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Summary. There are three basic equations in mechanics for treating collisions: the law of impact, kine-

matic compatibility, and energetic consistency. In this paper, the conditions are examined under which a

natural extension of the dynamics at an impact is possible without taking additional impact laws, and

which additional assumptions have to be made to solve the impact for different classes of systems. It will be

shown that Newton’s law of impact for two colliding point masses can be derived from the concept of

energy conservation and the principle of maximum dissipation, and has therefore not to be regarded as an

independent equation. Moreover, it can be assigned to single-contact impacts in multibody systems as

soon as the classical definition of perfect constraints is being extended to impulsive dynamics and uni-

lateral contacts. It will further be shown that the principle of maximum dissipation leads to a unique post-

impact velocity in the case of multi-contact collisions. In all other cases, however, the velocities remain

undetermined, and laws of impact have to be postulated as additional and independent equations, whereas

the classic definition of the restitution coefficient as a dissipation parameter can still be kept.

1 Introduction

It has been known since Galileo Galilei (Discorsi, The Sixth Day) [1] that impact forces can

become unlimited. Huygens had been examining completely elastic collisions between two point

masses since 1656. He recognized the fact, that besides conservation of momentum and kinetic

energy the relative motion of two bodies has to be taken into account in order to be able to

formulate a universally valid law of impact. His law v� V ¼ C� c, describing the relative

velocities inversion during the elastic impact, is extended by Newton in 1687 by the restitution

coefficient e in order to accommodate possible losses of energy during the collision. The form

eðv� VÞ ¼ ðC� cÞ serves Newton as an experimental confirmation of his third law ‘‘actio =

reactio’’ [1]. By setting e ¼ 1 Huygens impact law for the elastic case is obtained, whereas e ¼ 0

describes the limiting case of maximum dissipation possible, such that the bodies do not

penetrate after impact but keep moving with a common velocity. The restitution coefficient e is
regarded as a measure of dissipated energy during the impact in this context.

For systems composed of several elastic and rigid bodies, conservation of linear and angular

momentum does not lead to the target aimed at. Instead, the Newton-Euler equations have to

be established for each body in order to obtain sufficient equations describing the dynamics. If

one allows these bodies to have impacts at several contact points, one restitution coefficient is

not enough any more to unambiguously determine the post-impact velocities of all degrees of

freedom, since it is not known how the kinetic energy is distributed among the single bodies.

One normally postulates ad-hoc impact laws that are more or less suited to describe reality in

all cases. Known problems consist either in obtaining too many possible post-impact velocities
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while using the restitution coefficients provided by the impact laws, leading to energetic or

kinematic inconsistency, or in not being able to reach certain velocities at all. In the latter case,

behavior observed in experiments can sometimes not be reproduced in calculations by any

choice of the impact parameters in use.

Another difficulty consists in a widely spread misunderstanding of the restitution coefficients.

They are material-pairing-constants only in the fewest cases, but have to be generally under-

stood as a measure of dissipation concerning the chosen spatial discretization level of the

mechanical system. This is addressed by many people in saying that the restitution coefficients

depend in some way on the geometry of the colliding bodies, meaning that they must somehow

take into account the wave propagation process initiated by the collision. Since dissipation in

mechanical systems has also to be understood as a transfer of energy to mechanical degrees of

freedom which are not contained in the mathematical model, the restitution coefficients can be

diminished being associated with a refinement of the discretization. In order to obtain the right

dynamic behavior for the macroscopic degrees of freedom, the impact can finally be seen as

completely inelastic when using a continuum model.

One reason for the mentioned difficulties in setting up the impact laws for multi-point-

collisions is the fact, that it has not yet been examined from which point and to what extend a

formulated impact law may be understood as an independent equation, in order to avoid

contradictions with the basic equations of kinetics and the kinematic and energetic restrictions.

This question is the main topic of this article. It will not yet attempt obtaining a complete

parametrization free of contradictions in form of a general impact law, but propose an

appropriate setting for a theoretical framework in which any impact law should reside. Only the

impact itself will be examined. Pre- and post-impact motions will not be discussed. As an

impact we will understand a velocity jump which occurs at a discrete point in time, and which is

associated with infinite impulsive forces as a consequence of finite, non-disappearing masses in

the system. Processes with rapidly changing velocities without discontinuities will not be

understood as impacts, as e.g., models containing local stiffness in the contact points of the

colliding bodies. Only collisions will be investigated. Impulsive forces applied from outside that

can be regarded as external impact excitation, e.g. the impact from the queue on the ball when

playing billiard, will not be examined in this context. All discussions will be limited to scle-

ronomic systems. Even though explicit time-dependencies do not represent a burden they will

not be treated in favor of clearness. Influences of Coulomb friction during the collision will not

be permitted as well. The concept of perfect constraints is essential in the sense of a general and

structural procedure according to classic mechanics. Coulomb friction would destroy it. Wave

effects during the collision, however, are explicitly permitted.

The structure of this article is being lead by the philosophy of going from basic to more

sophisticated statements, and not introducing impact laws as independent equations as long as

a natural generalization of the dynamics at the impact is possible by using only the basic

equations of kinematics, dynamics and energy. In order to display the gained statements in a

most descriptive manner a geometric approach, based on the kinetic metric, will be chosen.

Section 2 is about Newton’s impact problem, the collision of two point masses. It is being

treated by the help of conservation of linear momentum and two energetic limiting cases,

namely conservation of kinetic energy and the principle of maximum dissipation. This leads to

the classical law of impact, which therefore does not need to be introduced as an independent

equation. In Sect. 3, the example of two colliding beams shows the restitution coefficient’s

dependency of the spatial dicretization level. In a first step both beams will be modelled as one-

dimensional elastic continua. The collision will naturally be assumed to be completely inelastic.

In a second step the beams are assumed to be rigid, and the impact is solved by the equations
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from Sect. 2. The beams’ average velocities match only, if the restitution coefficient for the rigid

body model is being chosen according to the ratio of the beams’ lengths. Section 4 deals with

the single-contact impact in a multibody system. By using a collision model based on perfect

unilateral constraints, it can be shown that the impact dynamics is still obtained in a natural

way, and that the impact law does not yet need to be interpreted as an independent equation,

just as in Sect. 2. The limiting cases of the completely elastic and inelastic impact can be

geometrically interpreted as a reflection and orthogonal projection, and the impact itself as a

necessary action to keep a curve on a manifold when their boundary is reached under a non-

vanishing angle. In Sect. 5, multi-contact collisions are addressed. While the principle of

maximum dissipation still yields a unique extension of the dynamics at the impact, the post-

impact velocities for any other level of dissipation may be underdetermined. The different

dissipation levels lead to a foliation of the energy ball into spheres, such that the classical

concept of using a dissipation coefficient to characterize the energetic property of an impact can

still be kept. However, additional equations, the impact laws are needed to locate the impact

event on the according spheres and to make the whole impact well-defined. Finally, Sect. 6

shows one concept that is used today to treat the multi-contact case of Sect. 5. It is based on the

orthogonal decomposition of the pre-impact velocity with respect to a pair of convex cones and

admits a very clear geometric interpretation of the impact process. It does, however, not

address every impact event possible, but only a sub-class that we call impacts with global

dissipation index. We will discuss the mechanical meaning of this class of impacts by examples

and and give a representation of the impact law in local contact coordinates.

2 Collision of two bodies

We consider a mechanical system of two interacting bodies defined on R� R. The masses of the

two bodies are m1 and m2, and the velocities of their centers of mass v1 and v2. The interaction

force between the two bodies is denoted by K. This configuration was also used by Newton to

experimentally confirm his third law ‘‘actio = reactio’’ [1]. The experimental setup is shown in

Fig. 1. Newton’s impact law must not be considered as an independent physical principle, but

can be derived from conservation principles and energetic considerations.

Let ðv�1 ; v�2 Þ be given velocities of the centers of mass at time t�, and ðvþ1 ; vþ2 Þ unknown
velocities at time tþ ðtþ � t�Þ. Further, we consider the impulse p and the kinetic energy T of

the system,

p ¼ m1v1 þm2v2; T ¼ 1

2
m1v2

1 þ
1

2
m2v2

2: ð1Þ
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Fig. 1. Collision of two bodies
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A regular transformation of the velocities ðv1; v2Þ ! ðu; cÞ,

ðm1 þm2Þu :¼ m1v1 þm2v2; c :¼ v2 � v1 ð2Þ

leads to

v1 ¼ u� m2

m1 þm2
c; v2 ¼ uþ m1

m1 þm2
c: ð3Þ

Equation (1) can now be written as

p ¼ ðm1 þm2Þu; T ¼ 1

2
ðm1 þm2Þu2 þ 1

2

m1m2

m1 þm2
c2; ð4Þ

where u is the velocity of the center of mass of the overall system and c the relative velocity of

m2 with respect to m1.

The impulse of the system is conserved, because there are no external forces acting. This leads

with Eq. (4) to

pþ � p� ) ðm1 þm2Þuþ � ðm1 þm2Þu� ) uþ � u�: ð5Þ

Therefore, the center of mass of the whole system is not accelerated. This result is valid for

arbitrary force interactions K between the bodies and arbitrary times t�; tþ. We are free to

chose a spring-damper element, an instantaneous impulsive force, or a continuum model that

takes into account the elasticity of the bodies; the nature of the interaction model between the

two bodies has no influence on the achieved results. From Eqs. (5) and (3) we get the difference

in the velocities

vþ1 � v�1 ¼ �
m2

m1 þm2
ðcþ � c�Þ; vþ2 � v�2 ¼ þ

m1

m1 þm2
ðcþ � c�Þ ð6Þ

and their quotient as

vþ1 � v�1
vþ2 � v�2

¼ �m2

m1
: ð7Þ

This ratio is already unique, while the differences themselves depend still on the relative velocity

c. The unknown velocity difference in (6) may further be specified by using energetic consid-

erations: With the equality uþ ¼ u� from (5) we obtain by (4) the expression

Tþ � T� ¼ 1

2

m1m2

m1 þm2
ðcþ2 � c�2Þ: ð8Þ

This difference in kinetic energy depends on the chosen interaction model. For example, if there

is a relative acceleration between m1 and m2 provided by a motor or a prestressed spring, the

kinetic energy Tþ will be larger than T�. By modelling the interaction using a passive spring-

damper element, the kinetic energy Tþ becomes zero for tþ ! 1. Therefore, the difference in

kinetic energy does not necessarily show negative values and indicate dissipation, but may also

be positive. Note also that the time interval ½t�; tþ� is not yet constricted and can still have

arbitrary length.

Let us now discuss the behavior of the system when a collision takes place. We allow for the

force interactions K values unequal to zero only in the case of contact between the bodies.

Otherwise, if the bodies are separated, we demand K ¼ 0. With this assumption we may chose

tþ and t� such that there is no force interaction outside the interval ½t�; tþ� (tþ ¼ þ1 is

allowed). A collision requires the two bodies to move together. Thus, the relative velocity at the

start of the collision t� must be negative, c� < 0. On the other hand, the relative velocity at tþ

must be positive, cþ � 0. Otherwise, the bodies would interpenetrate each other due to the

missing force interactions outside of ½t�; tþ� that we have demanded in our previous assump-
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tion. As a consequence from ðc� < 0; cþ � 0Þ, the interaction force has to act in mean as a

compressive magnitude during the collision time interval,
R
½t� ;tþ� dK ¼ K > 0. We further

assume the collision to be dissipative with respect to the chosen discretization level with two

degrees of freedom, Tþ � T� � 0, in order to later restrict the dissipation coefficient e to

nonnegative values not exceeding 1. This assumption excludes on the one hand any active

behavior of the collision partners as in a pinball machine, and on the other hand any energy

transfer from microscopic internal degrees of freedom to our macroscopic discretization level.

The latter is guaranteed, for example, if eventual internal oscillations of both collision partners

have been faded away at the time of collision, i.e., if the value of T� is invariant under any

spatial discretizazion of the system, including any possible continuum model.

By the previous assumptions, we may now consider two limiting cases, for which the relative

velocity after the collision cþ can be calculated:

Conservation of kinetic energy: Equation (8) leads together with c� < 0, cþ � 0 to

Tþ ¼ T� ) cþ ¼ �c�: ð9Þ

The relative velocity is inverted by the collision, and one speaks about a completely elastic

collision behavior.

Maximum dissipation: This case is conveniently stated as an optimization problem on (8): For

given c�, find cþ such that

Minimize Tþ � T� under cþ � 0 ) cþ ¼ 0: ð10Þ

Here, the two bodies move with a common velocity after the collision, and the collision itself

is called completely inelastic.

In order to describe dissipation levels between the two limit cases, a restitution coefficient e is
introduced,

cþ ¼ �ec� ð0 � e � 1Þ: ð11Þ

This equation is known as Newton’s impact law. It covers the limit cases of a complete elastic

(e ¼ 1) and a complete inelastic (e ¼ 0) collision behavior. The restitution coefficient e serves as
a measure for the amount of dissipation at the collision.

Considering the two bodies as rigid, the change in the relative velocity c� to cþ has to be

instantaneous to prevent a penetration of the two bodies. This causes the time interval of the

collision to shrink to one point, ½t�; tþ� ¼ ft� ¼ tþ ¼: t?g, and the interaction between the two

bodies to become impulsive,
R
ft?g dK ¼ K > 0. The terms c� and cþ denote then the left and the

right limit of the velocity function t! cðtÞ which has a discontinuity at the time of collision t?.

Internal oscillations are not possible in rigid bodies. A choice e < 1 of the restitution coefficient

therefore implies the assumption of an instantaneous thermal loss of energy for the rigid body

model.

Regarding the one-dimensional problem of two colliding particles, the Newtonian impact

law (11) can be derived from conservation of linear momentum and additional energetic

assumptions. The law itself has not to be regarded as an independent principle, but as an

equation to specify the amount of dissipation of the system with respect to the chosen spatial

discretization. When using Newton’s impact law (11), one always has to carefully check the

rigid body assumption. Special attention has to be paid if the rigid model is a significant

simplification of a complex highly dimensional dynamic system, for which an energy transfer to

inner degrees of freedom might influence drastically the collision behavior. Examples are effects

of wave propagation, which will be addressed in the next section.
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3 Example: Collision of two elastic rods

In this section we discuss in detail the collision behavior of two homogenous elastic rods

(Young’s modulus E, specific mass q, cross section A, length l1 < l2). Rod 1 moves with

constant velocity v towards rod 2 which is at rest. On the basis of this example taken from [2], it

will be shown that the restitution coefficient depends on the spatial discretization depth of the

individual bodies and must therefore not be regarded as a material pairing constant only.

As a first step, the example is treated in the framework of the theory of linear elasticity. The

bodies are modeled as continua with distributed degrees of freedom. This corresponds to an

‘‘infinitely’’ fine discretization of the system consisting of the two rods. The problem is solved

by the wave equation. Let uðx; tÞ be the longitudinal displacement of the rod’s physical point x

at time t, eðx; tÞ ¼ uxðx; tÞ the local strain in the rods, and rðx; tÞ the associated stress that result

from the constitutive law rðx; tÞ ¼ Eeðx; tÞ. Let further x 2 ½l1 þ l2� to address the physical

points of rod 1 by x 2 ½0; l1Þ and those of rod 2 by x 2 ðl1; l1 þ l2�, see Fig. 2. By setting t :¼ 0

as the time at which the rods get into contact, we may restrict the time interval of interest for

the collision to t � 0. The dynamic behavior of the rods is described by the wave equation

uttðx; tÞ ¼ c2uxxðx; tÞ; c2 ¼ E

q
; ð12Þ

where c is the wave propagation velocity.

In order to obtain a well-defined problem, we first set up completely the pre-collision state of

the two rods. We assume both rods to get in contact at time t ¼ 0 and assign the associated

displacements at the contact the value zero,

uðl�1 ; 0Þ ¼ uðlþ1 ; 0Þ ¼ 0: ð13Þ

The stress distribution of both rods are assumed equal to zero prior to collision,

uxðx; 0Þ ¼ 0 8x 2 ½0; l1Þ [ ðl1; l1 þ l2�: ð14Þ

Before the collision, rod 1 moves with constant velocity v towards rod 2 which itself is at rest.

This results in the velocity field

utðx; 0Þ ¼ v 8x 2 ½0; l1Þ;

utðx; 0Þ ¼ 0 8x 2 ðl1; l1 þ l2� ð15Þ

compression

compression

neutral

neutral

neutral

neutralneutral

neutral

rod rod

ut

ut

ut

ut

ut

ut

ut

ut

ut

x

Fig. 2. Wave propagation in the rods

during the collision process
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at the start of the collision. It is worth mentioning that the point x ¼ l1 has been excluded in

Eqs. (13)–(15), because discontinuities have to be expected there.

The displacement boundary conditions at the investigated time interval t > 0 are points free

of stresses at x ¼ 0 and x ¼ l1 þ l2,

uxð0; tÞ ¼ uxðl1 þ l2; tÞ ¼ 0 8t > 0: ð16Þ

There is also a unilateral constraint uðlþ1 ; tÞ � uðl�1 ; tÞ � 0 at x ¼ l1 which describes on dis-

placement level the state of the contact. One has to distinguish between two cases if this

unilateral constraint is stated on velocity level: If the contact is open, we have again endpoints

which are free of stresses,

uðlþ1 ; tÞ � uðl�1 ; tÞ > 0 ) uxðlþ1 ; tÞ ¼ uxðl�1 ; tÞ ¼ 0 8t > 0: ð17Þ

If the contact is closed, the state of the constraint is described by a complementarity condition.

It expresses the only compressive character of the stresses for the closed contact, and the

property of ‘‘signed’’ velocities at the moment of separation,

uðlþ1 ; tÞ � uðl�1 ; tÞ ¼ 0 : uxðlþ1 ; tÞ ¼ uxðl�1 ; tÞ � 0;

utðlþ1 ; tÞ � utðl�1 ; tÞ � 0;

uxðl�1 ; tÞðutðlþ1 ; tÞ � utðl�1 ; tÞÞ ¼ 0 8t > 0: ð18Þ

As a final and independent condition, not being contained in any of the above expressions and

not being given in any axiomatic way, an impact law has heuristically to be introduced, which

describes the velocity jump at the moment of collision at the contact. We choose

utðlþ1 ; 0þÞ ¼ utðl�1 ; 0þÞ; ð19Þ

which corresponds by (11) with cðtÞ ¼ utðlþ1 ; tÞ � utðl�1 ; tÞ to a completely inelastic impact

model, for which the relative velocity of the two bodies disappears after the impact.

Equations (12)–(19) completely describe the impact problem and can easily be solved with the

characteristics of the system at hand. The resulting temporal and spatial behavior of the two rods

is depicted in Fig. 2. The regions marked as tension, compression and neutral represent in the

same order that ux ¼ v=2c, ux ¼ �v=2c and ux ¼ 0, respectively. One notices that the point of

contact x ¼ l1 is under compression in the interval 0 < ct < 2l1. This implies that (18) holds in the

formuxðl�1 ; tÞ < 0 andutðlþ1 ; tÞ ¼ utðl�1 ; tÞ. At time ct ¼ 2l1, the equalization process between the

rods, during which waves pass across the contact, is completed. The left rod remains in an state

free of stress, whereas in the right rod awave pattern evolves with period ct andwavelength 2l2. In

the interval 2l1 < ct < 2l2 the contact is still closed but already free of stress. Equation (18) takes

here the form uxðl�1 ; tÞ ¼ 0 and utðlþ1 ; tÞ ¼ utðl�1 ; tÞ. At time ct ¼ 2l2 a tensile wave reaches the

point of contact, but cannot pass it because of the inequality uxðl�1 ; tÞ � 0. As a consequence, the

contact opens with uxðl�1 ; tÞ ¼ 0 and utðlþ1 ; tÞ � utðl�1 ; tÞ ¼ v > 0. For ct > 2l2 Eq. (17) is valid,

which describes the open contact.

An energetic analysis shows that the system is non-dissipative, i.e., that the sum of kinetic

energy TðtÞ and potential energy VðtÞ is constant during the entire collision process. Note in

particular that we have used by (19) the model of a completely inelastic impact for the collision.

However, this collision turns out to be non-dissipative, based on the fact that the measure of the

local masses which are to be instantaneously decelerated during impact is zero. We have just

before the collision T1ð0�Þ ¼ 1=2qAl1v2, T2ð0�Þ ¼ 0, V1ð0�Þ ¼ V2ð0�Þ ¼ 0. After the com-

pletion of the wave equalization process ct > 2l1, we have T1ðtÞ ¼ V1ðtÞ ¼ 0 and

T2ðtÞ þ V2ðtÞ ¼ T1ð0�Þ, where T2ðtÞ and V2ðtÞ vary 2l1-periodically in ct.

Modeling impacts without friction 7



As a second step we model the system as two discrete masses m1 ¼ qAl1, m2 ¼ qAl2 and treat

the impact by the method introduced in Sect. 2. The restitution coefficient e in (11) shall be

determined such that the results obtained by considering the system as a continuum as in Fig. 2

agree with the ones from the discretized version on average. This means that the velocities of

the centers of mass vþ1 , vþ2 of both rods are obtained correctly in the sense of the wave equation

(12) from (11) and (3). The velocities of the centers of mass of both rods just before the impact

are v�1 ¼ v and v�2 ¼ 0. After the impact one obtains from Fig. 2 for rod 1 directly vþ1 ¼ 0. The

velocity vþ2 results in vþ2 ¼ l1=l2v and can be obtained either by evaluating the conservation of

linear momentum pþ ¼ p� with p according to (1), or from Fig. 2 by spatial averaging over

½l1; l1 þ l2� 3 x for any fixed time ct � 2l1. The relative velocities are then

c� ¼ v�2 � v�1 ¼ �v; cþ ¼ vþ2 � vþ1 ¼
l1

l2
v; ð20Þ

which leads to a restitution coefficient

e ¼ l1

l2
ð21Þ

when (11) is evaluated. This examples illustrates that the restitution coefficient cannot only be

considered as a material pairing constant. As we have seen, it depends on the ratio of the

lengths or, in other words, on the geometry of the colliding bodies [2]. It includes in an

extracted manner the total wave propagation process that occurs during the impact. The waves

that continue to propagate in the right rod after the collision has been completed, are beyond

our chosen spatial resolution and must therefore be understood as dissipation. With (8) and

(20), (21) one obtains here

Tþ � T� ¼ 1

2

l1

l2
qAv2ðl1 � l2Þ < 0: ð22Þ

The term ‘‘dissipation’’ has therefore to be used and understood in the context of the spatial

discretization depth of the mechanical system and includes also energy transfer to degrees of

freedom that have not been incorporated in the model. The duration ct ¼ 2l2 of the collision

obtained by the continuummodel provides, by the way, a reasonable lower limit for the length of

a time interval to be used to locate the impact numerically in a rigid body approach: Any attempt

to determine a more exact impact time does not make sense from the physics point of view.

4 Systems with a single collision point

In Sect. 2, the impact law has been obtained from the limiting cases of energy conservation and

maximum dissipation at the collision. It shall now be assessed to what extend these both

concepts can be used to treat single-point impacts in a multi-body system. We consider systems

as depicted in Fig. 3, consisting of rigid bodies that are linked together by perfect bilateral

constraints. We assume that only two out of these bodies may collide with each other, con-

tacting each other in a single point only.

impact

perfect constraints
Fig. 3. Multi-body system with a single

point of collision
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For classical impact-free systems, one has to use for each body separately Newton’s second

law and Euler’s axiom to derive the equations of motion. The conservation principles of linear

and angular momentum will not suffice, because the rigid bodies in the system interact with

each other by external forces. This procedure has to be applied to impact problems in the same

fashion, because external impulsive forces are as natural as classical non-impulsive forces for

impact-free motion. In order to accomplish this, the equations of motion have to be replaced by

their integrated form, which we call the impact equations [3], [4]. Integration has to be per-

formed over a single element, the impact time. Only atomic terms, i.e., measures of Dirac type

contribute, such as impulsive forces and drastic changes in the accelerations which lead to

velocity jumps. For every external force, whether conventional or impulsive, a force direction

has to be specified in the model in accordance with the physical behavior of the system. In

addition, a force law has to be established in order to calculate the values of the forces from the

kinematic state of the system. In our case of the single-point collision, this requires a collision

model [3], [4] which is depicted in Fig. 4.

The left part of Fig. 4 describes the kinematics of the collision. The contact points P and Q at

which the collision takes place are defined as the surface points that lie on a connecting line

perpendicular to both of the body contours. For n being the unit normal vector pointing

inwards at point P of the left body, the distance g of the collision points becomes

g ¼ nTðrP � rQÞ � 0: ð23Þ

For g > 0 both bodies are spatially separated from each other. The case g ¼ 0 describes the

situation, where both bodies touch each other at the points P and Q, as at the time instant of the

collision. If (23) is differentiated with respect to time, then one obtains _g ¼ c as the velocity

c ¼ nTðvP � vQÞ; ð24Þ

with which the points of collision move relative to each other in n-direction. In (24), vP and vQ

are the velocities of the rigid body contour points, which momentarily coincide with P and Q.

The force interaction model is depicted on the right side of Fig. 4. It is assumed that the

impulsive forces at the impact act at points P and Q in the direction of n, which corresponds to

a frictionless contact behavior. Due to the law of interaction one hasFP ¼ �FQ, and therefore

FP ¼ nK; FQ ¼ �nK ðK � 0Þ: ð25Þ

The scalar K is the value of the force impulse that occurs during collision. It is nonnegative if,

on average, positive (compressive) forces act during the time interval of the real physical

collision.

In order to fulfill the impact equations for alln bodies in the system, i.e., the equations obtained

by integration of Newton’s second law and Euler’s axiom over the impact time, we demand that

the corresponding virtual work expression is zero for all virtual linear and angular velocities at the

impact. Similar to the case of motion without impact, the virtual work has to be composed of all

instantaneous changes in the linear and angular momenta as well as all external forces and

moments that might have impulsive character. Bounded forces or gyroscopic acceleration

n n
PP Fp

O

rQ

FQ
QQ

vQ

rP

vP

g

Fig. 4. Kinematics and impulsive

forces during the collision
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components do not need to be considered, since they do not contribute to the impacts equations

after integrating over a singleton in time and drop out of the equations as a consequence. The

dynamic equilibrium at the impact is thus expressed by the variational equation

Xn

i¼1

dvT
S mðvþS � v�S Þ �FS

� �
þ dXT HSðXþ � X�Þ �MS

� �� �
i

� dvT
PFP � dvT

QFQ ¼ 0 8dv?; dX: ð26Þ

Here, mi and HSi are the masses and the symmetric positive definite inertia operators of the n

rigid bodies in the system, vSi and Xi are the velocities of the centers of mass and the angular

velocities of the bodies, and FSi and Mi are all the external forces and moments of probable

impulsive nature. With exception of the impulsive forces, whose virtual work is considered in

the second line of (26), these are solely the constraint forces of the bilateral constraints in the

system. The upper indices þ and � identify, as in Sect. 2, the state directly before and after the

impact. The lower index ? in the virtual velocities generally represents any of the points P, Q

and S.

For further discussions we formulate now the collision problem in the configuration space of

the mechanical system. Let q 2 R f be local coordinates of the f -dimensional configuration

manifold set up through the bilateral constraints, and let u ¼ _q be the associated velocities. The

coordinates q are classical minimal coordinates for the case that the collision contact is open

(g > 0). For scleronomic systems, both, the real and the virtual velocities (26) transform

according to

v? ¼ J?ðqÞu; dv? ¼ J?ðqÞdu;

X ¼ JRðqÞu; d X ¼ JRðqÞdu;
ð27Þ

where JRðqÞ and J?ðqÞ are the Jacobians of rotation and of translation in the points

? 2 fP;Q;Sg. By the impenetrability condition (23) a subset of Rf is obtained which is non-

convex in general,

C :¼ fqj gðqÞ ¼ nTðrP � rQÞ � 0g: ð28Þ

This subset defines the kinematically admissible coordinates q and further restricts the system

to a configuration manifold with boundary. If the collision points are placed in addition such

that the common tangent plane of both bodies is uniquely determined in the case of contact,

then we may assume the boundary in the neighborhood of the impact coordinates q 2 @C as

smooth. The relative velocity c normal to the surface of the impacting bodies (24) becomes with

(27)

c ¼ nTðJP � JQÞu: ð29Þ

On the other hand, cðtÞ ¼ _gðqðtÞÞ ¼ ð@g=@qÞuðtÞ, enables us to identify, by comparing this

expression with (29), the coordinates of the differential of g as

@g

@q
¼ nTðJP � JQÞ: ð30Þ

Considering (27) the virtual work expression (26) becomes

duT
Xn

i¼1

JT
S mJS þ JT

RHSJR

� �
i
ðuþ � u�Þ � duT

Xn

i¼1

JT
SFS þ JT

RMS

� �
i

� duTðJT
P � JT

QÞnK ¼ 0 8du: ð31Þ
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We extend now the classical definition of perfect bilateral constraints to impacts by demanding

the virtual work of the impulsive constraint forces to vanish for any geometrically compatible

virtual velocities du,

duT
Xn

i¼1

JT
SFS þ JT

RMS

� �
i
¼ 0 8du: ð32Þ

By this definition, we may now cross out the impulsive constraint forces (32) from (31). This

concept has not to be taken as an axiom, but merely expresses our wish to keep the classical

orthogonality property between the constraint forces and the surfaces of constrained motion

also for impulsive behavior. Perfect bilateral constraints are basically used in the modeling of

joints and guidances if the influence of Coulomb friction is negligible. According to Eq. (32),

this property has now to be checked at the stage of modeling also for the impulsive constraint

forces.

With Eqs. (28)–(32) all relations are now available to state the collision problem on the

configuration manifold of the system. These are, in condensed form, Eq. (28) which defines the

set of admissible displacements

C ¼ fqj gðqÞ � 0g; ð33Þ

the virtual work expression (31) with the external impulsive forces originating from the bilateral

constraints (32), and the normal relative velocity (29). By taking into account (30) and by

setting MðqÞ :¼
Pn

i¼1ðJT
S mJS þ JT

R HSJRÞi for the mass matrix of the system, we obtain (31)

and (29) in the form:

Mðuþ � u�Þ ¼ @g

@q

� �T

K; c ¼ @g

@q
u: ð34Þ

The left equation in (34) is called the impact equation and should not be confused with the

collision law, which has not yet been introduced.

For a geometric interpretation of (34) we map all the vectors defined in the cotangent space

to the tangent space by the use of the natural isomorphism induced by the kinetic metric. The

inner product of the associated coordinates in the tangent space is denoted by a dot,

a � b :¼ aTMb, and the associated norm is written as kak :¼
ffiffiffiffiffiffiffiffiffi
a � a
p

. With

rg ¼ M�1 @g

@q

� �T

; ð35Þ

the coordinates of the gradient of gðqÞ in the tangent space, we get

uþ � u� ¼ rgK; c ¼ rg � u: ð36Þ

With arbitrary K � 0 (25), the right-hand side of the impact equation describes a half-line

T?
CðqÞ in the tangent space at the impact point q 2 @C. We may now define an object TCðqÞ

via

T?
CðqÞ :¼ f�rgðqÞKjK � 0g; TCðqÞ :¼ fzjz � z? � 0 8z? 2T?

CðqÞg; ð37Þ

which is a half-space orthogonal to the half-line T?
CðqÞ, see Fig. 5. Its boundary @TCðqÞ is the

tangent space associated with the sub-manifold fqj gðqÞ ¼ 0g in point q. This half-space ex-

presses the kinematic compatibility which the post-impact velocity uþ has to comply with, in

order to keep the system’s trajectory qðtÞ within the set of admissible displacements C and to

prevent interpenetration of the colliding bodies. So far, uþ has to fulfill two requirements: the

already discussed kinematic compatibility uþ 2TCðqÞ and the impact equation in (36),

uþ 2 u� �T?
CðqÞ.

Modeling impacts without friction 11



Consider now a trajectory which reaches the boundary of the configuration manifold under a

velocity u� 2 �TCðqÞ. It is then possible to derive limits on the velocity uþ after the impact by

using the same concepts as in Sect. 2, i.e., the concepts of energy conservation and maximal

dissipation. With the kinetic energy T ¼ 1
2
kuk2 for a scleronomic system and the impact

equations in (36), the following relation for non-dissipative impacts can be derived:

Tþ ¼ T� ) kuþk ¼ ku�k ) uþ ¼ �u�; if uþ 2 u� �T?
CðqÞ: ð38Þ

The case uþ ¼ u� has to be excluded because kinematic compatibility would be violated. The

impact behavior (38) represents a reflection of the velocity u� on the hyperplane defined by the

boundary of TCðqÞ. Due to (38), the relative velocity c from (36) is again inverted,

cþ ¼ rg � uþ ¼ �rg � u� ¼ �c�: ð39Þ

On the other hand, one can uniquely reconstruct uþ from u� by using (36) when cþ ¼ �c� is

given.

The principle of maximum dissipation incorporates the minimization of the post-impact

kinetic energy under consideration of the laws of impact and provides uþ as the nearest point

on u� �T?
CðqÞ to the origin, as it can be easily seen in Fig. 5. This corresponds to an

orthogonal projection of u� on the boundary of TCðqÞ. Kinematic consistency is then auto-

matically guaranteed. The principle of maximal dissipation may thus be stated as follows:

Minimize kuþk under uþ 2 u� �T?
CðqÞ ) uþ ¼ proj@TCðqÞðu

�Þ: ð40Þ

For the relative velocity after the impact we obtain

cþ ¼ rg � uþ ¼ 0; ð41Þ

due to the orthogonality of uþ and rg. Again, the post-impact velocity uþ is uniquely

determined by u� and (36) for known cþ ¼ 0.

By introducing now a restitution coefficient e as in Sect. 2, i.e.,

cþ ¼ �ec� ð0 � e � 1Þ; ð42Þ

one is able to access also dissipative behavior of the collision which lies between the two limit

cases mentioned. For a single-contact collision, Newton’s impact law can again be deduced

from energetic considerations, if the structure outlined in Eq. (34) is provided for the

mechanical system. Besides the definition of the constraint forces (32) which has been extended

to impacts, the substantial physical assumption leading to Eqs. (34) consists in the equality of

the differential @g=@q occurring in the relative velocity c ¼ @g=@q with the generalized direc-

tion w of the impulsive force in the impact equations Mðuþ � u�Þ ¼ wK, i.e., wT ¼ @g=@q.

This property is used in [5] as the definition of a unilateral perfect holonomic constraint and

plays a role in non-smooth analytical mechanics as important as the corresponding concept in

the classical case. The essence of the single-contact collision lies, again, not in the impact law

c

c

c
g

g
C

Fig. 5. Geometry of the single contact collision

without friction
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but in the generalized concept of perfect constraints extended to impacts and inequality con-

straints. Note finally that conservation of the generalized impulses applies in the f � 1 direc-

tions orthogonal to rgðqÞ, M proj@TCðqÞðuþÞ ¼ M proj@TCðqÞðu�Þ, which generalizes all results

from Sect. 2.

An impact problem related to the single-contact collision is the natural extension of a geo-

desic on a manifold with a sharp edge, which, as in Fig. 6, can uniquely be obtained by a local

straight and back folding. In order not to leave the manifold at the sharp edge, the (non-

vanishing) velocity of the trajectory has again instantaneously be changed when the edge is

transversally approached. The result shown in Fig. 6 can also be achieved by using a reflecting

hyperplane, which is aligned with the angle bisector and therefore is unique. This procedure

connects sharp edges to the non-dissipative collisions in Fig. 5, for which the manifold is bend

over by 180 degrees. For certain mechanical systems, the crossing of a sharp bend can actually

be interpreted as a non-dissipative collision, as the example of a coach driven on a plain track

from [6]. It is important to notice that one can continue working in a natural way without the

introduction of additional impact laws, even in the presence of sharp bends.

5. Multi-contact systems

We consider now multi-contact rigid body systems, or more generally, multi-contact systems

with finite degrees of freedom, for example generated by discretization of continua. Typical

examples are the rocking rod with two contacts, see Fig. 7, or the Newton’s cradle with four

contacts. For the mechanical system, the same assumptions are taken as in Sect. 4, especially

those of the perfect bilateral constraints (32) and those of the collision model in Fig. 4. Uni-

lateral perfect constraints are defined in the same fashion, but now extended to m contacts.

To formulate the impact problem, Eqs. (33)–(37) from Sect. 4 can be transferred directly to

multi-contacts. The set C of admissible displacements for m unilateral constraints gi of the

form (23) arises now in analogy to (33) as intersection,

C ¼ fqj giðqÞ � 0; i ¼ 1; . . . ;mg: ð43Þ

Further let H be the index set of the closed contacts,

H :¼ fij giðqÞ ¼ 0g; ð44Þ

rocking rod Newton's cradle

Fig. 7. Examples of multi-contact collision problems

flat

unfold fold

Fig. 6. Natural extension of a geo-

desic at a sharp edge
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because only those can take part in the collision and therefore can carry impulses. The normal

relative velocities ci are defined as in (29) and can be displayed as in (34) or (36),

ci ¼
@gi

@q
u ¼ rgi � u: ð45Þ

The impulses of all closed contacts are now to be considered in the impact equations (34) and

(36), thus

Mðuþ � u�Þ ¼
X

i2H

@gi

@q

� �T

Ki resp: uþ � u� ¼
X

i2H
rgiKi ðKi � 0Þ: ð46Þ

This does not yet mean, that all those contacts really take impulses. With Ki � 0, the total

impulsive force at the impact displayed in the tangent space, i.e., the right-hand side of the

second equation in (46), is composed as a nonnegative linear combination of the gradients rgi.

The set of all such possible linear combinations generates a convex cone and is denoted by

�T?CðqÞ in analogy to the half-line in (37),

T?
CðqÞ :¼ z?j z? ¼ �

X

i2H
rgiðqÞKi; Ki � 0

( )

: ð47Þ

The cone TCðqÞ orthogonal to (47), which approximates the configuration manifold in a

neighborhood of the impact point and which represents the kinematic compatible velocities, is

defined as in the right equation in (37) by

TCðqÞ :¼ fzj z � z? � 0 8z? 2T?
CðqÞg: ð48Þ

As a last condition, the energetic consistency at impact has to be guaranteed. For scleronomic

systems, the kinetic energy is T ¼ 1=2kuk2. Energy gain at impact can be excluded by claiming

that possible velocities uþ are not allowed to lie outside a ball Bu�ðqÞ with radius ku�k. Thus
the set of energetically consistent velocities after impact is

Bu�ðqÞ :¼ fyjkyk � ku�kg: ð49Þ

The subsets of the tangent space at the collision point defined in (47)–(49) correspond to three

necessary conditions for the velocities after impact uþ. These are in turn the impact equation,

the kinematic compatibility and the energetic consistency,

uþ 2 u� �T?
CðqÞ; uþ 2TCðqÞ; uþ 2 Bu�ðqÞ: ð50Þ

As intersection Su�ðqÞ we obtain a convex subset of the energy ball, in case of a collision

problem with two active contacts drawn dark-gray in Fig. 8. In contrast to a single-contact

T c(q)⊥

u––T c(q)⊥

Tc(q)

C

Bu–(q)

–∇g2(q)–∇g1(q)

g1(q) = 0

S
u –

g2(q) = 0

u –

u+

––––
––––

––––

––––

=

u–

Fig. 8. Geometry of the multi-contact collision with-

out friction
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impact (Fig. 5), the post-impact velocities are no longer restricted to a line segment only, but

are taken from a considerably bigger set of higher dimension.

As in Sects. 2 and 4, we want to analyze the two special cases ‘‘impact without loss’’ and

‘‘maximal dissipation’’. For impacts without loss, the boundary of the energy ball, the energy

sphere, is to be taken for the intersection of the sets addressed in (50), thus

uþ 2 u� �T?
CðqÞ \TCðqÞ \ @Bu�ðqÞ: ð51Þ

We recognize immediately from Fig. 8 that this does not lead to a uniquely determined velocity

uþ any more, but to a region on the energy sphere bounded by the (translated) cones �T?
CðqÞ

and TCðqÞ. All elements of this subset of @Bu�ðqÞ are thus equal candidates for uþ.

In order to analyze the collision event under maximum dissipation, we formulate it as a

minimization problem on the difference in kinetic energies and consider as constraints the

impact equation, i.e., the first equation in (50). One obtains the quadratic program:

Minimize f ðuþÞ :¼ Tþ � T� ¼ 1

2
kuþk2 � 1

2
ku�k2 under uþ 2 u� �T?

CðqÞ; ð52Þ

which has a unique solution uþ, because it deals with a strictly convex function f ðuþÞ to be

minimized on a convex set u� �T?
CðqÞ [7]. In [8]–[10] it is shown that this solution uþ is the

closest point in the set TCðqÞ to u�, see Fig. 8, which is normally called a proximation [7] and

denoted by

uþ ¼ proxTCðqÞðu
�Þ: ð53Þ

Energetic consistency is always guaranteed for this solution [8], which is obvious, regarding that

on one hand (53) it is a projection, prox2
KðxÞ ¼ proxKðxÞ, and on the other hand there exists a

linear subspace L containing uþ such that this projection can be regarded as orthogonal. Since

orthogonal projections are contractions, we have kuþk � ku�k. Moreover, because of the

mutual orthogonality of the cones T?CðqÞ and TCðqÞ, it can be shown [8]–[10], that uþ from

(53) is kinematical compatible, as soon as the trajectory approaches the boundary of the

manifold from the admissible domain, u� 2 �TCðqÞ. This assures that (53) is the unique

solution of the minimization problem (52) even in the case that all three conditions in (50) are

considered as constraints.

In case of multi-contact impacts as discussed here, the concept of the Newtonian restitution

coefficient from Sects. 2 and 4 can be abided and even consistently extended: In assigning the

spheres of the fully inelastic and the fully elastic impact the values e ¼ 0 and e ¼ 1 and inter-

polating in between linearly, every 0 � e � 1 corresponds to a dissipation level, which itself

corresponds to a sphere. However, the relative velocity that is changed during the impact

according to (42), is still to be defined and is an open problem until now.

Recapitulating, the following can be stated: For multi-contact collision problems, the prin-

ciple of maximum dissipation still gives a unique velocity uþ after impact. This event is iden-

tified by the restitution coefficient zero. For all other restitution coefficients, the velocity after

impact is restricted to a set by the conditions (50), but is still undefined. In order to be able to

pick a particular element out of this set, we need an impact law in the sense of an additional,

independent equation. The dynamics of the system can not be simply determined by choosing a

certain dissipation level via the restitution coefficient as in single-contact collisions. A similar

problem is the analytic extension of a geodesic on a manifold with an corner (Fig. 9). At a

sharp bend, there exists still a unique reflecting hyperplane (Fig. 6). This property is lost at

corners due to the singularity in curvature. Thus, the natural extension of the geodesic remains

underdetermined, such as the post-impact velocity in the case of a completely elastic multi-

contact collision.
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6 Impacts with global dissipation index

In this section we present one possible approach on how to single out one post-impact velocity

uþ for each energetic level from the admissible set Su�ðqÞ. This approach requires the

orthogonal decomposition of vectors with respect to an orthogonal pair of cones, which is a

special case of Moreau’s theorem, see, e.g. [7] for the full version and the proof:

Let ðR;R?Þ be an orthogonal pair of closed convex cones in R f that are mutually defined by

ðR;R?Þ ¼ fðv; v?Þjv � v? � 0 8v 2 R; 8v? 2 R?g; ð54Þ

where � denotes the inner product on Rf . Then

u ¼ vþ v?; v 2 R; v? 2 R?; v � v? ¼ 0 ð55Þ

holds for any u 2 R f with unique elements v 2 R f and v? 2 Rf .

We apply this decomposition on the pre-impact velocity u� with respect to the cones TCðqÞ
and T?

CðqÞ that are orthogonal to each other by (48),

u� ¼ vþ v?; v 2TCðqÞ; v? 2T?
CðqÞ; v � v? ¼ 0; ð56Þ

see Fig. 10. As members of the tangent cone and its orthogonal complement, v and v? are

called the tangential component and the normal component of the pre-impact velocity u�,

respectively. We choose now the impact law that has been proposed in a similar form in [8] to

determine the post-impact velocity uþ: We leave the tangential component v unchanged by the

impact, whereas the normal component v? is ‘‘inverted’’ according to

v� :¼ �e v? ð0 � e � 1Þ; ð57Þ

where e is the coefficient of restitution that addresses one of the energetic spheres from Sect. 5.

The post-impact velocity uþ is then set to be

uþ :¼ vþ v�: ð58Þ

?

Fig. 9. On the natural extension problem of a geodesic at a corner

u–

v = u+(e = 0)

u+(e)

u+(e = 1)
Tc(q)

Tc(q)

v×

v⊥

0

⊥

Fig. 10. On the construction of the impact law
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A collision event following the rules (56)–(58) is called an impact with global dissipation index.

From Fig. 10 one recognizes immediately a lot of properties of the impact law: It is always

energetically consistent, because the kinetic energy T satisfies 2Tþ ¼ kuþk2 � ku�k2 ¼ 2T�,

where equality holds for e ¼ 1 and maximal dissipation is achieved for e ¼ 0. A completely

elastic impact (e ¼ 1) can be interpreted as a reflection on a hyperplane H with normal v?,

whereas a completely inelastic impact (e ¼ 0) corresponds to an orthogonal projection of u� on

H to give v. In terms of a minimization problem are v and v? the nearest points to u� in the

sets TCðqÞ and T?
CðqÞ, respectively. The corresponding maps are called proximations and

denoted by

v ¼ proxTCðqÞðu
�Þ; v? ¼ proxT?CðqÞðu

�Þ: ð59Þ

For example, the impact law (56)–(58) might equivalently be stated in terms of proximations as

uþ ¼ ð1þ eÞproxTCðqÞðu
�Þ � e u� ð60Þ

when the first equation in (59) is used. Further, we recognize that the proximation in (60)

becomes the identity whenever u� 2TCðqÞ. In this case uþ � u�, thus no impact occurs. An

extension of this concept of global dissipation coefficient to moving boundaries or even to sets

which are not tangentially regular can be found in [10] and [9], respectively.

The impact law (60) does not address every impact event possible, i.e., the whole set Su�ðqÞ,
but is restricted to a segment of the uniquely defined half-line of T?CðqÞ passing the origin and

the point of maximal dissipation (53), see Fig. 11. The post-impact velocities ðaÞ observed at

Newton’s cradle in the experiment, for example, can not be accessed by this impact law (60). It

gives, instead, point ðbÞ on the same energetic sphere e ¼ 1, for which the first ball bounces

back to the left after it hit the remaining four balls, which themselves move to the right as one

single body of the same mass would do. If the impact law (60) is applied to systems which

behave at the impact as dissipative as possible, such as the rocking rod ðcÞ, the right physical

behavior is obtained.

In [10] a representation of the impact law (60) in local contact coordinates is derived. It has

been shown that the local impact laws

ðcþi þ e c�i Þ � 0; Ki � 0; ðcþi þ e c�i ÞKi ¼ 0 ð61Þ

for each contact in the active set H (44) together with the impact equation (46) and the relative

velocities (45) are equivalent to (60). The complementarity conditions in (61) express that each

contact that takes an impulsive force Ki > 0 is treated as in (42), but regarded as not to

participate in the impact (Ki ¼ 0) if the post-impact relative velocity fulfills cþi > �ec�i , see also
Fig. 12. The impact behavior (60) is called to have a global dissipation index, because the same

restitution coefficient e is taken in (61) for each individual contact.

(a)

(a)
u– u+

(b)

(b)

(c)

(c)

Bu–(q)

Tc(q)
u––T c(q)⊥

Fig. 11. Accessible post-impact

velocity states
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7 Conclusion

According to the results of Sect. 5, perfect multi-contact collisions cannot be solved by only

using the dynamic, kinematic and energetic equations. Additional impact laws in the sense of

independent equations must be provided to determine uniquely the velocity after the impact.

The reason for this is a spatial discretization that is too rough such that too much physical

information about the collision event is lost. This does not yet mean that such formulations for

the numerical solution of dynamical systems have generally to be discarded, as it is often even

inevitable to keep low-dimensional models because of memory size and calculation time. In this

case, the missing information on how the impact behaves has to be taken from other sources,

e.g., in advance by measurements on the real object or by refined models and improved cal-

culations, but it must be assured that this information will find a well defined place in a

theoretical framework for collisions. Such a theory, broad enough for a great class of collision

types can be provided by a parameterization of the region Su�ðqÞ shown in Fig. 8.

A related question concerns subsystem techniques. In this context, conditions have to be

established under which impact laws on subsystems already identified can be further used if the

subsystems collide with each other. This problem seems to have a solution for systems, at which

the wave phenomena of each subsystem do not interfere with each other. Here, the demand for

a more precise definition of the mechanical impact theory arises, in which wave effects are

negligible by definition. In this context, the impacts with global dissipation index from Sect. 6,

containing the point of maximal dissipation, could play a crucial role if interpreted in com-

bination with dispersion of waves.

Anyway, the principle of maximum dissipation seems to be the key to a deeper understanding

of general impact theory in mechanics. The more dissipative the behavior of a system at the

impact is, the closer the associated dissipation sphere to the point of maximum dissipation

(Fig. 8), and the smaller the set on them from which possible post-impact velocities are taken.

In the limit of maximum instantaneous dissipation, this region shrinks to a single point.

Therewith, uncertainties in the choice of a impact law become less and less important. Once a

discretization level deep enough has been found for which appearing collisions can be con-

sidered as fully inelastic, the impact can be resolved with great confidence by using the principle

of maximum dissipation.

In addition to the Newton restitution coefficient eN ¼ �cþ=c�, one finds in literature also the

Poisson restitution coefficient eP ¼ KðþÞ=Kð�Þ that relates the impulses during a compression

and a decompression phase, and the energetic coefficient eE. For frictionless single-contact

impact problems these concepts coincide. For perfect multi-contact collisions however, dif-

ferences already occur, if the collision model from Fig. 4 together with a local impact law as in

(42) is used on each contact. For example, the results after Newton and Poisson coincide, if

ðrgi � rgjÞePj ¼ ðrgi � rgjÞeNi, thus if either all contacts affected by the impact do have the

n
P QΛi Λi

Λi

g i

eg i– g i+

n
P QΛi Λi

Λi

g i

eg i– g i+
Fig. 12. Representation of the impact

law in local coordinates
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same restitution coefficient ePj ¼ eNi, or if the contacts are decoupled in sense of the kinetic

metric, rgi � rgj ¼ 0. The question comes up, if generally local restitution coefficients may be

used reasonably for perfect multi-contact impact problems, or if there is need to change to a

new characterization of the impact using geometric invariant coefficients. It remains to be

worked out, how to interpret these new coefficients in connection to the conventional restitu-

tion coefficients.

All investigations concerning impacts have been performed in this article by geometric

methods based on the kinetic metric. Since mechanics has to be understood as metric-free, every

result has to bee represented metric-free, what can be done by virtual work expressions and

inclusions on the cotangent space and can be found in [10]. Further, all considerations are to be

generalized to rheonomic systems, leading to moving sets C. Basic steps on how to perform this

task may be found in [10].
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