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ABSTRACT 

CONCEPTUAL ANALYSIS OF A FOUR-STROKE LINEAR ENGINE 

 

By Sorin Petreanu 

 

During the past five years at West Virginia University, research into new auxiliary power 

generation devices has led to the development of a novel crankless reciprocating internal 

combustion engine. This dissertation presents a conceptual design of a Four-Stroke Linear 

Engine based on the numerical simulation of the operation of this type of linear engine. The 

engine consists of four opposed pistons linked by a connecting rod to a linear alternator. A 

series of numerical simulations was developed and employed to investigate the operation and 

performance of this crankless, four stroke linear engine. Since this linear engine is crankless, 

the numerical analysis of this particular engine is a time-based analysis. Two numerical 

models permit the simulation of the Four-Stroke Linear Engine employing Direct Injection 

Compression Ignition mode and a Homogeneous Charge Compression Ignition (HCCI) 

mode. The engine computational model combines dynamic and thermodynamic analyses. A 

detailed analysis of the engine operation range allows results to be obtained from a 

parametric study. The parametric study was performed to predict the engine behavior over a 

wide operating range, given intake parameters, variations in fuel combustion properties, 

reciprocating mass of the piston shaft assembly, frictional load and the externally applied 

load, and injection and valve timing. Based on the parametric study a conceptual design for a 

15 kW linear engine was developed, showing the effects of reciprocating mass and air to fuel 

ratio on frequency of operation, power output, and efficiency. The engine analysis shown that 

this engine has a limited range of operation. The engine operating in as a direct injection 

compression ignition permitted high efficiency with values between 46 and 49 % 

corresponding to a compression ratio range between 17 and 35. 

The analysis performed for the engine operating as a HCCI mode revealed that this particular 

operating mode depends critically on the start of combustion, which depends in turn on 

piston motion which is not prescribed. Although the HCCI operation permitted to achieve 

high values of the efficiency (over 60%) and power output it was observed that the operation 

domain for the engine was much narrower than for the direct injection case. The results 

obtained from the numerical simulation show that the FSLE operating under HCCI is 

difficult to control and this observation extends to any mechanical arrangement of the linear 

engine with unconstrained piston motion. 
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CHAPTER 1 INTRODUCTION  

Since the start of the Industrial Revolution many types of power producing devices based on 

conversion of the chemical potential energy of a fuel into mechanical work (so called heat 

engines, or combustion driven engines) have been developed. Based on the fuel-engine 

interface the heat engines can be categorized into two main groups: internal combustion 

engine and, external combustion engine. Another classification of the heat engine is based on 

the way that combustion takes place intermittent or continuous, or based on the fuel ignition 

as: spark ignition compression versus compression ignition. The subject of this dissertation is 

an internal combustion engine and therefore this particular category will be further 

emphasized. It is generally accepted today that the internal combustion engine represents a 

main source of power production. Driven by environmental concerns and resource shortages 

the internal combustion engine has been the subject of continuous research and development 

for more than a century with significant improvements in this area. 

The most common mechanical configuration of an internal combustion engine is represented 

by the traditional slider-crank mechanism, which permits the conversion of the reciprocal 

linear motion of the piston to the rotational motion of the crankshaft. Another mechanical 

configuration of an internal combustion engine is represented by the rotary engine known as 

the “Wankel” engine. This engine offers a more compact size than the reciprocating engines 

and multifuel capability. Having fewer moving parts than reciprocating engines, they have a 

lower weight and therefore high specific power density. However these engines have their 

own weaknesses and these is represented by the leakage encountered at the interface between 

the rotor apex seals and housing. Most piston engines are of the slider-crank mechanism type, 
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but there is a second class of piston engines, termed free-piston or linear engines, in which 

the engine's pistons reciprocate freely without the use of a rotating crankshaft or flywheel. 

This work describes the development of a new linear engine for power generation 

applications. 

The internal combustion engine is a relatively inefficient machine, its efficiency varies from 

20 to almost 50% the upper limit corresponding to the compression ignition engine, therefore 

only a small amount of the fuel available energy is transformed into useful work, the rest 

being lost through heat transfer and friction. The efforts to improve the overall efficiency of 

the conventional slider crank mechanism engines were focused mostly toward the 

improvement of the thermodynamic efficiency, although the mechanical losses associate with 

friction were also reduced due to the improvement of the materials used in the 

manufacturing. The elimination of the slider-crank mechanism which involves a substantial 

reduction of the losses associated with friction, represents a potential source of improving the 

efficiency of an internal combustion engine. From the design point of view, this mechanical 

arrangement will be much simplified due to fact that there are less moving parts than in a 

slider crank mechanism configuration. 

A new crankless reciprocating internal combustion engine type with a real potential of 

improving the “weaknesses” of the common slider-crank mechanism internal combustion 

engine, will make the subject of this dissertation. 
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CHAPTER 2 OBJECTIVES 

The objective of this dissertation was to develop a design for an alternative diesel fueled 

auxiliary power plant able to produce a nominal power of 15 kW. The evaluation of the 

performance of Four-Stroke Linear Engine was based on a numerical simulation of the 

engine cycle. A parametric study was performed to study the influence of different variables 

on the engine operation and, to determine the operation range of this particular engine. These 

objectives were accomplished through the following tasks: 

• A literature survey was conducted to review the existent work in the area of free piston 

engines. 

• A review of existent compression ignition engine modeling techniques was undertaken. 

• A review of the operation and characteristics and combustion models of the 

Homogenous Charge Compression Ignition engines was undertaken. 

• Two effective, yet simple, thermodynamic time-based numerical models were 

developed to study the operating characteristics of the Four-Stroke Linear Engine 

operating in a direct injected compression ignition mode. 

• A thermodynamic time-based numerical model was developed to study the adaptability 

and operation of the Four-Stroke Linear engine as a Homogeneous Charge Compression 

Ignition engine. 

• A parametric study was performed to determine the effect of various parameters on 

engine performance. 

• Based on the engine modeling and simulations results, engine design recommendations 

were made. 



4 

 

 

CHAPTER 3 LITERATURE REVIEW 

3.1 FREE PISTON ENGINES 

Free-piston engines have been a subject of research and development for several decades. 

Free-piston engines utilizing internal combustion (as opposed to the external combustion 

Stirling engine, which suffers from poor power density) have their origin in the 1920’s when 

R. Pescara [1] patented their use as air compressors. Junkers in Germany developed a free-

piston engine for use in German submarines in World War II. The French SIGMA free-

piston gasifier saw service for decades in stationary power generation. The use of free-piston 

engines in automotive application was most heavily promoted in the period 1952 to 1961, 

when both General Motors and Ford Motor Company produced running prototypes [2,3]. In 

both cases these engines were two-stroke, opposed piston spark ignited engines with 

combustion bounce/compression chambers. These engines where used as gasifiers to 

generate hot gases to drive exhaust turbines through which energy would be extracted. A 

schematic of a free piston engine used as a gasifier is presented in Figure 3.1 [4]. The free 

piston engine presented is a diesel combustion engine gasifier that incorporates a gas turbine 

expander for power output. The reciprocating devices, which are identical designed, consist 

of a large double-faced compression piston at one end and a small gas expansion piston at the 

other end. Both large double-faced pistons serve a twofold purpose; the inner face is utilized 

to compress air, and the outer piston face to work with a special closed air-bounce chamber. 

The smaller pistons are the ones that operate as a two-stroke engine piston.  One mechanical 

cycle of a free piston engine begins with air compression. With the intake ports uncovered, 

air is compressed and moved into a clearance volume defined by the two small gas expansion 
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pistons. During this undergoing process, the inner face of the double-faced pistons, 

compresses the air through a valving system into a compressed air tank/volume, this 

particular mass of compressed air serving as intake air for the future scavenging process.  

 

 

Figure 3.1: Free Piston Engine used as a Gasifier 

 

Diesel fuel is injected into the volume of high-temperature and high-pressure compressed air 

mass, delimited by the two small pistons. The injected fuel mixed with the compressed air 

and ignites resulting a combustion process. Due to the high gas pressure developed within the 

combustion volume during the combustion process, the two small pistons start moving 

outwards and the combustion gas undergoes an expansion process. During this process the 
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large compression perform two tasks: the outer faces compress the air within the bouncing 

chambers and the inner faces serve as suction pump allowing the air enter a volume delimited 

by the inner face of the larger piston and the wall that separates the compressed air volume. 

As the smaller pistons undergo the expansion process, the exhaust ports are opened 

permitting the exhaust gases to expand through the turbine producing this way the power 

output. The development efforts for this gasifiers largely ceased by the 1960’s as turbine 

powered vehicles were increasingly viewed as not commercially viable. 

The elimination of the crankshaft mechanism in free-piston engines provides potential for 

reduction in mechanical losses. Due to the fact that the piston is not constrained in a free-

piston engine, the piston motion is not prescribed, and it varies from one operating regime to 

another. Characteristic of the free-piston engines is the fact that they do not have a flywheel. 

As a result, they do not accumulate energy from the previous cycles for the subsequent 

cycles, except in terms of achieving a greater or lesser stroke associated with greater or lesser 

gas compression energy. A free-piston engine-pump system has been disclosed by Heintz [5]. 

The device consists of a pair of opposite pistons connected by a common rod operating a 

hydraulic pump. The free-piston engine pump has double acting power pistons and pumping 

pistons attached as a main reciprocating member and movable in a housing. The housing 

itself moves for mass balancing purposes. The engine is spark ignited, and stroke control is 

provided by a valving system. Air is supplied and the exhaust products are removed from the 

two combustion chambers by common intake and common valves. These valves are operated 

by a common actuator in response to the position of the main reciprocating member. 

A linear engine operates somewhat similarly to a free-piston engine, the only difference 
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being that the reciprocating assembly consists of two pistons connected by a common 

connecting rod, with each piston operating in its own cylinder. In the last two decades there 

has been resurgence in interest in these engines for hybrid electric vehicle applications. 

Several linear engines have been designed but most of them have a complicated mechanical 

configuration. This complication is the result of the need for tight control of the length of the 

stroke of the piston assembly, to avoid having the piston contact the cylinder head at its 

furthermost outer position. Some notable recent work in the development of linear engines is 

reviewed below. 

Bock [6] has developed a compression ignition linear engine. The engine incorporates a 

hydraulic pump cylinder arranged in the central part of the engine in order to provide useful 

work. The engine is gas cushioned and it uses a nitrogen filled elastic annular body serving 

as a shock absorbing body. Rittmaster et al. [7] have presented a spark ignition linear engine 

connected to hydraulic power system. Hydraulic fluid is stored and maintained under 

pressure in two pressurization chambers on the opposite side of the pistons forming an 

internal combustion engine. In order to time the operation of the engine, a set of proximity 

detectors located around the connecting rod are used. The hydraulic fluid flow in the two 

pressurization chambers is controlled by a set of cross-over valves. A hydraulic motor is 

interposed downstream of the cross-over valves to convert the flow of the fluid into the 

rotation of a shaft. The cylinders of the engine have intake and exhaust valves electronically 

operated. A flywheel is attached to the shaft of the hydraulic motor to dampen the pulsation 

induced by the shifting of the cross-over valves and to store the energy of the pistons 

between reciprocation. Iliev et al. [8], have presented a linear engine coupled to an electrical 
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alternator. The engine operates on a two-stroke cycle and is spark ignited. The engine is 

controlled by an electronic module, which also controls the linear alternator. The spark 

timing is regulated based on the quality of fuel and the electrical load. According to the 

inventors the engine is designed to operate at high frequencies thereby attaining a high 

thermal efficiency. Galitello [9] has proposed a linear engine controlled by a computer. The 

engine is a two-stroke compression ignition engine. According to the inventor the engine 

operates at ultra high speeds and is vibration free. During engine starting, ignition assist is 

provided by spark plugs. The engine can be connected to an electric generator or to a 

hydraulic power system. Deng et al. [10] disclosed a double acting tandem crankless internal 

combustion engine having combustion chambers at opposite ends and one in its center with 

double acting pistons displaceable between one end and the center chamber and between the 

other end and the center chamber. Each piston includes opposite piston heads with 

connecting rods between them coupled to a linear alternator. The presented device works 

based on the two-cycle engine, each combustion chamber having an inlet port and a valve 

and an exhaust valve. The engine uses a mechanism to provide a symmetrical piston 

displacement. 

An interesting design has been presented by Kos [11]. The disclosed engine is a two-stroke 

cycle linear engine employing a reciprocating piston in conjunction with an electromagnetic 

transducer for control and power output. The engine can be spark or compression ignited 

(with multi-fuel operation possible). The engine is designed to be controlled by computer, 

with the engine stroke varied by tailoring the magnetic field. The inventor suggests an 

alternative arrangement of the engine by using a pair of opposite pistons linked by a 
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connecting rod. 

Beachley and Fronczak [12], presented a two-stroke free-piston engine for hydraulic power 

generation. The engine consists of two double-ended, reciprocating opposed-pistons that 

serve a twofold purposes, the inner side of the pistons operate within the internal combustion 

engine while the outer ends operate a hydraulic pump. 

Widener and Ingram [13] recently described a numerical model of a free-piston linear 

generator for a hybrid vehicle modeling study. The model addressed the use of a free-piston 

engine coupled with a linear generator as a potential auxiliary power unit in hybrid electric 

vehicles. The feasibility of such a model was analyzed with regards to power output and 

efficiency of the unit with reference to conversion of mechanical power output of the linear 

engine to electrical power output. The study was conducted on a two-stroke cycle engine and 

a reciprocating rig was developed to study and characterize the operation of the generator. 

Van Blarigan et al. [14, 15] developed a two-stroke linear engine combined with a linear 

alternator for electrical power generation. The disclosed engine operates as homogeneous 

charge compression ignition engine, and the fuel used was hydrogen. The engine consists of 

two opposed pistons, rigidly connected by a connecting rod, which can oscillate back and 

forth within the combustion cylinders. The linear alternator was designed such that electricity 

was generated directly from the piston’s oscillating motion, as permanent magnets fixed to 

the piston are driven back and forth through the alternator’s coils. The linear alternator is also 

used as a stroke control device. A linear engine two-stroke spark ignition for electrical power 

generation has been developed at WVU over the past four years. The engine consists of a two 

horizontally opposed-pistons, mounted on a common shaft that is allowed to oscillate back 
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and forth between end mounted cylinders. Combustion occurs alternately in each cylinder, 

thus forcing the piston assembly back and forth in an alternating fashion. The piston motion 

is not constrained implying that each cylinder of the engine has an infinitely variable 

effective compression ratio. The intake and exhaust valves are ported for two-stroke 

operation, thus removing any necessity for external actuation of their operation or timing. 

The engine has been the subject of a number of investigations [16-20] with regards to the 

design modeling and simulation. This work will be generally presented in the following 

section. 
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3.2 PREVIOUS WORK AT WEST VIRGINIA UNIVERSITY 

The cooperative effort between Mechanical and Aerospace Engineering department and 

Computer Science and Electrical Engineering department lead to the development over the 

past four years of a new device of power generation. First linear engine prototype developed 

at WVU for the past four years was a two-stroke spark ignition for electrical power 

generation A schematic of this engine is presented in Figure 3.2. The engine consists of a two 

horizontally opposed-pistons, mounted on a common shaft that is allowed to oscillate back 

and forth between end mounted cylinders. Combustion occurs alternately in each cylinder, 

thus forcing the piston assembly back and forth in an alternating fashion. 

 

Figure 3.2: Prototype Two-Stroke Spark Ignition Linear Engine 
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The piston motion is not constrained, implying that each cylinder of the engine has an 

infinitely variable effective compression ratio. The intake and exhaust valves are ported for 

two-stroke operation, thus removing any necessity for external actuation of their operation or 

timing. The geometric parameters of this engine are presented in Table 3-1.  

Table 3-1: Geometric Parameters of a Spark Ignition Two-Stroke Linear Engine 

Prototype 

Number Cylinders 2 

Bore 36.4 [mm] 

Maximum Possible Stroke 50 [mm] 

Exhaust Port Opening 19 [mm] from the end of maximum theoretic stroke 

Intake Port Opening 21 [mm] from the end of maximum theoretic stroke 

Exhaust Port Height 10 [mm] 

Intake Port Height 10 [mm] 

Ref. [16-20] 

The cylinders are ported such a manner to utilize a loop scavenging process, although this 

process was not optimized. The fuel is supplied to each cylinder by two pulse width-

modulated gasoline fuel injectors. In order to keep the engine temperature within a 

reasonable operating range, water is forced through the cylinder heads. An electronic control 

device allows the adjustment of the ignition timing and fuel injection timing and quantity. 

The engine stroke is controlled on a stroke-by-stroke basis by the ignition timing and the 

amount of fuel injected. The engine is equipped with two motoring coils (also connected to 

the electronic control device) used as a starting device. These are automatically disengaged 

after the engine exceeds a certain reciprocation frequency. The motoring coils are also used 

in case of misfire in one of the cylinders, to reverse the motion of the piston assembly and to 

assist in restarting. A permanent magnet linear alternator connected to the engine shaft 
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transforms the kinetic energy of the reciprocating motion into electrical energy. 

The prototype engine has been tested extensively under several different operating modes, 

with the load being provided by a friction brake, as well as with the load applied by a 

permanent magnet linear alternator. In-cylinder pressure profiles for different applied loads 

were experimentally determined through extensive engine testing. The results of the engine 

testing, using a friction brake to provide the load, are presented in Table 3-2. 

Table 3-2: Experimental Data from the Linear Engine Operation using Load applied by 

a Friction Brake 

Load 

Average Indicated 

Work output per 

stroke [J] 

Average 

Positive Power 

Output 

[W] 

Average Stroke 

[mm] 

Average 

Frequency 

[Cycles/min] 

No 1.55 81.3 44.3 1574 

Yes 6.25 262.5 35.3 1260 

Yes 10.79 438.0 37.6 1197 

Yes 16.40 804.0 47.0 1470 

Ref. [16-20] 

 

A further analysis of the experimental operation of the linear engine in combination with the 

linear alternator has been presented [17]. The linear alternator is of the permanent magnet-

type, and has been shown to produce as much as 316W from the prototype engine-alternator 

combination. Based on the in-cylinder pressure data gathered during operation of the engine-

alternator combination, an analysis of the cycle-to-cycle variation of integrated mean 

effective pressure (IMEPg) was performed. It was shown that there are significant cycle-to-

cycle variations of the in-cylinder pressure versus time for different operating regimes. The 

results of the performance tests of the engine-alternator prototype combination are shown in 

Table 3-3.  



14 

 

 

Table 3-3: Experimental Data from the Linear Engine using Load applied by a 

Permanent Magnet Alternator 

 

Test 

Load 

[ohms] 

Voltage 

[V] 

Current 

[A] 

Load Power 

Output [W] 

Frequency 

[Hz] 

1 Open Circuit 132.0 0.00 0 25.0 

2 156.0 120.0 0.75 92 24.6 

3 130.0 119.0 0.88 104 24.4 

4 104.0 115.0 1.07 124 23.4 

5 78.0 111.0 1.38 153 24.1 

6 52.0 103.0 1.92 200 26.6 

7 26.0 90.0 3.30 300 23.6 

8 24.0 88.5 3.54 312 23.6 

9 23.4 87.5 3.58 313 23.6 

10 19.5 79.0 3.90 316 23.1 

11 17.3 74.0 4.15 309 22.7 

 Ref. [16-20] 

 

The modeling and simulation of the two-stroke gasoline linear engine [19] is summarized as 

follows. A numerical model was developed for the spark ignited linear engine prototype, 

with the possibility of being easily adapted for the case of the compression ignition engine 

simulation. The developed numerical model represents an idealized case due to the 

assumptions made and, it was validated using results from the tests performed on the linear 

engine prototype. The engine computational model combines dynamic and thermodynamic 

analyses. The dynamic analysis performed consists of an evaluation of the frictional forces 

and the load (in this case the alternator load) across the full operating cycle of the engine. 

The thermodynamic analysis consists of an evaluation of each process that characterizes the 

engine cycle, including scavenging, compression, combustion and expansion, based on the 

first law of thermodynamics. In order to simplify the modeling task, the numerical analysis 
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was divided into two distinct sub-models that are correlated, a dynamic model and a 

thermodynamic model. In the first sub-model, the dynamic model, it was performed an 

analysis and a evaluation of the forces that act on the reciprocating assembly, namely 

friction, load, inertia and pressure forces exerted on the two opposed-pistons faces. 

The second sub-model performed the thermodynamic analysis of the engine cycle which 

consists of an evaluation of the thermodynamic parameters for each process that 

characterizes the engine cycle, for the two-cycle case, scavenging, compression, combustion 

and expansion. The thermodynamic model used in this numerical analysis was a single zone 

model. In single models the cylinder mixture composition, pressure and, temperature are 

considered to be uniform and, the energy released by the combustion of the fuel is specified 

or calculated after the fact from the measured in-cylinder pressure history data. Matching the 

experimentally derived and the numerically obtained in-cylinder pressure profiles was a 

complicated task due to the number of the unknown variables, namely the absolute value of 

the heat addition, the combustion duration, and the actual load on the engine. There is an 

infinite number of combinations of these unknowns that can match the given shape of the in-

cylinder pressure profiles. Nevertheless, an important piece of information in the combustion 

process was that the spark timing was known. In these engine experiments, there is no 

explicit information regarding the combustion duration, so matching the experimental and 

numerical P-V diagrams is extremely complicated. Figure 3.3 and Figure 3.4 illustrate the in-

cylinder pressure variation obtained from the tests performed on the two-stroke linear engine 

prototype and the in-cylinder pressure variation obtained from the numerical simulation of 

the engine cycle, respectively. 



16 

 

 

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50

D isp lacem e nt [m m ]

P
re

s
s
u

re
 [

k
P

a
]

 

Figure 3.3: Experimental Data Derived from the Operation of the Prototype Linear 

Engine-Alternator Combination. 
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Figure 3.4: A “P-V” Diagram Obtained from the Numerical Simulation of a Two-

Stroke Linear Engine. 
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The numerical simulation of the Two-Stroke Spark Ignition Linear Engine cycle, allowed a 

parametric study of the operation of this type of engine, absolutely new at that moment. 

The parametric study sought the prediction of the engine behavior over a wide operating 

range, given variations in fuel combustion properties, the reciprocating mass of the piston 

shaft assembly, frictional load and the externally applied electrical load. It was observed that 

the variation of the heat input influences the peak pressure, the frequency of the engine, and 

also the stroke length. The variation in the combustion duration also influences the peak 

pressure, the frequency of the engine, and the displacement in the same manner as for the 

heat input variation, is presented in Figure 3.5 and Figure 3.6. The experimental testing 

performed on the linear engine [17] showed that the linear alternator introduces a load that 

has a roughly sinusoidal shape throughout the stroke, therefore in the numerical simulation 

was taken as being a various power of a sinusoidal. A resultant resistant force was considered 

as being the summation of the friction force and the load introduced by the linear alternator. 

The shape of the resultant was varied considering three particular cases: first case considered 

the resultant force as being constant throughout the stroke, while the second case considered 

a triangular shaped force maintaining the same integrated area under the curve. Extending the 

analysis, the third case of more complex load functions was considered. Figure 3.7 illustrates 

the different shapes or profiles of the load that were used in the numerical model. These 

shapes were chosen to represent the cases of high load near the extremes of the piston stroke, 

or highest load in the center of the stroke. The case when the load is concentrated towards the 

end of the stroke corresponds to greater values of the shape factor k, (where k varies from 0 

to 3.55). 
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Figure 3.5: In-Cylinder Pressure vs. Piston Assembly Displacement for different values 

of the Combustion Duration for the same Heat Input 

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50

Displacement [mm]

V
e
lo

c
it

y
 [

m
/s

]

Cd=0.00385 s

Cd=0.00485 s

Cd=0.00585 s

 

Figure 3.6: Piston Velocity vs. Displacement for different values of the Combustion 

Duration  
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Figure 3.7: Different Shapes of the Load Considered in the Analysis 

 

By varying the mass of the moving piston assembly, the peak pressure and maximum 

displacement, vary proportionally. For a greater mass, the peak pressure and the engine 

stroke both increase, shown in Figure 3.9. The frequency varies in an inverse proportional 

relationship with the mass of the reciprocating shaft, this aspect is presented in A further 

observation was that, for very low reciprocating masses, the operation of the linear engine 

becomes possible only if the heat input was increased significantly, due to the low inertial 

forces associated with low piston speeds. 
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Figure 3.8: In-Cylinder Pressure vs. Piston Displacement for Different Profiles of the 

Load 
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Figure 3.9: In-Cylinder Pressure vs. Displacement for different values of the 

Reciprocating Mass 
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Figure 3.10: Piston Velocity vs. Displacement for different values of the Reciprocating 

Mass 
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A compression ignition prototype version of the two stroke linear engine was also built and 

developed in the past two years at the Engine and Emissions Research Center at West 

Virginia University. A schematic of this prototype engine is presented in Figure 3.11. 

 

Figure 3.11: Prototype Two-Stroke Diesel Cycle Linear Engine-Alternator 

Combination. 

 

The engine has a similar mechanical arrangement to the spark ignition prototype and the 

geometric parameters of this engine are presented in Table 3-4. The fuel delivery system for 

this prototype is performed by a common rail direct injection system. The high-pressure fuel 

pump supplies the two injectors. The linear alternator interposed with the linear engine 

operates also as a starting device and, in order to aid the cold start of the engine, each 

cylinder is equipped with glow plugs. The operation of these auxiliaries namely, injectors, 

fuel pump and the use of the linear alternator as starting device, are controlled by an 
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electronic control unit (ECU). Despite the reduced friction losses encountered on these 

engines there is still need for lubrication on the cylinder-piston ring interface. The solution 

adopted for the lubrication of the engine (as in the use of in-line air-tools) the lubricant being 

provided in a spray through the intake air in sufficient amounts to ensure the integrity of the 

piston rings. The engine is water-cooled, water being forced into the bottom of the cylinder 

jackets and out through heads of cylinders. 

Table 3-4: Geometric Parameters of the Direct Injection Compression Ignition Two-

Stroke Linear Engine Prototype 

Number Cylinders 
2 

Bore 75 [mm] 

Maximum Possible Stroke 71 [mm] 

Exhaust Port Opening 

37 [mm] from the end of maximum 

theoretical stroke 

Intake Port Opening 
42 [mm] from the end of maximum 

theoretical stroke 

Exhaust Port Height  30.5 [mm] 

Intake Port Height  23 [mm] 

 

The compression ignition version of a two-stroke linear engine was tested and it is still under 

investigation due to some difficulties encountered in the starting process. A two-stroke linear 

engine design has a number of disadvantages, particularly from an engine efficiency and 

emissions point of view. For this reason, it was decided to investigate the development of a 

four-stroke device, as an alternative. 
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3.3 ADVANTAGES OF THE FOUR-STROKE LINEAR ENGINE 

The elimination of the rotating crankshaft mechanism in a linear engine implies a series of 

advantages over the classical IC engines. First, a linear engine displays a reduction in friction 

losses that leads to a better overall engine thermal efficiency. Another advantage is the fact 

that the linear engine can have a more compact construction with lower reciprocating mass 

per unit power developed, therefore it can offer a higher power density. Since the 

reciprocating assembly can freely move within the combustion cylinders, the compression 

ratio is variable; thus permitting the achievement of higher thermal efficiency values than 

those met by prescribed motion engines. The fact that the engine can operate at variable 

compression ratio also theoretically permits the use of a large variety of fuels. 

From previous studies [16-20] done on the Linear Engine-Alternator Combination, the 

important features encountered in the operation of this device were observed. These features 

are summarized as follows. The piston motion is strongly dominated by the reciprocating 

assembly mass. The reciprocating frequency is a function of reciprocating mass and heat 

input into cycle and is inversely proportional to the piston diameter [16]. In a numerical 

analysis performed on a spark ignited gasoline-fueled linear engine [19], it was shown that 

the combustion duration was longer than expected, resulting in a reduction of the 

thermodynamic efficiency of the engine cycle. On the other hand, longer combustion 

duration combined with an unconstrained piston motion permits lower pressure and 

temperature levels for the same indicated mean effective pressure, with beneficial 

implications on the engine emissions. 

Based on experimental results and analytical considerations, it was also shown that the 
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scavenging process is a critical for the operation of the Two-Stroke Linear Engine (TSLE). 

The main problem of two-stroke cylinder processes is that they offer low fuel efficiency due 

to the imperfect scavenging processes (short-circuiting). 

The engine analyzed in this dissertation will operate as a direct injection compression 

ignition engine for starting and partial loads, and as a HCCI engine under full load regimes. 

Due to its characteristics (mechanical simplicity, compactness, higher power density) the 

FSLE has a wide applicability, from the stationary power units to the auxiliary power units 

for mobile applications. 
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3.4 THE HOMOGENEOUS CHARGE COMPRESSION IGNITION CONCEPT 

The idea of using HCCI for this project derived from the fact that DI does not offer low 

emission levels at higher loads, especially with regard to oxides of nitrogen emissions. The 

HCCI concept is a hybrid between the SI and CI engine concepts. The combustion process in 

common diesel (direct in-cylinder injection) engines has a turbulent-diffusive aspect, the rate 

of the combustion being dictated by turbulent mixing of fuel with air since the chemical 

reaction rates are much faster then those of the mixing process [21]. In mixing controlled 

combustion processes, the flame stabilises at the interface region between the air and the fuel 

where the combustible volumes are formed, resulting in high local temperatures favorable for 

NOx formation. The high local temperatures represent the greatest concern for classic 

compression ignition engines since they give rise to significant NOx formation. The 

combustion process in the Spark Ignition engines is characterised by flame propagation. In 

these engines, a spark that ignites an already well-mixed homogeneous air-fuel charge 

initiates the combustion process. The local flame front temperature reaches high values 

favouring the formation of NOx. Evidently, for both cases (SI and CI), there are different 

remedies to avoid the local high temperature formation, such the use of recirculated exhaust 

gases (EGR), or to reduce the compression ratio, but these tactics represent a compromise 

resulting in reduced engine performance. HCCI represents an alternative to the in-cylinder 

injection compression ignition, since for this operation mode, the fuel-air charge is mixed 

outside the combustion chamber (in the intake system) and it is compression ignited by the 

temperature of the air-fuel charge in the cylinder after compression. In comparison to SI 

engine, in HCCI the flame propagation phenomenon does not exist; thus in-cylinder 
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turbulence does not have a central role in the combustion process. The ignition of the charge 

occurs spontaneously and simultaneously throughout the mixture, and the combustion 

process takes place in a homogeneous way thus permitting a homogeneous combustion 

temperature. Due to the presence of numerous hot ignition spots, the combustion occurs very 

fast, the overall combustion duration being shorter than that of spark ignition engines. 

Relevant aspects of the HCCI concept have been presented in several different studies [22-

28] over the past twenty years; they all showed significant reductions in exhaust emissions, 

most notably NOx. It was shown that in order to achieve well-distributed auto-ignition of the 

charge, high compression ratios are required. However this combustion concept presents two 

extremes, one being the detonation in the case of a rich mixture, and the other one is the 

misfire that occurs in the case of a too lean mixture, and both extremes are to be avoided. The 

most delicate features of the HCCI operation are the initiation of auto-ignition and the 

representation of combustion rate. 

Important information was disclosed by Ryan et al. [24,25], who have investigated the HCCI 

on a single cylinder four-stroke engine, using diesel fuel. The investigations were conducted 

on modified single cylinder engine with variable compression ratio using EGR, intake air 

temperature, and compression ratio as variable parameters. The air was delivered to the 

engine using a compressor system that could be used to control the intake air pressure up to 

0.3 MPa. It was shown that HCCI is well behaved only for certain regimes corresponding to 

a relatively high EGR rate, and relatively low compression ratios in the range of 8 to 11. The 

other regimes corresponding to higher values of compression ratio and to lower EGR rates 

lead to severe knock. It was also shown that the combustion process especially the 
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autoignition process has a complex dependency on the EGR rate, compression ratio, 

equivalence ratio, and also on the charge intake temperature. 

The most noticeable work related to this project was done by Van Blarigan et al. [14], who 

has proposed the use of HCCI implemented on free piston engine coupled with a linear 

alternator. The HCCI combustion investigations were done on a rapid compression-

expansion machine for different types of fuels, other than diesel fuels, for different 

equivalence ratios and at different compression ratios. The intake charge temperature was 

also varied. It was shown that HCCI requires higher compression ratios then those seen in 

conventional diesel engines in order to auto-ignite the cylinder charge, and also the cycle 

heat addition approaches the Otto cycle for the fuels with a single stage combustion process. 

NOx emissions can be controlled by leaning the equivalence ratio and by increasing the 

intake charge temperature. 

In their efforts to analyse the benefits of HCCI, Suzuki et al. [26], have investigated the 

combustion in a single cylinder that used a hybrid strategy for the charge formation and to 

control the homogeneous charge combustion. Therefore, the fuel is primarily injected into the 

intake manifold in a manner similar to HCCI. The lean premixed charge induced into the 

cylinder is ignited by a small amount of fuel directly injected into the cylinder by a 

conventional injection system. The premixed fuel used for the experiment was iso-octane, 

and the direct injected fuel used was light oil, commonly used in Japan for automobile 

engines. The authors performed a parametric study on HCCI using as variable parameters the 

ratio of the heating value of premixed fuel to the heating value of the total fuel, the engine 

load, the EGR rate, and the octane number of the premixed fuel by blending it with normal-
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heptane. The results shown that the smoke decreases near-uniformly with the increase of the 

premixed fuel ratio and the NOx decreased for higher premixed fuel ratios. 



30 

 

 

CHAPTER 4 DESCRIPTION OF THE FOUR-STROKE LINEAR ENGINE 

The designed engine that makes the subject of this dissertation is an upgraded concept of a 

linear engine and it is based on a previously designed two-stroke linear engine prototypes. 

Starting from the same idea of unconstrained motion of the reciprocating device, a new 

mechanical arrangement proposed is the Four-Stroke Linear Engine (FSLE). This 

arrangement promises to reduce or to eliminate the disadvantages experienced by the spark-

ignition version of the TSLE arrangement. During the operation of the TSLE, noticeable 

vibrations were observed but they were not of primary concern for the preliminary 

investigation of the engine operation. Due to its mechanical arrangement, the FSLE has 

potential to diminish the vibration aspects met in free piston engine operation. 

The FSLE has a very similar configuration to the TSLE, and basically it represents a 

combination of two TSLE’s. The FSLE consists of two pairs of opposed-pistons connected 

by a rigid shaft that oscillates back and forth within the combustion cylinders (chambers). 

The shaft that links the pistons is coupled with a linear alternator able to absorb the energy 

generated by the engine. The proposed arrangement introduces a mechanical complication 

due to the existence of the linkage between the parallel pair of pistons. Nevertheless, this 

inconvenience can be overcome by means of a proper design for the reciprocating shaft. The 

FSLE will be able to reduce the vibration offering a better balance than TSLE version. Based 

on FSLE configuration, a "H" mechanical arrangement can be obtained by coupling two 

FSLE. Obviously there can be envisioned different mechanical arrangements of FSLE. The 

unconstrained motion of the reciprocating device, and therefore the variable compression 

ratio, makes the engine suitable for operation with Homogeneous Charge Compression 
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Ignition (HCCI), in which a premixed air-fuel charge is ignited by heating due to the 

compression. A schematic of the engine under investigation is presented in Figure 4.1. 

 

Figure 4.1: Four Stroke Linear Engine Alternator Combination 

 

4.1 ENGINE DESIGN 

The engine consists of four cylinders symmetrically arranged, in two pairs of opposite 

cylinders. The reciprocating device consists of four pistons rigidly connected by an H-shaped 

connecting rod. The cylinders are equipped with intake and exhaust valves. 

The linear alternator attached to the reciprocating assembly is responsible for converting the 

mechanical energy developed by the engine to electrical energy, which can then be used by 
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external devices. It should be noted that the mechanical load on the engine (as a function of 

the displacement of the reciprocating assembly) can be tailored actively or passively to any 

function of displacement.  

For a better understanding of the operation of the four-stroke linear engine, Table 4-1 

illustrates the engine cycle phasing. 

Table 4-1: Four-Stroke Linear Engine Cycle Description 

 

 CYLINDER 

1 

CYLINDER 

2 

CYLINDER 

3 

CYLINDER 

4 

Stroke 1 Combustion 

+ 

Expansion 

Compression 

+ 

Combustion 

Intake Exhaust 

Stroke 2 

Exhaust 

Combustion 

+ 

Expansion 

Compression 

+ 

Combustion 

Intake 

Stroke 3 

Intake Exhaust 

Combustion 

+ 

Expansion 

Compression 

+ 

Combustion 

Stroke 4 Compression 

+ 

Combustion 

Intake Exhaust 

Combustion 

+ 

Expansion 

 

 

4.1.1 INTAKE AND EXHAUST SYSTEM  

The four-stroke arrangement requires intake and exhaust valves for the gas exchange 

processes. Since there is no rotational motion and therefore no camshaft, the engine design 

requires a different solution for the valves operation. The solution adopted for this engine is 

that the cylinders employ intake and exhaust electromagnetic valves to ensure the gas 
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exchange process, and the valves being operated by the engine control unit (ECU). In Table 

4-2 it is presented the valve timing for the FSLE. 

  

Table 4-2: Valve Timing for FSLE 

CYLINDER 1 CYLINDER 2 CYLINDER 3 CYLINDER 4 
 

INT. EXH. INT. EXH. INT. EXH. INT. EXH. 

STROKE 1 C C C C O C C O 

STROKE 2 C O C C C C O C 

STROKE 3 O C C O C C C C 

STROKE 4 C C O C C O C C 

 O: Open 

 C: Closed 

 

4.1.2 ENGINE CONTROL UNIT 

Due to the fact that the linear engine displays unconstrained piston motion, it is necessary to 

measure the piston displacement as a function of time throughout the stroke. The 

instantaneous piston velocity and acceleration can be obtained from successive derivatives of 

displacement with respect to time. To control the engine power output, the fuel quantity and 

injection timing need to be controlled by the engine control unit (ECU) which is also 

designed to control intake and exhaust valve operation (and hence EGR rate), engine starting 

and electrical load shaping. 

In order to control the engine on a cycle by cycle basis, the ECU requires a response time of 

10 ms or less, modest by modern microprocessor standards. 
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4.1.3 INJECTION SYSTEM  

In order to satisfy the operational requirements of the proposed engine, the injection system 

chosen consists of two subsystems that work independently. The first subsystem, which is a 

high-pressure fuel system, is used only when the engine operates as a compression ignition 

engine for starting and partial load operation, and the second subsystem only for the HCCI 

operation mode during full load regime. The lack of any rotational output from the engine 

obviates the use of a mechanically driven injection system; therefore the high-pressure pump 

used will be electrically driven. 

The high-pressure fuel injection system for this project is of the "common rail" type. This 

type of fuel system is characterized by the use of a single pressurized rail that supplies fuel to 

all the injectors. These injectors are electronically operated by the engine control unit.  

The high-pressure fuel system consists of: 

- high pressure gear pump, able to deliver the fuel at pressures around 20 MPa, 

- rail pressure control valve, 

- electronically controlled injectors, type Bosch CRI1 

For the HCCI operation mode the fuel injection occurs in the intake manifold and it does not 

require high injection pressures. Therefore the fuel is delivered by the low-pressure fuel 

system through an electronic port fuel injector installed in the intake of the engine. This 

system is similar to the injection systems used for a spark-ignition engine and does not 

complicate the engine design. 

The low-pressure fuel system consists of: 

- low-pressure fuel pump  
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- pressure regulator 

- electronically controlled injectors (low-pressure) 

4.1.4 COOLING SYSTEM 

The engine is water-cooled in order to avoid the high temperature gradients developed during 

the combustion process. This solution was chosen because it represents the most convenient 

one, water being the most convenient heat sink. The cooling water is required for the cylinder 

jacket and the cylinder heads to control the temperature. The cooling water can be delivered 

from a cooling tower, for the case of stationary applications, or from a radiator for mobile 

applications. 

4.1.5 LUBRICATION  

The frictional forces are much lower than those in the crankshaft IC engines, and the only 

frictional aspect that needs to be considered appears between the piston ring(s), the skirts and 

the cylinder. Therefore the lubrication requirements will be minimal since there are no large-

scale hydrodynamic bearings.  

4.1.6 STARTING 

Previous designs for free-piston engines have proposed using the linear alternator as a 

starting device. For this operating regime the linear alternator is used to motor the engine. 

However, at these low values of the speed there is insufficient in-cylinder pressure to 

generate the spontaneous ignition, and therefore the cylinders will be equipped with glow 

plugs. The power required to motor the engine, and for all the auxiliaries involved in this 

operation may be supplied by an external source, such as an auxiliary battery, to be charged 
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by the linear alternator during normal operation. 
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CHAPTER 5 ENGINE COMBUSTION MODELING REVIEW 

The objective of this chapter is to make a short general introduction to engine modeling and 

to review a couple of relevant mathematical models for this dissertation. The internal 

combustion engine modeling field represents a very vast area, therefore it is very complicate 

to elaborate a comprehensive literature review. Books such as Heywood [21] and Ramos 

[29], were an important guide for this modeling work, even though they offered just a hint of 

what is available in the literature. The engine models can be classified can be classified into 

two main groups as, thermodynamic or zero-dimensional models and dimensional models. 

The thermodynamic models are often referred as zero-dimensional models because they do 

not have spatial resolution in describing a particular thermodynamic evolution. The first 

category, the thermodynamic models can be also classified into two subgroups, based on the 

way the cylinder charge is approached, as single-zone models or multi-zone models. In 

single-zone models the temperature the pressure and the composition of the cylinder charge 

are assumed to be uniform throughout the combustion chamber. These single-zone models 

represent a very useful tool in engine modeling, they can be used in analysis of the heat 

release rate from pressure-volume diagrams, where the heat release rate is accepted as being 

a measure of the rate at which the fuel’s energy is added to the cylinder charge. Single-zone 

models can also be used as predictive tools if the heat release rate is specified. These models 

yield a system of ordinary differential equations for the pressure, temperature and the mass of 

the cylinder mixture.  

In comparison to the single zone models where the cylinder mixture is considered 

homogeneous, in the multi-zone models the cylinder mixture is divided into burning and 
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nonburning zones, each zone being treated as separate thermodynamic system. These models 

they account for air entrainment and fuel jet penetration. In the multi-zone models the burnt 

zone corresponds to the injected fuel, and the unburnt zone corresponds to the surrounding 

air. The fuel jet penetration and the air entrainment process are in most cases based on 

empirical relations. Two-zone models attribute the burnt zone to the injected fuel assuming 

that the injected fuel represents a uniform gaseous medium [41,42], processes such as 

atomisation, evaporation of the fuel droplets are completely neglected, therefore the accuracy 

of two-zone models is limited. More complex multi-zone models [43-46], which consider 

more than two zones, account for the fuel jet characteristics by dividing the fuel spray 

injected into the cylinder into parcels which are analysed separately. Although multi-zone 

combustion models vary in complexity the main strategy is to model the fuel jet into various 

elements (zones), which entrain air and ignite as the mixture is prepared for combustion. In 

this type of models simplified quasi-steady equations are used to describe various processes 

of fuel injection, atomisation, droplet formation, air entrainment, droplet evaporation, 

ignition, heat release, and heat transfer. Despite they present a certain degree of empiricism, 

multi-zone models are powerful tools in predicting with accuracy the exhaust emissions. 

More complex than the zero-dimensional models, the multidimensional models of diesel 

engine combustion account for engine geometry and the spatial and temporal variation of the 

flow field, temperature, composition, pressure, and turbulence within the combustion 

chamber. The multidimensional models are based on computational fluid dynamics (CFD) 

computations. In these models the governing equations that describe the flow field are solved 

numerically with different numerical schemes. The KIVA code, for example, has the ability 



39 

 

 

to calculate three-dimensional flows in engine cylinders with arbitrary shaped piston 

geometries, including the effects of turbulence, sprays and wall heat transfer. These 

particular models based on are very expensive since they require high computational 

resources. 

The last category of models used in the modeling of the combustion process is represented by 

the models that are based on the chemical equations governing the combustion process. In 

these models, the combustion process is considered the result of a series of chemical 

reactions, called reaction mechanism, through which the cylinder charge is transformed into 

products of combustion. In the chemical process of combustion the fuel is broken down and 

the constituent atoms combine in different ratios and at certain rates. However, since there 

are millions of atoms that undergo billions of combinations, it is practically impossible to 

predict with accuracy what occurs. Chemical kinetics models can be classified based on the 

type of kinetic mechanism employed as detailed or reduced. The detailed chemical kinetics 

models include a large number of possible chemical reactions that characterises the 

combustion process. A chemical equation for the combustion of a hydrocarbon fuel ba HC  

has the following form: 

( )
...

773.3 22222

+++++
++++→++

yx
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HCHOHNO

CONOHCONOHC

νµκη
γεδβα

 (5.1) 

The fuel oxidation represents a complex process, it occurs in many steps called base 

reactions. The simplest base reaction can be written as follows: 

DCBA γδβα +↔+  (5.2) 

where A , B ,C, and D represent the chemical species of the reaction, and  

            γδβα  and ,,, are the corresponding stoichiometric coefficients. 
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According to the law of mass, the rate at which product species are produced and the rate at 

which reactant species are removed is proportional to the product of the concentrations of 

reactant species, with the concentration of each species raised to the power of its 

stoichiometric coefficient.  

[ ] [ ] [ ] [ ]βα
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dt
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dt

Ad
R +

++
+ ==−=  (5.3.a) 
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where −+ RR  and  represent the forward and backward rate respectively, and 

+− kk  and represent the proportionality constants for forward and backward rate respectively. 

More generally, any reaction can be written as 
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where: 
ii PR νν  and represent the stoichiometric coefficients of the species iM , and 

            subscripts PR  and denote reactants and products respectively. 

The rate of reaction for a chemical reaction when the process undergoes forward can be 

written as 

∏
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Similarly the backward rate for a chemical reaction can be expressed as 

∏
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 (5.5.b) 

The brackets indicate the appropriate concentration quantity such as molarity or partial 
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pressure. The proportionality constant also called the specific reaction-rate constant, is 

independent of the concentration and it depends only on the temperature. The specific 

reaction-rate constant is given by the Arrhenius law: 







−=

TR

E
Ak A

~exp  

where A  is Arrhenius constant, 

AE is the activation energy, 

R
~

 is the universal gas constant, and  

T is the absolute temperature 

The Arrhenius constant also called the collision frequency factor accounts for the effect of 

collision terms, αBTA = . The exponential term is the Boltzmann factor, specifying the 

fraction of collisions that have an energy greater than the activation energy .AE   

The net rate of removal of reactant species 
iRM is 
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and the net rate of production of product species 
iPM is 
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P ν  (5.6.b) 

When chemical equilibrium is reached, the forward and the backward reaction rates are 

equal, it then follows 
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where cK is the equilibrium constant. 

In order to evaluate the rate of combustion it is necessary to determine the rate of each 

individual reaction that characterises a particular chemical kinetic mechanism. Complete 

detailed reaction schemes are only available for the simpler hydrocarbon fuels such as 

methane, propane or butane. For the blended hydrocarbon fuels the detailed chemical 

mechanisms are not completely known and therefore the use of reduced chemical kinetics 

scheme is usually adopted. However, these models are very complex due to the large number 

of chemical reactions involved, and also expensive, since they require a large amount of 

computational resources [47]. More often used due to their relative simplicity are the reduced 

or simplified chemical kinetics models, or global kinetics. In these models the combustion 

process is considered to be governed by a series of chemical reactions, which consists of a 

reduced number of chemical reactions. Although they do not represent very accurate the 

oxidation process of a hydrocarbon, the reduced chemical kinetics schemes of varying 

degrees of details require much less computational resources and they represent a useful tool 

for the engineering purposes. A reduced scheme or a quasi-global reaction scheme for lean 

combustion of propane or of a hydrocarbon CnH2n+2 is presented as follows: 

24222
2

HHC
n

HC nn +





→+  (5.8.a) 

2222 22 HCOOHC +→+  (5.8.b) 

22
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1
COOCO →+  (5.8.c) 
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And the corresponding reaction rates expressed in 
scm

gmol
3

 are: 

[ ] [ ] [ ] [ ] 40.0

42

07.1

2

5.0

22

32.1722
~
600,49

exp10 HCOHC
TRdt

HCd
nn

nn

+
+ 






−−=  (5.9) 

[ ] [ ] [ ] [ ] 37.0

22

18.1

2

9.0

42

7.1442
~
000,50

exp10
−

+





−−= nn HCOHC

TRdt

HCd
 

[ ] [ ] [ ] [ ] [ ]2

85.0

2

25.0

2

0.16.14

~
000,40

exp105~
000,40

exp10 CO
TR

OHOCO
TRdt

COd






−⋅+






−−=  

[ ] [ ] [ ] [ ] 56.0

42

42.1

2

85.0

2

52.132
~
000,41

exp10
−






−−= HCOH

TRdt

Hd
 

In these equations the concentations are expressed in gmol/cm
3
, the temperature in Kelvin,  

the activation energies in calories, and the universal gas constant in cm
3
 atm/(gmol K). 

Westbrook and Dryer [51] present the global rates equations for each of these reactions 

above presented. This reduced chemical kinetics scheme may also be complicated to some 

extent and for practical use it is preferred the use a two-step or a single-step global reaction.  

In single step global reactions the hydrocarbon oxidation is considered to obey the following 

reaction: 

OHCOOHC mn 222 γβα +→+  (5.10) 

where α,β, and γ are stoichiometric coefficients and the corresponding global rate equation 

is: 
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In Figure 5.1 it is represented the calculated history of reaction is represented using a single-

step global reaction for 2210 HC  at 1500 K and 1 atm.  
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Figure 5.1: Calculated History of Reaction for Stoichiometric C10H22-Air at 1500K and 

1atm., using a Single-Step Global Reaction. 
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Figure 5.2: Rate of Reaction Variation with Temperature for Stoichiometric C10H22-Air 

at 1 atm., using a Single-Step Global Reaction. 
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The rate of reaction depends on pressure and temperature and the temperature dependence is 

presented in Figure 5.2 In Section 5.1 and Section 5.2 several relevant mathematical models 

for compression ignition and HCCI engines respectively, will be reviewed. 

5.1 DIRECT INJECTION COMPRESSION IGNITION ENGINE MODELS 

Before reviewing some of the mathematical models of combustion in compression ignition 

engine a very brief review of the fundamental features of the combustion process for this 

engines will be synthesised as follows. The combustion process in compression ignition 

engines is characterised by the fact that has distinct stages, a period of ignition delay, a 

period ignition and rapid pressure rise called premixed combustion, a period of continuous 

combustion and gradual pressure change called diffusive combustion and a period of post 

flame reactions. 
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Figure 5.3: Typical Combustion Stages in a Compression Ignition Engine 
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Unlike the homogeneous charge engines, where the cylinder charge is prepared before its 

induction into the cylinder, in compression ignition engines the fuel is injected during 

compression into the high pressure and high temperature cylinder charge which is composed 

usually of air and a small amount of residual gases from the previous cycle, unless the EGR 

presence is not mentioned. The time-period from the start of fuel injection to the beginning of 

combustion is known as the ignition delay. During this particular time-period, the already 

injected fuel undergoes a series of physical and chemical processes, such as atomisation, 

vaporization and mixing in the hot, compressed cylinder charge and a chemical kinetics stage 

during which fuel pyrolysis begins. Therefore the ignition delay can be considered as having 

a physical component and a chemical component. The physical component accounts for the 

atomization of the liquid fuel jet, the vaporization of the fuel droplets, and the mixing of fuel 

vapor with air. The chemical component of the ignition delay accounts for the mechanism of 

chemical processes involved in the autoignition. The chemical processes depend on the fuel 

characteristics and composition, the cylinder charge pressure and temperature, as well as on 

the physical processes enumerated above which govern the distribution of fuel throughout the 

air charge. Although the ignition delay has been the subject of many studies, it cannot be 

predicted accurately and this due to its complex dependency on the large numbers of 

parameters involved. In different models, there are different mathematical correlations used 

for the ignition delay expression, most of them based on empiric relations. Hardenberg and 

Hase [35], developed an empirical formula for predicting the duration of the ignition delay in 

direct injection engines. The expression developed has shown good results for direct 

injection IC engines and is a function of cylinder pressure, temperature, mean speed, and also 
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a function of fuel characteristics. 
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where idτ is the ignition delay in 310sec −×  

 pS is the mean piston speed in m/s, 

 N is the engine speed in rev/min, 

 AE  is the apparent activation energy in J/mole, 

 T is the cylinder charge temperature in Kelvin, and 

 p is the cylinder pressure in  Pa105 . 

The apparent activation energy is given by 

25CN

840,618

+
=AE  

where CN represents the fuel Cetane Number. 

Other empirical correlations often used in the evaluation of the ignition delay, were derived 

based on the studies of autoingnition process in rapid compression machine, or in constant 

volume bombs, or in steady-flow reactors and, and they have the form of the Arrhenius 

equation. 
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where A  and n depend on the fuel. 

To account for effect of continuous changing conditions affecting the ignition delay, 

accounted by the physical parameters from Equation 5.2, the following empirical integral 
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relation is used: 
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where sit represent the time at which the injection starts, 

 ID is the ignition delay period, and 

 idτ  represents the ignition delay calculated for the corresponding conditions at time t. 

Once the ignition delay period is over the combustion process in this stage is characterised by 

a high rate of heat release. During the ignition delay period, the fuel injection continues and, 

part of the previous injected fuel has mixed with air and has formed some regions of 

combustible mixture. The regions that have reached the combustion requirements burn fast, 

and therefore the cylinder pressure and temperature increase aiding the injected liquid fuel to 

vaporise. As mentioned before, this stage is associated with high heat release rates and, the 

duration of this stage of combustion is dictated to a certain extent by the injection strategy 

adopted. 

Diffusive Combustion 

The third stage of combustion, also called the diffusive combustion due to its character, 

represents the phase of the combustion process in which the process itself is controlled by the 

rate at which the combustible mixture becomes available. The fuel vapor-air mixing process 

controls this phase of the combustion process. Compared to the premixed combustion, in 

which the fuel encounters rapid oxidation and thus a rapid pressure rise, the diffusive 

combustion stage has a steady aspect with regards to the pressure variation and the heat 

release rate.  
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Having the combustion process in compression ignition engines features summarized in the 

previous review, in the following  

Single zone models yield a system of ordinary differential equations for the mixture pressure, 

temperature and mass. These models do not account for the presence of vaporizing liquid 

droplets, fluid flow, combustion chamber geometry, and spatial variations of the mixture 

composition and temperature. In single-zone models the cylinder charge is assumed to be a 

homogeneous mixture of ideal gases. Considering the cylinder an open system, the state of 

the mixture can be described at every instant by the pressure p, temperature T, and 

equivalence ratio φ. In these models the rate of combustion is prescribed by specifying the 

mass fraction burnt. The fraction of heat release or the mass fraction burned, is most 

commonly expressed by using the Wiebe function, Ramos [29] presents a extensive analysis 

for the Wiebe function. The Wiebe function represents an empirical correlation an has the 

following form: 
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where χ is the mass fraction burned, 

 bm is the mass burned, 

 injm is the mass injected, 

 ba  and  are shape factors, 

 0t  is the time at which the combustion process starts, and  

 Cd  is the combustion duration. 
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The use of two Wiebe functions for the heat release is often met in phenomenological models 

for CI engines [37-40], one function being assigned to the premixed combustion process, and 

the other to the diffusive combustion process. The heat release rate equation was expressed 

as indicated in Equation 5.16: 
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In the multi-zone models the cylinder mixture is divided into burning and nonburning zones, 

each zone being treated as separate thermodynamic system. These models they account for 

air entrainment and fuel jet penetration. In the multi-zone models the burnt zone corresponds 

to the injected fuel, and the unburnt zone corresponds to the surrounding air. The fuel jet 

penetration and the air entraining process are in most cases based on empirical relations. 

Two-zone models attribute the burnt zone to the injected fuel assuming that the injected fuel 

represents a uniform gaseous medium [41,44], processes such as atomisation, evaporation of 

the fuel droplets are completely neglected, therefore the accuracy of two-zone models is 

limited. In their work Kamimoto et al. [42] present a two-zone model in which the 

combustion chamber was divided into two zones. First zone was considered as being formed 

by two sub-regions, a mixture of unburned fuel and unburned air at temperature Tu and a 

region of burned gas at temperature Tb. Zone two was considered as being formed by only air 

at temperature T2, the pressure was assumed to be uniform throughout the combustion 
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chamber. Sastry and Chandra [44] developed a three-zone model for direct injection engines. 

In this model the three zones considered were fuel, unburnt, and burnt gases. In order to 

simplify the model, the authors considered the fuel enters the combustion chamber in a 

gaseous form. The unburnt zone is the gas mixture in which the fuel is injected is assumed to 

consist of fresh air inducted during the intake stroke and residual gases from the previous 

cycle. Once the combustion begins, the burnt zone comes into existence separating the fuel 

and unburnt gases are assumed to enter the burnt zone in such a manner that the fuel and 

oxygen bear a stoichiometric proportion, react spontaneously and completely resulting 2CO  

and OH 2 . Some complex multizone models account for the droplet vaporisation by dividing 

the fuel jet into droplets groups, and they use experimental correlations for entrainment and 

spray penetration. 

More complex than the phenomenological models, multidimensional engine models account 

for the engine geometry and the temporal and spatial variation of the flow field. These 

models do not account for the liquid fuel break up. However, these models are more accurate 

but they require more computational resources. 
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5.2 HCCI ENGINE COMBUSTION MODELS 

Different aspects of the HCCI combustion process for different fuels were presented in 

Section 3.4, and for convenience they will be reiterated in this section especially those 

encountered in HCCI combustion of diesel fuel. In HCCI engines the fuel is injected outside 

the cylinder into the intake air. The already prepared fresh mixture is inducted into the 

cylinder and compressed up to the point when autoignition appears, when the cylinder charge 

starts burning rapidly. The ignition of the cylinder charge occurs simultaneously throughout 

the mixture due to the presence of numerous hot ignition spots, resulting in a homogeneous 

combustion throughout the body of the mixture, thus permitting a homogeneous combustion 

temperature. Investigations of the HCCI combustion process have revealed the absence of 

flame propagation, a fact that considerably reduces the conditions for NOx emissions even 

though HCCI operates with lean mixtures. It was observed that combustion process during 

the HCCI operation was well behaved over a relatively reduced range of load regimes. 

However, two limits were encountered, misfire and detonation, and both are to be avoided. 

The high rates of energy release encountered during the experiments could be harmful for the 

engine operation, and therefore the requirement of different techniques for the control of 

combustion process. In the literature the HCCI combustion process has been controlled by 

means of a combination of EGR, compression ratio, and variable intake temperature.  

The literature is relatively sparse in models for HCCI engines, and that is because the HCCI 

concept is relatively new. Nevertheless there are some remarkable models in this particular 

area of interest. Najt and Foster [48] investigated the HCCI combustion process on a four-

stroke CFR engine, and used a semi-empirical model to represent the autoignition, and an 
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empirical energy release equation to evaluate the HCCI combustion process. The authors 

considered that the HCCI combustion process was purely a chemical kinetic process. 

However, the HCCI combustion process was divided into two stages, the first stage was that 

of low temperature chemical kinetics (below 950 K) leading to autoignition, and the second 

was that of high temperature chemical kinetics (above 1000 K) associated with the energy 

release. The ignition process was modelled by using a semi-empirical model. The high 

temperature chemical kinetics are characterised by fuel radical thermal decomposition.  

( ) heatOHnnCOO
n

HC nn +++→





 +

++ 22222 1
2

13
  (5.17) 

It was considered that the high temperature oxidation of a paraffinic fuel obeys the following 

chemical kinetics scheme 

OHalkeneOfuel 22 +→+  

OHCOOalkene 22 +→+  

22 COOCO →+  

The 2CO  formation considered to release most of the combustion energy, has the following 

chemical reaction scheme. 

HCOOHCO +↔+ 2  

In the early combustion process, fuel and radicals compete with CO  for the OH radicals. 

OHFOHF 2+↔+  

Assuming that the energy release is controlled by the CO  oxidation, the expression for the 

energy release was based on an empirical equation formulated by Dryer and Glassman [51, 

52] for the rate of reaction of 2CO  
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Reitz et al. [53] modelled the combustion process in a four-stroke HCCI engine using a 

modified KIVA-II code. In their complex multidimensional model, the authors included 

numerous effects such as turbulence, crevice flow, and wall heat transfer. In their detailed 

study, the authors performed a sensitivity analysis evaluating the effects of the turbulence 

mixing characteristics, initial temperature, turbulence parameters, and swirl ratio. Their 

studies presented a different point view about HCCI combustion mechanisms than the one 

adopted by Najt and Foster [48], who considered the HCCI combustion to be purely a 

chemical kinetic controlled process. The results indicated that although there are no flame 

propagation phenomena, the high pressures and temperatures can extend the flammability 

and sustain flamelets within the turbulent eddies. The combustion mechanism was described 

as during the early stages of combustion the development of flame kernels is controlled by 

the laminar ignition chemistry. It was also concluded that the turbulence phenomena has a 

dominant role in HCCI combustion. In the sensitivity study it was shown that initial charge 

temperature influences the autoignition process. Also the autoignition is affected by the 

turbulence diffusivity and by the swirl ratio through affecting the wall heat flux, by 

increasing these parameters the autoignition is delayed because of the enhanced wall heat 

flux. The HCCI combustion process was considered as being related to the premixed burned 

of diesel combustion. 

The key for the combustion modeling of the HCCI is represented by the evaluation of the 

conditions for the autoignition process. This is probably the most delicate problem of the 

HCCI combustion modeling, since the heat release can be easily approached by means of an 
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empirical mass burned function. In their efforts to model the HCCI combustion process, 

Ryan et al. [24,25], used an empirical expression for the “ignition delay”, based on 

experimental studies conducted on combustion bomb testing [54]. The ignition delay was 

considered to be the time period from the closing of the intake valve to the moment of 

autoignition of the fuel. The developed expression for the ignition delay is a function of 

oxygen concentration, fuel concentration, and of air density and temperature at the start of 

injection. 
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where dτ  is the ignition delay in milliseconds 

The autoignition occurs when  
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where 
cX

X
 is the fraction of pre-reactions completed at time t. 

The correlation for the ignition delay previously mentioned, was integrated in a computer 

model able to simulate the HCCI operation. Goldsborough [56] modeled the HCCI 

combustion applied to a free piston linear engine- alternator combination, by means of a 

detailed chemical kinetics model using the CHEMKIN [57] libraries package. The modeling 

task was simplified by the fact that the fuel used was Hydrogen where the chemical reactions 

that characterize the combustion process are very well known. In their efforts to model the 

HCCI combustion of natural gas, Fiveland and Assanis [58] developed a single-zone 

simulation model. The combustion model was incorporated into a cycle simulation code 
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originally developed for direct injection diesel engines. The simulation couples models for 

mass, species, and energy in a zero-dimensional framework. The autoignition and 

combustion processes in their engine cycle simulation, were represented by using CHEMKIN 

libraries. Recently, there were issued different HCCI models and, most of them, were 

developed used detailed chemical kinetics libraries offered by CHEMKIN. 

Taking into consideration the peculiarities of the HCCI combustion process, a direct way to 

model the HCCI combustion is to use the chemical kinetics approach. Although Reitz et al. 

[53] recommended the computations for the HCCI combustion be made by using detailed 

chemical kinetics mechanism in order to assess the influence of the chemistry, the proposed 

model for this dissertation will be one based on a highly simplified chemical kinetics scheme. 
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CHAPTER 6 COMPUTATIONAL MODEL DERIVATION 

6.1 DYNAMIC ANALYSIS OF THE FOUR-STROKE LINEAR ENGINE 

Consider the case of a FSLE with four reciprocating pistons linked by a solid shaft that 

oscillates back and forth in a left-to-right motion. The reciprocating mass represented by the 

pistons, piston rings, connecting rod, and the magnets the subject of the following forces, the 

pressure force from each cylinder, the mechanical load imposed by the linear alternator, and 

the frictional force. 

The equation that describes the motion of the system derives from Newton's second law.  
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The right hand side of Equation 6.1 represents the summation of the forces that act in the 

plane of motion. The only forces are considered to act on the moving assembly are the 

resultant pressure forces given by the difference between the pressures in the four cylinders, 

a frictional force, and the load. The load represents the electromagnetic force introduced by 

the linear alternator coupled to the linear engine. 

Thus, the Equation 6.1 can be written as 

lfp FFF
dt

xd
m −−=

2

2

 (6.2) 

where pF represents the resultant pressure force, 

 fF  is the resultant friction force, and 

 lF  is the electromagnetic force representing the load introduced by the linear 

alternator. 



58 

 

 

The integration of this differential equation will permit us to determine the equation of 

motion for the linear engine. The analytic integration is very difficult due to the complex 

variation of the three forces in space and time. The piston assembly does not follow a 

prescribed motion but rather its resultant motion is established as a result of the net balance 

in the in the applied forces. Thus, the numerical integration is imposed. 

6.1.1 FRICTION FORCE EVALUATION 

Although the linear engine is crankless, the frictional force cannot be neglected. The friction 

in this case is attributed to the piston assembly only. There have been done a lot of studies 

with regards to the friction in the internal combustion engines, and according to these, the 

piston assembly friction represents the major source of engine mechanical friction. Elements 

of the piston assembly that contribute to friction are the piston rings and the piston skirt. 

There is also friction in the wrist pin that should be noted even though is small in comparison 

to the other friction forces previous mentioned. Rosenberg [30], describes the frictional 

causes for internal combustion engines and presents a couple of design solutions towards 

diminishing the effects of the frictional phenomena. The author shows that the friction 

coefficient varies between 0.2 for boundary lubricated engine components to 0.001 for 

hydrodynamically lubricated engine components. According the lubrication theory there are 

three lubrication regimes, and these are known as boundary, hydrodynamic, and mixed 

lubrication. In the boundary lubrication regime the friction is proportional to the normal load 

applied and this is referred as the Coulomb friction. 

NcF ff ⋅=  

where fc is the coefficient of friction, and  
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 N is the normal load. 

Although the lubricant is present between the two surfaces, the coefficient of friction is 

independent of the bulk lubricant viscosity, the sliding speed and the unit load. The 

hydrodynamic regime occurs when the two surfaces in relative motion in the presence of a 

lubricant between the two surfaces, have no physical contact. The resistance to motion results 

from the shear forces within the film. 

The shear stress τ, developed in a liquid film between two surfaces in relative motion is 

given by 

dy

dU
µτ =  (6.3) 

where µ is the fluid dynamic viscosity, and 

 
dy

dU
is the velocity gradient across the film. 

The friction in the hydrodynamic regime depends on geometry, speed and lubricant viscosity, 

and the fiction force has the form 

δ
µAU

F f =  (6.4) 

where µ is the fluid viscosity, 

 A is the area, 

 U is the relative velocity, and 

 δ is the film thickness. 

The mixed lubrication regime occurs when the film thickness becomes so thin that asperities 

touch. This way the two surfaces in relative motion have a physical contact, therefore to 
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viscous friction is added to the solid friction effect. As it was mentioned before, the piston 

assembly represents the only friction source for case of the Linear Engine. Elements of the 

piston assembly, which contribute to the friction, are the piston rings the piston skirt and the 

wrist pin. The analyses developed on the piston assembly friction showed that the ring 

friction has a dominant role in the overall frictional aspects (more than 50%).  

Based on the assumption that the piston ring operates in hydrodynamic regime, the frictional 

effects can be evaluated from the Reynolds equation: 

t

h

x

h
U

x

p
h

x ∂
∂

+
∂
∂

=







∂
∂

∂
∂

µµ 1263  (6.5) 

where h is the instantaneous film thickness. 

Equation 6.5, along with the appropriate force balance on the ring, can be solved for the 

couple film and ring behavior. 

The calculation of the friction force for the experimental model is a very complicated 

process; thus the use of an existing correlation permits a faster evaluation far the friction 

forces. Blair [31], suggests an empiric expression for the calculation of the friction mean 

effective pressure. This correlation used for the evaluation of the friction force for the SI 

model, is a function of engine length and speed. 

NbLafmep st+=  (6.6) 

where ba  and are constants, 

 stL  is the stroke length in meters 

 N  is the engine speed in cycles/min 

The constants ba  and have different values based on the type of the engine, size of the 
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engine, and also based on the type of the bearing. In the case of a rolling element the value of 

the constant a is zero. In the previous modeling work [19] the calculation of the friction force 

was based on the same type of correlation. In this dissertation the evaluation of the frictional 

force due to the presence of represents a simple but effective approach similar to the one used 

in the numerical modeling of the two-stroke spark-ignition linear engine, using a similar 

correlation with the one suggested by Blair [31]. 

Considering the friction force as being constant along the stroke does not alter the 

computation, this assumption was justified by the fact that in the operation of the TSLE it 

was observed that the engine operation was not influenced substantially by the variation in 

shape of the applied load. Another reason for this assumption is that the frictional force 

magnitude is small in comparison to the one of the load introduced by the linear alternator.  

Considering the friction mean effective pressure as given by: 

NLfmep st ⋅⋅= 200   [Pa] (6.7) 

where stL  is the stroke length in meters, 

 N is the reciprocating frequency in cycles/min. 

It follows that the corresponding average friction force can be written as: 

st

d

f
L

Vfmep
F

⋅
⋅

=
4

 (6.8) 
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6.1.2 LOAD INTRODUCED BY THE LINEAR ALTERNATOR 

Another variable needed to solve the Equation 6.1, is the load introduced by the linear 

alternator lF . This variable is very important for the evaluation of the engine performances 

and it depends mainly of the design of the linear alternator. It is quite complicated to make an 

assumption for the this particular variable since it is a result of engine operation and 

alternator design From the previous work [20] it was shown that the resistant force 

introduced by the linear alternator has a shape similar with a sinusoidal function. This 

observation permitted the assumption that the engine load has a sinusoidal shape. In the 

numerical simulation of the FSLE, the load introduced by the linear alternator was 

considered as being a function of piston position only and that can be expressed as a different 

power of a sinusoidal. In each case considered for expression of the load 

( ) 





⋅=

L

x
AxF i

iil

π
sin  (6.9) 

where: iA represents a proportionality constant and it depends on the power “i”, 

 x  represents the piston position, and 

 L  is the total maximum stroke. 

In the order to obtain the same equivalent constant load, it considered for each analysed case 

that 
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6.2 THERMODYNAMIC ANALYSIS OF THE FOUR-STROKE LINEAR ENGINE 

In this dissertation the thermodynamic analysis conducted for the FSLE is based on First Law 

of Thermodynamics. Considering the modeled engine an open thermodynamic system as 

shown in Figure 6.1 it follows: 

 

 

Figure 6.1: First Law of Thermodynamics applied to the cylinder gases. 

 

The analysis assumes that at any instant in time there is a state of thermodynamic equilibrium 

over the control volume. The cylinder content is treated as being a homogeneous mixture of 

perfect gases at each instant. In this analysis, phenomena such as mixing, fuel vaporization, 

are neglected. The equations that describe the thermodynamic state of the cylinder gases are 

the conservation of mass and the First Law of Thermodynamics as follows: 
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Conservation of Mass 

∑=
i

i

dt

dm

dt

dm
 (6.10) 

where ∑
i

i

dt

dm
represents the mass flow rates through the intake and exhaust valves, the mass 

flow rate through the injector and  the mass flow rates associated with the crevice flow and 

leakeage through the piston rings. 

Conservation of Energy 

∑++−=
i

iH
dt

dQ

dt

dV
p

dt

dE &  (6.11) 

where 
dt

dE
 represents the rate of change of total energy of the control volume, 

dt

dV
p  is the rate of mechanic work done by the system on its boundaries, 

dt

dQ
 is the rate of heat transfer into the control volume through the control volume 

boundaries 

∑
i

iH&  is the sum of enthalpy fluxes through the intake and exhaust valves and the enthalpy 

flux  associated with the fuel injection. 

( )
dt

dm
u

dt

du
m

dt

umd

dt

dE
+=

⋅
=  (6.12) 
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i h
dt

dm
H =  (6.13) 
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dt

dQ

dt

dV
p

dt

dm
u

dt

du
m ∑++−=+  (6.14) 

For the case of compression, combustion and expansion process neglecting the crevice flow 

and the leakage, the first law of thermodynamics applied to the cylinder content becomes. 

fuel

fuel
h

dt

dm

dt

dQ

dt

dV
p

dt

dm
u

dt

du
m ++−=+  (6.15) 

where the mass conservation equation is: 

dt

dm

dt

dm fuel=  

If the enthalpy flux due to the fuel injection is neglected, Equation 6.15 becomes: 

dt

dQ

dt

dV
p

dt

du
m +−=  (6.16) 

Considering that the cylinder content is an ideal gas, then at every instant the ideal gas law is 

satisfied 

mRTpV =  (6.16) 

it allows Tcu v= , so 

( )
dt

dQ

dt

dV
p

dt

Tcd
m v +−=  (6.17) 

Taking the derivative of the ideal gas law and assuming that R  is constant it follows that: 

dt

dT
mR

dt

dV
p

dt

dp
V =+  (6.18) 

considering vp ccR −=  and 
v

p

c

c
=γ  and substituting the Equation 6.18 into Equation 6.17 

and it yields: 
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dt

dV
p

dt

dpV

dt

dQ

11 −
+

−
=

γ
γ

γ
 (6.19) 

The net heat flux term, 
dt

dQ
 is a result of the heat transfer out of the system and the chemical 

input energy from the fuel combustion process and it can be explicitly written as: 

dt

dQ

dt

dQ

dt

dQ htchemical −=  (6.20) 

Substituting Equation 6.20 into Equation 6.19, then the cylinder pressure variation is given 

by: 
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dt

dp htchemical1
1γγ  (6.21) 
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6.3 INDIVIDUAL THERMODYNAMIC PROCESS MODELING 

6.3.1 GAS EXCHANGE PROCESS MODELING 

The purpose of the exhaust and inlet processes is to remove the burned gases at the end of 

power stroke and induct the fresh charge for the next cycle. Needless to say that the gas 

exchange process affects both the performances and the emissions of an internal combustion 

engine, and therefore it requires a careful approach. The effectiveness of this process is 

evaluated by the volumetric efficiency, which depends on the flow field in the intake and 

exhaust manifolds, and especially on valves. The volumetric efficiency is defined as the ratio 

of the volume flow rate of air into the intake system, to the rate at which volume is displaced 

by the system. It was mentioned previously that the gas exchange process (scavenging) for 

the case of TSLE, was critical for the performances of the linear engine, although in the 

numerical simulation [19] the scavenging process was considered ideal for simplicity 

reasons. The operation of the proposed FSLE is more complex than that of the TSLE since 

the FSLE has two operation modes, one as a direct injection CI where the cylinder charge is 

form in the cylinder, and the other as a HCCI engine where the cylinder charge is formed 

externally. Basically the gas exchange process modeling comprehends two aspects, one is the 

modeling of flow in the intake and exhaust manifolds, and the other one is the modeling of 

the flow around valves. Manifold flow models can be classified in two groups: one-

dimensional and multidimensional models. One-dimensional models often used in engine 

modeling, use the mass, momentum, and energy conservation equations for the unsteady 

flow, together with the equation of state for the gas. The set nonlinear differential equations 

can be solved numerically by using different numerical techniques presented in the literature 
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[21-23]. Benson [34], used the method of characteristics to solve the one-dimensional, 

unsteady, compressible flow problem in ducts.  

Multi-dimensional models permit a better evaluation of the gas exchange process and of the 

calculation of the flow field around the intake and exhaust valve, but they are more complex, 

and they require expensive computational devices. 

The valves represent the most important flow restriction, in the intake and exhaust system. 

The instantaneous flow area depends on the valve lift and the geometry of the valve, head, 

seat, and stem. Similarly to the flow in manifold models, the flow through valve models can 

be classified as one-dimensional and multi-dimensional models. 

The model used in these engine cycle simulations for the calculation of the flow around 

valves, is a quasi-steady, one-dimensional model. The equations used in these models are 

derived from the one-dimensional isentropic flow analysis, and real flow effects are 

accounted for by means of experimentally determined discharge coefficient. 
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where DC  is the discharge coefficient  

For the case when the flow is choked, which represents the case when pressure ratio becomes 

less than the critical value defined by 
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In order to avoid eventual calculation complications, for this dissertation, the gas exchange 

process will be calculated by means of one-dimensional model for the flow in intake and 

exhaust manifold, and by means of a one dimensional quasi-steady model for flow through 

valves, although considering ideal intake and exhaust processes does not affect very much 

the engine performances. The proposed gas exchange calculation is considered to be accurate 

enough for this modeling work. 

6.3.2 COMPRESSION AND EXPANSION PROCESS MODELING 

The compression process for this model is considered to start when the intake valve closes, 

and it continues until the start of the fuel injection (for the case when the engine operates as a 

CI), and until the cylinder pressure rise rate differs from the that of the motoring pressure (for 

the HCCI case). During this process the cylinder charge receives external mechanical work, 

increasing its internal energy. The compression process can be mathematically modeled by 

using the first law of thermodynamics. If we neglect the crevice flow, and after some 

mathematical manipulations the equation becomes:  

dt

dp
V

dt

dV
p

dt

dQ

1

1

1 −
+

−
=

γγ
γ

 (6.24) 

The pressure variation during the compression process is given by: 

( )
dt

dQ

Vdt

dV

Vdt

dp ht1
1

1
−+−= γγ  (6.25) 

If the heat transfer process is neglected the Equation 6.25 reduces to: 

0=+
dt

dp
V

dt

dV
pγ  (6.26) 

The solution for this differential equation represents the law for an isentropic process.  
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.ConstpV =γ  

The expansion process or the power stroke is considered to start at the end of the combustion 

process, and ends when the exhaust valve opens. The expansion process can be modelled in a 

similar manner considering the evolution as an isentropic process. In the numerical 

simulation of a two-stroke linear engine [19], the two evolutions were considered as being 

polytropic processes, and thus they were mathematically expressed as: 

., ConstpV dcm =  

ConstTV dcm =−1,  

where m denotes the polytropic coefficient, and 

the subscripts dc  and denote the compression and expansion process respectively. 

6.3.3 COMBUSTION PROCESS MODELING 

6.3.3.1 COMBUSTION MODELING FOR DIRECT INJECTION COMPRESSION  

IGNITION OPERATION 

For the direct injection case, there were elaborated two combustion models and both models 

used were zero-dimensional, single zone models. In these combustion models the energy 

release was simulated using Wiebe functions. The first approach for the combustion model 

for FSLE operating in the direct injection, compression ignition mode, used a single Wiebe 

function for the representation of the heat release. This preliminary model was used to 

represent the general behavior of the engine. A more accurate approach of the combustion 

process representation for the FSLE operating in direct injection mode was done using a 

double Wiebe function. By using a double Wiebe function or two Wiebe functions for the 
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heat release rate, has permitted to put in evidence the two characteristic stages encountered at 

the combustion process in compression ignition engines, the premixed combustion and the 

diffusive combustion, respectively. Figure 6.2 illustrates the heat release rate represented by 

using two Wiebe functions.  
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where dp χχ  and represent the fraction of heat release for the premixed combustion and 

diffusive combustion, respectively, 

dp DD CC  and  represent the combustion durations for the premixed and diffusive combustion, respectively. 

Total Heat Release Rate

Diffusive Heat Release Rate

Premixed Heat Release
Rate

Cd p

Cd d

 

Figure 6.2: Heat release rate represented by using two Wiebe functions. 
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Considering that during the premixed combustion period the amount of heat released is Qp 

and the amount of heat released is Qd, then the corresponding rates of heat release these two 

combustion stages are given by: 

dt
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=  (6.29) 
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Thus, the heat release write can be written as: 

dt

dQ

dt

dQ

dt

dQ dp +=  (6.33) 

The equations that describe the thermodynamic parameters are given by: 

The ignition delay expression has the form of Arrhenius equation. 
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where A and n are constants dependent on the fuel, 

 EA is an apparent activation energy, and 

 R is the universal gas constant. 
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The coefficients A and n used in the ignition delay expression were those determined by 

Spadaccini and TeVelde [36]. 

1=n  

0405.0=A  

20080=
⋅TR

EA  

The ignition delay was evaluated in both models, by accounting for the continuous change of 

the conditions during this period. 

1
1

=∫
+

dt
idsi

si

t

t

τ

τ
  (6.35)  

 

6.3.3.2 COMBUSTION MODELING FOR HCCI OPERATION 

A general description of the homogeneous charge compression ignition engines was 

presented in section 3.4, and for convenience it will be summarised in the following. In 

HCCI engines the cylinder charge is prepared before the induction process. The cylinder 

charge is compressed to a point when autoignition occurs. The ignition of the charge occurs 

spontaneously and simultaneously throughout the mixture, and the combustion process takes 

place in a homogeneous way thus permitting a homogeneous combustion temperature. Due 

to the presence of numerous hot ignition spots, the combustion occurs very fast, the overall 

combustion duration being shorter than that of spark ignition engines. However this 

combustion concept presents two extremes, one being the detonation in the case of a rich 

mixture, and the other one is the misfire that occurs in the case of a too lean mixture, and 

both extremes are to be avoided. The most delicate features of the HCCI operation are the 
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initiation of auto-ignition and the representation of combustion rate. 

In order to model the combustion process for this case, it is necessary to evaluate the two 

features of this complex process, the autoignition of the mixture and the combustion rate. 

Definitely it is a great challenge to evaluate these two aspects of the HCCI combustion 

process, however the combustion model presented in this dissertation employed a simple and 

effective approach. The ignition delay represents the time period from the close of the intake 

valve to the start of the combustion. This parameter has been calculated using an empirical 

expression developed by Ryan and Callahan [24]. 

[ ] [ ] 





⋅⋅⋅⋅= −

T
FuelOid

5914
exp0221.0 13.005.053.0

2 ρτ  (6.36) 

where: idτ  represents the ignition delay in ms, 

 [ ]2O  is the oxygen concentration in moles/m
3
, 

 [ ]Fuel  is the fuel concentration in moles/m
3
, 

 ρ  is the air density, and  

 T is the air temperature. 

Since the fuel is mixed with air during the intake process, it means that the fuel is present in 

the cylinder charge during the compression event and, therefore there is a continuous 

variation of the parameters taken into account for the ignition delay calculation expression. 

The continuous change of the ignition delay during the compression, is accounted by using 

theory of conservation of delay in which it is considered that the ignition delay period is 

consumed when: 
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Once the autoignition delay period is consumed, the combustion process begins. The 

combustion process in HCCI engines is characterized by a high rate of energy release, in 

section 3.4, were presented the features of the HCCI combustion process. It was established 

previously that the HCCI combustion process is governed in essence by the chemical 

kinetics, therefore for the combustion process was decided to be modeled by using a single-

step global reaction. This simplistic approach represents a non-expensive tool and it permits a 

rapid and general evaluation of the HCCI combustion process. Global reactions as discussed 

in Chapter 5, have their limitations since do not capture the details of hydrocarbon oxidation 

but they permit a relatively good approximation for the overall oxidation process. 

[ ] [ ] [ ]baAmn OFuel
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E
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dt
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2~exp ⋅






−⋅⋅⋅−=  (6.38) 

where [ ]Fuel  represents the instantaneous fuel concentration in gmol/cm
3
, 

 [ ]2O  represents the instantaneous oxygen concentration in gmol/cm
3
, 

 T and p are the temperature and the pressure of the reactor, respectively, 

 A, m, n, a, and b, are coefficients characteristics for the considered fuel. 

A major assumption in this model was that the rate of energy release was considered to be 

the same with the rate of reaction and, this permits: 
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where 
dt

dmFuel   

 LHV represents the fuel lower heating value, in J/kg, 

 V is the instantaneous combustion chamber (the reactor) volume, in cm
3
, 

 FuelM  represents the molar mass of the fuel, in gmol/kg. 

In the numerical simulation of the HCCI combustion of diesel fuel was considered that the 

decane  

(C10H22) combustion can closely represent the diesel fuel. Hence, combining Equation 6.13 

and Equation 6.14 the fuel energy release rate can be written as: 
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In Equation 6.26 the temperature and pressure exponents, n and m respectively are 

considered to be equal to zero, therefore the fuel energy release rate has the following 

expression: 
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−⋅⋅−=  (6.42) 

The reactor model used in this combustion model is the constant volume, constant mass type; 

for this type of reactor the first law of thermodynamics reduces to: 

dt

dQ

dt

du
m =  (6.43) 

The relationship between the instantaneous fuel molar concentration and oxygen molar 

concentrations is determined by considering the complete combustion of the fuel, in this case 

C10H22. 
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6.3.4 HEAT TRANSFER MODELING 

The heat transfer process in an internal combustion engine and particularly for a CI engine 

represents a very complex process and this due to the fact that all three forms of heat transfer 

known are present in the overall heat transfer process, namely conduction, convection, and 

radiation. In diesel engines radiation heat transfer has much greater importance than in 

homogeneous charge engines where the radiation energy of water and carbon dioxide 

represent a less than 10% of the convective heat loss and, usually neglected. The radiation 

heat transfer in diesel engines is important component in the overall heat transfer process 

during the combustion phase due to the presence of the soot particles. 

The conductive component of the overall heat transfer process is also of a great importance 

especially when it comes to the engine cylinder design, however for the thermodynamic 

analysis of the engine this component is not going to be taken into account since the subject 

of this analysis represent the heat transfer process on the gas side. 

Generally, the equations used for heat transfer modeling in internal combustion engine 

modeling are of the standard convection form  

( )wcyl

ht TTAh
dt

dQ
−⋅⋅=  (6.46) 

where 
dt

dQht is the instantaneous heat transfer rate, 

 h  is the overall heat transfer coefficient, 

 A  is the instantaneous area over which heat transfer occurs, 

 cylT  is the instantaneous cylinder fluid temperature, and 

 wT  is the cylinder wall temperature. 
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The most delicate problem resides in the evaluation of the overall heat transfer coefficient, h. 

Considering the heat transfer process from the cylinder gas to the cylinder wall as being a 

steady process it can be written that: 

dt

dQ

dt

dQ

dt

dQ rcht +=  (6.47) 

In an internal combustion engine the heat transfer process engine is dominated by a 

convective mechanism, therefore this particular form of heat transfer has been a subject to 

numerous investigations and so far, there are known two types of models, spatially uniform 

models and, boundary layers models. 

Spatially uniform models consider the cylinder gases as a uniform medium. More realistic 

are the boundary layers models, which account for the variation of the physical properties of 

the in-cylinder gas in a thin layer formed near the cylinder wall. In boundary layer models 

two regions are considered, one in which the physical properties of the gas are subject to high 

gradients, and the other region outside the boundary layer in which the physical properties 

can be assumed to be uniform. These models are more accurate for the evaluation of the heat 

transfer process but they require information about the in-cylinder flow-field, fact that can 

create computational complications. 

A very accurate evaluation of the heat transfer coefficient represents a very complicate task 

due to the complexity of the heat transfer process itself, and it does not represent the main 

priority for this work. Therefore the use of spatially uniform model that uses a heat transfer 

correlation, a common practice in engine modeling, will be used to simplify the modeling 

task. There are numerous heat transfer correlations in the IC engines literature [59], and most 

of them give satisfactory results despite their empiricism. These correlations relate the 
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Nusselt, Reynolds, and Prandtl numbers in the following general form. 

eda PrReNu =  (6.48) 

where the dimensionless parameters are 
k
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Another correlation used, probably the most popular, for the evaluation of the instantaneous 

convective heat transfer in IC engines is the one developed by Woschni [61]. 

m

m LU

k

hL








===

µ
ρ ˆ

035.0Re035.0Nu  (6.49) 

where Nu is the Nusselt Number, 

 h is the instantaneous space-averaged heat transfer coefficient 

  L is the Characteristic Dimension, 

  k is the fluid Thermal Conductivity, 

 Re is the Reynolds Number,   

 m is the Reynolds Number Exponent. 

 ρ is the Fluid Density, 

 Û is the Characteristic Velocity, and 

 µ is the Fluid Viscosity. 

Woschni postulated that the average gas velocity should be proportional to the piston speed. 

In his correlation, Woschni assumed that the ideal gas law was applicable, that the 

characteristic dimension was the cylinder diameter D, that m=0.8, that 62.0T∝µ and that 

75.0Tk ∝ . 

Substituting these in the Woschni correlation it follows that  
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53.02.0

8.08.0 ˆ
00326.0

TD

Up
hc =  (6.50) 

where ch is the film heat transfer coefficient, 

  p is the cylinder pressure, 

 Û is the characteristic velocity 

 D  is the cylinder diameter, and  

 T  is the cylinder gas temperature 

The characteristic velocity was evaluated throughout different evolutions of the engine cycle 

as follows. 

( )motored

scsc

scd

p pp
Vp

TV
CSCU −+= 21

ˆ  (6.51) 

where 21  and CC  are coefficients that denote the combustion and motored conditions 

respectively, 

 pS is the mean piston speed 

 dV is the displacement volume 

 scscsc VpT  and ,,  represent the temperature, the pressure, and the volume at the end of 

ignition delay period 

 p is the cylinder pressure, and 

 motoredp  is the pressure that corresponds to the motored conditions. 

The coefficients C1 and C2 have different values based on the process the engine performs, 

these values being shown in Table 6-1. The Woschni correlation represents a very fast and 

convenient tool in the evaluation of the heat transfer, and therefore it was used for the heat 
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transfer process calculations for the FSLE model. 

Table 6-1: Values for the coefficients used in Woschni correlation. 

Evolution 

 

C1 

 

C2 

Compression 2.28 0 

Combustion and Expansion 2.28 0.00324 

Gas Exchange 6.18 0 

 

Although the convective mechanism dominates the entire heat transfer process, in the DI case 

due to the diffusive flame presence, the radiation heat transfer component has to be 

considered. 

The heat flux due to the radiation has the following form: 

( )44

w
r TTA

dt

dQ
−⋅⋅⋅= σε  (6.52) 

where ε  represents the gas emissivity, and 

 
42

81066.5
Km

W−⋅=σ , is the Stefan-Boltzmann constant. 

Considering that the total heat transfer flux can be written as having two components, one 

being the convective component and the other one the radiation component, it follows from 

Equation 6.47 that: 

( ) ( )wrc

ht TThhA
dt

dQ
−⋅+⋅=  (6.53) 

where hr is the radiation heat transfer coefficient. 

From the Equation 6.47 and 6.52 it follows that radiation heat transfer coefficient can be 

written as: 
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( ) ( )22

wwr TTTTh −⋅−⋅⋅= σε  (6.54) 

 

The emissivity term value was taken from the Annand [60] correlation, in which it was 

considered that the emissivity term for compression ignition engines as being 58.0=ε . 

For the HCCI operation case, the radiation component is practically absent due to the HCCI 

combustion nature, in other words, due to the absence of flame propagation phenomena or 

absence of the diffusive flame, radiation heat transfer component can be neglected. Therefore 

for the HCCI case the only term considered for the heat transfer model was the convective 

one. Similarly to the direct injection case, for the evaluation of the convective heat transfer 

for the HCCI model was used the fast approach offered by Woschni’s correlation. 
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CHAPTER 7 DESIGN CONSIDERATIONS SUGGESTED BY MODELING 

The purpose of this dissertation was to design a four-stroke linear engine able to produce a 

power output of 15 kW, and to operate in two different modes, as a direct injection 

compression ignition and, as a homogeneous charge compression ignition engine. In the 

following sections of this chapter is presented the analysis conducted for the FSLE operating 

in direct injection mode and the analysis of the FSLE operating in HCCI mode. The 

geometrical parameters for this linear engine were taken as being identical with the ones 

from the direct injection version of the two-stroke linear engine prototype shown in Table 

3-4. 

7.1 ENGINE ANALYSIS OPERATING IN DIRECT INJECTION COMPRESSION 

IGNITION MODE 

Before presenting the results obtained from the numerical simulation of the cycle it is 

necessary to underline the fact that the design of the engine has two major restrictions 

imposed to the engine operation. First restriction is represented by the limitation of the in-

cylinder pressure, for the designed engine the in-cylinder pressure in limited at a value of 

15000 kPa, and the second one is represented by the limitation of the average reciprocating 

assembly speed, limiting this way the friction losses. The considered limit value for the 

average piston speed was of 12 m/s. In Table 7-1 besides the geometric parameters of the 

engine, bore, and maximum possible stroke, are presented the valve timing specifications. In 

this numerical simulation the scavenging process is not taken in consideration due to the fact 

that there is no valve overlapping. The exhaust valve opens at the end of the expansion 

process, which is considered to end in the moment the piston reverses its motion. Similarly, 
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the intake valve opens in the moment the piston in the exhaust stroke reverses its motion, 

which coincides with the closing of the exhaust valve. 

Table 7-1: Geometric Specifications of a Direct Injection Compression Ignition Four-

Stroke Linear Engine 

 

Number Cylinders 
4 

Bore 75 [mm] 

Maximum Possible Stroke 71 [mm] 

Reciprocating Assembly Mass 3-6 [kg] 

Exhaust Valve Opening 

At the end of the expansion stroke considered when 

the reciprocating assembly reverses its motion 

Intake Valve Opening 
At the end of the exhaust stroke considered when the 

reciprocating assembly reverses its motion 

Exhaust Valve Closing  

At the end of the exhaust stroke considered when the 

reciprocating assembly reverses its motion 

Intake Valve Closing  Variable 

 

Another important parameter for the engine simulation was the friction force. As mentioned 

before in section 6.1.1, the friction force in this simulation was considered constant along the 

stroke. This assumption will not alter the operation of the linear engine due to the fact that its 

order of magnitude is much smaller in comparison to the load introduced by the linear 

alternator and therefore, this do not affect the engine behavior. The friction force in this 

simulation is a function of displaced volume and reciprocating frequency, therefore for a 

stroke length of 71 mm and a reciprocating frequency of 3000 cycles/min, the friction mean 

effective pressure was found to be: 

MPafmep 034.0=  
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d

f

V

W
fmep =  (7.1) 

where fW is the work required to overcome the friction force, and 

 dV  is the displaced volume 

fstf FLW ⋅⋅= 4  (7.2) 

From equation, the average friction force was found to be: 

N
L

Vfmep
F

st

d

f 6.37
4

=
⋅

⋅
=  (7.3) 

In Table 7-1 besides the geometric parameters of the engine, bore, and maximum possible 

stroke, are presented the valve timing specifications. In these simulations the scavenging 

process is not taken in consideration since there is no valve overlapping. The exhaust valve 

opens at the end of the expansion process, which is considered to end in the moment the 

piston reverses it motion. Similarly, the intake valve opens in the moment the piston in the 

exhaust stroke reverses its motion, which coincides with the closing of the exhaust valve. The 

investigations done on the spark ignition version of the two-stroke linear-engine prototype, in 

essence a parametric study performed to determine the interdependence among different 

engine parameters, did not establish any range of operation for this type of engine. Therefore, 

in this dissertation, one of the primary goals was to determine the operation domain for this 

type of engines. The numerical simulation programs for the analyzed case of operation, were 

run and tested for a wide range of the engine input parameters such as, manifold intake 

pressure and temperature, air to fuel ratio, injection timing and duration, combustion 

duration, and valve timing. After several runs of the engine simulation, it was observed that 
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one way to control the engine operation was to delay the closing of the intake valve. Initially 

the engine was designed to have the intake valve closing in the moment the piston ends it 

intake evolution, more precise, in the moment it reverses its motion.  

During the first set of runs of the engine simulation, the engine’s input parameters (intake air 

temperature and pressure, air to fuel ratio, combustion duration, injection timing, injection 

duration, combustion duration, and valve timing) were varied for a wide range of values in 

order to determine the general behavior of the engine. It was observed that it was not possible 

to obtain a steady operation for the engine unless the intake valve closing was delayed. This 

delay was found to be greater than or at least equal to the height corresponding to operating 

the clearance volume. 

The engine operation is result of the balance between the in-cylinder pressure forces, friction 

force and load and, as expected the engine reaches its operation regime very fast. In the 

simulation program there is a period of about 1.5 s of simulated engine operation until the 

engine operation becomes stable. The results obtained from running the numerical simulation 

are presented in the following figures and they correspond to a typical FSLE cycle. Figure 

7.1 presents the in-cylinder pressure variation and the corresponding motoring pressure 

variation versus time. It was mentioned before that the motoring pressure for the case of free-

piston engines, different than the crankshaft engines case, represents an artificial parameter 

and it corresponds to a cycle without combustion for which it is obtained the same 

displacement to a cycle with combustion. Figure 7.2 illustrates the in-cylinder pressure 

variation vs. displacement assumed a “P-V” diagram and, Figure 7.3 presents the same in-

cylinder pressure variation but in logarithmic coordinates  
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Figure 7.1: In-Cylinder Pressure Variation vs. Time  
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Figure 7.2: A Pressure vs. Displacement Diagram 
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Figure 7.3: Log (Pressure) – Log (Displacement) Representation of a typical cycle of 

FSLE 
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Figure 7.4: Piston Velocity vs. Displacement for a typical cycle of FSLE 
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The corresponding velocity profile associated to the operation regime shown in Figures 7.1-

7.3 is illustrated in Figure 7.4. Once the steady operation for the engine was obtained, the 

analysis of the engine operation was performed considering the baseline input parameters as 

indicated in Table 7-2. 

Table 7-2: Baseline Parameters used in the Analysis of the FSLE Direct Injection 

Compression Ignition 

Intake Manifold Temperature 370 [K] 

Intake Manifold Pressure 0.1013 [MPa] 

Injection Timing 

5 [mm] from the very end of the 

maximum possible stroke. 

Injection Duration Variable 

Combustion Duration 0.0035 [s] 

lambda 1.1 – 3 

 

For convenience in this analysis, the reference to the cylinder mixture quality is done using 

the relative air to fuel ratio, lambda. By definition, λ represents the ratio between the actual 

fuel to air ratio to the stoichiometric air to fuel ratio. 

( )
( ) tricstoichiome

actual

FA

FA

/

/
=λ  (7.4) 

In order to determine the operation domain for this engine, the relative air to fuel ratio was 

varied within a reasonable large range typical for a compression ignition engine maintaining 

the others parameters fixed. The variation of the relative air to fuel ratio was associated with 

a variation of load introduced by the linear alternator. Thus, for each considered value of λ it 
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was determined the maximum supported load establishing this way the upper limit of the 

engine operation domain. The upper operation limit for the considered parameters is 

presented in Figure 7.5. 
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Figure 7.5: An Upper Limit of FSLE Operation 

 

It is evident that the boundary obtained is characteristic to the operation of this type of 

engines and it corresponds to a certain combination of input parameters. Figure 7.5 shows 

that as the cylinder mixture becomes richer, the maximum load that can be overcome 

evidently increases it. During these particular runs it was observed that the engine 

compression ratio was relatively constant for this par ticular range of operation having a 

value of around 20. The reciprocating frequency registered an increase in value for lower 

values of λ. It was also observed that the reciprocating frequency has an increase in value as 
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the mixture becomes leaner. Figure 7.6 illustrates the power output variation with λ, 

corresponding to the limit of the operation domain. It can be observed that towards richer 

regimes associated with a higher power output, the indicated efficiency decreases, this aspect 

can be associated with the slight decrease in compression ratio towards low values of λ. 
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Figure 7.6: Power Output Variation Corresponding to the Upper Limit of Operation 

 

The numerical simulation of the FSLE has shown that for a certain value of heat input and 

for a value of the load lower that the limit load, the engine will increase its reciprocating 

frequency implying an increase in compression ratio, due to inertial effects, resulting in high 

values of the in-cylinder pressure. Due to mechanical and emissions constrains, the in-

cylinder pressure for this engine was limited to a limit value of 15000 kPa. This design 

constrain will practically set the lower limit of the engine operation domain. Figure 7.7 

presents the domain of operation for the FSLE for the input parameters from Table 7-2. It can 

be observed that the operation domain extends as the value of λ increases. At low values of 
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relative air to fuel ratio, around stoichiometric combustion limit, this domain gets very 

narrow limiting the option for operation in rich regimes.  
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Figure 7.7: Typical Operation Domain for the FSLE  

 

The power output variation associated to these two limit-regimes that define the operation 

domain is presented in Figure 7.8. The upper power output curve corresponds to the lower 

limit of the operating regime presented in Figure 7.7, and this can be explained by the fact 

that at lower loads, for the same input parameters, there is an increase in the reciprocating 

frequency which evidently implies a higher power output. The corresponding gross indicated 

efficiency registered a slight decrease in comparison to the maximum-load operation regime 

despite the fact that the minimum-load operation regime is characterised by a higher 

compression ratio operation, the values varying from 24 to 34 with higher values for the 

leaner mixtures, Figure 7.9. 
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Figure 7.8: Power Output Associated with the FSLE Operation Domain 
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Figure 7.9: Indicated Efficiency and Compression Ratio Variation 
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The fact that engine operation in the domain that corresponds to the lower values of the 

relative fuel to air ratio implies higher power output is very attractive, the only problem that 

arises is that the range for the load variation becomes narrower. The lower lambda operation 

regimes for this engine on the other hand is not quite indicated due to the high tendency of 

soot formation. 

The higher air to fuel ratio domains, despite their higher range for the load and their high 

values of indicated efficiency, they offer a poor power output, and also they are more 

predisposed to nitrogen oxides emissions. Therefore as a compromise, it was decided to 

choose the engine operation in the region that corresponds to a value of relative air to fuel 

ratio around 2. 

7.1.1 INFLUENCE OF RECIPROCATING MASS  

The free piston engine operation is dominated by inertia introduced by the mass of the 

reciprocating assembly, thus the reciprocating mass requires special attention. In the previous 

analysis [19] of the two-stroke engine prototype it was shown the reciprocating mass dictates 

the reciprocating frequency at which the engine operates. It was also shown that the higher 

the mass the lower the operation frequency, and also the fact that for the same engine 

parameters and for high values of mass the peak pressure increases due to the increase of the 

compression ratio in the engine operation, Figure 3.9 and Figure 3.10. In the analysis for the 

FSLE case, the engine numerical simulation model was run for different values of the 

reciprocating mass trying to determine the way it affects the operation domain for the engine. 

It was observed that the engine operation domain shifts up with for lower values of the 

reciprocating mass. The analysis was done for three values of the reciprocating mass as 
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indicated in Figure 7.10 in which is illustrated the variation of the “maximum load” boundary 

vs. lambda for different values of the reciprocating mass. This behavior is explained by the 

fact that the lower the values of the reciprocating mass the higher the reciprocating frequency 

and therefore the higher the power output necessary to overcome the resistant load. 
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Figure 7.10: “Maximum Load” operation boundary variation for different values of the 

Reciprocating Mass 

 

As expected the “minimum load” boundary of the engine operation shifts up with a decrease 

in value of the reciprocating mass, implying an increase of the reciprocating frequency 

therefore higher compression ratios operation regimes The “minimum load” boundary 

variation for different values of the reciprocating mass in shown in Figure 7.11. In Figure 

7.12 it is presented the power output domain for two values of the reciprocating mass. It can 

be observed that for the lower value of the reciprocating mass the power output range for a 

given value of lambda, becomes wider.  
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Figure 7.11: “Minimum Load” Operation Boundary Variation for different values of 

the Reciprocating Mass 
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Figure 7.12: Power Domain for different values of the Reciprocating Mass 
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In the same Figure 7.12, it is obvious that the lower limit of the power output domain 

corresponds to the “Maximum Load” operation regime. 

40

45

50

55

60

65

70

75

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Lambda

R
e

c
ip

ro
c

a
ti

n
g

 F
re

q
u

e
n

c
y

 [
H

z
]

40

42

44

46

48

50

52

G
ro

s
s
 I
n

d
ic

a
te

d
 E

ff
ic

ie
n

c
y
 [

%
]

Frequency (Mass=6kg)

Frequency (Mass=3.5kg)

Efficiency (Mass=3.5kg)

Efficiency (Mass=6kg)

 

Figure 7.13: Gross Indicated Efficiency and Reciprocating Frequency Variation for 

Different values of the Reciprocating Mass 

 

For lower values of the reciprocating mass the indicated efficiency increases due to the fact 

that the engine operates at a slightly higher compression ratios, this is shown in Figure 7.13 

where the indicated efficiency variation vs. lambda is plotted for two values of the 

reciprocating mass, the values considered were 3.5 kg and 6 kg. 

From the analysis conducted so far on the engine, it can be concluded that it is advantageous 

to use a low reciprocating mass due to the fact the engine operation becomes more efficient 

implying a higher power output. The value of the air to fuel ratio at which the engine 
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operation will be considered, therefore further investigations on different parameters that 

influence the engine operation will be performed using this value (λ=2). 

7.1.2 INFLUENCE OF INJECTION TIMING 

Another important parameter that influences the engine operation is the injection timing. The 

way the combustion process takes place relatively to the engine cycle depends on the 

injection process. The heat release rate depends to a certain extent on the injection timing 

accounted as the moment when injection starts and, on the injection strategy. Through the 

injection strategy is understood the shape of the rate at which injection process occurs, or 

more explicit the rate at which the fuel is injected into the combustion chamber with respect 

to the injection process. In the numerical model, the injection process was taken in account 

by assuming the amount of fuel burned during the premixed combustion period. Myamoto et 

al. [37] in their phenomenological combustion model considered that the amount of burned in 

the premixed combustion stage represents 50% of the fuel injected during the ignition delay 

period. It is quite complicated to estimate the amount of fuel burned in the premixed 

combustion, unless is the injection rate is known, since it is mainly a function of injection 

strategy adopted by the engine designer. In the presented numerical model this particular 

aspect has been caring out by specifying the amount of burned in during the premixed and 

diffusive combustion periods. This approach represents an effective tool for the present 

analysis which up to this stage considered that the injection starts at 5 mm from the very end 

of the maximum stroke, and the amount of heat released associated to the premixed 

combustion represented 20% of the total heat released during the combustion period. In this 

section it will evaluated the effect of the fuel injection towards the engine operation. The 
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analysis will be performed considering the engine has the geometrical parameters from Table 

7-1, for a relative air to fuel ratio λ=2 and for a value of the reciprocating mass, mass=3.5 kg. 

In the analysis performed on FSLE the start of injection was considered fixed every operation 

condition taken in account. The start of injection value considered was 5 mm from the very 

end of the maximum possible stroke. The following analysis will be focusing on the effects 

of this important parameter on engine operation. Thus there were considered two cases, a 

first case in which the start of injection is advanced (considered at 6 mm from the very end of 

maximum possible stroke) and, a second case when the start of injection delayed (considered 

at 4 mm from the very end of maximum possible stroke), both cases are considered relative 

to the start of injection used so far (5 mm from the very end of maximum possible stroke). 
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Figure 7.14: Start of Injection Effect on the Engine Operation 
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Figure 7.15: Indicated Efficiency variation for different cases of Injection Timing 

 

It was observed that for an advanced injection timing there is a downshift of the operation 

domain the load values corresponding the maximum load regime and maximum pressure 

regime decreasing and, for the case of late injection timing the boundaries of the operation 

domain shift up as shown in Figure 7.14. Figure 7.15 shows the variation of the indicated 

efficiency for the three cases considered. The indicated efficiency, as expected, increases for 

the case of the considered delayed start of injection and this due to a better positioning of the 

combustion process with respect to engine the cycle. The results obtained suggest that the 

engine operation domain can be expanded to a certain extent, by adopting the optimum 

injection strategy. For example when it is seek the maximum power operation, by adopting 

an advanced injection timing it will permit an expansion of the operation domain, evidently 

with a certain cost in efficiency. 
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7.1.3 INFLUENCE OF COMBUSTION DURATION 

In the FSLE analysis the combustion duration was considered as being constant, its value 

was considered based on the fact that a typical combustion duration in a diesel engine 

between 40-70 crank-angle degrees. Considering that the engine speed is 3000 rpm, this 

corresponds to a combustion duration with values between 2.2-3.8 ms. In the numerical 

simulation of the FSLE operating in direct injection mode the value adopted for combustion 

duration was 3.5 ms for a reciprocating frequency of 50 Hz. The fact that the combustion 

process was evaluated by using a double Wiebe function offered a great flexibility for the 

parametric study pursued, basically the rate of heat release can be shaped in various ways 

which permits a complex analysis. Investigations with regards to the importance of this 

parameter were conducted in the analysis of the TSLE [19], it was shown that a shorter 

combustion duration affects the in-cylinder pressure peak and the reciprocating frequency. In 

fact, the same effects are also expected for the case of the FSLE but the main goal is to 

determine in what way the operation domain is affected by the variation of this parameter. 

In previous section it was mentioned that the amount of fuel burned during the premixed 

stage of combustion was considered to be 20% from the total amount of fuel injected into the 

cylinder also the combustion duration associated to this stage was considered to be 1/6 of the 

total combustion duration. In order to see influence of combustion duration there were 

considered two cases: first case corresponds to a combustion duration of 2.5 ms and, the 

second case corresponds to longer combustion duration of 5 ms. In Figure 7.16 it is shown 

the in-cylinder pressure variation for the two limit cases of combustion duration. Figure 7.17 

shows the operation domain variation for different values of combustion duration. 
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Figure 7.16: In-Cylinder Pressure Variation for Different Values of Combustion 

Duration 
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Figure 7.17: FSLE Operation Domain Variation for Different Values of Combustion 

Duration 
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Figure 7.18: Indicated Efficiency and Reciprocating Frequency variation with 

Combustion Duration 

 

Figure 7.18 illustrates the variation of indicated efficiency and reciprocating frequency with 

the variation of the combustion duration for the operation boundaries. It can be observed that 

the higher reciprocating frequency increases for a shorter combustion duration and, the 

efficiency reaches a within the limit values considered for the combustion duration. In this 

case the variation of the indicated efficiency is the combined result of the variation 

compression ration, reciprocating frequency, and heat release rate and in this analysis it is 

necessary to distinguish which of the three mentioned parameters is dominant. The variation 

of compression ratio with combustion duration is illustrated in Figure 7.19. It can be 

observed that for a longer combustion duration the engine operates at higher compression 
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ratios, although the reciprocating frequency decreases. It is evident that for the case of a 

longer combustion duration the indicated efficiency has a lower value due to the heat 

transfer, although it operates at slightly higher compression ratios then for the case of a 

shorter combustion duration. 
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Figure 7.19: Compression Ratio and Reciprocating Frequency variation with 

Combustion Duration  

 

It also can be observed that for a shortest combustion period considered there is a decrease of 

the indicated efficiency in comparison to the value the baseline combustion duration, 3.5 ms. 

This is due mainly to the decrease of compression ratio which is result of positioning the 

combustion process with respect to the engine cycle, although the reciprocating frequency 

increased. It was mentioned that the reciprocating frequency has a direct effect on the 
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compression ratio. In this case, due to the fact that the combustion duration is short there is a 

higher rate of heat release rate than in the case with a longer combustion duration and 

therefore a higher pressure rise able to overcomes the inertial effects establishing the 

clearance volume which in fact defines the compression ratio. 

7.1.4 INFLUENCE OF LOAD VARIATION 

In the work done for the two-stroke linear engine prototype [19], it was shown that the 

variation in the shape of the load affects the operation of this type of engines based on the 

positioning of the load with respect to the engine stroke (Figures 3.6-3.8). However, in this 

dissertation the load introduced by the linear alternator was considered to have a sinusoidal 

shape, more precise the load was consider to be shaped as a third order sinusoidal. In this 

section, it will be presented different aspects observed on engine operation for load variation 

in shape and magnitude. So far, the analysis was performed mostly on the boundaries of the 

operation domain, it is interesting to observe the engine’s behavior inside the operation 

domain. The range of load variation corresponding limit of the operation, for a reciprocating 

mass of 3.5 kg and relative air to fuel ratio λ=2, was 110 N. It was decided to investigate the 

variation of engine performances, therefore they were considered another there values of the 

load within the operation domain besides those delimiting the operation domain. The result 

obtained shown that in general the variation of operation parameters, compression ratio, 

reciprocating frequency, indicated efficiency, and power output across the operation domain 

presented a monotonic variation. In order to perform the analysis across the operation domain 

it was defined a variable DeltaLoad as being the percentage of the applied load, as shown by 

the following equation: 
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[ ]%100Load Delta ⋅
−
−

=
MinLoadMaxLoad

ActLoadMaxLoad
 

where MaxLoad  represents the maximum applied load that the engine can overcome, 

 ActLoad represents the actual value of the load considered within the operation 

domain for a given value of relative air to fuel ratio, and 

 MinLoad represents the minimum applied load corresponding to the maximum in-

cylinder pressure, for the considered value of relative air to fuel ratio. 

Figure 7.20 illustrates the variation of the compression ratio and reciprocating frequency for 

different percents of the maximum load. Similarly, the variation of power output and the 

reciprocating frequency for different load percents is presented in Figure 7.21. An interesting 

aspect observed was that the piston velocity profile presents symmetric profile as the load 

varies within the operation domain, this aspect is illustrated in Figure 7.22. 

Another stage of this analysis with regards to the influence of the load on the engine 

operation is represented by the evaluation of the influences of the load shape on engine 

performances and operation 
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Figure 7.20: Compression Ratio and Indicated Efficiency Variation across the 

Operation Domain 

18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

0 10 20 30 40 50 60 70 80 90 100

Delta Load [%]

P
o

w
e

r 
O

u
tp

u
t 

[k
W

]

55

57

59

61

63

65

67

R
e
c
ip

ro
c
a
ti

n
g

 F
re

q
u

e
n

c
y
 [

H
z
]

Power

Frequency

 

Figure 7.21: Power Output and Reciprocating Frequency Variation across the 

Operation Domain 
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Figure 7.22: Velocity Profile Vs. Displacement for different values of the Load 
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Figure 7.23: Load Shapes considered in the Analysis 
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There were considered five cases for the load shape, each case representing a power (starting 

from second power to the sixth power) of a sinusoidal curve, with the remark that in each 

case the work was equal. As a reminder, the load introduced by the linear alternator was 

considered as being a function of displacement only and it has the form indicated in Equation 

7.5. 
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x
ALoad i
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π
sin  (7.5) 
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π
 

The results obtained show that the shape variation for load did not affect substantially the 

engine operation, the reciprocating frequency, the compression ratio, the power output, and 

the efficiency have a very small variations. Figure 7.24 and Figure 7.25 present these results. 
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Figure 7.24: Reciprocating Frequency and Compression Ratio variation for different 

shapes of the Load 
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Figure 7.25: Power Output and Indicated Efficiency for different shapes of the Load 

From the results obtained it can be concluded that the engine operation is not influenced 

substantially by a change in shape of the applied load for the case of a sinusoidal shape. 

Although from the previous analysis of the two-stroke prototype it was shown a relative 

influence of the shape of the load on engine operation, in this dissertation the considered 

cases for the load variation along the engine stroke are different. However, these particular 

load shapes analysed in this work have to be further considered due to the fact that they 

match much better the shape of the load introduced by the linear alternator. 
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7.1.5 INFLUENCE OF VOLUMETRIC EFFICIENCY 

Volumetric efficiency represents an important parameter in engine operation, this particular 

parameter is used to measure the effectiveness of the engine’s induction process. For a 

naturally aspired diesel engine this parameter varies between in the range of 80-95%, [20] In 

the numerical simulation the volumetric efficiency was assumed to be 95% which represent a 

high value, however this assumption is justified by the fact that there is a late intake valve 

closing which to a certain extent helps the cylinder filling process. In order to evaluate the 

effects of this important parameter on engine performances, the volumetric efficiency was 

varied for a range between 80% to 95%.  

10

12

14

16

18

20

22

75 77.5 80 82.5 85 87.5 90 92.5 95 97.5 100

Volumetric Efficiency [%]

P
o

w
e

r 
O

u
tp

u
t 

[k
W

]

Max. Load Limit

Min Load Limit

 

Figure 7.26: Power Output Vs. Volumetric Efficiency 
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It was observed that the boundary of the operation domain are strongly influenced by the 

variation of the volumetric efficiency. As expected, the results obtained shown that the power 

output increases with the volumetric efficiency as a result of a increase of the heat input for 

the engine cycle and, this variation accounted for the two limits of the engine operation is 

presented in Figure 7.26. 
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Figure 7.27: Indicated Efficiency Vs. Volumetric Efficiency 

 

In Figure 7.27 it is illustrated the variation of indicated efficiency for values considered for 

the volumetric efficiency. It can be observed that the indicated efficiency increases with the 

increase of volumetric efficiency and, this due the higher heat input for the engine cycle. 

It was observed that the reciprocating frequency had a relatively small variation with the 

variation of the volumetric efficiency, this aspect is presented in Figure 7.28. 
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Figure 7.28: Reciprocating Frequency variation with Volumetric Efficiency 

 

From the results obtained for the variation of the volumetric efficiency it can be concluded 

that this parameter, similarly with the reciprocating mass, has a major importance in 

establishing the engine operation domain. It is also necessary to mention that this parameter 

has a complex dependence on intake parameters, intake manifold and exhaust manifold 

design, intake valve and exhaust valve design, compression ratio and, engine speed, but this 

particular aspect was not considered in this dissertation. 
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7.2 ENGINE ANALYSIS OPERATING IN HCCI MODE 

The numerical simulation for the HCCI operation mode considered the same geometrical 

parameters with the case of direct injection compression ignition version of FSLE, these 

parameters being shown in Table 3-4. Before starting the analysis for this particular case 

considered, it is necessary to mention that HCCI operation has different features than the 

previously analyzed case. The expression for autoignition was tested into being incorporated 

and tested into a numerical model which had a combustion process representation typical for 

a diesel engine. The autoignition temperature was achieved for values around 1080-1130 K. 

A first set of runs of the numerical simulation for the HCCI operation mode was performed 

in order to establish the stability of engine operation. It was observed that the engine 

behavior was much different that that for the direct injection compression ignition case, and 

this due to its combustion characteristics. It was also observed that the reciprocating 

frequency for this engine has a value between 80 and 120 Hz. 

The engine operation was found to be very dependent on the value of the reciprocating mass 

and very sensitive to its variation and also to the variation of the input parameters such as, air 

to fuel ratio, and mixture intake temperature. The results obtained shown that once the 

autoignition conditions are reached the combustion occurs very fast and the in-cylinder 

pressure rise was not able to overcome the inertial effects, leading to a post compression of 

the cylinder content. These features of are presented in where it can be observed the post 

compression period immediately after combustion process. Evidently that this feature is 

undesired due to the fact that it contributes to the in cylinder pressure rise effects.  
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Figure 7.29: Typical Pressure variation profile obtained at FSLE operating as HCCI 
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Figure 7.30: LogP-Log Displacement diagram for a typical operation as HCCI of FSLE 
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A better illustration of this aspect of the in-cylinder pressure variation is shown in  The in-

cylinder pressure history is presented in Figure 7.31, it can be observed that once the 

combustion started the in-cylinder pressure occurs almost instantaneously. 
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Figure 7.31: In-Cylinder Pressure history for FSLE operating as HCCI 

 

Analyzing the figures, it can be observed that the combustion process ends before the piston 

reaches the clearance volume, and since the in-cylinder pressure rise is not able to overcame 

the, the piston continues its motion toward the reverse point causing an additional in-cylinder 

pressure rise. This undesired phenomenon can be avoided only if the autoignition occurs near 

the reversing point or the ideal case when the autoignition point coincides with the point of 

motion reverse. This suggests that ideal case for the engine operation, or the optimum 

operation regime is the case when it is used the cylinder gas bouncing effect before the 



117 

 

 

autoignition starts. It was observed that the combustion duration was much shorter than in the 

case of direct injection compression ignition operation, with typical values between 0.15 and 

0.25 ms for a reciprocating frequency of 80 Hz. These values are comparable with the values 

obtained for the ignition delay in direct injection compression ignition. In this numerical 

model, the combustion duration is in fact equal to the extent of reaction of the considered 

fuel, in this case C10H22. The frequency of operation for this engine much higher in 

comparison to that observed at the diesel operation case implying high piston speeds. The 

typical velocity profile for this type of operation has is illustrated in Figure 7.32. 
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Figure 7.32: Typical Velocity profile for HCCI operation of FSLE 

 

In Figure 7.32 the velocity profile for the HCCI operation was obtained considering the load 

introduced by the linear alternator as being constant along the engine stroke. It can be 

observed that for the HCCI the piston is subjected to a much higher acceleration values at the 
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end of the stroke than in the direct injection case.  

Based on the results obtained from the engine simulation it can be concluded that the main 

challenge of this engine is to determine the optimum operation regime. An important feature 

of this numerical simulation is represented by the autoignition process. This particular feature 

of the HCCI process represents a very powerful tool for the combustion process control and 

thus the engine operation. 
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CHAPTER 8 SUMMARY AND CONCLUSIONS 

The objective of this dissertation was to analyze a new engine with a mechanical 

configuration derived from free-piston engine, a four-stroke linear engine. The engine design 

was based on a general analysis of engine operation in two distinct modes, first as a direct 

injection compression ignition engine and, second as homogeneous charge compression 

ignition engine. Two time-based phenomenological models were developed and used for the 

numerical simulation of the four stroke linear engine, first used for the representation of the 

direct injection compression ignition operation and, the second for the representation of the 

HCCI operation. The engine analysis was performed based on the results obtained from 

running the numerical simulation models for each of the two operating mode previously 

mentioned. In the case of direct injection compression ignition it was shown the engine 

operation domain although limited, the engine operation was stable over a large value range 

of the relative air to fuel ratio offering high values for the indicated efficiency (over 45%) 

and a variable compression ratio which gives the engine a multi-fuel capability. It was also 

shown that the compression ratio for each operation regime is a result of the engine operation 

parameters. The engine analysis considered the effect of reciprocating mass, injection timing, 

combustion duration, volumetric efficiency and shape of the externally applied load. It was 

shown that the reciprocating mass has a dominant role in the engine operation in establishing 

of the operation domain. 

The engine operation in the HCCI mode was more difficult to control than the case of direct 

injection, due to the character of its combustion process. The main challenge of this operation 

case was the determination of the optimum operation point considered to be the same with 
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the point of piston reverse. The mixture intake temperature was observed to be critical for the 

control of the engine operation. It was also shown that HCCI operation although more 

sensitive to the input parameters than the direct injection compression ignition, has certain 

advantages over the direct injection operation, such as higher efficiency and higher power 

output for the same heat input. 

From both considered operation cases it can be concluded that it is very advantageous to 

minimize the reciprocating mass due to an increase of engine performances and a better 

operation control. 
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8.1 RECOMMENDATIONS FOR FUTURE WORK 

The development of this new generation of internal combustion engines will be facilitated by 

the analysis presented in this work. The numerical model for the HCCI of diesel fuel 

presented for the designed engine was considered to be satisfactory for the purpose of this 

dissertation but, a more accurate analysis requires the use of a detailed chemical kinetics 

model in order to be able to put in evidence particular aspects of this complex combustion 

process, such as the autoignition process or emissions prediction. Also for the future research 

should consider the results from the experimental work, recently restarted for the two-stroke 

direct injection compression ignition prototype, at Engine and Emissions Research Center of 

WVU. This engine could also be arranged to operate as a HCCI engine. The results obtained 

from the numerical simulation developed in this dissertation will be taken into consideration 

for the engine control unit, undergoing development for the two-stroke direct injection 

prototype. It was shown that the linear alternator operation range should be matched to the 

engine operation in order to be able to meet the engine operation requirements, therefore the 

design of the linear alternator should consider a larger range of operation than that of the 

linear engine. 
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