

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 398-413, 2005.

 Springer-Verlag Berlin Heidelberg 2005

Concepts for Comparing Modeling Tool Architectures

Colin Atkinson1 and Thomas Kühne2

1 University of Mannheim
atkinson@informatik.uni-mannheim.de

2 Darmstadt University of Technology
kuehne@informatik.tu-darmstadt.de

Abstract. As model-driven development techniques grow in importance so do

the capabilities and features of the tools that support them, especially tools that

allow users to customize their modeling language. Superficially, many model-

ing tools seem to offer similar functionality, but under the surface there are

important differences that can have an impact on tool builders and users depen-

ding on the tool architecture chosen. At present, however, there is no estab-

lished conceptual framework for characterizing and comparing different tool

architectures. In this paper we address this problem by first introducing a con-

ceptual framework for capturing tool architectures, and then—using this

framework—discuss the choices available to designers of tools. We then com-

pare and contrast the main canonical architectures in use today.

1 Introduction

Given the growing interest in Model Driven Development (MDD), modeling tools are

becoming an increasingly central and important element of software development

environments. As a result, software project managers are increasingly faced with the

issue of deciding what modeling tool(s) to use in a project and what role the chosen

tool(s) should play. Until recently this was not an issue of great import because

modeling has traditionally played a secondary, supportive role in software engi-

neering. The primary artifact of software development has until recently always been

code, leaving models, if used at all, to play the role of supporting, non-essential

documentation. Even when models are used to generate code skeletons, as is often the

case today, they are essentially viewed as accelerators of the coding process rather

than as a part of the critical path of software development. However, if the vision of

model driven development is even partially successful this situation will change and

modeling will become the dominant, critical path activity in software development.

At present however there is no established way of characterizing and comparing

the capabilities of modeling tools beyond a superficial comparison of feature lists.

This makes it difficult to select a tool for a specific project on a serious technical

basis. Without the availability of concrete comparison concepts and evaluation

criteria, decisions for modeling tools will be more or less random and at best based on

irrelevant or secondary properties.

The lack of a tool evaluation framework not only affects tool users but also tool

builders. Unless tool builders are aware of all the architectural options available to

Concepts for Comparing Modeling Tool Architectures 399

Classes

Objects

Fig. 1. Classification.

them and are able to evaluate and compare their tool architecture against other alter-

natives, they will make their choices in a restricted design space, usually heavily

influenced by tradition rather than by objective criteria. The problem is not that there

is a lack of different (meta-) modeling infrastructure models or metaphors. On the

contrary, quite a number of different approaches exist, such as the famous OMG four-

layer architecture [1], powertype-based approaches [2], two-level approaches [3],

Domain Specific Languages [4], and the orthogonal classification approach [5]. The

problem is that each of these on its own is not a suitable basis for a tool evaluation

framework. While each approach has certain advantages in its own right, none

provides a general perspective for capturing the properties of a particular tool

architecture. In fact, the very number of different notations and modeling metaphors

compounds the problem of enabling an objective tool architecture comparison.

Unfortunately, even the venerable OMG four-layer architecture cannot serve as a

reference architecture against which to compare the design of modeling tools. Not

only is it the subject of much debate on what its different levels actually mean and

how they are related to one another, it is also difficult to map it to other modeling

metaphors. Furthermore, it is a high-level architecture and therefore does not lend

itself to explaining or discriminating between architectures used in current tools.

Consequently, in this paper we provide a conceptual basis for describing and

distinguishing different tool architectures. These concepts allow us to compare the

main realization approaches in use today and to provide a reinterpretation of the OMG

four-layer architecture which more precisely characterizes how it is implemented in

most modeling tools. One of the main contributions of the paper is an enumeration

and trade-off analysis of the architectural options tool designers should consider when

developing a tool. These can be thought of as tool architecture patterns for tool

developers. Finally, we analyze the advantages and disadvantages of some existing

architectures in use today.

2 Conceptual Foundations

Before discussing the various architectures that can be used to

realize modeling tools we first need to establish ways to pre-

cisely and exhaustively capture the associated design space.

2.1 Types and Instances

The basic building block for constructing modeling tool architectures is the

relationship between a type and its instances. This is not only the foundation for many

metamodeling infrastructures, but also the foundation for the object-oriented

implementation technology most widely used in mainstream software development

today, e.g., that of Java.

Fig. 1 shows how we depict the relationship between types and instances. We use

the concept of a classification frame split into two compartments—a type compart-

ment and an instance compartment. To distinguish the type compartment from the

instance compartment we draw the former with a darker shade of color than the latter

400 Colin Atkinson and Thomas Kühne

logical

instance-of

content

content

Instance "Lassie"

maps

name "age" to

value 7

My instances

must map the

name "age" to

an Integer value

LassieLassie

age = 7age = 7

LassieLassie

age = 7age = 7

CollieCollie

age : Integerage : Integer

CollieCollie

age : Integerage : Integer

Fig. 3. Content Classification.

linguistic

instance-of

content

My instances

may have a

number of

contained elements,

e.g., name/value pairs

InstanceSpecificationInstanceSpecification

LassieLassie

age = 7age = 7

LassieLassie

age = 7age = 7

slots : SlotSetslots : SlotSet

Fig. 2. Form Classification.

and typically on the top or

to the left. Note that in

general one frame may

have more than two

compartments, in which

case the additional ones

simply extend the classi-

fication hierarchy linearly.

Between any two adjacent

compartments we always

have type / instance rela-

tionship.

2.2 Form Versus Content

To fully capture an architectural design it is insufficient to use just one general notion

of “instance-of”. An architecture presented in this way will admit many different

interpretations and thus possibly allow consensus where there should be none. We

therefore need to be more precise in order to explicitly distinguish between two

fundamentally different kinds of instance-of relationships (see also [6] for a similar

discussion).

We refer to the kind of instance-of

relationship used in Fig. 2 as “lin-

guistic” instance-of. When it is used,

the type (e.g., “Instance Specifica-

tion”) is part of a language defini-

tion and the instance (e.g., “Lassie”)

constitutes a language usage. Hence,

we can check whether an element,

(e.g., “Lassie”) can be regarded as

an instance of a form, e.g., “In-

stanceSpecification”. The elements “age” and “7” of “Lassie” only need to be

representable by the “Slot” classifier, i.e., be in a required form (e.g., “string” and

“string” respectively). Whether e.g., “7” is an integer or not is irrelevant at this stage.

Fig. 2 shows how we depict form-classification by embedding a frame within an

instance compartment, and starting a new color scheme for the embedded frame. In

the following, we will use form-classification to denote the representation format used

to store elements, e.g., in a repository. The word “form” is used deliberately in the

previous definition to distinguish this kind of “instance-of” relationship from the

second kind of instance-of relationship which we refer to as “logical” instance-of (see

Fig. 3).

Whether “7” needs to be of type “Integer” or an alternative type must be specified

along the logical classification dimension (see Fig. 3). Here we may check whether

the content (i.e., information expressed by “Lassie”) can be regarded as an instance of

the content expressed by “Collie”. In other words, the type “Collie” contains informa-

tion that is intended to define well-formedness rules which the content of instance

“Lassie” must obey. We depict logical-classification by stacking compartments on top

Concepts for Comparing Modeling Tool Architectures 401

MOF

In
s
ta

n
c
e
s

(M
1

i)

T
y
p
e
s

(M
1
t
)

UML

metamodel

(M2)

Fig. 5. Embedding

& Spanning.

In
s
ta

n
c
e

s

(M
1

i)

T
y
p

e
s

(M
1
t)

UML

metamodel

(M2)

User Models

(M1)

UML

metamodel

(M2)

(a) (b)

Fig. 4. Stacking versus Spanning.

of each other. Thus, in summary, “form” and “content” are about the difference

between how information is stored (form) and what information is stored (content).

From now on, in contrast to Figs. 2 & 3, we will not use labels “linguistic” / “logical”

for classification arrows anymore, because it will be clear from the frame notation

(e.g., embedding) which kind is implicitly applicable.

2.3 Level Spanning

Figs. 2 & 3 show two different ways of combining

frames which we refer to as embedding and stacking

respectively. In order to effectively capture all the

level relationships that may occur in tool

architectures, we need a third frame combination

concept which we refer to as spanning. Fig. 4 shows

an example of level-spanning, in terms of the OMG’s classic four-layer architecture.

Fig. 4 (a) shows the usual depiction of the M2 and M1 levels

in this architecture, where level M1 is regarded as a monolithic

level, even though it contains user instances (e.g., objects) and

user types (e.g., classes), which are in a logical instance-of

relationship to each other1. Fig. 4(b) makes this explicit by

dividing level M1 into two sublevels M1t and M1i. The reason for

not embedding levels M1t and M1i within the instance compart-

ment of frame M2, is that we assume the contents of both M2

and M1 to be represented as MOF-data. Hence, we have only

one representation format (MOF) and all three frames shown in

Fig. 4(b) contain data that must be well-formed logically with

respect to each other. However, none is the other’s represen-

tation format.

The complete picture is

depicted by Fig. 5, using

embedding, spanning and

stacking2 to reinterpret the linear OMG four-layer

design as an architecture in which the MOF is the

common representation format for all other levels,

the latter just establishing logical instance-of

relationship with each other3. Note that the logical

instance-of relationship from M1i to M1t is defined

within M2. In other words, level M2 spans both

levels M1t and M1i, meaning that elements from

both levels must be well-formed with respect to

the rules expressed in M2.

1 We are referring to the corrected four-layer architecture, in which level M0 is no longer part of

the modeling stack, but represents the modeled system.
2 One can think of Fig. 5 as a flat projection of a three-dimensional diagram.
3 In section 4 we will further discuss possible interpretations of the four-layer architecture.

In
s
ta

n
c
e
s
 (M

1
i)

T
y
p

e
s
 (M

1
t)

UML

metamodel

(M2)

AppletApplet

myShopmyShop

PetShopPetShopClassClass

ObjectObject

Fig. 6. Type Specialization.

402 Colin Atkinson and Thomas Kühne

2.4. Generalization

Classification is not the only way of deriving new elements from existing elements.

Instead of differentiating an element by instantiating it from a type of another

metalevel, it is sometimes more appropriate to specialize it using a supertype

Fig. 6 shows an example, where a “PetShop” class is defined to have “Applet”

instances, by deriving it from superclass “Applet”, as opposed to giving it a special

“Applet” property through instantiation. Depending on the purpose of the model, one

of these alternatives might be more appropriate than the other, but both are available

and a detailed architectural description technique must be able to distinguish and ex-

press both cases.

As we are typically not interested in individual

element relationships when describing tool

architectures, the typical use of a generalization

layer to specialize from will be depicted in the way

shown in Fig. 7. The generalization dimension is

orthogonal to all other types of instance-of

relationship kinds and may be used in any

combination within a frame.

Note that the orientation of the frames carries no

semantics and can thus be used to emphasize certain

perspectives, such as the linguistic, logic or

generalization dimension.

3 Architectural Options

Any tool architecture embodies a number of design decisions which directly or

indirectly influence the challenge faced by the tool builders as well as the

functionality available to tool users. The purpose of the following subsections is to

make the respective design decisions more explicit and to provide a checklist to

compare tool architectures against each other.

3.1 Number of Levels

One of the most basic choices to be made

when designing a tool architecture is to

decide how many type/instance levels it

directly supports. A very common

approach is to support two user modeling

levels only. This is probably a vestige of

traditional technologies such as data-

bases (schema / data distinction) and

object-oriented languages (type / in-

stance distinction).

(M
1

i)
(M

1
t)

UML

metamodel

(M2)

Superclasses

(Sub-)classes

User

Objects

Fig. 7. Generalization Layer.

CreateDesignCreateDesign

designer : String

duration : Float

designer : String

duration : Float

CreateDesignCreateDesign

designer : String

duration : Float

designer : String

duration : Float

"Bob" designs"Bob" designs

duration = 2.5duration = 2.5

"Bob" designs"Bob" designs

duration = 2.5duration = 2.5

ActivityTypeActivityType

CreateDesignCreateDesign

duration : Floatduration : Float

CreateDesignCreateDesign

duration : Floatduration : Float

BobDesignsBobDesigns

duration = 2.5duration = 2.5

BobDesignsBobDesigns

duration = 2.5duration = 2.5

 (a) (b)

Fig. 8. DSL vs Domain Metamodel.

Concepts for Comparing Modeling Tool Architectures 403

"Bob" designs"Bob" designs

duration = 2.5duration = 2.5

"Bob" designs"Bob" designs

duration = 2.5duration = 2.5

Tool

Format

Tool

Format

CreateDesignCreateDesign

designer : String

duration : Float

designer : String

duration : Float

CreateDesignCreateDesign

designer : String

duration : Float

designer : String

duration : Float

Fig. 9. Two Level Implementation.

Even tools referred to as meta-modeling tools (e.g., MetaEdit+ [7]) often only

support two user levels. Such tools allow users to first define a domain specific

language (see Fig. 8(a), top part) and then build models using that new language

(Fig. 8(a), bottom part). By allowing users to define their own languages they justify

their name as “meta”-modeling tools, since the language definition is regarded as a

model for the domain models. In other words, the language definition represents a

(linguistic) model for models.

However, the existence of just two logical levels (Fig. 8(a)) already causes a problem

for a tool based on a two-level implementation technology because it means that two

logical levels have to be implemented within just one instance level. In general, one

may even desire more than two logical levels:

Fig. 8(b) demonstrates how users might want to

model at three domain levels using the UML with

a domain metalevel added on top of the usual

instance and type levels. Such an additional

metalevel is useful for making the class level

dynamic as it is able to support the creation and

deletion of classes even while the (modeled)

system is running. Moreover, it lets one easily

assign information to classes (e.g., whether an

activity type appears in a certain workflow plan

or not) by declaring corresponding attributes at

the metalevel-types4.

Fig. 9 illustrates the above mentioned problem

by showing an object-oriented (two-level) implementation in which the class level has

to be used for defining the tool format in which the user data is modeled. The

remaining object level then needs to represent the user models. Fig. 9 shows that both

the user’s domain specific language (DSL) and the corresponding user models must

be represented within the tool. As none of the mainstream programming languages

natively support more than two levels one cannot simply represent the user models in

terms of the user language. However, creating user models only makes sense if the

corresponding well-formedness rules are available at the same time. One way of

having the models and rules available as data in the tool format is described in the

next subsection.

The other approach uses code generation techniques to cast the information of the

top part of Fig. 9 into a hard-coded, domain specific metamodel of a generated mod-

eling tool. Fig. 10 depicts this process.

Fig. 10(a) corresponds to Fig. 9’s top

part. Fig. 10(b) shows the architecture

of the generated tool which is specif-

ically tailored to deal with the user’s

DSL. Note that user models are direct-

ly represented in the format defined by

the DSL definition.

4 Similar to the tagged value concept in the UML, but in more uniform way that simply extends

the principles of the lower two levels.

Tool

Format

User

Models

User

Language

User

Language

(a) (b)

Fig. 10. Tool Generation.

404 Colin Atkinson and Thomas Kühne

Tool

Format

User Types

User Instances

Fig. 11. Logical Stacking.

The advantage of this generative approach is that any well-formedness rules

governing the creation of user models are directly enforced by the underlying data

structure. It is not necessary to write a generic checking algorithm which needs to be

parameterized with the definition of the user’s DSL. Also, such a tool offers an API

for accessing and manipulating user models that is specifically tailored to the DSL

used. An access method might thus be called “getDuration()” yielding a result

of type “Float” instead of some generic access like

“getFeatureWithName('duration')” yielding a result with a generic type,

e.g., of type “String”. A generated tool will also be very efficient in dealing with user

models, as all the generated code will be specific to the DSL defined and will have

been compiled.

The disadvantage of this generative approach is that it is not possible to use a

single tool to work on several levels (language definition + language usage) at once.

Especially in early phases, when the DSL is still being defined, it is very convenient

to switch back and forth between the levels without going through a change-generate-

compile-validate cycle every time. An interpreted language, such as Java, which

allows compilation of new code to be done in the background and supports reloading

of the new code into the running tool, blurs the boundaries between a generative and

an integrative approach from the point of view of the user of the tool.

Another disadvantage of two-level based tools is that they potentially cannot use a

user domain model directly as input for a new DSL. In other words, it may not be

possible to conveniently use such a tool repeatedly in order to create a cascade of

definition-usage pairs, thus creating a (meta-) modeling stack (e.g., MOF ← UML ←

Classes ← Objects). The only way for tools with such a limitation to support more

than two levels is “level compaction”.

3.2 Level Compaction

An alternative way to support multiple modeling

levels with just one instance level is to abandon the

idea that one modeling level (e.g., user classes)

automatically defines the representation format for the

level below (e.g., user objects). Instead, the native tool

representation format is used for both user modeling

levels. Fig. 11 shows how the situation of Fig. 9 can

be resolved by keeping both datasets in the same tool, stacking them on top of each

other.

With stacking we express the fact that one level (“User Types” in Fig. 11) controls

another level (“User Instances” in Fig. 11) but not by being its format definition but

by specifying the rules that it’s controlled level must obey. In other words, the tool

needs to look up data in the controlling level in order to check the data in the

controlled level with respect to well-formedness. The scheme in Fig. 11 can easily be

extended to include another level (above “User Types”) in order to support a user

domain metalevel and hence enable modeling as illustrated in Fig. 8(b).

The architecture shown in Fig. 11 can be extended not only by increasing the

innermost stack, but also by using spanning. In this way, a tool can be promoted from

Concepts for Comparing Modeling Tool Architectures 405

being specialized for one language (e.g., UML) only, to supporting many user-

definable languages. Fig. 5 shows how spanning can be used to build such a (MOF-

based) UML tool.

The advantages of an integrative, level-compaction approach are manifold: User

instance data can be manipulated independently of user type data. This allows for un-

limited freedom in experimentation with what e.g., user domain models should look

like. Note that a generative approach (Fig. 10) only allows domain models that adhere

to the rules of the user DSL. When the DSL is changed the models formerly created

with it are in an outdated format. In contrast, in an integrative approach—although the

user instances will no longer conform to the DSL—there will be no need to migrate

them to the new format. No representation change is ever needed as long as all levels

that may change are in a logical content-controlling relationship with each other.

From the point of view of tool builders, levels belonging to the same level stack

can be treated in a uniform way. Multiple-level support only needs to be provided

once and can then simply be scaled up to support any number of levels. Levels

belonging to the same representation format can be treated uniformly with respect to

many operations, such as serialization to output formats.

Another important difference introduced by level compaction is the fact that a tool

builder no longer has to replicate model data. Fig. 10 makes it clear that a cascading

approach necessitates model data to be stored twice: Once as instance data (e.g.,

“User Language” in Fig. 10(a)) and another time as type data (“User Language” in

Fig. 10(b)). Level compaction uses the same set of data for both purposes at the same

time (see, e.g., “User Types” in Fig. 11).

A potential disadvantage of level compaction is that access and modification of the

supported levels has to occur in a generic manner, i.e., all levels are treated the same

and thus the advantages of level-specific APIs are lost. Yet, this need not necessarily

be the case. It is of course possible to provide special views onto each of the levels, by

using adapters, for

example, so that APIs

can be made available

that are identical to

those of a two-level

cascading approach.

3.3 Language Versus

Library Metaphor

The previous section

demonstrated how

level compaction can

be used to move

control from the

format-language to a

logically controlling

language. However, the issue of whether one supports multiple levels within one

instance level (level compaction) is orthogonal to whether one uses a very liberal

format language or not. A modeling tool with a built-in UML metamodel (see

ActivityTypeActivityType

CreateDesignCreateDesign

duration : Floatduration : Float

CreateDesignCreateDesign

duration : Floatduration : Float

BobDesignsBobDesigns

duration = 2.5duration = 2.5

BobDesignsBobDesigns

duration = 2.5duration = 2.5

UML+

ClassClass

ObjectObject

ActivityTypeActivityType

CreateDesignCreateDesign

duration : Floatduration : Float

CreateDesignCreateDesign

duration : Floatduration : Float

BobDesignsBobDesigns

duration = 2.5duration = 2.5

BobDesignsBobDesigns

duration = 2.5duration = 2.5

UML+

ElementElement

ClassClass

Meta

Class

Meta

Class
ObjectObject

(a) (b)

Fig. 12. Language vs Library Metaphor.

406 Colin Atkinson and Thomas Kühne

Fig. 12(a)) is an example of the simultaneous use of both level compaction (for user

types & instances) and a confined language space. In order to make our next point

more clearly we have added a domain metalevel and hence named the corresponding

metamodel “UML+” instead of just “UML”. As can be observed from Fig. 12(a), user

elements are controlled by two dimensions: First, their form must conform to the

UML+ metamodel (through linguistic instantiation). Second, their content must

conform to the next logical level higher up in the stack. The top level of the stack is

not content controlled in any way and just needs to obey the format rules imposed by

the UML+ metamodel.

As discussed in the previous sections the approach shown in Fig. 12(a) has some

trade-offs: Users may only model within the limits of the language defined at the

UML+ level. This may be regarded as an advantage (in order to enforce a standard) or

a disadvantage (since it is then impossible to use any kind of concept). Hence, any

language extension will have to be accomplished by altering the built-in language

metamodel “UML+”. This is a direct consequence of using, what we call the

language metaphor for defining valid syntax for user models. Even if the UML+

metamodel were kept as modifiable data, one still needed to perform language meta-

modeling and, thus, alter the modeling language standard when trying to create more

domain specific models. This is of course the reason why the UML language

designers chose to introduce stereotypes as a “lightweight” way of metamodeling.

Hence, stereotypes represent another, third way of supporting one more level, in

addition to “two-level cascading” (section 3.1) and “level compaction” (section 3.2).

Note however the difference in providing a domain metamodel (as in Fig. 8(b)) versus

allowing (strictly limited) extensions to the language definition (using stereotypes).

Fig. 12(b) demonstrates an alternative to the language metaphor which we refer to

as the library metaphor. In comparison to Fig. 12(a), the language definition has been

reduced to a bare minimum. User elements are not distinguished by their form

classifier anymore (e.g., Class or Object), but by an assigned level number. They are

not differentiated by creating them from special form-classifiers (e.g., UML+ element

“Object”), but by controlling them with a special content-classifier (e.g., user type-

level element “Object”). Typically, this control will

occur indirectly, as the example in Fig. 12(b)

demonstrates: Element “BobDesigns” is only indirect-

ly controlled via “Object”, being much more tightly

controlled by “CreateDesign”.

Fig. 13 gives an architectural view of this approach

where the original language definition is split into a

minimal core part and a number of predefined ele-

ments located at logical levels. The library part of the

control over user models is hence distributed over the

logical levels, depending on what user-model level the

respective elements control.

Note that the two elements labeled “Object” (or

“Class” respectively) in Figs. 12(a) and 12(b) are not

identical. They not only differ with respect to their

location in the architecture but also with respect to the

way in which they control elements. Element “Object” in Fig. 12(a) enables its

instances (e.g., “BobDesigns”) to have a certain form. Element “Object” in Fig. 12(b)

User Instances

UML+
core

language

Predefined

Type Types

Predefined

Instance Types

User Metatypes

User Types

Fig. 13. Generalization Layer.

Concepts for Comparing Modeling Tool Architectures 407

does not need to do that as this is already accomplished by “Element” at level

“UML+”, albeit in a much more generic way. Element “Object” in Fig. 12(b) restricts

this genericity by exerting content-control over, e.g., “BobDesigns” yet this control is

considerably strengthened by element “CreateDesign”. The latter will be much more

specific about the allowed properties of “BobDesigns” as any of the “Object” ele-

ments of Fig. 12(a) or 12(b) could ever be.

Note that element “Object” in Fig. 12(a) represents a tool builder’s perspective and

will support operations for model management. In contrast element “Object” in

Fig. 12(b) may contain operations of relevance to the modeling tool user, such as

“equals()” for comparing objects based on domain principles, instead of model

management principles.

The advantages of using the library metaphor to controlling user models are:

- a simplified core language definition allowing experimentation with model con-

cepts at all logical modeling levels,

- a stable core language definition even in the event of users wishing to extend

their “language”, and, hence,

- maximum flexibility for users with respect to domain specific modeling.

If the predefined libraries (see Fig. 13) are made immutable and fixed, this

flexibility is even reconciled with the desire to retain a common core standard mod-

eling approach, which may only be extended but not completely redefined.

The reduction of the core language to a minimal set of features can be compared to

reducing the BNF definition of a programming language’s syntax to a bare minimum

and letting all removed rules (such as the difference between arithmetic and Boolean

expressions) be enforced by static semantics checking. This makes the syntax defini-

tion more immune to changes to the language definition at the cost of shifting the

change-burden to the definition of the static semantics (the library in our example).

The library metaphor has indeed proven to be very successful for languages such as

Smalltalk and Java which have a rather small language definition and provide the bulk

of their utility through the availability of standardized libraries.

The disadvantages of the library metaphor is the unfamiliarity of the approach to

most users and the need for creating machinery that deals with all possible logical

levels generically. In particular one needs to implement a generic well-formedness

checking algorithm to be applied to a level by parameterizing it with the content of

the level above. However, tool builders then only need to define the basic principles

of modeling, such as instantiation, specialization, and association once in the core

language. These will work uniformly for all levels and there is no need for tool

builders to use different checking algorithms for different level crossings or replicate

the basic mechanisms time and again so that they are available to the next level. This

replication is typically unnecessary, unless one specifically desires these features to

work differently for each language level incarnation5.

The next question to address with respect to tool architectures is therefore the

choice of the appropriate number of linguistic levels.

5 The MOF and the UML represent a typical counter-example. Here, one desires as much as

uniformity between the UML core and the MOF as possible.

408 Colin Atkinson and Thomas Kühne

3.4 Language Definition Stack Depth

The use of specialization, rather than instantiation, can also be put to use in the core

language definition (in the linguistic dimension). Fig. 14 shows a very rough

conceptual sketch of how the Fujaba [8] metamodel is composed of several

specialization layers. Instead of creating a language definition stack in the sense of

“MOF ← UML ← UserModels”, the Fujaba developers opted to have a number of

languages which refine each other, as opposed to being instantiations of each other. In

this way, they have built up the resulting metamodel, step by step, and have

alternative views (e.g., as AbstractSyntaxGraph elements or UML elements) on the

same set of user data.

The design shown in Fig. 14 of course begs the question as to why the OMG has

not opted to cast MOF as a super-model, i.e., use generalization rather than a

classification, on top of languages such as UML or CWM?

The purpose of the MOF is to provide a

common basis for defining all other OMG lang-

uages. One way to provide such a common

basis is to define a language that classifies all

the languages one is interested in, as is done by

the MOF in its M3-level role. The more diverse

the set of languages to be captured under a

common umbrella, the more linguistic levels

are useful. At each language definition level,

more languages fitting into the paradigm

currently addressed can be properly described, a

process that continues to the very top of the

language stack. In the OMG’s case we just have

a language describing all user models (the UML metamodel) and another language on

top of this (the MOF), describing object-oriented approaches to modeling. This makes

sense if one is interested in a standardized meta-meta-language for creating

metamodels (such as the UML) and providing the corresponding tools along with this

capability.

However the same effect, and more in this example, can be achieved by using a

standardized library of metamodeling superclasses. Instead of specifying the element

“Component” to be a “Class” (in contrast to, e.g., a “Data Type”) by assuming it to be

an instance of a M3-level MOF-element “Class”, it could also be differentiated as

such by letting it subclass from an M2-level element “M-Class”. In this way,

“Component”-usages would still be different to other UML concept usages, and they

would immediately be accessible through this “M-Class” interface. We use the prefix

“M-” (for MOF) in order to distinguish this element from the ordinary M2-level UML

element called “Class”. In other words, the desired repository access to elements in

user models can directly be achieved through corresponding metamodel superclasses.

A double role as played by the MOF (as a M3-level meta-metamodel & as a general

repository format for all levels) would therefore not be necessary.

Note, however, that the above described library approach in the linguistic

dimension only works if one is able to find a (MOF-)super-model for all the language

defining metamodels (such as UML and CWM) that one would like to include. It is

the distinguishing advantage of using a classifying language (as the MOF in its M3-

Fujaba

Metamodel

Basic

Element

Basic

Element

ASG

Element

ASG

Element

UML

Element

UML

Element

User

Types

User

Instances

User

Types

User

Types

User

Instances

User

Types

Fig. 14. Language Layers.

Concepts for Comparing Modeling Tool Architectures 409

level role) that it can abstract from the metamodels to be captured, without requiring

them to share a common (super-)structure.

Summarizing, through “level compaction” and/or using repository superclasses in a

language defining metamodel, it is possible to remove language definition levels in

the linguistic dimension. Fig. 13 shows an extreme case, where one could do away

with a MOF format as well and integrate other modeling approaches, such as CWM,

as modeling libraries within the logical levels.

The appeal of a minimal length language stack (in the linguistic dimension) is the

simplicity of the associated architecture and the resulting lack of redundancy. All

levels can be treated uniformly and neither data nor basic modeling principles have to

be replicated.

In favor of a language stack with two or more levels it can be noted that each

language introduced makes the associated storage format more concrete and more

tailored to the paradigm one aims to cover. Hence, the representation can be more

compact and easier to read and write for both humans and tools.

4 Canonical Architectures

We will now use the concepts, notation, and architectural options previously

introduced to characterize and evaluate the three main canonical architectures

currently underpinning modeling tools. This is not intended to be an exhaustive

characterization, but to layout the major reference architectures against which other

more specialized architectures can be compared.

4.1 Four-Layer Architecture

Certainly today’s most prominent architecture

for metamodeling infrastructures or tool de-

signs is the OMG’s four-layer architecture (see

Fig. 15(a)).

Since this architecture is not unambiguously

specified we can only offer interpretations of

it. One alternative, visually suggested by

Fig. 15(a), is a logical language stack of “MOF

← UML ← M1”6, but that would neglect the

MOF’s role as a repository format for all the

levels. However, just casting the MOF as a

pure repository format would neglect the

MOF’s role as a logical language definition for the UML metamodel at M2.,

Fig. 15(b) therefore best seems to capture the apparently intended dual role of the

MOF and hence best captures the spirit of the whole architecture. Note that it

explicitly shows the MOF’s ability to represent itself.

6 We are using M1 as a shortcut for M1t and M1i combined, in part because the OMG does not

explicitly distinguish between M1t and M1i.

UML

metamodel

User Models

(M1t + M1i)

MOF

User Data
(not part of the

modeling stack)

M
1

M
3

M
2

M
0

MOF

UML

metamodel

U
s
e
r

In
s
ta

n
c
e

s

(M
1

i)

U
s
e

r
T

y
p

e
s

(M
1

t)

U
s
e
r

In
s
ta

n
c
e

s

(M
1

i)

U
s
e

r
T

y
p

e
s

(M
1

t)
MOF

(a) (b)

Fig. 15. Four-Layer Architecture.

410 Colin Atkinson and Thomas Kühne

A non-technical but nonetheless very real advantage of the four-layer architecture

is that it defines a standard, including standard implementation technologies. It

furthermore allows several modeling standards such as the UML and CWM to be

fitted under one (MOF-based) architecture.

Its main drawback is the lack of support for more than two user modeling levels.

While the architectural style does not prevent an extension of the user modeling levels

(within M1), the standardized UML metamodel restricts them to two. Although the

UML’s solution for providing a language extension feature to modelers—the

stereotype mechanism—has been improved from version 1.5 to 2.0, it still does not

offer the same power for user domain metamodeling as another user modeling level

would offer (as exemplified in Fig. 8(b)).

4.2 Two-Level Cascading

The popularity of the two-level cascading approach is testified by the many practical

examples of its use. Fig. 16(a) informally depicts the approach of providing a format

for creating user defined languages and then, after a generation step, using the user

language definition to create user models.

Fig. 16(b) uses our notation to more precisely capture the promotion of the “User

Language” instance data to “User Language” types that then can be used to create

models. Tools such as MetaEdit+ [7] and Fujaba [8] use this approach. Also the MDR

approach using JMI technology [3] and the Software Factories approach [4] use the

same underlying principle.

The advantages of this approach are:

- the efficiency of the generated modeling

facilities.

- the specificity of the API for accessing

user models.

- the fact that metacase tool vendors may

produce metamodels for their customers

and only ship a generated tool, without

giving away the corresponding meta-

model data as well.

Its disadvantages are:

- the need to replicate the definition of ba-

sic modeling primitives, such as instan-

tiation, specialization, etc. time and

again.

- the need to duplicate model content by

keeping it both as user instance data (for

manipulation during the language

definition phase) and as tool type data (for creating user models).

- an inconvenient “edit-generate-compile-validate”-cycle when developing the

modeling language (e.g., a DSL).

Tool

Format

User

Models

User

Language

User

Language

Tool

Format

User

Language

User

Language

User

Models

 (a) (b)

Fig. 16. Two-Level Approach.

Concepts for Comparing Modeling Tool Architectures 411

4.3 Orthogonal Classification Architecture

Perhaps the antithesis to the two-level cascading approach described above is the so

called orthogonal classification architecture (OCA) based on level-compaction [5].

Fig. 17(a) shows the two (linguistic and ontological7) dimensions of this approach

featuring just one format level (L1) used for representing an unbounded number of

ontological levels. Although

the OCA does not dictate any

particular number of linguistic

or ontological levels, it lends

itself to be used with a single

(MOF-like) universal format

and an unbounded number of

user domain modeling levels

based on the library metaphor

(see section 3.3 and Fig.

17(b)). A tool with this archi-

tecture as its basis is

ConceptBase [9]. The one

format level in ConceptBase is

based on the Omega level of

Telos [10]. Any other modeling data in ConceptBase is expressed as instances of this

one “format” level. In ConceptBase terminology all model data is expressed as

propositions.

The advantages of the OCA are:

- the complete uniformity with which all ontological levels can be treated. One

does not need to consider various kinds of level boundaries except logical

stacking.

- the completely redundancy-free storage of modeling data. No single level has to

be represented twice so as to use it in two roles.

- a single tool can be used to manipulate all levels in the same manner. There are

no limits to experimenting with content in levels since the basic representation

format virtually allows unlimited expressiveness. Well-formedness conformance

to a higher logical level, of course, is a different matter and may also need to be

supported. Locking mechanisms could be used to prevent users altering data in

levels they are not supposed to change or even see.

Its disadvantages are:

- the unfamiliarity of the library approach to the majority of modelers

- the fact that current established technologies and market rules are better suited to

standardize languages, rather than libraries.

7 For the purpose of this discussion we can equate “ontological” with “logical” instantiation.

O2

L1

L
1

L
0

O0

O1

User Types

User Instances

User Metatypes

Common

Format

 (a) (b)

Fig. 17. Orthogonal Classification Approach.

412 Colin Atkinson and Thomas Kühne

5 Conclusion

As model-driven development gains popularity, supporting tools are becoming an

increasingly important part of software development. The internal architecture of such

tools is not only of concern to tool builders but also to tool users since it determines

the basic functionality available. Unfortunately, at present there is no framework for

characterizing and evaluating such architectures, as previous work on clarifying

metamodeling infrastructures has never attempted to include tool representation

issues. In this paper we have laid the foundation for such a framework by introducing

concepts—including the as yet undistinguished “embedding” and “spanning”—to

capture core architectural elements. Using this framework we then discussed the

architecture design space and outlined the main canonical architectures in use today.

At one end of the spectrum there is the “Two-level Cascading” approach which

supports multi-level modeling technology in terms of classic two-level object-oriented

technology. At the other end there is the “Orthogonal Classification Architecture”

which provides a genuine multi-level modeling platform, typically in the context of a

single linguistic format definition. In between these two extremes, various combina-

tions may be applied to achieve different balances between their pros and cons, as

exemplified by the OMG’s four-layer architecture.

We believe that an evaluation framework for tool architectures, allowing concrete

technical comparisons to be made will be an invaluable help for making strategic

decision in the near future, and we hope that our contribution in the form of this paper

represents a useful step in this direction.

Acknowledgements

We would like to thank Andy Schürr and his group and Pierre-Alain Muller for

stimulating discussions and for information on Fujaba, and TopModL respectively.

References

[1] OMG: Unified Modeling Language, v1.5. OMG document formal/03-03-01, (2003)

[2] Gonzalez-Perez, C. and Henderson-Sellers, B.: Templates and Resources in Software

Development Methodologies. To appear, Journal of Object Technology, May/June (2005)

[3] Matula M.: Netbeans Metadata Repository. http://mdr.netbeans.org/ (2003)

[4] Greenfield, J., Short, K.L., Cook, S. and Kent, S.: Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools. Hungry Minds Inc. (2004)

[5] Atkinson, C., Kühne, T., Model-Driven Development: A Metamodeling Foundation.

IEEE Software, vol. 20, no. 5 (2003) pp. 36-41

[6] Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA Framework.

Proceedings of ASE'2001, San Diego, USA (2001)

[7] Kelly, S., Lyytinen, K. and Rossi, M.: MetaEdit+: A fully configurable multi-user and

multi-tool CASE and CAME environment. In Proceedings of the 8th International

Conference CAISE'96, Springer-Verlag (1996) pp. 1-21

Concepts for Comparing Modeling Tool Architectures 413

[8] Klein, T. Nickel, U.A., Niere, J., Zündorf, A.: From UML to Java And Back Again, Tech.

Rep. TR-RI-00-216, University of Paderborn (1999)

[9] Jeusfeld, M.A. et al.: ConceptBase: Managing conceptual models about information

systems. Handbook of Information Systems, Springer-Verlag (1998) pp. 265-285

[10] Mylopoulos, J., Borgida, A. Jarke, M. Koubarakis, M.: Telos: representing knowledge

about information systems. Vol. 8. No. 4, ACM Trans. on Information Systems (1990)

http://www-i5.informatik.rwth-aachen.de/lehrstuhl/publications/publications.html?author=Jeusfeld&sort=2

	1 Introduction
	2 Conceptual Foundations
	3 Architectural Options
	4 Canonical Architectures
	5 Conclusion
	Acknowledgements

