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March 28. 1988 Conceptual Bases of Errors

In the past few years, there have been several demonstrations of the phenomenon

of systematic but incorrect rules accounting for errors in performance. In the domain of

mathematics, the best developed work is on 'buggy algorithms in subtraction (Brown &

Burton, 1978; Brown & VanLehn, 1982). Brown and VanLehn's theory of the origin of

these algorithms suggests that they come from attempts to repair a procedure by

relaxing certain constraints. The repair process operates on a representation of

subtraction in terms of symbol manipulation, without reference to quantities and their

relationships (Resnick, 1982; Resnick & Omanson, 1987). The theory thus suggests that

children construct erroneous rules without reference to the conceptual content or the

meaning of arithmetic. Similar accounts of systematic errors in terms of strictly

symbolic interpretations have been given for decimal fractions (Hiebert & Wearne, 1985)

and for elementary algebra (Matz, 1982; Sleeman, 1982). The work of Siegler and Vago

(1978) demonstrating that a changing rule structure provides the basis for children's

interpretation of ratios and proportions is somewhat more conceptual in content than the

work on buggy algorithms. However, Siegler's work has typically examined only the

content of the rules themselves. It has not attempted to situate the rules in a more

general knowledge system or to ask about the origin of the rules.

In the present work we look at what might be termed a conceptual analog of buggy

algorithms and rule-based mathematical development. We investigate whether children's

efforts to make conceptual sense of new mathematics instruction in terms of their

already available knowledge may sometimes lead them to make systematic errors. In

particular, we explore the possibility that children over-generalize concepts from a

familiar domain of mathematics in order to interpret a new domain.

Our question requires that we sclect a topic in mathematics learning in which

-1 -4



March 28, 1988 Conceptual Bases of Errors

children commonly invent incorrect rules in the course of learning, and then seek to

specify the conceptual sources of these incorrect rules The topic should be one in which

there is some conflict between earlier learned concepts and the new concepts to be

acquired, so that already familiar ideas may interfere with learning the new ones. The

topic of decimal fractions meets these criteria and also offers an opportunity to examine

the possibility that different ordering of topics in the school curriculum may

differentially affect the kinds of errorful rules that children construct. This is possible

because in some countries decimal fractions appear In the curriculum well before

ordinary fractions are introduced, while in others ordinary fraction instruction precedes

decimal instruction by a year or two.

Using a task In which a child is asked to order decimal fraction numbers, Sackur-

Grisvard and Leonard (1985) found that In fourth and fifth grade French classes about

half of the children tested used a systematic but incorrect rule to decide which number is

greater. There were three different incorrect rules, each used when the numbers to be

ordered had the same whole number digit (e.g., 3.214 and 3.8).

According to Sackur-Grisvard and Leonard's Rule 1, the number with more

decimal places is the larger one; for example, 3.214 is greater than 3.8 because 3.214 has

more digits in the decimal part And because 214 as a whole number Is larger than 8.

Sackur-Grisvard and Leonard suggest that classroom instruction may support Rule 1 by

giving students practice mainly in comparing decimals with the same number of digits, In

which case treating decimals as whole numbers always works. Sackur-Grisvard and

Leonard found that Rule 1 was common; it was used by 4096 of their fourth graders and

by about 250 of their fifth graders.

Sackur-Grisvard and Leonard's Rule 2 specifies that the number with fewer
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decimal places is the larger. Thus, given the pair 1.35 am' 1.2, Rule 2 chooses 1.2 as

greater. Rule 2 was the least common in their sample, occurring In less than 6% of their

cases. Grossman (1983), however, has suggested that a similar rule (choosing the longest

decimal number as the smallest) was commonly applied by large numbers of entering

U.S. college students.

Sackur-Grisvard and Leonard's Rule 3 gives a correct Judgment when one or more

zeroes are immediately to the rigtit of the decimal point in one of the num?. ers, and

otherwise chooses as larger the number with the most digits to the right of the decimal

point. Thus, given three numbers to order (e.g., 3.214, 3.09, 3.8), Rule 3 correctly

chooses the number with the zero as the smallest, but then uses Rule 1 to order the

remaining pair: i.e., 3.09, 3.8, 3.214. Rule 3 was used by about 8% of Sackur-Grisvard

and Leonard's fourth graders and by 14% of their fifth graders.

We designed this study to examine the sources of these consistent categories of

errors in more detail and more directly than has been done previously. Generally, we

were interested in the ways in which children use preexisting knowledge in constructing a

mental representation of a new domain of knowledge. Our working hypothesis was that

children's errors may derive from their efforts to apply previously learned concepts or

notational conventions to a new domain. A child who has just been exposed to

instruction on decimals must build a representation of decimal numbers and relate

decimals to other well or partially acquired number systemsnotably whole numbers (for

all children) and ordinary fractions (for children in countries where ordinary fractions are

taught earlier than decimal fractions)as well as to certain conceptions of measurement

(cf. Kieren, 197s). Prior knowledge of whole numbers and fractions can both support

and interfere with construction of a correct concept of decimals. Table 1 lists elements of
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knowledge needed for a full decimal fraction concept (column 1) and indicates

corresponding elements of whole number knowledge (column 2). For each pair of

knowledge elements, column 3 shows whether the elements support or contradict each

other.

Table 1 consists of three sections. The first (A) refers to basic conceptual elements

of knowledge about column values. The last two (B and C) refer to knowledge of

notational and naming conventions that may interact with conceptual knowledge to

produce incorrect rules. As can be seen in the table, there are some similarities and

some dissimilarities between whole numbers and decimals. The fact that the new

decimal concepts are embedded in a structure that shares key features of place value

with whole numbers may suggest to children that the new system is identical to the old

one and lead them to ignore the differences between the two. This might even be

heightened by teachers' attempts to help children use their prior knowledge of whole

numbers to facilitate learning the new decimal system.

Table 1 about here
.111440.11

Section A of the table shows that with respect to basic principles of column values

the structures of decimals and whole numbers are in accord. Each column is ten times

larger in value than the column to its right (Al and A2). Decimals and whole numbers

are also conceptually similar in the way zero functions as a place holder (A3). These

conceptual similarities, which are likely to be stressed in instruction, lead to a prediction

that children first learning about decimal fractions might attempt to use their knowledge

of whole number values in comparing decimal fractions. This would produce Sackur-

Grisvard and Leonard's Rule 1 (the longer decimal is larger), which we will henceforth

- 4 - 7
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call the Whole Number rule.

Fully integrated knowledge of the place value structure would lead children to

recognize that, while the decimal point marks A transition from units to fractions, the

basic relationship between columns is not changed. Other features of the decimal

system, however, might lead children to interpret the decimal point as a fundamental

breaking point in the digit string. For example, the structure of column names

(Section B of the table) encourages the interpretation of decimal fractions as near mirror

images of whole numbers. Only a difficult-to-hear <th> distinguishes the names (81),1

and if that distinction is ignored it appears that the same sequence of column names

moves to the right after the decimal point, to the left before it (B3). Indeed, with respect

to column values, the values do decrease as one moves right from the decimal point (AS),

while they increase as one moves left from the point. Furthermore, a zero at the extreme

right on the fraction side of the point leaves the number's value unchanged, while a zero

at the extreme left on the whole number side leaves the value unchanged (A4). A

further complication is that nothing corresponds to the units column on the fraction side

(B2). Failure to learn and apply these differences between whole numbers and decimals

could lead to errors such as calling the tenths column a oneths column or not recognizing

that decimal numbers are actually symmetrical around the units column rather than

around the decimal point. The symmetry around the decimal point and the difficulty of

distinguishing the whole number and fractional names can be expected to heighten

children's tendency to apply a Whole Number rule. The highlighting of the decimal point

'Children who spoke two languages other than English were included in the present study. In French.
the difference between <dizalnes> and <dlxiemes>. <centaines> and <centlemes> is easier to
discriminate in writing, but many children confound the terms orally. In Hebrew. the terms <asarot>
and <asiriot >. <maot> and <malot> are easier to discriminate than the corresponding English terms.
yet similar enough to cause difficulty for children.
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by symmetry would make them recognize that things change after the point, while the

name similarity could lead them to believe that, for example, tenths are smaller than

hundredths, thus reinforcing the whole number Judgments of relative size.

A final difficulty arises in composing a string of digits into a single decimal

quantity (Section C of Table 1). In the whole number domain, one always reads a

number as a set of units or ones. For example, the number 2,674 is read as 'two

thousand six hundred seventy- four,' with the understanding that the reference Is to that

many ones. In decimals, there is no constant unit corresponding to ones. This

complicates the task of composing a string of digits into a single decimal number. One

strategy for thinking about a decimal as a single quantity is to use the smallest unit of

division as the common unit (e.g., thousandths in .374) and to name the number in terms

of that unit (e.g., 374 thousandths). One problem with this strategy is that the naming

process can further confuse a student about individual column value. For example,

saying 'three hundred seventy-four thousandths' might suggest to children that there

are three hundreds in the number and lead them to think about it as a whole number.

And, as we shall see later, naming decimals in this way often makes it harder to compare

different length decimals. Decimals can be more powerfully thought about as

compositions of tenths, hundredths, and so forth; (e.g., 3 tenths plus 7 hundredths plus 4

thousandths). However, with this conception there is no convenient, single label for the

number. An important element of knowledge needed for understanding decimals as

compositions is the equivalences: 1 tenth equals 10 hundredths, which equals 100

thousandths; 1 hundredth equals 10 thousandths. Because of the conflicting naming

sequence for whole numbers (1 ten does not equal 10 hundreds), children are likely to be

confused for some time about such equivalences in the decimal fraction domain. As a

- e- 9
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result they will invent rules for comparing values that do not depend upon knowledge of

these equivalences.

Table 2 specifies the potential connection points between decimal and ordinary

fractions. As shown in Section A, the quantity values, to which both decimal and

ordinary fractions refer, correspond completely. However, important differences in the

notational systems could cause confusion (Section B). In ordinary fractions, digits show

both the size of the parts and the number_ of parts; but in decimal fractions, digits show

only the number of parts, while the size of the parts are implicit in the column values

(131 and B2). We can predict that some children who have learned ordinary fraction

notation before decimal fractions might attempt to apply their conceptual knowledge

about the relation between size of parts and number of parts (A2) to an incomplete

understanding of the referents of decimal notation. For example, if they know that

thousandths are smaller parts than hundredths, and that three digit decimals are read as

thousandths while two digit decimals are read as hundredths, they !night well infer that

longer decimals, because they refer to smaller parts, must have lower values. This kind

of reasoning would produce Sackur-Grisvard and Leonard's Rule 2 for comparing

decimals, which we henceforth call the Fraction rule. We expect use of the Fraction rule

to be higher in countries such as Israel and the United States, where fractions are taught

before decimals, than in France and other countries where decimals are taught before

fractions. In the U.S. and Israel we would expect children who are generally more

advanced and whose fraction knowledge is stronger to show more Fraction rule use.

Table 2 about here
1.1

Sackur-Grisvard and Leonard's Rule 3 is a special case of the Whole Number rule

- 7 - 1 0
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for numbers with a zero immediately following the decimal point. We believe that this

special case rule might be generated by children who become aware of the placeholder

function of zero but do not have a fully developed place value structure. As a result they

apply their knowledge that zero is very small (i.e.. 'nothing') to conclude that the entire

decimal number must be small. For mnemonic ease we will henceforth call this rule the

Zero rule. We would expect this rule to appear mostly among children who are

advancing beyond the Whole Number rule but are not yet expert. It should be especially

frequent among the French children in our study, who, because of the way their

curriculum is organized, do not have knowledge about ordinary fractions to draw upon

as they advance.

In this study, we began by diagnosing children's rules for comparing decimal

fractions. We predicted substantial use of the Whole Number rule in all three countries,

because all children are familiar with whole numbers when they begin to learn decimals.

The Zero rule was expected to replace the Whole Number rule among some more

advanced children, especially in France where little ordinary fraction knowledge was

available for refining decimal concepts. In Israel and the U.S., we expected heavier use of

the Fraction rule, especially among more advanced children and those whose ordinary

fraction knowledge Is strong. Once children were categorized with respect to rule use,

we employed various test and interview items to establish possible sources of these rules.

Method

Subjects

A total of 113 children in the early phases of school instruction on decimals

participated In the study. The children's grade levels ranged from fourth to sixth grade.

Each sample included children of varying ability levels. The American sample was from

8 -11
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the fifth grade in a single school (a middle class, parochial school) with N=17. All

children in the class were interviewed by authors of this paper. The Israeli sample was

from grade 6 with N=21. The participating children were nominated by their teachers

as 'average' math students, and all were interviewed by authors of this paper. The

French samples were from grades Tour with N=37 and five with N--.38. French

children, nominated as participants by their teachers following a request for averages

math students, were drawn from several different schools in the region around Nice. The

interviewers were 15 psychology students who earned academic credit for this work but

did not participate in the questionnaire design or data analysis. They followed the

questionnaire,more strictly than the Israeli and American interviewers, therefore, and did

little probing. As will be seen, this had some effect on the nature of the data from the

French samples.

In both Israel and the U.S., ordinary fractions are introduced at least one year

earlier than decimals. Interviews were conducted within three months of completion of a

decimal fraction instructional unit; thus, all Israeli and American children had had prior

exposure to both ordinary fraction notation and the meaning of decimal fractions. In

France, decimal fractions are taught in CM-1 (equivalent to 4th grade), but ordinary

fractions are not introduced until CM-2 (equivalent to 5th grade). All French children

were interviewed after decimal fraction instruction but before the introduction of

ordinary fractions.

Procedure and Materials

Each child was interviewed individually in a semi-structured format. Israeli and

U.S. interviewers engaged in some probing for justification or clarification of the child's

answers. Each interview was audiotaped, and detailed protocols were obtained from the
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tapes and from the 6.11u s written work. Fach Interviewer followed a written interview

form which varied slightly from country to country but included the same basic content.

We describe the American version of the interview here and mention relevant variations

in the Israeli and French interviews in the course of reporting data.

Establishing presence of the rules. Our primary task for identifying the children's

underlying rules was comparison of two decimal fractions. Let us consider the universe of

such comparisons and their possible answers. Given two decimal fractions, A and B, of

the form
A=0.a1.a 2...an
B=0.b b1" 2b

k

A and B can differ in two ways. They might have different lengths, i.e., n>k, n=k, or

n<k. Within each column, they also might differ in the actual digit, e.g., ai>bi,

a1 =b1, al <'b1. Table 3 summarizes the inferences about rules that can be made based

on children's judgments for prototype cases in which n=1, k=2, and there is no zero

immediately after the decimal point. As can be seen, if the child chooses A in the first

case (i.e., when A is in fact larger but shorter), we cannot know with certainty whether

he or she was correct or was applying the Fraction rule. Similarly, a choice of B in the

second case may amply use of either the correct rule or the Whole Number rule. Thus,

only if the child chooses B in the first case or A in the second can a firm attribution of

rules be mad Oils provides the basic logic for interpreting comparison item responses

is our interviews; however, the attribution cannot be mane on the basis of a single item.

If a child is a candidate for holding a Fraction rule, she or he will reply A in both cases

and will he right on the first item (0.8; 0.64) but wrong on the second one (0.2; 0.64).

Thus. we attribute a rule to a child on the basis of a series of responses, some of which

are correct arrd come incorrect.

F3
- 10 -
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Table 3 about here
OrnMIMMIIIMMMI

When zeroes occupy the first column after the decimal point (i.e., if al = 0 or b1

= 0), the Zero rule may be employed. As Sackur-Grisvard and Leonard have shown, this

is a specialized version of the Whole Number rule; it specifies that a number with a zero

in the first column is smaller than a number with a non-zero digit in that column. The

attribution of the Zero rule to a child is made on the basis of a pattern of answers in

which the Whole Number rule fits for all cases except for those having zero in the tenths

position.

Table 4 shows the comparison items used to detect the rules by extracting the

patterns of answers. For each pair of fractions, the child was to indicate the larger

number. For ease of interpretation, the table always shows A as the correct answer;

although in the actual interview, the position of the correct answer was randomized. A

systematic Whole Number rule child would choose the B fraction in the first two sets of

items but answer the third sets correctly. A Zero rule child would answer the first set

with a Whole Number pattern (B answers) but would answer the second and the third

sets correctly (A answers). A Fraction rule child would give correct (A) answers for the

first two sets but would give incorrect (B) answers in the third set.

Table 4 about here

Two additional tasks were used to confirm our classification of children to rule-use

groups. In the Hidden Numbers Comparison task, two numbers were presented with the

actual digits covered, but the number of digits and their relation to the decimal point

visible. For example, the child was asked, "Which is larger 0. or 0. ?" In each

1 4
- it -
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case, the correct answer is that one cannot tel! For these items, Whole Number rule

children would select the number with more decimal places, and Fraction rule children

would select the number with fewer decimal places. The Zero rule could only be

detected if children said specifically that they could not tell which number was larger

because they did not know whether or not there was a zero immediately after the

decimal point.

A Zero Insertion task also served to confirm Whole Number and Fraction rule

classifications. In this task, we asked subjects to tell us whether and how the value of

2.35 changed when a zero was inserted in four different places to produce 2.305, 02.35,

2.035, and 2.350.

Once children's rules were established, we used a series of other itemsalong with

children's verbalizations on all of the tasksto try to uncover childr7n's con vual

frame orks, with particular attention to whether they were thinking of decimals in

whole number or ordinary fraction terms. These data were used to infer probable sources

of the rules. In one set of items, children were asked the values of digits in different

positions in written numbers (e.g., the value of the 5 in 1.54 and 2.45). In a second set,

the Interviewer read aloud numbers by column name (e.g., "six tenths and two

hundredths") and asked the child to write the numbers in decimal notation. A third set

of items had children compare two ordinary fractions. Finally, in a fourth set of items,

children %%rote numbers in decimal form that they were shown in ordinary fraction

notation.

Results

1 ,,,.;
- 12 -11- u
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Use of the Rules

Table 5 presents response patterns for the basic rule detection items for the U.S.,

Israeli, and French samples. Individual children are listed at the top of each section of

the table. and items (which vary slightly from sample to sample) are listed vertically at

the left. Each child's response to each item is shown; a blank space indicates no response

or an uncodable response. For purposes of discussion the tables show subjects grouped

according to their dominant pattern of response. For the most part, children assigned to

the three incorrect rule categories gave responses perfectly consistent with the expected

rules. A few children who do not appear consistent on the table (e.g., Israeli subjects 4,

16, 6, 17; French fourth grade subject 9) verbally explained their choices by directly

describing the rule into which they are ciassified. Furthermore, inconsistent responses

usually came on specific items that permitted a different judgment strategy than the

standard one used by the child. For example, in comparing 0.5 with 0.36, some children

recognized that 0.5 was a half and used it as a reference point, saying that .36 was less

than half. In comparing 0.25 with 0.100, oue child said the two zeroes at the right of

0.100 do not make a difference; therefore, 25 is greater than 1. The other exceptions

occurred mainly on items where one of the numbers was an ordinary fraction 4 the

other a decimal fraction. Errors in conversion between the notation systems probably

accounted for these responses.

Table 5 about here
411111.11..........1....

Table 6 shows the distribution of rules in the various samples. The general pattern

of this distribution for French children is similar to the earlier Sackur-Grisvard and

Leonard findings. As expected, there was a low incidence of the Fraction rule overall
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and a shift from the Whole Number rule toward the Zero rule between 4th and 5th

grades. Also as expected, the Israeli and U.S. children show a higher incidence of the

Fraction rule, with the Israeli children, who were sixth graders, showing an especially

high use of the rule. The absence of Zero rule cases among U.S. children should be noted,

although we are not able to offer an explanation.

Table 6 about here

Responses on the Hidden Number Comparison task can be used to confirm the

classificati , of children. The relevant data for the combined Israeli and U.S. samples

appear in Table 7, which shows frequencies of children in each rule use category who

gave each answer.2 Clearly, responsel Are largely consistent with the child's rule

classification. As stated earlier, Whole Number rule children were expected to choose

the longer string as the larger value, and Fraction rule children were expected to choose

the shorter string. The "I don't know answer is correct, but the same answer might be

given by children who did not have any idea how to respond. We, therefore, do not

consider the 1 don't know' responses diagnostic of rule use.M 111111
Table 7 about here

An additional item that confirmed our classification of children according to the

rules was the Zero Insertion task, which called for comparing the number 2.35 with

2.305, 2.035, 2.350, and 02.35. Virtually all children in all rule categories knew that

Inserting a zero before the 2 or after the 5 did not change the value. However,

comparisons of 2.35 with 2.305 and 2.035 discriminated among the rule use categories.

2These items were administered to the French sample in a way that did not permit discrimination of
the malrule, and those results are, therefore, omitted.

1 7- 14- -
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Table 8 shows data on these items for the U.S. and Israeli samples combined.3 As can be

seen, Whole Number rule children almost always chose the longer numbers (i.e., 2.305,

2.035) as the larger. This is the expected Whole Number response. A few Whole Number

children Judged 2.035 to be equal to 2.35. This is consistent with a Whole Number

Judgment based on the integers' value rather than on the number of digits (i.e.,

035=35). All but one Fraction rule child chose 2.35 as having the larger value, as would

be expected. Since these are also correct answers, however, this pattern can be

considered only weak support for the Fraction rule classification.

Table 8 about here

Conceptual Bases Underlying the Rules

We turn now to the cognitive sources of the errorful rules. We have two kinds of

data to draw on in making our inferences: the children's verbalizations as they worked

on the comparison tasks, and the patterns of answers for the items that more directly

examined place value and fractional knowledge. We will consider these for the Whole

Number and the Fraction rules in succession.

Whole Number Rule. We had hypothesized that the Whole Number rule results

from children's attempts to apply their knowledge about whole numbers to the new kind

of numbers they are learning without integrating information about the fractional values.

This was confirmed by typical verbalizations of the Whole Number children as they

responded to comparison items. For example, here are explanations by two Israeli
...

children:

S 4: 0.5 < 0.25, because 25 is bigger."
4.7 < 4.08, 'because the zero does not matter and 8 is bigger than 7.

3
The French formulation of this question did not yield comparable data.
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S 16: 4.8 < 4.63, 'since 63 is bigger than 8.

When comparing 2.35 with 2.305 and 2.035, Whole Number children often referred to a

numbers decimal portion as a whole number, saying that 'three hundred and five or

"three hundred fifty" was bigger than thirty five.

Whole Number children also showed confusion about zero's placeholder function.

One child, for example, equated 2.35 and 2.035, because the zero is 'just a place marker

and that would still be thirty five. This generally fragile understanding of the place

value system is further confirmed by items assessing explicit place value knowledge. Most

Whole Number and Zero rule children could not correctly give the value of the 5s in 1.54

and 2.45 as tenths and hundredths respectively. Some examples from the protocols give

a flavor of the difficulty Whole Number children had in labeling the columns in decimal

numbers. Four of the U.S. children said that the 5 in 2.45 was 5 ones, suggesting that

they were thinking of .45 as the whole number 45. (Some subsequently changed their

answers and were given credit for a correct response on the table.) Subject 13 said that

the 5 in 2.45 was 5 tens, but then changed her mind, saying the 5 in 1.54 stood for 5

tens. She did not identify the 5 in 2.45 again, but may have been thinking it was in the

ones column, because in her explanation of why 5 tenths was greater than 5 hundredths

she said, "You add 10 more from the ones row to get to the second, to get to the tens

row. Responses of this kind dominated among the Whole Number and Zero rule

children. The Fraction rule children and experts were mostly able to answer these

questions correctly.

Other items examined children's ability to write decimals from an oral reading.

Whole Number and Zero rule children had difficulty in writing '6 tenths and 2

hundredths" or "3 ones and 6 hundredths correctly, while Fractions rule children, like
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the experts, mostly gave correct responses. Whole Number children reversed the order

of the digits 6 (tenths) and 2 (hundredths), writing 0.026 or 2.6, which would be the

correct ordering if the number were 8 tens and 2 hundreds. Other errors, too, suggest

that Whole Number children were thinking of decimals as whole numbers. For example,

for 3 hundredths, one subject wrote .300. Another subject, when she heard the

interviewer say 6 tenths and 2 hundredths,' asked, You mean 60 and 2 hundredths?'

After the interviewer repeated the number, she wrote 2.80. Interpreting 6 tenths as 60

suggests that she was thinking of 6 tens rather than 6 tenths.

Fraction Rule. We hypothesized that the Fraction rule results from children's

efforts to integrate knowledge about fractional parts and ordinary fraction notation with

their place value knowledge. In particular we expected them to know that if a number is

divided into more parts, the parts are smaller. We expected, however, that Fraction rule

children might have some difficulty figuring out whether the digits stated explicitly in

the decimal form correspond to the numerator or the denominator of an ordinary

fraction (i.e., to the number of parts or to the size of the parts).

Several aspects of the data confirm these expectations. First, a few Fraction rule

children directly stated their bases for comparing decimals. Here is a typical explanation

from an Israeli subject:

S 20: 4.7 > 4.08, 'since tills has 8 hundredths and this has 7 tenths.
7.457 > 4.4502, because this is hundredths and this is ten-

thousandths.

Interviewer: So what?

S 20: 'Hundredths are bigger than ten thousandths.'

To further understand how fraction knowledge might affect decimal understanding,

we searched the protocols of Fraction rule subjects for overt evidence that they were

applying their fraction knowledge to decimals. We found two such instances. Both were

-17
-20
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cases where fraction reasoning produced correct judgments. U.S. Subject 5, comparing

4/100 and 0.038, said that 4/100 was bigger because, One hundred is smaller than one

thousand in the decimals. Smaller numbers make the larger pieces. U.S. subject 11's

expiasation, although less clear, also seemed to use fraction knowledge to guide correct

decimal comparisons. When ordering ten numbers, she said that 1.4 is larger than 1.067,

because 1 and 4 tenths is more of a part than 1 and 67 thousandths . . . . Four tenths is

like more of a part . . . . It's like 5 tenths is a part, so you almost have a part. But on

this 11.0671 you don't even have a part.

In addition, Fraction rule children showed rather good knowledge of place value, as

already discussed. Some of their explanations on the zero insertion task (2.35 compared

with 2.035 and 2.305) confirmed this. Of the Fraction rule children, U.S. subject 5 was

the most vocal. She said that 2.35 is greater than 2.305, because the 0 would take

hundredths place, and 5 would get pushed down to thousandths.° This child gave a

similar justification for choosing 2.35 as greater than 2.035, saying, Zero takes the tens

place, and 3 and 5 get pushed down. More generally she explained that zero makes a

difference in the middle of a number but not at the beginning or at the end, where it is

just a placeholder. Subject 5 thus limited the placeholder language to the beginning

and end of the numbers, but applied the placeholder concept to all positions. U.S.

subject 7 gave no justifications for his individual comparisons but did give a childlike

version of the full placeholder theory. He said that zero matters in between other

numbers because it shows that, Nothing is home in the middle space. (His teacher had

used a similar formulation.)

Table 9 shows the frequency for U.S. and Israeli children of responses on items

comparing 1/333 with 1/334 and 1/3 with 1/4. These items test children's knowledge of

- 18 -
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a feature of ordinary fraction notation that is frequently confusing to beginners: as the

digit in the denominator grows. the size of the unit fraction shrinks. As can be seen,

Whole Number rule children had great difficulty while Fraction rule children succeeded

to a larger extent (although not perfectly). In particular, Whole Number children judged

as greater fractions in which the number in the denominator is larger. These items were

not scored for the French sample because the children had not yet encountered ordinary

fractions in their school instruction. Many French children simply refused to respond;

others treated the slash in the fraction as equivalent to a decimal point (e.g., 3/10 =
3.10). The French children did know, however, certain common benchmark fractions

and their decimal equivalents (e.g., .5 = 1/2).

Table 9 about here

Table 10 shows results on the items requiring children to translate common

fractions with denominators other than 10 or 100 (i.e., 3/4, 1/5, 3/2, 2/3) into decimals.4

None of the children could do this reliably, but their attempts to do so revealed their

ideas about how numerators and denominators of regular fractions correspond to decimal

notation. There were three main categories of incorrect translation:

1. Encode only the numerator in the decimal, and Ignore the denominator. For

example, 3/4 becomes .3 or .003, 3/100 becomes .3. This translation reveals

knowledge of the correspondence between the written digits in ordinary and

decimal fractions (element B1 in Table 2). It fails, however, to find a

correspondence between the notation of the denominator in ordinary

fractions and the place value system of decimal fractions (element B2 in

Table 2).

4
These Items were not included In the Israeli interview and were not Interpretable In the French sample

because of the French chlidren's limited prior exposure to ordinary fraction notation.

?2- 19 -
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2. Encode only the denominator in the decimal, and ignore the numerator. For

example, 1/3 becomes .3, 3/4 becomes .04 or .4. This translation recognizes

that only one part of the fraction actually is shown in the decimal notation,

but it mistakes the part. It is a less advanced response than the r.umerator-

only encoding.

3. Keep both the numerator and the denominator of the fraction, and put a

decimal in someplace. For example, 3/4 becomes 3.4 or .34. These are

'syntactic' translations. They produce a number that has the surface

structure of a decimal but has no sensible relation to the quantity expressed

in the fraction.

As shown in the table, Fraction rule subjects made entirely numerator-only errors

ones in which they encoded the fraction's numerator in the decimal notation. Only one

Whole Number rule subject "ver made this type of error; instead, Whole Number rule

subjects made mostly syntactic errors or encoded only the denominator.

Table 10 about here

Discussion

The study clearly replicates the earlier findings of Sackur- Grlsvard and Leonard

concerning the rules for comparing decimal fractions but goes beyond their study in two

respects. First, it tries to understand the rationale behind the rules in terms of the

children's entire conceptual framework. Second, it tries to find the relative place of these

rules in decimal knowledge development. The Whole Number rule occurs frequently and

early in learning. The Zero rule appears as a variant mostly among the older French

children and the sixth grade Israelis. The Fraction rule occurs mostly in the Israeli and

the U.S. samples. It is strongest among the Israelis, who were older than the U.S.

children. This trend toward an increase in the Fraction rule as children progress in

20 - ir../.3
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learning has been replicated subsequent to our study by Bilha Zuker from Israel, who in

her M.A. thesis looked for developmental trends for these rules (Zuker, 1985). Zuker

tested 74 seventh graders, 106 eighth graders. and 60 ninth graders. She found that the

Whole Number rule declined from 18% in the 7th grade to 5% in the 9th grade, while

the Fraction rule was more persistent and appeared in 23% of the sample in 7th and 9th

grades.

The present data also demonstrate substantial internal consistency in rule

application. Overall, 88% of children could be classified as consistently using one of the

three rules under study. In this respect, each individual's buggy performances in this

task are much more systematic than they are in domains such as algebra, where an

individual typically alternates between two or more incorrect transformation rules, and

perhaps a correct one as well, within a single problem solving session (Carry, Lewis, &

Bernard, 1980; Greeno et al., 1985). There may be even more consistency in the decimal

domain than in buggy subtraction, where recent work has demonstrated considerable

'migration" of bugs, leading to a revision of the view that buggy performances are

normally very stable (VanLehn, 1982).

There seem to be fundamental differences in the kinds of conceptual understanding

that produce the Whole Number rule and the Fraction rule. Whole Number rule

children appPar to have a very impoverished representation of decimal numbers.

Apparently their representation of the place value system does not contain the

integration of the crucial information of column values, column names, and the role of

zero as a placeholder. In terms of the knowledge elements shown in Table 1, these

children do not seem to think about the column values of the number's decimal portion

at all; rather, they simply "Import from whole numbers a comparison rule that may not

- 21 - 4 4
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itself even require that all of the elements shown in section A for whole numbers be

represented fully. Their responses to column value comparisons and decimal writing

tasks clearly reveal their weak or nonexistent coding of column values and their

borrowing of whole number column names to apply to decimal fractions (Section B of

Table 1). They also quite clearly do not have a complete representation of how zero

works as a placeholder (element A3). Even more important, Whole Number rule

children show no signs of recognizing that the number's decimal portion represents a

fractional part of a whole, and so none of the knowledge elements in Table 2 is invoked.

Their failure to represent the decimal portion of the number as a fraction means that

nothing in these children's representations constrains their use of the Whole Number rule

to compare decimal fractions.

Fraction rule children are most sharply distinguished from Whole Number rule

children by their usealbeit incompletely coordinatedof elements of fractional

knowledge. In particular, Fraction rule children appear to know and apply the principle

(congruent for decimal and ordinary fractionsscn element A2 of Table 2) that the more

parts a whole is divided into, the smaller each part is. They also know that the number

of places in a decimal fraction tells the size of the parts (element B1 of Table 2)

specifically, that if there is one place after the decimal, the parts are tenths; if there are

two places, the parts are hundredths; if there are three places, the parts are thousandths.

However, these children could not coordinate information about the size of parts

(element B1) with information about the number of parts (element B2). Thus, when

attending to size of parts (specified by the number of columns), they ignored the number

of parts (specified by the digits).

To achieve the necessary coordination requires a rather sophisticated

- 22
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representation of place value notation. The glo'dal understanding of place value that

Fraction rule children seem to apply specifies only that one place signals tenths, two

places hundredths, and so on. However, with this representation of place value alone, it

is not possible to compare decimals that have different numbers of places. To deal with

this problem, the representation of place value would have to change to a form that

reflects the additive structure of decimal numbers. Tnis representation specifies that if

there are two places after the decimal point, the parts are tenths plus hundredths; if

there are three places, the parts are tenths plus hundredths plus thousandths.

Furthermore it specifies that the digit in each place tells how many parts of a given size

are to be included in the addition. Such a representation would allow children to make

column by column comparisons of values, thus producing correct Judgments even for

pairs with different numbers of digits.

We see from the different patterns of rule categorization among the three countries

that different curriculum sequences produce different patterns of rule invention. This

confirms our working hypothesis that errors derive from students' attempts to integrate

new material that they are taught with already established knowledge. The fact that the

French children by and large avoided the errors associated with the Fraction rule and

instead seemed to pass directly to use of the correct decimal comparison rule might seem

to suggest a superiority of the French curriculum sequence (which is shared by several

other countries) in which decimal fraction instruction precedes ordinary fraction

instruction by a substantial period of time. Howuer, it is important to note that we

have no evidence that any of the children classified as experts in fact understood the

conceptual basis for decimal comparisons. French and other children who gave

consistently correct answers may very well have arrived at their correct rules on the

n n
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basis of purely surface and syntactic considerations,

A commonly taught procedure for comparing decimals illustrates how this might

happen. Children are often taught an essentially syntactic rule for comparing decimals in

which they first add zeroes to the shorter number in order to give both numbers the

same number of digits; they can then compare the decimals as if they were whole

numbers. This is a relatively simple rule to learn and gives reliably correct answers.

Children applying it would have been classified as experts in our study. Yet they would

have been applying the Whole Number rule, and their concepti..I understanding could

have remained at the level we have attributed to Wholc! Number rule children. Such

syntactic teaching would serve to suppress errors in performance without improving

children's conceptual understanding.

This brings us to a more general consideration of the status of systematic errors in

mathematics learning and teaching. From a cognitive point of view, almost all

instruction is incomplete in the sense that it is not possible in any single demonstration

or explanation to cover all special cases or all possible implications of principles or rules

that may be presented. Instruction, like all normal human communication, proceeds on

the assumption that learners will use the presented material to make inferences and

interpretations that complete and make sense of what the teacher or text has said. In

making these inferences and interpretations, children are very likely to make at least

temporary errors. Errr.rf ,I rules, on this view, are intrinsic to all learning--at least as a

temporary phc:::-,iiienou--because they are a natural result of children's efforts to

interpret what they are told and to go beyond the cases actually presented. Several

analyses (e g., Resnick, 1987; VanLehn, 1988) have shown that these errorful rules are

intelligent constructions based on what is more often incomplete than incorrect

- 24 -
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knowledge. Errorful rules, then, cannot be avoided in instruction. In fact, they are best

regarded as useful diagnostic tools for instructors, who can often use children's

systematic errors to detect Li e nature of children's understanding of a mathematics

topic. Mathematics education researchers can support this instructional function by

discovering and documenting common errors and the conceptual understanding that

underlies them.

1'1 'Th
... . 6
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Table 1

Comparison of Decimal Fraction and Whole Number Knowledge

Elements of Decimal Corresponding Elements of

Fraction Knowledge Whole Number Knowledge

Similar (4.) or

Different (-)

A. Column Values:

1. Values decrease as move

left to right

2. Each column is 10 times

greater than column to right

3. Zero serves as a place holder

4. Zero added to rightmost column

does not change total value

5. Values decrease as move away

from decimal point

B. Column Names:

1. End in <ths>

2. Start with tenths

3. Naming sequence (tenths,

hundredths...) moves left

to right

4. Reading sequence is tenths,

hundredths, thousandths

A.

B.

C. Reading Rules: C.

1. The units must be explicitly

specified and they vary

Column Values:

1. Values decrease as move

left to right

2. Each column is 10 times

greater than column iou right

3. Zero serves as a place holder

4. Zero added to leftmost column

does not change total value

5. Values increase as move away

from decimal point

Column Names:

1. End in <s>

2. Start with units

3. Naming sequence (tens,

hundreds...) moves right to

left

4. Reading sequence is thousands,

hundreds, tens, ones

Reading Rules:

1. The ones implicitly serve as

the units in all cases



Table 2

Comparison of Decimal Fraction and Ordinary Fraction Knowledge

Elements of Decimal

Fraction Knowledge

Corresponding Elements of

Ordinary Fraction Knowledge

Similar (+) or

Different (-)

A. Fraction Values:

1 Expresses a value

between 0 and 1

2. The more parts a whole is

divided into, the smaller

is each part

3. Them are infinite decimal

fractions between 0 and 1

A.

B. Fraction Notation: B.

1. The number of parts a unit

is divided into is given im-

plicitly by the column position

2. The number of parts included

in the fractional quantity

are the only visible numerals

3. The whole is divided only

into powers of 10 parts

4. The ending <th> ("tenth') is

typical for a fractional part

Fraction Values:

1. Expresses a value

between 0 and 1

2. The more parts a whole is

divided into, the smaller

is each part

3. There are infinite ordinary

fractions between 0 and 1

Fraction Notation:

1. The number of parts a unit is

divided into is given explicitly

by the denominator

2. The number of parts included

in the fractional quantity

is the numerator of

the fraction

3. The whole is divided into

any number of parts

4. The ending <th> ('fourth') is

typical for a fractional part



Table 3

Relations Among Decimal Pairs and the Underlying Rules for Comparing Them

Relation

Example Child's The Assumed

A = B = Choice Under!ying Rule

0.01a2..an 0.b1b2..bk

n<k A

0.8 0.64

a >b

n<k A

0.2 0.64

a
1
<b

1
B

Correct or Fraction Rule

Whole Number

Fraction Rule

Correct or Whole Number Rule



Table 4

Comparison Items That Detect Rules

Question: For each pair, circle the nusber that is bigger.

Item on

Questionnaire

Number Pair* Answer by Subject Group

A B Whole Number Zero Fraction

Rule Rule Rule

Experts

Whole Number Rule: 4.8 4.63 B B A A

0.5 0.36 B B A A

0.25 0.100 B B A A

Zero Rule: 4.7 4.08 B A A A

2.621 2.0687986 B A A A

4/100 0.038 B A A A

Fractiog Rule: 4.4502 4.45 A B A A

0.457 4/10 A B A A

* The numbers in Column A are the larger numbers of the corresponding pair_,

therefore, an 'A' answer is a correct answer

1) 4



Table 5

Items Detecting_UnderlyingiRules.

A. U.S. Sample

Student Responses (Grouped According to Rule Used)

Item Whole Number Fraction Experts

A B 12 13 14 15 16 17 5 7 11 1 2 3

4.8 4.63 B B B B B B A A A A A A

0.5 0.36 BBBBBB A A A A A A

0.25 0.100 B B B B B B A A A A A A

13/100 0.125 B A B B B B A B A A B

4.7 4.08 B B B B B b A A A A A A

2.621 2.068796 B B B B B B A A A A A A

4/100 0.038 A A B B B B A B A B B

4.4502 4.45 A A A A A A B B B A A A

0.457 4/10 n A A A A A B B B A A A

S children could not be classified



Table 5, continued

Items Detecting Underlying Rules

B. Israeli Sample

Item

A B

Student Responses (Grouped According to Rule Used)

Whole Number Zero Fraction Experts

4 10 12 IF 6 17 21 3 5 8 11 13 18 20 1 2 15 19

4.8 4.63 8 8 B B BBB A A B A A A A AAAA

0.5 0.36 BBBA AAB AABAAAA AAAA

0.25 0.100 B B B B B A B A A A A B A A AAAA

13/1000.125 B B B 8 B A B A 8 A A A A B AAAA

7/10 0.678 ABBA AAB AAAAAAA AAAA

4.7 4.08 B B B B AAA A A B A A A A AAAA

2.621 2.0687986BBB8 AAA AAAAAAA AAAA

4/100 0.038 ABAA BAB ABAAAAB AAAA

4.4502 4.45 AAAA A A B B B A B B B AAAA

0.457 4/10 A A A A B B B B B B B AAAA

3 children could not be classified

:36



Table 5, continued

'tens Detecting Malrules

C French Fourth Grade Saliple

Item

Student Responses (Grouped According to Rule Used)

Whole Number Zero Fraction Experts

A 8 1 7 8 10 11 13 16 17 22 30 31 33 35 36 37 5 15 26 29 2 9 34 3 4 12 14 19 20 23 24 27 28 32

48 463 8888888888118888 8888 A A A AAAAAAAAAAA
0 5 0 36 888888888888888 8888 A 8 A AAAAAAAAAAA
0 25 0 100 88888808888E1888 8888 A 8 A AAAAAAAAAAA
47 .408 888888A88888888 AAAA A A A ABAAAAAAAAA
2 621 2 068790688611808138 8 B8 B8 8 AOAA AAA AAAAAAAAAA8
4 4502 4 45 AAAAAAAAAAAAAAA AAAA 8 88 AA.AAA AAAAA

4 children could not be classified.

4
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Table 5, continued

Items Detecting Underlying Rules

D French fifth Grade Sasple

Student Responses (Grouped According to Rule Used)

lies Whole Number Zero Fraction Experts

A 8 2 6 7 12 13 14 36 1 4 8 10 18 21 26 31 34 32 3 5 9 11 15 16 17 19 20 22 23 24 25 27 28 29 30 33 35 38

4 8 4 63 888888888888888A A AAAAAAAAAAAAAAAAAAAA
0 5 0 36 8888888888888880 A AAAAAAAAAAAAAAAAAAAA
025 0.100 8 8 8 A 8 8 A A888AB8811 A AAAAAAAAAAAAAAAAAAAA
47 408 8888888AAAAAAAAA A AAAAAAAAABAAAAAAAAAA
2 621 2 068798688[18811811A8A8ABAA A A A A A A A A A A A A A A A A A A B A A

4 4502 4 45 A A A A A A A A A A A A A A A A AAAAAAAAAAAAAAAAAAAA

One child could not be classified.

3 9



Table 6

Proportion of Underlying Rules Used in the 3 Countries

Number

of

Rule Use Category

Sample Students Whole Zero Fraction Experts Not

Number Classified

United States 17 .35 .00 .18 .18 .29

Israel 21 .19 .14 .33 .19 .14

France.

4th graders 37 .41 .11 .08 30 .11

5th graders 38 18 24 .03 .53 .03

41



Table 7

Hidden Numbers Comparison Task' Number of Children in Each Rule Use

Category Giving Each Type of Answer (Combined U.S. annd Israeli Samples)

Answer Whole Number

Rule Use Category

Fraction Experts

Choosing the long string 10 0 0

Choosing the short string 1 18 0

I don't know 13 2 14

42



Table 8

Zero Insertion Task. Number of Children in Each Rule Use Category Giving

Each Samblesi
_

Whole Number

Rule Use Category

Zero Fraction Experts

2.35 < 2.305 8 3 0 0

2.35 compared 2.35 > 2.305 1 0 9 6

with 2.305 2 35 = 2.305 1 0 1 0

unclear 0 0 0 1

2.35 < 2.035 6 1 0 0

2.35 compared 2.35 > 2.035 1 2 9 6

with 2.305 2.35 = 2.035 3 0 0 0

unclear 0 0 1 1

This sample only of U.S and Israel.

The French formulated a different question on this item and, therefore, did not

yield information for this table.

4 r,



Table 9

Ordinary Fraction Notation Frequency of Correct and Incorrect Responses

Comparing 1/333 and 034; 1/3 and 1/4 (Combined U S. and Israeli Samples)

Rule Use Category

Whole Number Zero Fraction Experts

Correct 5 3 11 9

Incorrect 14 3 7 5
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Table 10

Fraction to Decimal Translation for 3/4_1/5, 3/2, 2/3 (U.S. Samplel

Rule Use Category

Whole Number Fraction

Numerator encoded 1 6

Denominator encoded 3 0

Syntactic translation 10 0
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