to the model is dominated

by both bank and river. This means that the hub has been guided

into an activation state that fits with both bank and river, rather

than processing bank in its canonical sense. This is illustrated in

Figure 12. As in previous figures, we used multidimensional

scaling to plot the relationships between the model’s learned

representations for all words. These relationships are averaged

across many randomly generated contexts, so the representation

of bank is closer to that of cashier, reflecting its dominant

pattern of usage. In addition, we have plotted the states of the

hub units when the model processes the bank trial, either in its

subordinate sense (bank-river) or its dominant sense (bank-

cashier). These activations were recorded at various points

during processing, allowing us to plot the model’s trajectory

through semantic space as it settles. Without controlled re-

trieval, the model processes bank in isolation and therefore

Figure 12. Model’s trajectory through semantic space during the bank trial. This plot illustrates the effect of

controlled retrieval on the model’s internal representations. We first presented each word to the model in turn,

allowed it to settle and recorded activity of the hub layer. Multidimensional scaling was used to plot the

relationships between these states in a two-dimensional space (words used in the current trial are highlighted).

We then recorded the activity of the hub units as the model completed the dominant and subordinate versions

of the bank trial with and without controlled retrieval (CR). The lines plot the trajectory taken by the model

through the semantic space as it settled. Without controlled retrieval, settling is determined solely by the identity

of the probe, resulting in similar paths on dominant and subordinate trials, both of which end near the canonical

representation of bank. Under controlled retrieval, settling is constrained by both probe and target. As a

consequence, the model is deflected into areas of the semantic space somewhere between bank and either cashier

or tree. See the online article for the color version of this figure.
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settles into its most frequent pattern of usage, irrespective of

whether the trial is probing the dominant or the subordinate

meaning. In contrast, the controlled retrieval mechanism forces

the behavior of the network to be influenced by the response

options as well as the probe. This has the effect of shifting the

network toward a different part of the semantic space, closer to

the representation for either cashier or river (depending on

which is available as a response). In a sense, therefore, the

model ends the trial by “thinking about” a situation in which

bank and the correct response could both appear.

Summary

To use semantic information effectively, control processes

are required to shape activation of knowledge to conform to the

task at hand. One hypothesized control process is the notion of

controlled retrieval, a top-down mechanism that guides activa-

tion of the appropriate semantic knowledge when the relevant

representation is not automatically activated by bottom-up stim-

ulus processing. We have implemented a mechanism for con-

trolled retrieval in our model, which constrains the network to

take multiple response alternatives into account when process-

ing a particular word. Through an iterative feedback process,

the network discovers which of the four options is most com-

patible with the probe and settles into an activation state com-

patible with that option.

Our model now has the key elements involved in semantic

cognition: a set of semantic representations acquired through ex-

perience in the environment and a control process that regulates

how these representations are activated and selected. We are now

in a position to test how well the model’s behavior replicates

human performance on semantic tasks. In the following section,

we do this by probing (a) the ability of the intact model to perform

semantic tasks in a similar way to healthy participants and (b) the

ability of the model to mimic the effects of damage to either

semantic representation or semantic control in patients with SD

and SA, respectively. We test this in three simulations of verbal

comprehension tasks.

Simulation 1: Comprehension of Homonyms in

Semantic Aphasia

In this simulation, we test the model’s ability to perform Noonan

et al.’s (2010) homonym comprehension task, which we have

already described. We also test the degree to which damage to the

model’s control processes produces impairments similar to those

observed in SA.

Target data. Noonan et al. (2010) tested seven patients with

SA and eight age-matched healthy controls using the comprehen-

sion task described in the previous section (see Figure 8). The

controls performed close to ceiling in all conditions but, as we

have already described, the SA patients demonstrated (a) impair-

ment on the task overall and (b) greater impairment for trials

probing the subordinate meanings of words, and (c) a strong

influence of context that interacted with meaning dominance.

These data are shown on the left of Figure 9.

Test construction for simulation. To simulate Noonan et

al.’s (2010) data, we constructed two trials for each of the 10

homonyms in the model’s vocabulary. Each trial consisted of a

probe (the homonym), a target (semantically related to either its

dominant or subordinate usage), and three unrelated foils. To

assess the strength of the relationships between probes and targets,

we computed the co-occurrence rate of each target given the

probe. This value represents the proportion of times the probe was

immediately followed by the target in the model’s training corpus.

The co-occurrence rate for dominant targets (M � .077; range �

.048–.099) was higher than that of subordinate targets (M � .033;

range � .019–.052), indicating that the dominant targets were

indeed more strongly associated with the probes in the model’s

experience. In contrast, the foils always had a co-occurrence rate

of 0 (i.e., they never occurred in the same context as the probe

during training).

Simulation method. Testing of the model proceeded as

follows. First, we instantiated the context in which the model

would process the trial. When testing patients and controls,

Noonan et al. (2010) presented a whole sentence that primed

one particular interpretation of the probe. In the model, we

presented a single word. On Correct Cue trials, we presented a

word that was related to the trial-appropriate usage of the probe

(e.g., on the bank-cashier trial, we presented economics). The

network processed this word in the usual way. Having settled,

the activation pattern over the hub units was copied to the

context units, ready to influence processing when the network

was presented with the probe and response options. The process

was the same for miscue trials, except that the cue was related

to the trial-inappropriate usage. On no cue trials, no cue word

was presented; instead, we assigned the context units a random

pattern of activity, so that no meaningful context was available

to influence the decision-making process.

Next, we presented the probe and response options to the model

for a total of seven time steps. At each point during processing, the

input to the model consisted of the probe and a weighted combi-

nation of the four response options. To compute the weighting, the

activation of the prediction units for the four options were sub-

jected to a softmax transformation. The input value I for option j

was given by the formula

Ij �
exp(sPj)

�k�1
4

exp(sPk)

Where Pj denotes the activation of the prediction unit for option j

and s is a constant that governs how sensitive the input values are

to changes in the prediction values. The transformation ensured

that the four inputs always summed to one but that options with

larger prediction values were weighted more strongly. We set s to

200 in all simulations, based on pilot work.

At the end of processing, the prediction values for each of the

four response options were recorded. Noise, sampled from a

Gaussian distribution with a mean of 0 and standard deviation of

0.01, was added to each of them. Following this step, the option

with the highest prediction value was taken as the model’s re-

sponse.

This process was repeated 200 times for each trial (20 times in

each of the 10 models trained with different starting weights) and

the results averaged to provide a measure of neurologically intact

performance in the model.

Damage. To simulate the performance of SA patients, we

disrupted the executive mechanisms assumed to be impaired in this

condition. First, we removed the controlled retrieval process. This
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meant that the model’s behavior was driven solely by the

bottom-up activity elicited by the probe and the model was not

constrained to find an activation state that fitted the response

options as well. In addition, we increased the standard deviation of

the Gaussian noise added at the response selection stage, from 0.01

to 0.045. This weakening of the selection process reflects the fact

that SA patients also have difficulty with selecting among com-

peting response options, which is assumed to be another important

element of semantic control (Badre et al., 2005; Thompson-Schill

et al., 1997). The figure of 0.045 was selected so that the model’s

overall accuracy on the task was as close as possible to the

patients’.

Results. Model performance is presented in Figure 9, along-

side the results reported by Noonan et al. (2010). Noonan et al.

(2010) analyzed their human data using a 2 (impairment) � 2

(dominance) � 3 (cue) ANOVA. We performed the same analyses

on the model data, treating each of the 10 trained models as a

separate case in the analysis (see Table 1). In the human data, SA

patients showed larger effects of the dominance manipulation than

controls, demonstrating particularly poor comprehension of sub-

ordinate meanings. They also showed larger effects of the cue

manipulation and there was a three-way interaction between these

factors, indicating that the advantage for dominant meanings was

attenuated when a correct cue was provided. All of these effects

were replicated in the model.

Effects of alternative forms of damage. The performance of

the model under damage (no controlled retrieval plus additional

noise at the response selection stage) closely resembles the pattern

shown by patients with SA. It is important to establish the degree

to which these effects are a consequence of the specific type of

damage we applied and not simply a more general consequence of

weakening the model. To assess this, we tested the model under

three different types of damage (see Figure 13). Panel (a) shows

the effect of removing the model’s ability to perform controlled

retrieval without changing the noisiness of response selection.

Under these conditions, the model demonstrates a strong cueing

effect, indicating that controlled retrieval is important for support-

ing performance when contextual information is absent or mis-

leading. However, overall levels of performance were higher than

observed in SA patients, suggesting that these patients’ control

deficits extend beyond a difficulty with controlled retrieval. When

we disrupted response selection by increasing the level of noise,

but allowed the model to use controlled retrieval (Panel b), there

was a general depression in performance but little effect of mean-

ing dominance or cueing. Finally, we tested the effect of removing

connections projecting in and out of the model’s hub layer

(Panel c). This form of damage (which we will use to simulate SD

patients in later simulations) degrades the model’s representational

substrate but not its control processes. Again, this form of damage

Table 1

Analyses of Human and Model Performance in Simulation 1

Effect

Human Model

df F p df F p

Impairment 1, 13 74.3 �.001 1, 9 2692 �.001
Dominance 1, 13 11.58 �.005 1, 9 218 �.001
Cue 2, 26 35.88 �.001 2, 18 983 �.001
Dominance � Impairment 1, 13 6.16 �.005 1, 9 69.8 �.001
Cue � Impairment 2, 26 29.51 �.001 2, 18 226 �.001
Dominance � Cue � Impairment 2, 26 8.0 �.005 2, 18 17.1 �.001

Note. Analyses of human data were reported by Noonan et al. (2010). Analyses of model data treated each of
the ten trained models (each trained in the same way but initialized with different random weights) as a separate
case. Impairment was treated as within-models factor, since each model was tested before and after damage.

Figure 13. Model performance in Simulation 1 under alternative forms of damage.
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degraded performance but did not produce the strong effects of cue

type observed in SA.

Accounting for the success of controlled retrieval. There are

two potentially important elements of the controlled retrieval mech-

anism that may explain its success in identifying the homonyms’

nondominant associations. First, it forces the network’s processing of

the probe to be colored by the available potential responses and

second, it controls the relative weighting of those response options

based on the network’s current predictions. Is the adaptive weighting

of the response options necessary, or would it be sufficient to simply

provide all of the alternatives as input with equal influence afforded to

each? To investigate this, we tested an alternative form of the con-

trolled retrieval mechanism in which the response options were in-

cluded in the input to the hub but they were not weighted based on

feedback from the prediction units. Instead, each response option

received a static weighting of 0.25 (so that the four response weights

still summed to one). Performance of this version of the model is

shown in Figure 14. It performed well in the cued condition and for

the dominant meanings in the uncued condition, but it was much less

successful in the other conditions (cf. the intact model in Figure 12).

This indicates that an iterative control process, whereby feedback is

used to continually adjust the degree to which each option influences

the network’s state, is critical in ensuring that the network discovers

the correct activation state for weak or nondominant semantic rela-

tionships.

Discussion. The intact model, with its controlled retrieval mech-

anism, was able to select which of four words was associated with a

presented homonym, even when the target related to its subordinate

meaning. When the controlled retrieval process was removed and the

model’s response selection process impaired, the results closely re-

sembled performance that of patients with SA. Performance on sub-

ordinate trials was disproportionately affected and the model became

much more reliant on context for guiding it toward the correct re-

sponse. These results indicate that the controlled retrieval process we

have implemented provides a plausible account of how top-down

control influences performance on this task.

Simulation 2: Effects of Frequency, Imageability, and

Semantic Diversity on Semantic Judgments in SD and SA

We have demonstrated that damage to the model’s controlled

retrieval mechanism produces deficits in a verbal comprehension

task similar to those observed in SA patients with semantic control

deficits. In the second simulation, we tested the model’s ability to

mimic the divergent patterns of impairment exhibited by SD and

SA patients. As we have already alluded to, even when patients

with SD and SA show similar levels of impairment on semantic

tasks, the details of their impairments are very different. These

qualitative differences are thought to indicate damage to semantic

representations or to semantic control processes respectively (Jef-

feries, 2013; Jefferies & Lambon Ralph, 2006; Rogers et al.,

2015). If our model provides an accurate account of both semantic

representation and control, then damage to these two elements of

the model should simulate the divergent effects observed in these

two disorders. To test this, we focused on data reported by Hoff-

man, Rogers, and Lambon Ralph (2011b), in which matched

groups of SD and SA patients completed a verbal semantic judg-

ment task. Hoffman et al. investigated the psycholinguistic factors

influencing performance in each group. Despite similar overall

levels of impairment, the two groups displayed divergent effects of

word frequency, imageability, and semantic diversity, which were

hypothesized to be a consequence of impaired semantic represen-

tation versus control. Here, we tested whether the model would

display similar effects under damage to either its representational

hub or its control processes.

Target data. Hoffman et al. (2011b) presented data from 13

patients with SA and 13 with SD. Patients completed a semantic

judgment task in which they were presented with a probe word and

asked which of three alternatives was similar in meaning (Jefferies

et al., 2009). A multiple regression approach was used to investi-

gate the factors that governed each group’s performance on the

task. Specifically, we investigated how the following three psy-

cholinguistic factors influenced the patients’ ability to make se-

mantic judgments.

Semantic diversity. This is a measure of the contextual vari-

ability of words, derived empirically by determining the level of

similarity among all the contexts in which a particular word is used

(Hoffman et al., 2013b). The measure is motivated by the idea,

implicit in distributional approaches to semantics, that the meaning

of a word changes every time it is used in a different context. On

this view, all words are somewhat polysemous, with the degree of

variation in their meaning depending on the degree to which they

are used in a wide variety of contexts (Cruse, 1986; Hoffman et al.,

2013b; Landauer, 2001). The semantic diversity measure assesses

this variation empirically, through analysis of a large corpus of text

samples. Words with low semantic diversity are used in a restricted

set of closely related contexts, while those with high diversity are

found in a wide range of disparate contexts.

SA patients showed a strong negative effect of semantic diver-

sity, performing more poorly with words that are used in a wide

range of different contexts. We hypothesized that this is because

the meanings of highly diverse words change when they are used

in different situations. As consequence, activating the task-

appropriate semantic representation for such words places greater

demands on controlled retrieval processes (just as these processes

were necessary for activating the appropriate representation for
Figure 14. Performance of the intact model in Simulation 1 with an

alternative form of controlled retrieval.
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homonyms in Simulation 1). In contrast, performance in the SD

group was not affected by semantic diversity, in line with the idea

that these patients’ deficits are not linked with executive impair-

ment.

Imageability. Imageability refers to the ease with which a

word elicits mental imagery, and is therefore an index of how

concrete or abstract a word is (Paivio, Yuille, & Madigan, 1968).

Both patient groups displayed better comprehension of highly

imageable words. In the case of SD, we have hypothesized that,

because they lack grounding in the S-M experience, abstract con-

cepts are represented weaker in the semantic hub. As a conse-

quence, damage to the hub has a particularly adverse effect on

these words (Hoffman, 2016; Hoffman & Lambon Ralph, 2011).

The explanation for SA patients is less clear. Abstract words tend

to be more semantically diverse than concrete words (Hoffman et

al., 2013b); however, this is not a complete explanation as the

imageability effect remained significant in a simultaneous regres-

sion that controlled for semantic diversity.

Frequency. Word frequency has an almost ubiquitous effect

in language processing tasks. In SD, we observed a strong fre-

quency effect, with much better comprehension of more frequent

words. This effect has been observed in many studies of SD

(Bozeat et al., 2000; Funnell, 1995; Jefferies et al., 2009) and

reflects the tendency for concepts that are encountered more fre-

quently to be represented more robustly in the semantic system

(Rogers & McClelland, 2004). In contrast, frequency effects are

typically weak or absent in patients with SA (Almaghyuli, Thomp-

son, Lambon Ralph, & Jefferies, 2012; Hoffman, Jefferies, &

Lambon Ralph, 2011a; Jefferies & Lambon Ralph, 2006). Hoff-

man et al. (2011b) demonstrated that this was because high fre-

quency words tend to be highly semantically diverse and therefore

place high demands on the patients’ impaired control processes,

counteracting the usual advantage for these words. When semantic

diversity was controlled for statistically, a small effect of fre-

quency did emerge for SA patients, although this was much

weaker than the effect observed in SD.

In summary, SA patients with damage to control processes

displayed poor comprehension of words of high semantic diver-

sity, while representational damage in SD was characterized by

especially poor comprehension of low frequency words. Both

groups were better at making judgments to more imageable words.

We investigated whether the model would display similar behavior

under damage intended to mimic each disorder.

Test construction for simulation. In order to investigate the

influence of psycholinguistic properties on the model, it was vital

that our training corpus embodied these properties in as realistic a

fashion as possible. We therefore used analyses of actual language

use to guide construction of the training and testing environments.

We begin by describing how each of the psycholinguistic variables

were operationalized in the training environment.

Semantic diversity. The model’s training corpus was gener-

ated by sampling from a set of topics, each of which consisted of

a probability distribution over a subset of the words known to the

model. All the words in the model’s vocabulary appeared in at

least three different topics, but the topics were designed such that

some words appeared in a restricted set of topics while others

could occur in many disparate topics. To quantify this variation,

we computed a semantic diversity value for each word. Semantic

diversity is calculated by performing latent semantic analysis on a

large corpus of natural language samples (Hoffman et al., 2013b).

The result is that each sample (or context) in the corpus is repre-

sented by a vector that describes its location in a high-dimensional

semantic space. Contexts that contain similar words have similar

vectors and, under the distributional principle, are assumed to be

similar in their semantic content. To compute the semantic diver-

sity for a particular word, one calculates the pairwise similarities

between the vectors representing all of the contexts that contain the

word. This value is then log-transformed and its sign reversed, so

that higher values indicate greater dissimilarity between the vari-

ous contexts in which the word is used.

The exact same process was performed on the model’s training

corpus to compute semantic diversity values for each of the words

in its vocabulary. The least diverse word (deer) had a value of 0.13

and the most diverse (lorry) 0.76. In previous work (Hoffman et

al., 2013b; Hoffman & Woollams, 2015), we have proposed that

the semantic representations of highly diverse words are very

variable and that this makes them more difficult to process in

semantic tasks. To test whether this held true in the model, we

presented each word in 64 different contexts (i.e., in the context of

each word in its vocabulary) and recorded the representations over

the hub units. We then computed the pairwise similarities between

the representations for the same word in these different contexts,

providing a measure of the word’s representational consistency.

There was a strong negative correlation between consistency in

representation and semantic diversity, r � �0.36, p � .004. Thus,

as predicted, the emergent consequence of words being used in a

broad range of contexts is that they develop semantic representa-

tions that vary greatly across contexts.

Imageability. In their analyses of patient data, Hoffman et al.

(2011b) treated imageability as a continuous variable. In the model,

however, imageability is implemented as a binary distinction (the

model is trained to associate the 22 concrete words with S-M prop-

erties, while no such training is provided for the 32 abstract words).

Nevertheless, we were keen to ensure that the relationship between

imageability and semantic diversity in the model accurately reflected

that seen in real language. Because the verbal input units in the model

notionally represent real English words, we obtained the semantic

diversity of those words in a published database derived from the

British National Corpus (Hoffman et al., 2013b). We found that the

concrete words had lower semantic diversity values (M � 1.50) than

the abstract words (M � 1.80; t(52) � 5.28, p � .001). This rela-

tionship is also present in larger samples of words (Hoffman et al.,

2013b). We therefore ensured that, in the model, the concrete words

had lower semantic diversity values than the abstract words (concrete

M � 0.49; abstract M � 0.56).

Frequency. Word frequency was manipulated in the model by

varying the number of topics particular words appeared in, the

probability of selection within those topics, and by ensuring that

some topics were sampled more often than others. As a conse-

quence, the most frequent word (lorry) occurred in the training set

17 times more often than the least frequent word (team). To ensure

that the relationships between frequency and the other psycholin-

guistic variables accurately mimicked those seen in natural lan-

guage, we again investigated the properties of the real English

words upon which the model’s vocabulary was based. We found a

strong positive correlation between frequency and semantic diver-

sity, r � .57, p � .001: higher frequency words tended to be more

semantically diverse. We therefore replicated this effect in the
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model, r � .64, p � .001. Because frequency and imageability are

both correlated with semantic diversity, to investigate the relation-

ship between these two variables, we computed their partial cor-

relation while controlling for semantic diversity. There was no

relationship between frequency and imageability, r � �0.08, p �

.53. Accordingly, we ensured that no such relationship was present

in the model’s training environment, r � .15, p � .28.

Test construction. To test the model, a semantic judgment

task was constructed that corresponded as closely as possible to the

test used by Hoffman et al. (2011b) to investigate performance in

SD and SA patients. Each trial in the neuropsychological study

comprised a probe, a target that was similar to it in meaning and

two unrelated foils. We constructed one such trial for each of the

22 concrete and 32 abstract words in the model’s vocabulary.

Probe-target pairings for abstract words are shown in Figure 2. The

targets on concrete trials were always a concrete item from the

same category as the probe.

In addition to ensuring that the distribution of psycholinguistic

properties in the model was closely representative of real language,

it was critical that the materials used to test the model closely

matched the test used with the patients. For this reason, when we

constructed the semantic judgment test for the model, we paid

close attention to the relationship between the probe and target on

each trial. Performance in the model is strongly influenced by the

co-occurrence rate of the target with the probe during training.

When the target frequently occurs immediately after the probe

during training, the model learns to strongly activate the target’s

prediction unit when it is presented with the probe. This strong

prediction value makes it easy for the model to select the target as

the correct response. Because co-occurrence rate is an important

driving factor in the model, we investigated how this property is

related to other psycholinguistic variables in real language. We did

this by taking each trial from the neuropsychological test used by

Hoffman et al. (2011b) and finding each occurrence of the probe

in the British National Corpus (British National Corpus Consor-

tium, 2007). We then computed in what proportion of those

occurrences, the target appeared in the next 10 words in the corpus.

This represented the co-occurrence rate of the target with the probe

in a large corpus of natural language.

We used a simultaneous multiple regression model to investi-

gate how frequency, imageability and semantic diversity were

related to co-occurrence rates in the neuropsychological test. Trials

featuring higher frequency words and lower semantic diversity

words tended to have higher co-occurrence rates (see Table 2).

When constructing the test for the model, we were careful to

replicate this pattern (see lower half of Table 2). As a result, the

psycholinguistic properties we investigated in the model were

related to the difficulty of individual trials in ways that accurately

reflect the neuropsychological test used to collect the patient data.

Simulation method. The procedure for testing the model was

similar to Simulation 1. No contextual information was available

to patients in the Hoffman et al. (2011b) study, so the context layer

was reset to a random pattern of activity at the start of each trial.

The model was then presented with the probe. The predictions

for the three response options were processed by the controlled

retrieval mechanism, which iteratively regulated the network’s

activity as described previously. At the end of the processing

window, the most active option, after the addition of Gaussian

noise, was selected as the response. Each trial was presented 200

times and the results averaged to give a measure of intact model

performance.

Damage. To simulate semantic control deficits in SA, we

again removed the controlled retrieval mechanism and increased

the standard deviation of the Gaussian noise added at the response

selection stage. This was increased from 0.01 to 0.04; this value

was selected because it gave overall accuracy levels that were very

closely matched to the target dataset. Again, each trial was pre-

sented 200 times and the results averaged. To simulate damage to

the semantic hub in SD, we removed a certain proportion of the

links projecting in and out of the hub layer, thus degrading the

function of this crucial element of the model (Rogers et al., 2004).

We removed 30% of the links as this level of damage gave the

closest fit to the target dataset in terms of overall accuracy. Each

of the 10 trained models was damaged 20 times and tested, again

yielding 200 presentations for each trial.

Results. Accuracy in the model and in the target dataset are

presented at the top of Figure 15. Without damage, the model

completed 97% of trials accurately, which is similar to the level

achieved by healthy participants completing the neuropsycholog-

ical test. Under damage, accuracy levels in the model were closely

matched to the patients. To investigate the influence of psycholin-

guistic properties on model performance, we performed a linear

regression analysis in which probe frequency, imageability and

semantic diversity were used as predictors of performance on

individual trials. The results are shown in Table 4, alongside the

corresponding results from the patient data. The correlation ma-

trices for both analyses are shown in Table 3 and the beta weights

are illustrated graphically in Figure 15. Results in the model show

strong convergence with those in the target dataset. Imageability

had a positive effect on model performance under damage to both

control processes and representations. Similarly, both SD and SA

showed a positive effect of imageability. Following damage to

control processes, the model showed a weak positive effect of

frequency and a strong negative influence of semantic diversity.

This was precisely the pattern observed in SA patients. In contrast,

damage to the model’s hub layer resulted in a strong positive effect

of frequency and no effect of semantic diversity. Likewise, SD

patients showed a strong frequency effect and a nonsignificant

semantic diversity effect.

To determine the degree to which probe-target co-occurrence

rates were responsible for these results, we added this factor as an

additional predictor to the regression analyses. Inclusion of co-

occurrence rates did not improve ability to predict performance in

the model with damage to the hub, �R2 � 0.011; F(1, 49) � 0.93,

Table 2

Regression Analysis of Probe-Target Co-Occurrence Rates in

Simulation 2

Effect R2 p 	 p

Neuropsychological test .12 .010
Frequency .33 .014
Imageability .08 .467
Semantic diversity �.35 .011

Model test .15 .038
Frequency .31 .078
Imageability .10 .456
Semantic diversity �.46 .012
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p � .34. This indicates the co-occurrence rates of the probes and

targets were not a major factor in determining how the model

performed following representational damage. In contrast, there

was a significant improvement in the fit for the model with damage

to control processes, �R2 � 0.291; F(1, 49) � 35.7, p � .001.

Following the addition of co-occurrence rates, imageability re-

mained a significant predictor of performance (	 � 0.28, p �

.005) but frequency was not (	 � �0.04, p � .73) and nor was

semantic diversity (	 � �0.17, p � .19). This indicates that, when

the model’s control processes are damaged, the rate with which the

target and probe have occurred together in its prior experience

is the main determinant of whether it is able to match them at test.

The effects of frequency and semantic diversity in this case can be

attributed to this underlying factor.

Finally, to test for potential interactions between imageability,

frequency, and semantic diversity we ran linear mixed effects

models on the results (with model number and probe as random

factors). There were no interactions following damage to the

network’s control processes. However, there was an interaction

between frequency and imageability for the models with damaged

Figure 15. Target data and model performance for Simulation 2. (A) Accuracy levels for human data and in

the model (healthy control data taken from Hoffman et al., 2013b; patient data from Hoffman et al., 2011b). (B)

Beta values from linear regression models that used psycholinguistic properties to predict human and model

performance on individual trials.

Table 3

Correlation Matrices for Human and Model Data in Simulation 2

Effect Imageability
Semantic
diversity

SD
accuracy

SA
accuracy

Human data

Frequency �.021 .596�� .528�� �.053
Imageability — �.361�� .413�� .465��

Semantic diversity — .069 �.438��

SD accuracy — .412��

Model data

Frequency �.086 .465�� .616�� .061
Imageability — �.327� .207 .352�

Semantic diversity — .246 �.352�

SD accuracy — .270�

Note. Human data were originally reported by Hoffman, Rogers, and
Ralph, (2011b).
� p � .05. �� p � .001.

Table 4

Regression Analyses of Human and Model Data in Simulation 2

Effect R2 p 	 p

Human—SD .478 �.001
Frequency .65 �.001
Imageability .36 �.001
Semantic diversity �.19 .081

Human—SA .333 �.001
Frequency .23 .042
Imageability .30 .002
Semantic diversity �.47 �.001

Model—SD .449 �.001
Frequency .62 �.001
Imageability .28 .017
Semantic diversity .05 .700

Model—SA .242 .003
Frequency .27 .062
Imageability .25 .066
Semantic diversity �.40 .010

Note. SD � semantic dementia; SA � semantic aphasics.
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hub representations (
2 � 2.58, p � .01). Under this type of

damage, the effect of frequency was larger for the concrete words.

Discussion. We investigated the model’s ability to make se-

mantic judgments following damage to either its control processes

or its representational substrate. Although the overall level of

impairment in these two cases was matched, the factors underpin-

ning the deficits were different and closely matched the divergent

patterns observed in patients with SD versus SA. When the mo-

del’s control processes were disrupted, it became highly sensitive

to the semantic diversity of the words being probed, performing

poorly with words that appeared in many different contexts. It also

displayed a modest sensitivity to word frequency. Importantly, the

rate at which the probe and target had co-occurred during training

appeared to be the root cause of these effects. When a word

appears in many different contexts, it shares semantic relatedness

with a wide range of different words but co-occurs with each of

those other words less frequently. As a consequence, when the

model is presented with such a word as a probe, it activates weak

predictions for a wide range of words, each of which could

potentially occur in the same context as the probe. These weak

predictions make it hard to differentiate the target from the other

response options. In the intact model, the controlled retrieval

process ameliorates this problem by forcing the network into a

state in which it does have a strong expectation of the target

appearing, as seen in Simulation 1. But when this process does not

function, the weak prediction for the target does not strongly

differentiate it from its foils. Disruption to the response selection

process, by making this stage nosier, further exacerbates the prob-

lem. In short, the model suggests that SA patients find it hard to

make semantic decisions about words with high semantic diversity

because these words weakly activate a wide range of potentially

associated words. Reliably identifying the correct word in these

circumstances requires top-down support from the executive sys-

tem, which is not available to these individuals. The effects of

homonym comprehension presented in Simulation 1 can be con-

sidered a special case of this more general effect of contextual

variability.

In contrast, when the model’s semantic hub was damaged,

performance was not governed by semantic diversity; instead, the

model demonstrated much better comprehension of higher fre-

quency words. This replicates effects seen in patients with SD

across a range of semantic tasks (Bozeat et al., 2000; Funnell,

1995; Jefferies et al., 2009). The robust semantic representations of

high frequency words were explored by Rogers and McClelland

(2004). They demonstrated that when the model encounters a word

frequently, it has many opportunities to learn the appropriate

patterns of activation for this word. As a consequence, it develops

a robust representation of the word early in the learning process.

When the representational system is later degraded by damage, the

strong representations of high frequency words are affected to a

lesser extent. Semantic diversity has little effect on performance in

the hub-damaged model because the controlled retrieval process is

unaffected. The model can therefore compensate for the weak

target activation on high semantic diversity trials, provided that it

still has a reasonably intact representation for the probe to begin

with. These results are consistent with the widely held view that

SD is a relatively pure disorder of semantic representation and that

executive control processes function well in this condition (Jeffer-

ies & Lambon Ralph, 2006).

Under both types of damage, the model displayed better com-

prehension of concrete relative to abstract words. This effect

cannot be attributed to differences in frequency, semantic diversity

or co-occurrence rates, which were all controlled for in the anal-

yses. The key difference must therefore be the association of

concrete words with S-M properties. We have suggested previ-

ously that this results in concrete words developing richer semantic

representations, explaining the more preserved comprehension of

such concepts in most SD patients (Hoffman, 2016; Hoffman &

Lambon Ralph, 2011). The meanings of concrete words also tend

to be acquired earlier in life than those of abstract words

(Stadthagen-Gonzalez & Davis, 2006). This is true in the model.

Although the model is exposed to both concrete and abstract words

from “birth,” it develops representations for concrete words more

quickly because they are mapped consistently with their S-M

properties. This early acquisition also ensures that concrete words

have robust representations in the face of damage (Ellis & Lambon

Ralph, 2000), just as high frequency words do.

Another factor of potential importance is the presence of feed-

back connections from the model’s S-M units to the hub. As the

model begins to process a concrete word, it quickly activates a

strong, contextually invariant pattern of S-M activity. This emerg-

ing S-M representation feeds back into the hub layer, providing an

important additional source of constraint for the hub as it settles

into a coherent representation of the word (note that while abstract

words do come to activate some S-M information through acquired

embodiment, they do so in a weaker and more contextually varying

fashion). This feedback activation provides additional support for

the hub representations of concrete words, which partially amelio-

rates damage to this element of the network. Feedback from S-M

units to the hub may also have a beneficial effect when control

processes are impaired because it ensures that the network settles

into a state consistent with the S-M properties activated, and the

probe and target share some S-M properties.

Simulation 3: Taxonomic and Associative

Relationships in SD and SA

In Simulation 2, we explored how the model made semantic

judgments to concrete and abstract words under damage. In the

final simulation, we restricted our attention to concrete words and

considered how the model performed when different types of

semantic relationship were probed. There has long been an impor-

tant distinction made between taxonomic semantic relationships,

between items which share S-M properties, and associative rela-

tionships, between items which share few properties but which

co-occur in particular spatiotemporal contexts (Alario et al., 2000;

Lin & Murphy, 2001; Perea & Gotor, 1997; Seidenberg et al.,

1984). As our model codes semantic structure based on the inte-

gration of S-M and contextual information, it should be sensitive

to both types of relationship. We have already demonstrated that

our model’s unitary semantic space codes information about both

types of relationship. Here, we investigated the model’s ability to

make semantic judgments on the basis of association as well as

S-M similarity, when intact and under damage. Patients with SD

show similar levels of impairment when asked to match items

either on the basis of taxonomic similarity or association (Hoffman

et al., 2013a). SA patients also show similar levels of impairment

for both types of relationship (Jefferies & Lambon Ralph, 2006;
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Noonan et al., 2010). We tested the model’s ability to simulate

these patterns.

Target data. Data for taxonomic and associative semantic

decisions are taken from Hoffman et al. (2011b). For taxonomic

decisions, we took the most highly imageable trials from the

semantic judgment task described in Simulation 2. For associative

decisions, we investigated performance on the word version of the

Camel and Cactus Test (Bozeat et al., 2000). In this test, patients

were presented with the name of a concrete probe and asked to

decide which of four items was semantically related to it (e.g., does

camel go with cactus, rose, sunflower, or tree?). The target always

belonged to a different category to the probe. It is important to note

that the two tasks were designed independently and are not

matched on all factors that might influence performance (e.g.,

word frequency, number of alternatives). Nevertheless, they pro-

vide a benchmark for assessing relative levels of performance

across patient groups. Both SA and SD patients performed poorly

on both tasks (see Figure 16). Healthy control data for the Camel

and Cactus Test was reported by Bozeat, Lambon Ralph, Patter-

son, Garrard, and Hodges (2000) and for the semantic judgment

task by Hoffman et al. (2013b). These are also displayed in

Figure 16.

Test construction for simulation. For the taxonomic deci-

sions, we used the 22 concrete word trials from Simulation 2. For

the associative decisions, we constructed 22 new trials, each with

a target and three unrelated foils. The target had frequently oc-

curred alongside the probe during training (mean associative

strength � 0.039) but belonged to a different category and conse-

quently had different S-M properties. Foils also belonged to dif-

ferent categories to the probe.

Simulation Method: Procedures for Damaging and

Testing the Model Were Identical to Simulation 2

Results. The undamaged model was able to make both taxo-

nomic and associative decisions at over 90% accuracy (see Figure

16). This is comparable with performance in healthy individuals.

Patients with SA and SD were impaired for taxonomic and asso-

ciative judgments to a similar extent. In all groups, performance

was slightly worse for associative judgments, which may reflect

the fact that these judgments required selection from four alterna-

tives, rather than three. In any case, the model demonstrated a

similar pattern of behavior: Both types of damage had a similar

effect on both taxonomic and associative judgments, with poorer

performance on the whole for the associative decisions.

Discussion. In addition to matching concrete items that be-

longed to the same semantic category, the model was able to match

associated items that shared no S-M properties. This indicates that

the network’s single set of semantic representations simultane-

ously coded information about category structure, based on shared

S-M features and concept co-occurrence, as well as associative

relationships based on concept co-occurrence alone. Both types of

judgments were impaired to a similar extent under damage to

either the hub representations or control processes, mirroring re-

sults from SD and SA patients.

General Discussion

We have presented a connectionist model of semantic cognition

that represents a theoretical advance on several fronts. The starting

point for our model is the established view that semantic repre-

sentation arises from the convergence of multiple, modality-

specific sources of information on a central semantic “hub” (Lam-

bon Ralph et al., 2010, 2017; Patterson et al., 2007; Rogers et al.,

2004). In learning to map between the names of objects and their

sensory-motor (S-M) properties, the hub develops conceptual rep-

resentations which capture the underlying similarity structure

among the objects. We have significantly extended the theoretical

reach of this framework by allying it with the distributional prin-

ciple: the idea that semantic relationships can also be inferred from

the co-occurrence of words or objects in the same contexts (Firth,

1957; Griffiths et al., 2007; Jones & Mewhort, 2007; Landauer &

Dumais, 1997; Lund & Burgess, 1996; Sadeghi et al., 2015). Our

model was presented with sequences of concepts and was required

to predict which concepts are likely to co-occur with one another,

by making use of a recurrent architecture that buffers recent

experience (Elman, 1990). Under these twin pressures—to map

between words and S-M experiences and to predict which words

co-occur with one another—the system developed semantic rep-

resentations that coded the relationships between concepts based

on a fusion of S-M similarity and concept co-occurrence. This

proved to have a number of advantages:

Figure 16. Target data and model performance for Simulation 3.
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1. As in previous connectionist approaches to semantic rep-

resentation (e.g., Rogers et al., 2004), the model repre-

sents items with similar S-M properties as semantically

related to one another. In addition, by learning about the

contextual co-occurrence of items, the network also be-

comes sensitive to associative relationships between ob-

jects that have entirely distinct S-M properties.

2. Because of its adherence to the distributional principle,

the model is able to learn about abstract concepts, which

have few direct links to S-M experiences and have until

now been largely overlooked in computational models of

semantic cognition. Although the model is never explic-

itly trained to associate abstract words with S-M experi-

ences, it does come to link S-M information with abstract

words indirectly, by virtue of their association with con-

crete items. The model therefore provides a mechanism

by which the meanings of abstract concepts can become

partially grounded in the physical world. This addresses

a fundamental criticism that has often been levelled at

approaches based on the distributional principle: that they

lack grounding in S-M experience (Glenberg & Robert-

son, 2000).

3. The model’s representations are context-sensitive, allow-

ing for the multiple meanings of homonyms to be repre-

sented distinctly and, perhaps more significantly, for the

representations of all words to vary in a graded fashion

according to the particular context in which they are

being used. This is made possible by the model’s recur-

rent architecture, whereby network activity at any point

in time is influenced jointly by the identity of incoming

stimulus from the environment and by the network’s

buffered copy of its own internal state following process-

ing of the previous stimulus.

In addition to these advances regarding the nature of semantic

representation, the model breaks new ground by incorporating a

mechanism for executive regulation of activity in the semantic

system. Control processes are known to play an important role in

semantic cognition, by providing top-down influences which en-

sure that the activation of semantic information is appropriately

tailored to the current goal or context (Badre & Wagner, 2002;

Jefferies, 2013; Jefferies & Lambon Ralph, 2006; Thompson-

Schill et al., 1997). One such hypothesized control process is a

“controlled retrieval” mechanism that is thought to direct semantic

activation when automatic processing of the stimulus fails to

generate a suitable response. Earlier, we gave the example of the

concept of a bee, which might automatically bring to mind their

most common properties such as buzzing, flying, making honey,

and living in a hive. When completing a semantic task that requires

one to match bee with pollen, however, one has to go beyond these

dominant associations and focus on a specific context in which

bees act as pollinators of flowers.

For the first time, we have proposed and implemented a com-

putational mechanism for performing controlled retrieval. We

tested this mechanism using a standard semantic task, in which

participants are asked to decide which of a number of words is

related in meaning to a probe word. The controlled retrieval

mechanism ensures that the network’s activity is influenced by the

word whose meaning is being probed but also, simultaneously, by

the possible responses available. The network is constrained to

find an activation state that is consistent with both the probe word

and with one of the available responses. Through an iterative

feedback process, the network is able to discover which of the

response options is most compatible with the probe. In effect, the

model ends up “thinking about” the probe in a way that is com-

patible with one of the available options.

In Simulation 1, we tested this mechanism by probing the

model’s ability to select words related to the dominant and sub-

ordinate meanings of homonyms. We found that the model could

successfully complete the task, but that damage to the controlled

retrieval process resulted in deficits that mimicked those of pa-

tients with SA, who have impaired semantic control processes. In

Simulation 2, we investigated the differential effects of damaging

either the control processes or the model’s representational system,

again in a verbal comprehension task. Damage to these two ele-

ments produced qualitatively different patterns of impairment,

with respect to the effects of frequency, imageability, and semantic

diversity. These divergent profiles closely matched the effects seen

in patients with SA and SD, indicating that the model’s perfor-

mance under damage is consistent with the hypothesized causes of

semantic impairment in these two disorders. Finally, in Simulation

3 we found that damage to either control processes or representa-

tions had similar effects on judgments of taxonomic and associa-

tive semantic relationships, again mirroring results in patients with

SD and SA.

In this discussion, we will consider the contribution of our

model in developing a full neurocognitive theory of semantic

cognition. We will also note some areas that the model does not

address at present and consider how these might be addressed in

the future.

The Neural Basis of Semantic Cognition

There is now a large body of data concerning the network of

brain regions involved in semantic cognition (see, e.g., Binder,

Desai, Graves, & Conant, 2009). In this section, we consider how

our model fits with current perspectives on the organization of the

semantic neural network and note where it makes explicit predic-

tions about the function of this network.

Our model uses a hub-and-spoke architecture (Lambon Ralph et

al., 2010; 2017; Patterson et al., 2007; Rogers et al., 2004), which

proposes that a distributed network of specialized regions (termed

spokes) represents properties in particular sensory, motor and

linguistic modalities, while the hub develops pan-modal, general-

izable conceptual representations by virtue of its intermediary role

(for related views, see Damasio, 1989; Garagnani & Pulvermüller,

2016; Simmons & Barsalou, 2003). As our focus was on central

semantic representation, we did not attempt to represent the spoke

regions in any detail in the model. We represented S-M properties

using simple patterns over a single set of units; but in practice we

believe that this information is coded across a range of specialized

sites (see Binder & Desai, 2011; Rice, Hoffman, & Lambon Ralph,

2015). Verbal information was represented by verbal input units

and prediction units, which we propose are supported by perisyl-

vian language regions in the superior temporal cortex. We have not

attempted to specify the function of these regions in any detail;
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undoubtedly there is a great deal of acoustic and phonological

processing that is beyond the scope of our model. Other recent

connectionist models have, however, sought to specify the func-

tions of various spoke regions in a neuroanatomically constrained

fashion (Chen, Lambon Ralph, & Rogers, 2017; Ueno, Saito,

Rogers, & Lambon Ralph, 2011).

In the present work, we have focused on the structure and

function of the central hub. In recent years, the ATL has emerged

as the most likely neuroanatomical region underpinning this func-

tion. Converging evidence for the importance of this region comes

from studies observing functional activation using PET and fMRI

(Humphreys et al., 2015; Spitsyna, Warren, Scott, Turkheimer, &

Wise, 2006; Vandenberghe, Nobre, & Price, 2002), damage to this

area in SD patients (Butler et al., 2009; Mion et al., 2010),

transcranial magnetic stimulation (Pobric et al., 2007), MEG

(Marinkovic et al., 2003) and intracranial electrode recording

(Nobre, Allison, & McCarthy, 1994; Shimotake et al., 2015). In all

cases, the ATL, and in particular its ventral surface, has been

associated with the representation of multimodal semantic knowl-

edge, in line with the proposed hub function (Lambon Ralph et al.,

2017). On this view, damage to this central, pan-modal element of

the semantic system gives rise to the severe, multimodal semantic

deficits observed in SD patients (Rogers et al., 2004). To simulate

SD in our model, like Rogers et al. (2004), we damaged the hub

units. We found that the model’s verbal comprehension perfor-

mance under these conditions closely mimicked the pattern seen in

SD. This supports the view that the ATL functions as an integra-

tive representational hub, developing conceptual representations

based on inputs from multiple verbal and nonverbal modalities.

The ventral parietal cortex (VPC) is also frequently implicated

in semantic cognition though its function is less clear. Some

authors have suggested that it plays a representational role similar

to that of ATL. Specifically, it is claimed that semantic represen-

tation requires two distinct hubs (Binder & Desai, 2011; Mirman

& Graziano, 2012; Schwartz et al., 2011). One, linked with the

ATL, is thought to represent relationships between objects based

on similarity in their S-M properties. A second system, supported

by VPC, is thought to represent thematic or associative relations

between items through sensitivity to spatiotemporal co-occurrence.

Evidence for this view includes different semantic error patterns in

patients with ATL versus VPC lesions (Schwartz et al., 2011) and

activation of VPC during “combinatorial” semantic tasks that

involve extraction of a global meaning from a series of words.

These include comprehension of sentences (Friederici, Meyer, &

von Cramon, 2000; Humphries, Binder, Medler, & Liebenthal,

2006; Vandenberghe et al., 2002) and determining the conjoint

meaning of two-word phrases such as “loud car” (Graves, Binder,

Desai, Conant, & Seidenberg, 2010; Price, Bonner, Peelle, &

Grossman, 2015). However, while there is clear evidence for VPC

involvement in sentence-level processing, this area frequently de-

activates during single-word semantic processing (Humphreys et

al., 2015; Humphreys & Lambon Ralph, 2014). This suggests that

its function is distinct from that of ATL, which shows robust

activation for single-word as well as sentence-level semantics. An

alternative view holds that VPC acts as a short-term information

buffer, maintaining aspects of recent experience that may be rel-

evant to ongoing processing (Humphreys & Lambon Ralph, 2014;

Jonides et al., 1998; Lerner, Honey, Silbert, & Hasson, 2011;

Vilberg & Rugg, 2008; Wagner, Shannon, Kahn, & Buckner,

2005). On this view, VPC is important for semantic processing not

because it is a long-term knowledge store but because it stores

temporary information about recent context, which is important for

comprehension beyond the level of single words.

Our model suggests a potential way to reconcile these different

views. The implemented model is most consistent with the short-

term buffer view of VPC function, in that the context layer acts a

passive buffer that retains the previous state of the hub. This

element of the model is critical for the context-dependent process-

ing (e.g., the effects of cues in Simulation 1) but not for the

processing of single words out of context (e.g., Simulations 2 and

3, where the activity on this layer is randomized prior to every

trial).

However, one could envisage a more complex mode in which

the context layer is not simply a passive store but instead plays a

more direct role in mapping between words, S-M properties and

predictions. Crucially, in order to maintain sensitivity to prior

context, this layer would need to integrate inputs over a slower

timescale than the ATL hub.3 In this hypothetical model, the

context units would acquire representations of meaning, but they

would be sensitive to spatiotemporal statistics over a longer time-

scale than those captured by the ATL hub. As a consequence, it is

likely that they would play a disproportionate role in coding the

semantics of temporally extended events, as envisaged by the idea

of a hub for event knowledge (Binder & Desai, 2011; Mirman &

Graziano, 2012; Schwartz et al., 2011). This potential account of

VPC function is appealing for two other reasons. First, functional

neuroimaging studies indicate that VPC does respond strongly to

temporally extended streams of meaningful information (e.g., sto-

ries and movies) and, crucially, integrates information over a

longer time scale than earlier sensory processing regions (Hasson,

Yang, Vallines, Heeger, & Rubin, 2008; Lerner et al., 2011; Tylén

et al., 2015). Second, if this role is assumed to extend beyond the

semantic domain, then it provides a parsimonious explanation for

VPC involvement in other types of processing, such as episodic

memory for events and syntactic and arithmetical processing, all of

which require sensitivity to the structure of temporally extended

sequences (Humphreys & Lambon Ralph, 2014).

The final element of the model is the control processes that are

necessary for the model to select from multiple response options in

forced-choice tasks. Semantic control has been associated with a

network of regions that include inferior frontal gyrus (IFG), pos-

terior middle temporal gyrus, and the intraparietal sulcus, although

most attention has been focused on the left IFG, which displays the

most robust activation in functional neuroimaging studies (Badre

et al., 2005; Bedny et al., 2008; Noonan et al., 2013; Rodd et al.,

2005; Thompson-Schill et al., 1997; Whitney et al., 2011a, 2011b;

Zempleni et al., 2007). Within the IFG, a division of labor has been

proposed, whereby the most anterior portion (pars orbitalis, also

known as Brodmann Area 47) is specialized for cognitive control

during semantic processing while the posterior section (pars trian-

gularis and opercularis or BA 44/45) has a domain-general role in

response selection, which extends beyond semantics to other lin-

guistic and nonlinguistic domains (Badre et al., 2005; Gold et al.,

2006). This is supported by the structural connectivity of the

region. BA47 has direct connections with the ATL hub region via

3 We are grateful to David Plaut for this suggestion.
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the uncinate fasciculus while BA 44/45 demonstrates a broader

pattern of connectivity with temporal and parietal regions (Binney,

Parker, & Lambon Ralph, 2012). Badre and colleagues have pro-

posed that these regions perform distinct roles in semantic control

(Badre et al., 2005; Badre & Wagner, 2002, 2007). BA47 is

thought to regulate activity in the semantic system through top-

down controlled retrieval. In contrast, BA 44/45 is thought to be

responsible for resolving competition between possible responses

postretrieval. While the second process might govern behavior in

a range of cognitive domains, the first appears to be more specific

to semantic processing.

Our model makes specific predictions about the role of BA47

during semantic processing. If this region is responsible for con-

trolled retrieval, we would expect it to be exhibit functional con-

nectivity with the ATL during semantic tasks, reflecting its top-

down influence on the activation of hub representations.

Furthermore, this connectivity should be strongest when partici-

pants are required to activate nondominant or weak aspects of

semantic knowledge. It is also important to note that we imple-

mented semantic control as a two-stage process. We focused

mainly on implementing a mechanism for controlled retrieval but

we also included a stochastic response selection stage. To simulate

SA, we disrupted both elements because the lesions that give rise

to this condition typically encroach on both the anterior and

posterior parts of IFG (Hoffman et al., 2010; Noonan et al., 2010).

However, the model predicts that multiple, neuroanatomically

distinct processes contribute to semantic control and this predic-

tion could be tested by using TMS to disrupt the function of

anterior versus posterior IFG. Finally, we note that some patients

show impaired ability in controlled retrieval (i.e., poor ability to

match weakly related concepts), despite having no damage to IFG

(Noonan et al., 2010; Thompson, 2012). The deficit in these cases

appears to arise from damage to the posterior components of the

semantic control network. The function of these regions is poorly

understood and is an important target for future investigations.

Future Directions

In this final section, we discuss aspects of semantic processing

that the model does not address at present and consider how these

might be captured under our approach. One important aspect of

language processing not currently addressed is the acquisition of

syntax. Our model is presented with sequences of co-occurring

nouns but has no exposure to other parts of speech, or indeed to

event structure or other aspects of sentence processing. It is im-

portant to note this characteristic is shared with many of the

existing models from the two modeling traditions that inspired the

current project. Computational models of object semantics typi-

cally focus exclusively on the representations of individual object

concepts (e.g., Chen et al., 2017; Devlin, Gonnerman, Andersen, &

Seidenberg, 1998; Dilkina et al., 2008; Farah & McClelland, 1991;

Plaut, 2002; Rogers et al., 2004; Schapiro et al., 2013; Tyler et al.,

2000). Likewise, statistical models based on the distributional

principle have often taken a “bag of words” approach that takes

into account the propensity for words to occur in proximity to one

another but disregards the order in which they occur (though some

models have taken word order into account; Griffiths, Steyvers,

Blei, & Tenenbaum, 2004; Jones & Mewhort, 2007). Taking our

cue from these approaches, we restricted the model to processing

noun sequences. This approach has been sufficient to provide a

good fit to our target neuropsychological data, which concerned

comprehension of individual words rather than sentences. Clearly,

however, it is a gross oversimplification of language use in the real

world. Many of the relationships between concepts are structured

in terms of the roles they play in events, and these can be inferred

from syntactic structure but not from mere co-occurrence. For

example, mugs and glasses share many properties and this allows

them to play similar roles in drink-making event sequences, to the

extent that one can usually be substituted for the other. Mugs and

coffee, on the other hand, frequently co-occur in the same context

but they play different roles and, relatedly, have very different

properties. Our model’s failure to take this information into ac-

count could result in “illusory feature migrations,” whereby prop-

erties of mugs are incorrectly generalized to coffee simply because

they occur in the same contexts (Jones & Recchia, 2010). Similar

constraints apply to the understanding of abstract words. For

example, the words journey and distance have distinct meanings,

despite frequently occurring in similar contexts, because they play

different roles in the contexts in which they are used (one can

measure the distance of a journey, but not the journey of a

distance).

That said, there is no reason in principle why our model could

not acquire representations that incorporate syntactic and role-

based information, if trained with an appropriately structured cor-

pus. Recurrent architectures of the kind we have used to represent

context have been applied extensively to the study of sentence

comprehension (Elman, 1990; St. John & McClelland, 1990). Such

models readily acquire syntactic knowledge through sensitivity to

statistical regularities in temporal structure. For example, a simple

recurrent network presented with sentences will learn rapidly that

verbs are typically followed by nouns and will represent these two

classes as highly distinct from one another (Elman, 1990). We

therefore see the present work as an important advance toward a

model that extracts semantic information from full sentences while

simultaneously binding this sequential statistical information with

S-M experience.

A second simplification in the model concerns the representa-

tional basis of abstract words. We have adopted the most clearly

articulated position in the literature: that knowledge of concrete

and abstract words can inferred through their use in language, but

only concrete words are directly associated with aspects of non-

verbal S-M experience (Barsalou et al., 2008; Paivio, 1986). In

addition, recent studies have indicated that the abstract-concrete

continuum contains multiple underpinning distinctions and dimen-

sions (Leshinskaya & Caramazza, 2016; Vigliocco et al., 2014).

These include the fact that a set of abstract words are more

strongly associated with emotional arousal than concrete words

(Kousta et al., 2011; Vigliocco et al., 2014). Thus, it is likely that

the representations of some abstract words are shaped not only by

their linguistic use but by their association with particular emo-

tional states, just as concrete words are associated with particular

S-M experiences. Another subset of abstract words appears to be

linked closely with representations of spatial and temporal mag-

nitude (Troche, Crutch, & Reilly, 2014). These other potential

influences on abstract word comprehension are not included in our

model. However, the hub-and-spoke framework could potentially

accommodate such influences by assuming that spoke regions that

code emotional states and representations of magnitude also influ-
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ence the development of conceptual representations in the hub

(Binney, Hoffman, & Lambon Ralph, 2016; Rice et al., 2015).

Indeed, the ATL hub region has direct structural connections with

parts of the limbic system involved in emotion processing (Binney

et al., 2012; Von Der Heide, Skipper, Klobusicky, & Olson, 2013).

The effects of such additional sources of information on the

organization of the semantic space is an interesting question that

awaits investigation.

We also note that our model was not intended to test specific

predictions about the timing of semantic processes. Although the

cognitive neuroscience of semantic cognition has tended to focus

on its spatial distribution throughout the brain, EEG and MEG

studies provide complementary information on the timing of con-

tributions from different regions. These suggest that ATL hub

regions become activated as early as 200-ms postonset in lexical-

semantic tasks (Chen, Davis, Pulvermüller, & Hauk, 2015; Hauk,

2016; Marinkovic et al., 2003), which is consistent with the cen-

tral, intermediary role played by the hub in the model. Other

studies suggest that the processing of words engages distributed

linguistic information more rapidly than it does S-M representation

(Barsalou et al., 2008). Although our model does not make specific

predictions about timing, we believe that connectionist approaches

more generally are well-suited to addressing these challenges,

particularly those that have adopted neurally plausible activation

dynamics (Blouw et al., 2015; Laszlo & Plaut, 2012).

Finally, we note that our treatment of semantic control has

focused on one particular aspect, controlled retrieval. This is a

critical ability because it allows individuals to identify connections

between concepts which may initially appear unrelated. We tested

this ability in a task which participants were asked to identify weak

semantic relationships from various presented alternatives. But

what value does such a process have in the real world, in which the

alternatives are not so neatly presented? Our view is that when we

encounter ambiguous stimuli, there are often multiple cues avail-

able, either in the environment or retrieved from our existing

knowledge, that could potentially disambiguate the stimulus. Con-

trolled retrieval is useful in finding the appropriate cue to aid our

understanding. Imagine, for example, that you come across a

friend in a supermarket while he is in the middle of a conversation

with another acquaintance. You hear your friend say “I’m worried

about its bark.” How do you make sense of this statement, without

having heard the rest of the conversation? One possibility is that

relevant constraining information is available among the items in

your friend’s shopping basket. The presence of dog food could

direct the semantic system toward one interpretation of bark, while

the presence of weed killer would push the system toward a

different interpretation. In other cases, the disambiguating infor-

mation might be retrieved from memory. For example, if one of

the salient facts you know about your friend is that they own a dog,

this could serve as the additional information that drives the

semantic system toward the relevant part of semantic space. In

both of these examples, the disambiguating cues must be selected

from a wide range of potentially relevant information. This, we

believe, is the value of controlled retrieval in everyday life: for

identifying which pieces of information cohere with one another,

thus helping us to make sense of a complex world.

This mechanism may also be useful in the processing of meta-

phors and analogies. Although analogical reasoning was not a

specific target of our model, a recent connectionist model has

accounted for impairment in this domain in prefrontal and anterior

temporal patients, using similar basic principles (Kollias & Mc-

Clelland, 2013). In Kollias and McClelland’s (2013) model, com-

pletion of verbal analogy problems (e.g., Puppy is to dog as kitten

is to what?) hinged on the ability of the network to process all of

the elements of the problem simultaneously. Prefrontal damage in

the model was simulated by preventing the network from consid-

ering all parts of the problem together, much as the removal of

controlled retrieval in our model prevented the semantic hub from

being influenced by all possible response options. More generally,

comprehension of novel metaphors (e.g., the classroom was a zoo)

requires people to identify which aspect of meaning from the

metaphor’s source can be cogently applied to the target. This

constrained search for a shared aspect of meaning is precisely the

function of the controlled retrieval mechanism. Thus, while a

detailed consideration of metaphor is beyond the scope of the

current model, the approach to semantic control we have outlined

may have some utility in this domain.

Although controlled retrieval is an important tool in many

situations, we also believe that other control processes make im-

portant contributions to semantic cognition. Many tasks require

inhibition of prepotent associations to direct attention to specific

aspects of meaning. As discussed earlier, these goal-driven biases

may be achieved through the influence of representations of task

set on activity in the semantic system (e.g., Dilkina et al., 2008;

Plaut, 2002). We have also not attempted to specify in detail the

processes involved in response selection, which is a particular

source of difficulty for patients with SA. The degree to which these

different elements of semantic control rely on unitary versus

diverse neural substrates is unclear at the present time. Only by

investigating the underlying mechanisms will we be able to de-

velop a unified theory of semantic cognition that addresses not

only the representation of semantic knowledge but also its appro-

priate use.
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