
Concepts extraction from unstructured Polish texts:
a rule based approach

Piotr Szwed
AGH University of Science and Technology

E-mail: pszwed@agh.edu.pl

Abstract—We present recently developed solution allowing
extraction of concepts from unstructured Polish texts with special
focus on correct morphological forms of obtained concept names.
As Polish is a highly inflected language, detected names need to
be transformed following Polish grammar rules. We propose a
user-friendly method for specification of transformation patterns,
which is based on a simple annotations language. Annotations
prepared by a user are compiled into transformation rules.
During the concept extraction process the input document is
split into sentences and the rules are applied to sequences
of words comprised in sentences. Recognized strings forming
concept names are aggregated at various levels and assigned with
scores. We report also results of initial experiments performed
on a medical text.

Index Terms—NLP, Text Mining, concept extraction, unstruc-
tured text, inflection, rules

I. INTRODUCTION

I
N THIS PAPER we investigate the problem of concepts
extraction from unstructured Polish texts. The term concept

is defined here as a sequence of words (an n-gram) occur-
ring frequently in analyzed documents. However, as primary
function of concepts is to represent objects, ideas, events or
activities, extracted names should comprise words belonging
to specific parts of speech classes (usually nouns or verbal
nouns with complements) and also satisfy certain syntactical
restrictions stemming from language conventions.

Concepts retrieved from unstructured textual data have
several applications. Their usage improves relevance of doc-
uments returned by search queries due to more accurate
indexing and clustering. They may help to assure data privacy
by identifying sensitive information and removing it from
published texts (documents anonymization). Models based on
concepts can be used to express and structure knowledge
existing within an organization, which is often distributed
between large number of documents of various types: e-mails,
reports or internal regulations.

The goal of our work was to develop a tool allowing to
extract referenced concepts from documents in Polish lan-
guage. The key assumption made was that concept names
should have correct morphological forms according to Polish
grammar rules. Such feature was selected due to aesthetic
reasons (in various applications concept names are presented to
end users), as well as the expectation that in many situations
using the correct form may improve sense disambiguation.
Hence, the designed solution, apart from identifying concepts,
should provide automatic translation of n-grams representing

concepts to their nominative form. This task is particularly
challenging for the Polish language, which is characterized by
the high degree of inflection.

We decided to apply a rule based approach to perform
transformation of concept names. The rule language, inspired
by Petri nets, allows to define patterns of input tokens and
required transformations. For this purpose part of speech
(POS) information is used. Considering the complexity of
POS tags, specification of rules may be a complicated and
tedious task. We build the translation rules fully automatically
by defining samples of translation patterns (annotations) and
compiling them to rules.

The paper is organized as follows: next Section II discusses
the problem of concept extraction, as well as several tools
dedicated to Polish language processing. It is followed by
Section III, which presents general features of our approach.
Next Section IV describes shortly Morfologik, a dictionary
and POS tagging/lemmatizing library. In Section V we discuss
models, algorithms and other details of the solution. Results of
initial experiments are given in Section VI. Last Section VII
provides concluding remarks.

II. RELATED WORKS

Ontology learning is a process of building ontologies from
various data representations. It includes such tasks as identi-
fication of concepts, their relations and attributes, arranging
into hierarchies. Such task is apparently easier in the case
of structured or semi-structured data. A challenging problem,
however, is building ontologies (usually taxonomies) com-
prising concepts extracted from unstructured text documents
[14]. For this purpose various text mining techniques can be
used: syntactical analysis, Formal Concept Analysis [4] and
clustering [7].

Concepts (sometimes also referred as compound terms or
phrases) are important features used in Text Mining [23].
Compound terms processing is a technique aiming at im-
proving accuracy of search engines by indexing documents
according to compound terms, i.e. combinations of 2 or more
single words. During query execution searched compound
terms are also extracted form queries (which can be phrases
in natural language) and then matched with compound terms
attributed to documents. A good example can be a compound
term “table wine”. A document referencing it is more likely
to discuss wines, than pieces of furniture. Such approach
outperforms solutions that use in queries keywords combined

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 355–364

DOI: 10.15439/2015F280
ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 355

with boolean operators. The idea of statistical compound terms
processing was proposed and commercialized by Concept
Search company [5]. On the other hand, a syntactical technique
based on rules defining patterns for various European lan-
guages was developed within CLAMOUR project (see reports
at http://webarchive.nationalarchives.gov.uk/20040117000117/
http://statistics.gov.uk/methods_quality/clamour/default.asp).

In [9] Dalvi, Kumar et al. from Yahoo Labs. coined an
idea of a web of concepts. They claimed that the current
model of the web in form hyperlinked pages represented by
bags of words should be augmented by extracting concepts
and creating a new rich view of all available resources for
each concept instance. The paper discussed several use cases
enabled by the new approach, including: more accurate web
search, browsing optimization, session optimization and ad-
vertising. The paper also indicated several challenges, related
mainly to information extraction, potential uncertainty and
changing data. An algorithm for concept extraction following
this idea was proposed in [20].

Blake and Pratt [2] used automatically retrieved concepts
to build searchable representations of medical texts. In [3]
authors also extracted ontologies from medical texts and
showed that using concepts improves search results.

Osinski and Weiss described Lingo, a concept driven docu-
ment clustering algorithm [19]. Concepts (frequent sequences
of terms), were used to label clusters in a document-term
matrix.

An important task in NLP language classification is tagging,
i.e. assigning part of speech (POS) information to inflected
forms of words. This is a challenging task for a highly inflected
languages like Polish. According to [1] words in English
language can be described with about 200 tags whereas for
Polish their number ranges at 1000.

In our work we used Morfologik stemming library [17],
which is discussed in detail in Section IV. The software and
the dictionary was used in several projects including Language
tool [18], carrot search [19], PSI toolkit [10], PELCRA [21]
and Smyrna [11]. Morfologik dictionary was integrated as a
part of PoliMorf [27].

Language tool [18], [16] is a proofreading program sup-
porting a number of languages including Polish. It allows to
define text correction rules referring to explicit token values,
lemmatized words and part of speech tags. Rules can be
specified either in XML format or written directly as Java
classes. The tool provides also a visual rule editor, which
allows to construct a rule in an interactive manner. As the rules
yield suggestions, their core functionality is somehow similar
to the concepts extraction rules described in this paper.

III. TOWARDS POLISH CONCEPTS EXTRACTION

Concepts are terms denoting sets of objects sharing common
properties. The most general concepts are represented in texts
as single nouns (referring to tangible or abstract objects) and
verbal nouns describing actions. Examples of both types can
be a car (a tangible object) or driving (an action). Subclasses

of general concepts are usually represented by various com-
plements, e.g. a green car (a car having the green color) or car

driving (an action performed on a specific type of vehicle).
Hence, concepts in texts are represented by n-grams (se-

quences of tokens), whose elements satisfy grammar rules
related to correct words ordering and their morphological
forms. The rules are language specific; this in particular
applies to the Polish language, in which the complements can
be declined depending on the noun case, e.g. for the green
car: zielony samochód (Nominative), zielonego samochodu

(Accusative), zielonemu samochodowi (Dative), etc.
Table I gives examples of several sentences and concepts

identified in a supervised manner. Underlined words indicate
parts of concept names denoting their superclasses, e.g. szybki

samochód ⊏ samochód. (The English equivalent is: FastCar

⊏ Car).
The concepts listed in Table I constitute typical parts

of speech combinations: adjective+noun (szybki samochód,
słone jezioro, mały ludzik), nount+noun (architektura systemu,
hurtownia danych) or verbal noun+noun (leczenie pacjenta,
zbieranie informacji). They appear in source sentences as
sequences of tokens that after identifying them should be
transformed into appropriate nominative forms following the
language grammar rules, especially, as regards noun com-
plements. In most cases concepts occur in distinct parts of
sentences, however sometimes they may overlap, e.g three
concepts can be selected for the entry 6 in the table. Similarly,
for the entry 10 showing two adjectives separated by a coma
and a noun, three concepts forming a small taxonomy are
possible:

• mały ludzik ⊏ ludzik

• zielony ludzik ⊏ ludzik

• mały zielony ludzik ⊏ mały ludzik ⊓ zielony ludzik

A. Rule based approach

The proposed approach to concept extraction consists in
defining rules that search for selected patterns in an input
text, then apply appropriate morphological transformations to
matched words in order to obtain correct forms of concepts.

This is shown in Fig. 1. A window having the length equal
to size of a rule input pattern slides through the input text.
Sentences are the natural boundaries for the analysis, i.e. the
window stops at the sentence end.

If the rule is applicable for a current n-gram appearing in
the window, a set of output sequences of tokens is produced.
They constitute candidates for concepts, that can be further
analyzed and aggregated according to various attributes: sen-
tences, where they occurred, frequency in the whole document,
weights describing confidence, etc.

B. Specification of rules - learn by example

Selection of the language used to specify extraction rules is
an important decision, as the language capabilities have strong
impact on both on the process on rules definition and obtained
results. In our approach we decided to define rules in a semi-
formal way, by giving samples of expected translations rather

356 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE I
IDENTIFICATION OF CONCEPTS IN SENTENECES AND EXAMPLES OF ANNOTATIONS.

Sentence Concept Annotation Function

1. Jeżdżę szybkim samochodem. szybki samochód @(szybki samochód = szybki
@samochód)

extract noun + verb

2. Morze Kaspijskie jest jeziorem

słonym.
słone jezioro @(jeziorem słonym = słone @jezioro) inversion + Instrumental → Nom-

inative

3. Leczenie pacjenta przebiegało
bardzo wolno.

leczenie pacjenta @(leczenie pacjenta = @leczenie pac-
jenta)

extract verbal noun + complement

4. Opracowałem architekturę

systemu.
architektura systemu @(architekturę systemu = @architektura

systemu)
Accusative → Nominative

5.
Rozwojowi rolnictwa towarzyszyło
zanikanie lasów.

rozwój rolnictwa @(rozwojowi rolnictwa = @rozwój rol-
nictwa)

Dative → Nominative

zanikanie lasów @(zanikanie lasów = @zanikanie lasów) extract verbal noun + complement
in plural form

6.
Następnie poświęcił się zbieraniu

informacji o losach misjonarza.
zbieranie informacji @(zbieraniu informacji = @zbieranie in-

formacji)
Dative → Nominative

los misjonarza @(losach misjonarza = @los misjonarza) Locative plural → Nominative
sing.

6.
Obecnie coraz częściej stosowane
są zwinne metodyki zarządzania

projektami informatycznymi.

zwinna metodyka @(zwinne metodyki = zwinna
@metodyka)

Nominative plural → Nominative
sing.

metodyka zarządzania @(metodyki zarządzania = @metodyka
zarządzania)

Nominative plural → Nominative
sing.

zarządzanie projektami
informatycznymi

@(zarządzania projektami
informatycznymi = @zarządzanie
projektami informatycznymi)

Accusative → Nominative

8.
Hurtownie danych stanowią
osobną klasę systemów

informatycznych.

hurtownia danych @(hurtownie danych = @hurtownia
danych)

Nominative plural → Nominative
sing.

system informatyczny @(systemów informatycznych = @sys-
tem informatyczny)

Genitive plural → Nominative
sing.

9.
Małe, zielone ludziki rozłożyły się
u podnóża dębu.

zielony ludzik @(zielone ludziki = zielony @ludzik) Nominative plural → Nominative
sing.

podnóże dębu @(podnóża dębu = @podnóże dębu) Locative → Nominative

10. Małe, zielone ludziki rozłożyły się
u podnóża dębu.

mały ludzik, zielony
ludzik, mały zielony
ludzik

@(małe $, zielone ludziki = mały
@ludzik | zielony @ludzik | mały zielony
@ludzik)

Nominative plural → Nominative
sing.

Rule

...

input text

sliding window

Concepts

Fig. 1. General rule design

than using formally defined rules. The translation patterns are
defined using special, relatively simple textual annotations that
can be embedded in a source text or placed in a separate file.

The third column of Table I gives examples of annotation
matching the identified concepts. Each annotation starts with
‘@’ (at sign) followed by the annotation body put between two
parentheses. The ‘=’ sign separates the input pattern and a list

of output sequences, whereas ‘|’ is the output sequence sepa-
rator. Optional ‘@’ sign within an output sequence identifies
a key, i.e. a possible concept superclass.

The last column of Table I specifies the expected func-
tion for each annotation example. Usually, annotations define
transformations of declination cases and plural forms, which
according to Polish grammar rules should be applied both
to nouns and their complements. However, they may be
used to specify extraction patterns only, not accompanied by
morphological transformation. Examples are given in rows 1,
3 and 5.

It should be remarked that, basically, annotations do not
specify exact matches of words (for an exact match the dollar
sign is used as in row 10). The intent of annotations is to spec-
ify indirectly rules applicable to classes of tokens. For example
a rule derived from the annotation @(zwinne metodyki

= zwinna @metodyka) (agile methodologies → agile
methodology) in row 6 of Table I applies to feminine nouns
in plural form with an adjective. Hence, it should match also
the pair of words, which are tagged with the same POS
information, e.g. długie wstążki (long ribbons), and properly

PIOTR SZWED: CONCEPTS EXTRACTION FROM UNSTRUCTURED POLISH TEXTS: A RULE BASED APPROACH 357

convert it to the singular form długa wstążka.
An advantage of the proposed indirect method of rules spec-

ification is its simplicity: translation patterns can be defined
very quickly, moreover, specifications are not bounded to a
particular rule language or execution engine. Depending on
a compiler used, rulsets in various rule languages can be
obtained.

In many cases defined translation patterns may result in
conflicting rules. Let us consider the following annotations:

1) @(hurtowniom danych=@hurtownia

danych)

2) @(grubościom pokryw=@grubość pokrywy)

The first translation results in a noun having a complement
in plural form, whereas int the second case the complement is
singular. However, they both represent valid transformations.
To tackle with such problems the language used to represent
rules should allow to attribute results with weights representing
likelihood of concept occurrence.

C. Process of concept extraction

The outline of the process of concept extraction is presented
in Fig. 2. A text file containing manually prepared annotations
is compiled yielding a set of rules stored in an XML file.
The input text is split into sentences and then the rule set
is executed for each sentence giving candidate concepts.
Finally, the concept occurrences are aggregated and sorted.
As different rules may return identical results, the aggregation
is at first performed at the sentence level, then for the whole
document.

Annotations Input text

Compilation

RuleSet

RuleSet

Execution

Concept

candidates

Aggregation

Concepts

Splitting

Sentences

Fig. 2. Process of concept extraction

IV. MORFOLOGIK

During annotations processing and rules execution input
words are checked for specific part of speech properties

and undergo morphological transformations. This function is
provided by the Morfologik.

Morfologik is both a a comprehensive dictionary of Polish
inflected forms and a software library written in Java accom-
panied by a number of utility tools. The main function offered
by the Morfologik is stemming (lemmatization) of Polish
words, i.e. finding a stem (lemma) accompanied by grammar
information for an inflected form. Examples of inflected forms
and corresponding stems can be: psu – pies (noun: dog),
czystego – czysty (adjective: clean) or pisaniu – pisać (verbal
noun writing and verb: to write).

Morfologik dictionary can be seen as a relation

D ⊂ IF × S × P, (1)

where IF is a set of inflected forms, S is a set of stems,
S ⊂ IF , and P is a set of POS tags defining properties of
inflected forms (part of speech, gender, singular vs. plural,
declination case, etc.)

A few entries from the Morfologik dictionary are shown
in Table II. It can be observed that several stems may be
found for an inflected form, e.g. czarnym – czarna, czarny.
Moreover, pairs of inflected forms and stems can be attributed
with multiple tags (separated with ‘+’ sign).

A tag is a string of symbols (usually abbreviations) sepa-
rated by colon signs. Examples in the table show typical tag
elements: subst – noun, adj-adjective, ger–verbal noun, sg–
singular, pl –plural, nom, gen, dat, acc, inst, loc – declination
cases. For a given part of speech class, tag components appear
in the same order. In some cases multiple symbols separated
by dot sign may occur, e.g. “m1.m2” - various classes of
masculine forms.

Based on the Morfologik dictionary scheme two functions
can be defined: stem (2) and synth (3). The first takes as input
an inflected form and returns a set of stems with accompanying
tags, the second synthesizes inflected forms from an input stem
and tag.

stem : IF → 2S×P (2)

synth : S × P → 2IF (3)

Morfologik fully supports stemming. The library uses in-
ternally an efficient dictionary representation based on Fi-
nite State Machine (FSM) model, which is characterized by
compact data size and short access times [8]. The current
Morfologik dictionary for the Polish language (version 2.0)
constitutes a large 317 MB text file, whereas the same data
compiled to FSM are stored in 2.7 MB binary file. The
precompiled dictionary is a part of Morfologik distribution,
however, the library offers also a number of awk scripts to
preprocess the dictionary data, as well as tools allowing to
compile it into FSM.

Unfortunately, the synthesizing function is not provided di-
rectly by the library, although the documentation suggests that
it is possible to rebuild (revert) the dictionary and recompile
to FSM form. As the guidelines for implementing an FSM

358 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE II
SAMPLE ENTRIES FROM THE MORFOLOGIK DICTIONARY.

IF - inflected
form

S – stem
(lemma)

P - part of speech tags

czarnym czarna subst:pl:dat:f
czarny adj:pl:dat:m1.m2.m3.f.n1.n2.p1.p2.p3:pos

+adj:sg:inst:m1.m2.m3.n1.n2:pos
+adj:sg:loc:m1.m2.m3.n1.n2:pos
+subst:pl:dat:m1+subst:sg:inst:m1+subst:sg:loc:m1

czystego czysty adj:sg:acc:m1.m2:pos+adj:sg:gen:m1.m2.m3.n1.n2:pos
psu pies subst:sg:dat:m1+subst:sg:dat:m2
pisaniu pisać ger:sg:dat.loc:n2:imperf:aff:refl.nonrefl

pisanie subst:sg:dat:n2+subst:sg:loc:n2

based synthesizer seemed quite difficult to follow, we left this
possibility for further improvements. Instead, we developed a
synthesizing function, which uses the dictionary data stored in
a local PostgreSQL database. It was populated with 288657
stems, 1173 tags broken on plus (+) signs and 7410145 triples
comprising inflected forms, stems and tags.

The implemented synth(s, p) function comprises two steps:

1) A query to the database is made to select a set of triples
matching the stem s. As the query result set IFT =
{(if, s′, p′) ∈ D : s′ = s} is returned. The set is usually
small, in most cases it contains up to 30 entries.

2) From the triples in IFT a set of inflected forms IF =
{if : (if, s′, p′) ∈ IFT ∧ match(p, p′)} is selected,
whose tags p′ match p. The match(t, t′) function takes
into account order of symbols appearing in tags, as well
as alternate properties indicated by the dot separator.

The time efficiency of the implemented synth function is
obviously inferior to the stem function offered by Morfologik.
Single call to stem (based on FSM representation) takes
about 0.085 ms, whereas synth (based on database queries)
ranges to 0.75 ms. It should be remarked that we have also
implemented an ORM version of synth . In this case the
execution time is about 1.25 ms.

V. METHODS

The language used to define rules is based on Petri nets.
Each rule comprises ordered sets of input and output places,
which are linked by transitions.

Fig. 3 gives an example of the rule comprising three
input places, three output places and four transitions. Multiple
transitions, here t1 and t2 may link a pair of input and output
places. The net layout shows also, how inversion of tokens
can be achieved.

Each rule transition is assigned with two sets of tags: input
itag and output otag. Input tags are used as guards, they allow
check if the transition applies to a word tagged with part of
speech information. Output tags are used to synthesize target
inflected form from a word stem (lemma). Additionally, each
transition has assigned weight, that can be used to differentiate
less and more likely translation schema.

Below we give a formal definition of the language used to
define rules.

in#1 in#2 in#3

out#1 out#2 out#3

input places

transitions

output places

sequence

of words

Rule

t1 t2 t3 t4

Concepts

Fig. 3. Detailed rule design

Definition 1. Concept extraction rule is a tuple R =
(P, I, O, T, itag, otag, itoken, µ), where:

• P is a set of tags
• I = {i1, i2, . . . , in} is an ordered set of input places,
• O = {o1, o2, . . . , om} is an ordered set of output places,
• T ⊂ I × (O ∪ {nil}) is a set of transitions,
• itag : T → 2P is a function assigning to a transition a

set of input tags,
• otag : T → 2P is a function assigning to a transition a

set of output tags,
• itoken : I → A is a function assigning to an input place

an exact (possible empty) string form A
• µ : T → [0, 1] is a transition weight function

The symbol nil used in transition definition denotes a
fake output place. It is used when a transition serves as a
guard allowing to check if an input place contains a word
appertaining to a particular class without translating it. The
itoken function is used to assign particular token values
to input places. They result from compilation of ‘$’-token
specifications in input annotations (see Table I row 10).

PIOTR SZWED: CONCEPTS EXTRACTION FROM UNSTRUCTURED POLISH TEXTS: A RULE BASED APPROACH 359

A. Compiling annotations to rules

An annotation defining multiple outputs @(σ =
π1|π2| . . . |πk) is split into k rules corresponding to
annotations @(σ = π1), @(σ = π2),. . . , @(σ = πk).
(Symbols σ and π stand here for input and output sequences
of words.

For an annotation @(σ = π), n input places and m output
places are created, where n and m denote the lengths of σ

and π respectively.
Then each word in sequences σ and π is stemmed and

transitions between input and output places are derived based
on stem matching.

Fig. 4 illustrates this process on an example of
annotation @(informacji przetwarzaniu =

@przetwarzanie informacji). The equivalent
English term is information processing. The annotation
defines a translation pattern that includes inversion and
changing the case of the whole expression from Dative to
Nominative form.

Rounded rectangles depict words appearing in the input
sequence σ (above) and output sequence π (below). For each
word in the sequence the stemming information is determined
with Morfologik stem function. It consists of a stem (lemma)
and a set of tags. The word informacji is classified as the
noun informacja tagged as singular or plural form with various
declination cases (see the first transition in Fig. 5 for details).
The stemming information for przetwarzanie(u) gives two
options: it is either a noun przetwarzanie (Eng. processing)
or a verbal noun (tagged by Morfologik as ger) derived from
the verb przetwarzać (Eng. to process).

Hence, by performing stem/tags matching three transitions
are created (indicated by arrows in Fig. 4): one for places
corresponding to the mapping informacji → informacji and
two for przetwarzaniu → przetwarzanie. XML code for the
resulting rule is presented in Fig. 5.

informacji przetwarzaniu

przetwarzanie informacji

przetwarzanie

noun (subst...)

informacja

noun (subst...)

przetwarzać
verbal noun (ger…)

przetwarzanie

noun (subst...)

przetwarzać
verbal noun (ger…)

informacja

noun (subst...)

input sequence (σ)

output sequence (π)

stemmed words

from σ

stemmed words

from π

Fig. 4. Translation of annotation @(informacji przetwarzaniu =

@przetwarzanie informacji)

It is expected that rules obtained as results of the annotations
compilation satisfy the following conditions:

• Each output place is a target of a transition:
∀o ∈ I.∃t = (is, oe) ∈ T : o = ee

• All transitions leaving an input place must target the same
output place:
∀t1 = (i1, o1), t2 = (i2, o2) ∈ T.i1 = i2 → o1 = o2

If the compilation returns a rule, which does not satisfy the
above conditions, the source annotation is reported as ambigu-
ous. Obviously, with the presented translation algorithm it is
not possible to compile such annotation as @(danym danym

= dane @dane) although it can be quite easily interpreted
as given data.

To our consolation, statistical translation functions of
Google Translate (as of 2015) also have problems in this
case: danym danym is translated to given the, wheras dane

dane to data data. However, after specifying the input n-gram
explicitly, i.e entering “dane dane” the correct form given

data is returned.

 <rule id="r:13" weight="1.0">
 <source>@(informacji przetwarzaniu = @przetwarzanie informacji) @line:34</source>
 <inputPlaces>
 <inputplace isExact="false" ord="0">
 <transitions>
 <transition target="op:30" isGuard="false" weight="1.0">
 <inputTags>
 <intag>subst:pl:gen:f</intag>
 <intag>subst:sg:gen:f</intag>
 <intag>subst:sg:dat:f</intag>
 <intag>subst:sg:loc:f</intag>
 </inputTags>
 <outputTags>
 <outtag>subst:pl:gen:f</outtag>
 <outtag>subst:sg:gen:f</outtag>
 <outtag>subst:sg:dat:f</outtag>
 <outtag>subst:sg:loc:f</outtag>
 </outputTags>
 </transition>
 </transitions>
 </inputplace>
 <inputplace isExact="false" ord="1">
 <transitions>
 <transition target="op:29" isGuard="false" weight="1.0">
 <inputTags>
 <intag>subst:sg:loc:n2</intag>
 <intag>subst:sg:dat:n2</intag>
 </inputTags>
 <outputTags>
 <outtag>subst:sg:nom:n2</outtag>
 <outtag>subst:sg:acc:n2</outtag>
 <outtag>subst:sg:voc:n2</outtag>
 </outputTags>
 </transition>
 <transition target="op:29" isGuard="false" weight="1.0">
 <inputTags>
 <intag>ger:sg:dat.loc:n2:imperf:aff:refl.nonrefl</intag>
 </inputTags>
 <outputTags>
 <outtag>ger:sg:nom.acc:n2:imperf:aff:refl.nonrefl</outtag>
 </outputTags>
 </transition>
 </transitions>
 </inputplace>
 </inputPlaces>
 <outputPlaces>
 <outputplace id="op:29" ord="0" isKey="true"/>
 <outputplace id="op:30" ord="1" isKey="false"/>
 </outputPlaces>
 </rule>

Fig. 5. A rule in XML format

B. Execution of rules

As the described rules (see Definition 1) follow the Petri
net approach, to define their execution such notions as tokens
and marking are necessary. The set of tokens TK is defined as
TK = IF×S×P×R0+. (See also formula 1.) Components of
a token tuple (if, s, p, w) ∈ TK are the following: if denotes
an inflected form, s is a stem, p is a part of speech tag and w

is a non-negative weight.

Definition 2 (Marking). Marking for a rule R =
(P, I, O, T, itag, otag, itoken, µ) is defined as a function that

360 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

assigns sets of tokens to places M : I ∪O → 2TO

Before executing rules, each word in an input sequence π =
(πi) is submitted to Morfologik stem function (see formula
2) and corresponding sequence of stemming information is
obtained ρ = (ρi), where ρi ∈ 2S×P . Hence, πi is an input
inflected form of a word and ρi a set of possible stem–tag
combinations for πi.

Execution of a rule comprises the following steps:
1) Input places are filled with tokens starting from position

b in sequences π and ρ (b defines the beginning of the
sliding window). Each k-th input place receives tokens
from πb+k and ρb+k. Its marking is gets: M(Ik) ←
{πb+k} × ρb+k × {0}.

2) For each input place Ik ∈ I it is checked, if there exists
at least one enabled transition (or exact word matching,
if specified). Hence, for each transition t ∈ T (Ik) and
each token tk = (if, s, p, w) ∈ M(Ik) it is checked, if
the sets of transition input tags itag(t) and token tags
p match. The matching function compares tags in both
sets, splitting them into smaller parts where needed. A
pair (t, tk), such that the transition t is enabled is called
an enabled binding.

3) Finally, transitions are executed for all enabled bindings
(t, tk). If Oi is the output place for the transition t, and
tk = (if, s, p, w), then the marking for Oi is modified
according to (4):

M(Oi)←M(Oi) ∪ synth(s, otag(t))× {s}×

× (p ∩ otag(t))× weight(t, tk) (4)

Interpretation of the formula (4) is the following: a stem
(lemma) together with output tags are submitted to the
synth function, which returns a set of inflected forms.
In consequence, for an input word ifin the chain of
translations is accomplished:

ifin
pin∩itag(t)
−−−−−−−→ {s}

p∩otag(t)
−−−−−−→ {ifout}

In the first step ifin is converted into a set of stems
{s}. In the second stems are converted back to altered
inflected forms {ifout} according to the set of output
tags assigned to the transition.
The weight(t, tk) function is used to assign weight
value to tokens. It calculates the Jaccard index of two
sets: token tags p and transition input tags itag(t) and
then multiplies it by the transition weight µ(t).

weight(t, tk) =
|p ∩ itag(t)|

|p ∪ itag(t)|
· µ(t) (5)

Weight calculation according to formula (5) is based on
a certain intuition: the Jaccard index allows assessing
the similarity between a prototype word appearing in
the annotation, from which the rule originates and the
input term.

After executing a rule, its output places may contain several
tokens. Such situation is shown in Fig 3, where the place

out#1 contains two tokens, the place out#2 three and the place
out#3 one. For the presented example six separate strings
representing concept candidates, each of them having different
content and weights are obtained.

C. Aggregation

Aggregation of results constitutes the final stage of text
processing and concepts extraction. Actually, it is rather a
chain of aggregations performed at subsequent levels (see
Fig. 6). All data processed within the chain are attributed
with numerical weights (scores). At each step, apart from data
conversions (e.g. combining tokens into strings) the assigned
weights are summarized using various norms: sum,min, max,
etc.

Place levelPlace level

Rule level

Sentence level

Document level

tokens

strings of tokens

concepts

concepts with information on

occurences

Fig. 6. The chain of aggregations

• During the aggregation occurring at the place level iden-
tical tokens assigned to an output places combined into
one. The default norm is sum.

• Aggregation at the rule level aims at creating strings from
sets of tokens residing in output places. In the same time
weights tokens are aggregated and obtained values are
assigned to strings. The default norm is min.

• Various rules may return identical concepts. At present
there are no measures implemented that would allow to
manage the ruleset, and in particular remove redundant
rules [13]. Aggregation at the sentence level combines
multiple strings using the selected norm (default is max).

• Finally, aggregation at the document level keeps track of
occurrences of concepts in sentences, counts them and
aggregates the weights. (The default norm is sum).

D. Implementation

The software implementing the discussed approach was
implemented in Java language, what enables integration with
Morfologik stemming libraries and Jena for OWL output
handling. It includes the following modules:

• A tool allowing to load the Morfologik dictionary into
PostgreSQL database (see Section IV)

PIOTR SZWED: CONCEPTS EXTRACTION FROM UNSTRUCTURED POLISH TEXTS: A RULE BASED APPROACH 361

• Synthesizer shortly described in Section IV
• Annotations compilation tool, which create rules and

serializes them with JAXB libraries
• Sentence scanner allowing to split the input text into

sentences and perform additional preprocessing
• Rule execution modules
• Configurable aggregation modules, e.g. it is possible to

select various aggregation norms
• Output modules that renders results in various formats

including CSV and OWL

VI. EXPERIMENTS AND RESULTS

In this section we present initial results of concept extraction
from a large text file specifying medical guidelines for asthma
treatment. The file is a Polish translation of a document issued
by Global Initiative for Asthma (GINA) in 2011. The file size
is 308KB it contains about 40000 words and 2000 sentences.

We selected this document, as it was used in previous
works aiming at building ontologies of medical guidelines
and performing fuzzy reasoning based on ontological models
[24]. Moreover, the presented here solution was intended to
be an improvement of a prototype tool (unpublished) that
used internally FSM to extract concepts from texts. Both tools
were tested on the same file and we wanted to compare
the results of the described method and the previous one
(available at http://home.agh.edu.pl/~pszwed/en/doku.php?id=
ontologies#in_polishgina_guidelines_glossary). The main dif-
ference with respect to the previous solution is the focus on
correct morphological form of concept names and different
approach to evaluation of the accuracy of extracted concepts .

The ruleset used during the experiment resulted from compi-
lation of an annotations file comprising translation patterns for
single words and pairs of words only. Single word translations
were limited to nouns and verbal nouns, 2-grams included
variations comprising nouns, verbal nouns and adjectives in
various cases. The resulting ruleset contained 223 rules.

The average processing time (concepts extraction without
rules compilation) was about 36.785 seconds (executed on
Intel Core i7-2675QM laptop at 2.20 GHz, 8GB memory under
Windows 7). The extraction process returned 5151 concepts.

Table III shows selected results ordered by the weight
values. It comprises top 20 results, 10 concepts from the
middle and 10 concepts with the lowest weights. The word in
capital letter indicates the key, i.e. the part of the concept name
referring to a prospective superclass. Improperly identified
concepts are underlined.

In the whole table the entry 2495 is apparently incor-
rect according to syntactical rules. The correct form should
be: EKONOMIKA_wdrażania. Other underlined entries are
formed correctly according to grammar rules, however their
semantics does not match the document content. Position 18
WIEKO (Eng. lid) should be replaced by WIEK (Eng. age).
The word NIEODPOWIEDNI (Eng. inaccurate) is rather an
adjective. However, according to Morfologik it can be clas-
sified both as adjective and noun. The word SŁUŻĄCY can

be interpreted as “a servant” and “serving to”. In this context
rather the second meaning was used over the document.

TABLE III
EXTRACTED CONCEPTS FROM THE POLISH TRANSLATION OF ASTHMA

TREATMENT MEDICAL GUIDELINE

Pos Concept Count weight
1 DROGI_oddechowe 161 644.00
2 LECZENIE 487 496.35
3 LECZENIE_astmy 87 348.00
4 ASTMA 965 289.50
5 ZAOSTRZENIE_astmy 42 126.00
6 LECZENIE_zaostrzenia 23 92.00
7 GLIKOKORTYKOSTEROID_wziewny 46 92.00
8 ZAOSTRZENIE 103 90.90
9 BADANIE 87 90.75
10 ROZPOZNANIE_astmy 30 90.00
11 RYZYKO 98 87.30
12 POSTĘPOWANIE 73 70.20
13 ZATOKI_przynosowe 17 68.00
14 ciężkie_ZAOSTRZENIE 22 66.00
15 PRZEPŁYW_powietrza 31 62.00
16 WYSTĘPOWANIE 65 61.50
17 ROZPOZNANIE 68 60.30
18 WIEKO 85 59.85
19 STOSOWANIE 192 57.60
20 GRUPY_wiekowe 14 56.00
2488 szkodliwa_CZĄSTKA 1 1.00
2489 DZIAŁANIE_glikokortykosteroidu 1 1.00
2490 ZAKRESY_zużycia 1 1.00
2491 JAMA_nosowa 1 1.00
2492 źródłowy_DOKUMENT 1 1.00
2493 nowoczesny_LEK 1 1.00
2494 charakterystyczna_CECHA 1 1.00
2495 EKONOMIKI_wdrażania 1 1.00
2496 OCENA_lekarska 1 1.00
2497 PRZETWÓRNIA_ryb 1 1.00
5141 MOC 1 0.04
5142 ODPOWIEDZIALNOŚĆ 1 0.04
5143 OKOLICZNOŚĆ 1 0.04
5144 NIEODPOWIEDNI 1 0.04
5145 POŚCIEL 1 0.04
5146 MNIEJSZOŚĆ 1 0.04
5147 PRACUJĄCY 1 0.04
5148 CAŁOŚĆ 1 0.04
5149 SŁUŻĄCY 1 0.04
5150 WPŁYW_CFC 1 0.04
5151 BETA 1 0.01

Fig. 7 shows extracted concepts related to the term ryzyko

(Eng. risk) arranged into a small hierarchy. The term repeated
quite frequently over the document. It can be seen that in
two cases 3-grams would be more adequate, because some
complements are missing, e.g. RYZYKO_utraty (Eng. risk of
loosing).

The presented software is still in development phase, hence
only preliminary results of concept extraction can be given.
During future experiments several parameters controlling the
execution should be tuned to provide high accuracy ratio.

The configurable parameters include norms used at various
stages of aggregation (see Section V-C), as well as weights as-
signed to rules and individual transitions. Taking into account
the complexity of rule definitions (see Fig. 5) and the number
of rules, weights tuning must be performed in an automated
way.

We already started to implement such mechanisms. During

362 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

the experiment described in Section VI rules with single word
transformation patterns were attributed with smaller weights
(0.3). This value was selected quite arbitrarily.

Another example is related to handling a situation described
as tag conflict. Quite often Morfologik identifies a word a
member of two various part of speech classes, e.g. an adjective
vs. a noun or a verbal noun vs. a noun. In this case, while
compiling the annotations, we attribute higher weights to
transitions derived from adjectives and verbal nouns (0.9), than
nouns (0.1).

RYZYKO (87.30)

RYZYKO_wystąpienia (15.00)

RYZYKO_działania (12.00)

RYZYKO_zaostrzenia (12.00)

RYZYKO_astmy (9.00)

RYZYKO_złamania (9.00)

RYZYKO_skutku (6.00)

RYZYKO_zakażenia (6.00)

RYZYKO_uczulenia (3.00)

RYZYKO_utraty (3.00)

RYZYKO_chorób (2.00)

RYZYKO_alergizacji (1.93)

RYZYKO_hospitalizacji (1.25)

RYZYKO_objawu (1.00)

RYZYKO_zgonu (1.00)

RYZYKO_toksyczności (0.13)

Fig. 7. Concepts related to the term ryzyko (risk)

VII. CONCLUSIONS

In this paper we present a solution for concept extraction
from Polish texts with special focus on correct morphological
forms of obtained concept names. As Polish is a highly
inflected language, detected names need to be transformed
following Polish grammar rules. We propose a user-friendly
method for specification of transformation patterns, which is
based on a simple annotations language. Annotations prepared
by a user are compiled into transformation rules. During
the concept extraction process the input document is split
into sentences and the rules are applied to sequences of
words comprised in sentences. Recognized strings forming
concept names are aggregated as various levels. Although
the annotation language is simple, it is flexible enough to
specify various translation patterns, for example it is possible
to apply inversion or to omit such tokens appearing in the
input sequence as commas or prepositions.

The design of rules follow the language of Petri nets,
combining elements of colored [12] and fuzzy [6] Petri
nets. Rules comprise input places (filled with elements of
analyzed n-grams), output places, where results are collected,
and transitions linking them. Similarly to colored Petri nets,
tokens are tuples – in this case they represent words and part
of speech information. Tokens are also equipped with fuzzy
weights. The internal behavior exhibited during rules execution

borrows from fuzzy Petri nets (i.e. there is no conflict between
transitions that may fire simultaneously and produce multiple
tokens in output places). A similar approach was used in our
previous works related to semantic event recognition and it
turned out to be very efficient [26], [25].

Although we did not provide the formalization in the flavor
of fuzzy rules and Fuzzy Inference Systems and fuzzy rules
[22], [15], the discussed approach follows this direction. A
token put in an input place receives a weight based on a kind
of membership function (see Section V-B, step 3). This step
resembles the fuzzification stage in fuzzy inference systems.
Further, after a rule is executed, weights of output token
are combined using configurable aggregation norms. This in
turn corresponds to defuzzification step. Nevertheless, the
transformation rules are not semantic, they are not prepared
by experts and do not reference linguistic terms in the sense
of fuzzy logic.

The rules are obtained fully automatically. This point also
differs the presented approach from the Language tool [18]
discussed in Section. II.

The developed software is tightly coupled with the Mor-
fologik dictionary for the Polish language and accompanying
library API. However, the proposed approach is quite general
and can be applied to texts in other languages, provided that a
language specific dictionary, as well as a software supporting
lemmatization and synthesizing are available.

There are several avenues for future work. We plan to define
3-gram translation patterns and patterns comprising verbs, .e.g.
he reads a book → book reading. Further improvement to
the extraction accuracy can be achieved by tuning several
parameters: rule and transition weights and norms. Another
direction may be related to rule management, removing redun-
dant rules, refactoring (e.g. splitting transitions) and purging
tag sets assigned to transitions.

REFERENCES

[1] S. Acedański, “A morphosyntactic brill tagger for inflectional lan-
guages,” in Advances in Natural Language Processing. Springer, 2010,
pp. 3–14.

[2] C. Blake and W. Pratt, “Better rules, fewer features: a semantic approach
to selecting features from text,” in Data Mining, 2001. ICDM 2001,

Proceedings IEEE International Conference on. IEEE, 2001, pp. 59–
66.

[3] S. Bloehdorn, P. Cimiano, and A. Hotho, “Learning ontologies
to improve text clustering and classification,” in From Data

and Information Analysis to Knowledge Engineering, ser. Studies
in Classification, Data Analysis, and Knowledge Organization,
M. Spiliopoulou, R. Kruse, C. Borgelt, A. Nürnberger, and W. Gaul,
Eds. Springer Berlin Heidelberg, 2006, pp. 334–341. [Online].
Available: http://dx.doi.org/10.1007/3-540-31314-1_40

[4] C. Carpineto and G. Romano, Concept data analysis: Theory and

applications. John Wiley & Sons, 2004.
[5] J. Challis, “Lateral thinking in information retrieval white paper,”

Concept Searching, Tech. Rep., 2003.
[6] S.-M. Chen, J.-s. Ke, and J.-F. Chang, “Knowledge representation using

fuzzy petri nets,” Knowledge and Data Engineering, IEEE Transactions

on, vol. 2, no. 3, pp. 311–319, Sep 1990.
[7] P. Cimiano, A. Hotho, and S. Staab, “Learning concept hierarchies from

text corpora using formal concept analysis.” J. Artif. Intell. Res.(JAIR),
vol. 24, pp. 305–339, 2005.

PIOTR SZWED: CONCEPTS EXTRACTION FROM UNSTRUCTURED POLISH TEXTS: A RULE BASED APPROACH 363

[8] J. Daciuk, “Incremental construction of finite-state automata and trans-
ducers, and their use in the natural language processing,” Ph.D. disser-
tation, Gdansk University of Technology, ETI faculty, Gabriela Naru-
towicza 11/12, 80-233 Gdansk Poland, 1998.

[9] N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins, P. Bohan-
non, S. Keerthi, and S. Merugu, “A web of concepts,” in Proceedings

of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems. ACM, 2009, pp. 1–12.
[10] F. Graliński, K. Jassem, and M. Junczys-Dowmunt, “Psi-toolkit: A

natural language processing pipeline,” in Computational Linguistics, ser.
Studies in Computational Intelligence, A. Przepiórkowski, M. Piasecki,
K. Jassem, and P. Fuglewicz, Eds. Springer Berlin Heidelberg, 2013,
vol. 458, pp. 27–39. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-34399-5_2

[11] D. Janus, “Smyrna prosty konkordancer obsługujący język polski,” 2015,
accessed: May 2015. [Online]. Available: http://smyrna.danieljanus.pl/

[12] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and

Practical Use. Springer, 1996, vol. 1, no. Basic Concepts.
[13] A. Ligeza, Principles of Verification of Rule-Based Systems. Springer,

2006.
[14] A. Maedche and S. Staab, “Ontology learning for the semantic web,”

Intelligent Systems, IEEE, vol. 16, no. 2, pp. 72–79, Mar 2001.
[15] E. H. Mamdani and S. Assilian, “An experiment in linguistic

synthesis with a fuzzy logic controller,” International Journal of

ManMachine Studies, vol. 7, no. 1, pp. 1–13, 1975. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0020737375800022

[16] M. Miłkowski, “Developing an open-source, rule-based proofreading
tool,” Software: Practice and Experience, vol. 40, no. 7, pp. 543–566,
2010.

[17] ——, “Morfologik,” 2015, accessed: May 2015. [Online]. Available:
http://morfologik.blogspot.com/

[18] D. Naber, “Language tool style and grammar check,” 2015, accessed:
May 2015. [Online]. Available: https://www.languagetool.org/

[19] S. Osinski and D. Weiss, “A concept-driven algorithm for clustering
search results,” Intelligent Systems, IEEE, vol. 20, no. 3, pp. 48–54,
2005.

[20] A. Parameswaran, H. Garcia-Molina, and A. Rajaraman, “Towards the
web of concepts: Extracting concepts from large datasets,” Proceedings

of the VLDB Endowment, vol. 3, no. 1-2, pp. 566–577, 2010.
[21] P. Pęzik, “Wyszukiwarka PELCRA dla danych NKJP,” 2012.
[22] T. Ross, Fuzzy Logic with Engineering Applications. Wiley, 2009.
[23] A. Stavrianou, P. Andritsos, and N. Nicoloyannis, “Overview and

semantic issues of text mining,” ACM Sigmod Record, vol. 36, no. 3,
pp. 23–34, 2007.

[24] P. Szwed, “Application of fuzzy ontological reasoning in an implemen-
tation of medical guidelines,” in Human System Interaction (HSI), 2013

The 6th International Conference on, June 2013, pp. 342–349.
[25] ——, “Video event recognition with Fuzzy Semantic Petri Nets,” in

Man-Machine Interactions 3, ser. Advances in Intelligent Systems and
Computing, A. Gruca, T. Czachórski, and S. Kozielski, Eds. Springer
International Publishing, 2014, vol. 242, pp. 431–439. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-02309-0_47

[26] P. Szwed and M. Komorkiewicz, “Object tracking and video event
recognition with fuzzy semantic petri nets,” in Proceedings of the 2013

Federated Conference on Computer Science and Information Systems,

Kraków, Poland, September 8-11, 2013., M. Ganzha, L. A. Maciaszek,
and M. Paprzycki, Eds., 2013, pp. 167–174. [Online]. Available:
http://fedcsis.org/2013/

[27] M. Wolinski, M. Milkowski, M. Ogrodniczuk, and A. Przepiórkowski,
“Polimorf: a (not so) new open morphological dictionary for polish.” in
LREC, 2012, pp. 860–864.

364 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

