
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/28317

Please be advised that this information was generated on 2022-08-22 and may be subject to

change.

http://hdl.handle.net/2066/28317

Conceptual Data Modelling from a Categorical
Perspective

A . H . M . t e r H o f s t e d e * , E . L i p p e , a n d P . J . M . F r e d e r i k s

Department o f Information Systems, University o f Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The

Netherlands

* Present address: Department o f Computer Science, The University o f Queensland, Brisbane Qld 4072,

Australia
E-mail: arthur@cs.uq.edu,au

F o r su c c e ss fu l in fo r m a tio n sy ste m s d ev e lo p m en t, co n ce p tu a l d a ta m o d e llin g is e sse n tia l. N o w a d a y s
m a n y c o n c e p tu a l d a ta m o d e llin g tech n iq u es ex ist. In -d ep th c o m p a r iso n s o f c o n c e p ts o f th ese
te ch n iq u e s a r e v ery d ifficu lt as the m a th em a tica l fo r m a liz a tio n s o f th ese tech n iq u e s , i f th e y ex is t a t
a ll, a re v er y d iffe r e n t. C o n seq u en tly , th ere is a n eed fo r a u n ify in g fo r m a l fr a m e w o r k p r o v id in g a
su ffic ien tly h ig h le v e l o f a b str a c tio n . In th is p a p e r th e u se o f ca teg o ry th eo r y fo r th is p u rp o se is
add ressed * W e ll-k n o w n c o n c e p tu a l d a ta m o d e llin g c o n ce p ts , su ch a s r e la t io n sh ip ty p es , g e n e r a l

iza tio n , sp e c ia liz a t io n , c o llec tio n ty p es an d c o n str a in t ty p es , su c h as th e to ta l ro le c o n str a in t a n d th e
u n iq u e n e ss c o n str a in t, a re d isc u sse d fro m a ca teg o r ic a l p o in t o f v iew . A n im p o r ta n t a d v a n ta g e o f th is
fr a m e w o r k is its ‘c o n fig u ra b le se m a n tic s ’. F e a tu r e s su ch as n u ll v a lu es , u n c er ta in ty an d tem p o ra l
b e h a v io r ca n b e a d d ed b y se le c tin g a p p ro p r ia te in sta n ce ca teg o r ie s . T h e a d d itio n o f th ese fea tu res
u su a lly r e q u ir e s a c o m p le te r ed e s ig n o f th e fo r m a liz a tio n in tr a d itio n a l se t-b a sed a p p ro a ch es to

sem a n tic s .

Submitted June 1995, revised February 1996

I . I N T R O D U C T I O N

Conceptual data modelling is imperative for successful
information systems development. Currently, many differ
ent conceptual data modelling techniques exist (see e.g.
[1,2]). Examples are ER [3] and its many variants,
functional modelling techniques, such as FDM [4], and
so-called object-role modelling techniques, such as NIAM
[5]. Complex application domains, such as meta modelling,
hypermedia and CAD/CAM, have led to the introduction of
advanced modelling concepts, such as those present in the
various forms of Extended ER (see e.g. [6,7]), IFO [8],
and object-role modelling extensions such as FORM [9]
and PSM [10,11].

This plethora of techniques reflects the general situation
in the field of information systems development. In [12] this
situation is described by the term M e th o d o lo g y J u n g le . In
[13] it is estimated that during the past years, hundreds if not
thousands of information system development methods
have been introduced. Most organizations and research
groups have defined their own methods. Hardly any of them
has a formal syntax, let alone a formal semantics. The
discussion of numerous examples, mostly with the use of
pictures, is a popular style for the 'definition5 of new
concepts and their behavior. This has led to f u z z y and
a r t i f ic ia l concepts in information systems development
methods.

To some extent this latter observation is also true for the
field of conceptual data modelling. In-depth comparison
of concepts of various techniques is complicated by the
fact that neither the techniques involved have a formal
semantics or completely different formalizations. Conse

quently a unifying framework for conceptual data
modelling techniques seems imperative. Such a frame
work should b c f o r m a l , in order to avoid ambiguities; offer
a sufficiently high level of a b s t r a c t io n , in order to
concentrate on the meaning of concepts instead of on
representational aspects; and be sufficiently e x p r e s s i v e ,
The goal of this paper is to define such a unifying
framework for conceptual data modelling techniques. This
framework should clarify the precise meaning of funda
mental data modelling concepts and offer a sufficient level
of abstraction to be able to concentrate on this meaning
and avoid distractions of particular mathematical repre
sentations (in a sense, the well-known C o n c e p tu a l i z a t i o n
P r i n c i p l e [14] can also be applied to mathematical
formalizations). These requirements suggest category
theory (see e.g. [15]) as an excellent candidate. Category
theory provides a sound formal basis and abstracts from all
representational aspects. Therefore, the framework will be
embedded in category theory.

For conceptual data modelling techniques that do have a
formal foundation, the framework described may also be of
use, as it may suggest natural generalizations and expose
similarities between seemingly different concepts. Another
interesting application of the use of category theory can be
found in the opportunity to consider different interpreta
tions of a modelling technique by considering different
categories as semantic target domains. For example, if one
wants to study ‘null’ values in relationship types in a
particular data modelling technique, it is natural to consider
P a r tS e t , i.e. the category of sets and p a r t i a l functions, as a
target category. The use of partial functions allows certain

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

2 1 6 A . H . M . t e r H o f s t e d e , E . L i p p e a n d P . J. M . F r e d e r i k s

components of a relation to be undefined. In this sense, the
approach outlined is more general than approaches as
described in [16,17] where only specific types of categories,
topoi, are possible target categories.

The idea of a ‘configurable semantics' is an essen tia l
feature of the unifying framework. The addition of a new
dimension (e.g. null values, uncertainty, time) to an existing
conceptual data modelling technique now often implies a
complete redesign of the existing formalization. In case of a
formalization of the involved technique in terms of the
presented framework such an addition would only imply a
choice of an appropriate target category.

The paper is organized as follows. Section 2 contains a
brief introduction to category theory and its historical
background. Section 3 describes the essential data model
ling concepts, i.e. relationship types, generalization,
specialization, and collection types, from a category
theoretic point of view. In section 4 two important
constraint types, the total role constraint and the uniqueness
constraint, are given a categorical semantics. Section 5
presents conclusions and identifies topics for further
research.

2 . C A T E G O R Y T H E O R Y

This section contains the definition of the categorical
constructs and notations needed in the rest of this paper,
in order to make it self-contained as much as possible. For
an in-depth treatment of category theory the reader is
referred to [15].

2 .1 . B a c k g r o u n d

A brief history of the origin of category theory can be found
in [18]:

Eilenberg and M ac Lane created categories in the
1940s as a way of relating systems of algebraic
structures and systems of topological spaces in
algebraic topology. The spread of applications led to
a general theory, and what had been a tool for handling
structures becam e more and more a means of defining
them. G rothendieck and his students solved classical
problem s in geom etry and number theory using new
structures— including topoi— constructed from sets by
categorical methods. In the 1960s, Lawvere began to
give purely categorical definitions of new and old
structures, and developed several styles of categorical
foundations for mathematics. This led to new applica
tions, notably in logic and computer science.

Category theory is therefore a relatively young branch of
mathematics designed to describe various s tru c tu ra l con
cepts from different mathematical fields in a u n ifo rm way.
Category theory offers a number of concepts and theorems
about those concepts, that form an abstraction of many
concrete concepts in diverse branches of mathematics. As
pointed out by Hoare [19]: "Category theory is quite the
most general and abstract branch of pure mathematics’.

In the 1970s and 1980s category theory also found its way
into computer science. Applications of category theory can
be found in such diverse fields as automata and systems
theory, formal specifications and abstract data types, type
theory, domain theory and constructive algorithmics. As
pointed out by [20], category theory can provide help with at
least the following:

• F o rm u la tin g defin itions and theories . In computing
science, it is often more difficult to formulate concepts
and results than to give a proof. As stated by [21],
category theory provides a language with a convenient
symbolism that allows for the visualization of quite
complex facts by means of diagrams.

• C arry ing o u t p ro o fs . Once basic concepts have been
correctly formulated in a categorical language, it often
seems that proofs ‘just happen’: at each step, there is a
‘natural5 thing to try and it works.

• D isco ver in g a n d exp lo iting rela tions w ith o th er fie ld s .
Sufficiently abstract formulations can reveal surprising
connections.

• F o rm u la tin g con jectures and research directions. Con
nections with other fields can suggest new questions in
one’s own field.

• Unification. Computing science is very fragmented, with
many different subdisciplines having many different
schools within them. Hence, the kind of conceptual
unification that category theory can provide, is badly
needed.

• D ea lin g w ith abstraction and represen ta tion indepen

dence. In computing science, more abstract viewpoints
are often more useful, because of the need to achieve
independence from the overwhelmingly complex details
of how things are represented or implemented.

This last item is particularly relevant in the context of this
paper. Category theory allows the study of the essence of
certain concepts as it focuses on the p ro p er tie s of
mathematical structures instead of on their represen ta tion .
To illustrate this point, consider for example possible
definitions of an ordered pa ir . The well-known W iener-
Kuratowski definition of an ordered pair is:

(a,b) = { a ,{ a ,b } }

From this definition one can always derive what the first
element of the ordered pair involved was, and what its
second element was. However, assuming that we deal with
sets of natural numbers, the following definition also has
this property:

(a , b) = 2 a3 b

Clearly, both definitions could be used for the definition of
an ordered pair as both encompass its essence. However, it
is also clear that they are both overspecific. One could speak
of two im p lem en ta tions of ordered pairs. The definitions
prescribe particular representations and do not focus on the
underlying essence. They are precisely the kind of
definition that category theorists abhor. One might say

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

C o n c e p t u a l D a t a M o d e l l i n g f r o m a C a t e g o r i c a l P e r s p e c t i v e 217

convention in the rest of this paper. The objects and
arrows of a category may also have a concrete interpreta
tion. For example, objects may be mathematical structures
such as sets, partially ordered sets, graphs, trees etc. Arrows
can denote functions, relations, paths in a graph, etc.

As a concrete example of a category in the context of

that category theory applies the Conceptualization Princi
ple to mathematical formalizations.

Despite the popularity of category theory in some fields
of computing science, not many applications in the field of
information systems can be found in the literature. Recently,
however, it seems that this is changing. Categorical

formalizations of (aspects of) object orientation (see e.g, information systems consider the set of all instantiations of a
[22-24]), object-oriented data models (see e.g. [25,16]), data base, and all possible updates on these instantiations.
ER (see e.g, [26]), and the Relational Model (see e.g. The instantiations may serve as objects, and the updates as
[27,17]) have been proposed. In [28] a categorical frame- arrows of the corresponding category. Each object has an
work for the axiomatization of conceptual modelling identity arrow, if one considers the ‘neutral’ update., i.e. the
concepts is described (based on the notion of 7T -institu tion). update that does not change an instantiation at all, to be a
In [16] it is remarked that the uniformity of category theory normal update. One can easily verify that this indeed
provides a basis for interesting generalizations in the context constitutes a category. Arrow composition is associative as
of data modelling and that it not only offers insight into

formalisms.

update composition is associative. Also, the neutral update
well-known operators but also allows for the definition of serves as a neutral element with respect to arrow composi-
new operators, which would be far from trivial in other tion: an update composed with a neutral update simply

yields that update,
In the context of this paper, some set-oriented categories

are important. The most elementary and frequently used
category is the category S et, where the objects are sets and
the arrows are total functions. The objects of Set are not
necessarily finite. The category whose objects are fin ite sets
and whose arrows are total functions is called F in S et. The
category P a rtS e t concerns sets with p a r tia l functions, while
the category R ei has sets as objects and binary relations as
arrows.

Some arrows have special properties. We consider three
important kinds of arrows: m onom orphism s , epim orphism s
and isom orphism s.

2 .2 . B a s ic s

This section presents the definitions of the basic concepts of
category theory as far as they are important for the rest of
this paper. Most of these definitions are adapted from [15].

A directed multigraph is a directed graph where there
may be multiple edges with the same direction between two
nodes.

D e f i n i t i o n 2 .1 . A directed multigraph G consists of a
set of nodes Ç{) and a set of edges G \. The source and target
of an edge can be found by application of the functions
source and target, respectively. The notation f : A - > B
implies that ƒ is an edge with s o u r c e (/) ~ A and
t a r g e t (/) = B . □

The following definition defines a category as a special
kind of multigraph.

D e f i n i t i o n 2 .2 . A ca teg o iy C is a directed multigraph
whose nodes are called objects and whose edges are called
arrow s. For each pair of arrows f : A —> B and g :B —> C
there is an associated arrow g o ƒ :A C, the composition of
ƒ with g. Furthermore, (h o g) o ƒ = h o (g o ƒ) whenever
either side is defined. For each object A there is an arrow
Id a \ A A , the identity arrow, If f : A —*B, then

□ƒ o ld/v — ƒ — ldß o ƒ .

Figure 1 represents a simple example of a category. It is
an abstract example: no assumptions about the meaning of
the objects and the arrows have been made (and indeed,
have to be made!).

In this category the choice of composites is forced:
ƒ O \áA = ƒ = ldB o f . In category theory it is customary to
omit the identity arrows in drawings of categories if they do
not serve a particular purpose. We will adopt this

D ef in it io n 2,3. An arrow ƒ : A —> £ is a m onom orphism
if for any object X of the category and any arrows
x , y \ X —3► A , if ƒ o x — f o y , then* = y. □

Figure 2 illustrates the definition of a monomorphism.
A monomorphism in the category S et captures the idea of

an injective function. In the category P a rtS et a mono
morphism describes a total and injective function.

D ef in it io n 2,4. An arrow f : B —* A is an epim orphism
if for any object X of the category and any arrows
x,y:A -h► X , if x o ƒ = y o f , then x = y.

Figure 3 illustrates the definition of an epimorphism.
In the category S et an epimorphism corresponds to a

surjective function.
An epimorphism is a monomorphism in the dual

category. A dual category of a category C, denoted as
C°P, has the same objects as C and as arrows all arrows of C
inverted, i.e. i f / : A —> B is an arrow in C then f ° ^ \ B —> A is
an arrow of C°P. As a result the composition of arrows in the

f o x

c *

X A
/

Id f I *
f o y

F I G U R E 1. A simple example of a category. F IG U R E 2. Illustration of the definition of a monomorphism,

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

2 1 8 A . H . M . t e r H o f s t e d e , E . L i p p e a n d P . J. M , F r e d e r i k s

10 ƒ

X

X A ■*
ƒ

l ' y
B

J
y ° f

F IG U R E 3. Illustration of the definition of an epimorphism.

dual category is defined on the inverted arrows. The concept
of duality in category theory is very important as it reduces
proof obligations: the dual of a theorem is also a theorem.

The category theoretic equivalent of the set theoretic
concept of a bijective function is called an isomorphism . In a
mathematical context isomorphism means indistinguishable
in form. As remarked in [29]:

Isomorphisms are important in category theory since
arrow-theoretic descriptions usually determine an
object to within an isomorphism. Thus isomorphisms
are the degree of ‘sameness’ that we wish to consider in
categories.

D e f in i t io n 2 .5 . An arrow f : A —> B is said to be an
isomorphism if an arrow g: B —► A exists such that
ƒ o g — ld5 and g o ƒ = \àA. Arrow ƒ is called the inverse
of arrow g and vice versa. If such a pair of arrows exists
between two objects A and B, A is isom orphic w ith#, which
is denoted as A ^ B. The identity arrows are the trivial
isomorphisms.

There are also some objects with special properties.

D e f in i t io n 2 .6. An object T of a category C is called a
T for eachterm inal object if there is exactly one arrow A

object A of C. Terminal objects are denoted by 1. The dual
notion, an object of a category that has a unique arrow to
each object (including itself), is called an initial object and
denoted as 0.

As terminal (initial) objects are isomorphic, one usually
speaks of the terminal (initial) object of a certain category.

The initial object in Set is the empty set. The terminal
objects in Set are all singleton sets. In the category Rei the
empty set is both initial and terminal.

following diagram

a - L b - ^ c

can then be formally defined, using the shape graph J ,

1 -ÎU 2 J U 3

as the homomorphism D\ X —> G with Z)(l) — A, D(2) — B ,
D (3) — C, D(u) — ƒ, and D(v) — g. The following diagram
is just like D (has the same shape) except that v goes to h and
3 goes to B.

a - L b - ^ b

The following diagram has a different shape graph as the
two diagrams considered before.

A
f

>B

O "
Formally it corresponds to a diagram E : J —► G, where

the shape graph J is defined by

1
u

w ith £ (l) = A , E (2) = B 9E (u) = ƒ and£(w) = A. □
The notion of a com m utative diagram plays a central role

in category theory. Categorical proofs and definitions often
use diagrams and prove or require them to commute.
Commutative diagrams are the categorist’s way of expres
sing equations.

D e f in i t io n 2.8. A diagram is said to commute if every
path between two objects in its image determines through
composition the same arrow. □

E x a m p le 2.2. The following diagram commutes if and
only if h is the composite g o ƒ.

C

A
f

8

>B

□

2.3. Diagrams

2.4. Products and coproducts

In the disjoint union of a number of sets, elements
originating from different sets can always be distinguished.

Many categorical definitions and proofs employ diagrams. The disjoint union of two sets can be defined in several
As remarked before, quite complex facts can be visualized ways. A possible definition of the disjoint union A + B of
« . « 4 * ft a ■ i l 4 4 I 4 A 4 á

by the use of these diagrams. The following definition
defines what a diagram is.

D e f in i t io n 2.7. Let I and G be graphs. A diagram in G
of shape J is a homomorphism D: 1 —► G of graphs. 1 is
called the shape graph of the diagram D .

The following example, taken from [15], illustrates some
subtleties involving the concept of diagram.

E x a m p le 2.1. Let G be a graph with objects A, B and C
and arrows f : A —> B , g :B -* C , and h \B B . The

two sets A and B is

A + 5 = {(a, 0) I a € A } U {{¿>, 1) | b € Æ},

with canonical injections IA and IBi i.e. IA (a) — {a ,0) and
IB(b) — (¿>,1). The categorical definition of a c o p r o d u c t

(also referred to as sum) generalizes this definition. In
particular, it does not prescribe a representation.

D e f in i t io n 2 .9 . A coproduct of two objects A and B in a
category consists of an object A + B together with arrows
Ia \A —* A + B and Ib :B - * A - \ - B such that for any arrows

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

C o n c e p t u a l D a t a M o d e l l i n g f r o m a C a t e g o r i c a l P e r s p e c t i v e 2 1 9

ƒ : A —> C and g : B —*■ C , there is a unique arrow, denoted as Set a product corresponds to the notion of a cartesian
({ ~ 5” C, for which the following diagram product with associated projection functions.
commutes:

A ! ^ a + b < h

h : A A — B and I g : R —> .4 ~r B are called injection

a
« 4»

arrows of the sum

The definition of a coproduct can be generalized, in a
straightforward manner, to be applicable to any number of
objects in a category. Coproducts can also be defined for
arrows. In the category Set, the coproduct of two arrows
f : A —>Af and g : B ^ B f is a function / - f g : A + i ?
A! + B f. If this function is applied to an element x of the
disjoint union A + B it either yields ƒ (x) or g(x) , depending
on whether x originates from A or B , respectively.

D ef in i t io n 2.10. A co p ro d u c t of two arrows ƒ :A —> A '
andg:J5 —> B f is an arrow ƒ + g\ A + Æ -* A ; + B f such that
the following diagram commutes:

A B

f
^ T T

A 1 A 1 I r y tA ------ _j_£ <------------ ß

□

Sums in the category of sets have special properties they
do not have in most other categories. One such property is
that sums in Set are disjo in t. In a disjoint sum the sum
injection arrows must be monomorphisms.

D ef in it io n 2.11. Let A and B be two objects in a
category with an initial object 0 and a coproduct A + B .
Then the following diagram commutes.

A + B

A B

0

If this diagram is a pullback (i.e. it is a universal
commutative cone, see definition 2.15) and the canonical
injections IA and I B are monomorphisms, then the coproduct
A -f B is a d is jo in t co p ro d u c t, □

In several interesting categories (e.g. Set) monomorph
isms are c o m p le m e n ta b le :

B is com plem entableD ef in it io n 2.12. An
iff a g: C B exists such that B is isomorphic with A + C
with ƒ and g as the sum injection arrows. In this case g is a
com plem en t of ƒ. The object C is frequently denoted as
B - A .

The dual notion of coproduct is p ro d u c t. In the category

D ef in it io n 2.13. A p ro d u c t of two objects A and B in a
category consists of an object A x B together with arrows
7xa :A x j5 —> A and ixB\A x B —> B such that for any arrows
ƒ : C —> A and g :C —> B , there is a unique arrow, denoted as
((f) 8)) : C x B, such that the following diagram
commutes :

A«—̂ — A

((ƒ;#))
8

C

□
As with coproducts, this definition can be extended to

arrows in a straightforward manner.

D ef in it io n 2.14. A p ro d u c t of two
and g :B B ! is an arrow ƒ x g :A x B -
the following diagram commutes:

arrows f \ A A'
A 1 x B* such that

r f X 8 8

A '*
I T A t 7Tn /

A ' x B f — b —>B'

□

2.5. Limits and colimits

Limits and colimits are dual notions. Both concepts are very
general and often used in category theory.

A lim it is the categorical version of the concept of an
equationally defined subset of a product. A product,
therefore, is a special kind of limit. A colim it is the
categorical version of a quotient of a sum by an equivalence
relation. A coproduct, therefore, is a special kind of colimit.
Only the definition of a colimit is given as the general notion
of limit is not important in the context of this paper.

D ef in it io n 2.15. Let Q be a graph and C be a category.
Let D \Q C be a diagram in C with shape Q. A cocone with
base D is an object (apex) together with a family {a £} of
arrows of C indexed by the nodes of Q, such that : n 7^
for each node of G. The arrow c¿nD is the com ponent of the
cocone at n. The cocone is written as { a nD} \D —► j Df or
simply old'.D —> 7z>*

The cocone is com m utative if for any arrow s: n x -+ n 2 of
G, the following diagram commutes.

I d

a
D

a
»2
D

n x

If a D: D and ol q\D —* 7^ are cocones, an arrow

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

220 A. H, M. t e r H o f s t e d e , E. L i p p e a n d P. J. M. F r e d e r i k s

from the first to the second is an arrow ƒ : 7¿ 70 such that
for each node n of Q, the following diagram commutes.

n

A commutative cocone with base D is called universal if
it has a unique arrow to every other commutative cocone
with the same base, A universal cocone, if such exists, is
called a colim it of the diagram D . □

3. DATA MODELLING TYPE CONSTRUCTORS

In this section a number of important conceptual data
modelling concepts are given a category theoretic founda
tion, First, however, it is necessary to define a uniform
syntax of conceptual data models that is as general as
possible. In section 3.1, conceptual data models are defined
by means of type graphs. The semantics of a data model is
the set of possible populations, i.e. instantiations of its
structure. Populations are formalized via the notion of type
m odels, defined in subsection 3,2. After the definition of
type models, the various data modelling constructs are given
a category theoretic definition. These constructs are defined
in terms of restrictions on type models.

3.1. Type graphs

Data models can be represented by type graphs (see also
[25] and [16]). The various object types in the data model
correspond to nodes in the graph, while the various
constructions can be discerned by labelling the arrows.
Relationship types, for example, correspond to nodes. An
object type participating via a role in a relationship type is
target of an arrow labelled with role, which has as source
that relationship type. As an object type may participate via
several roles in a relationship type a type graph has to be a
m ultig raph.

Definition 3.1. A type graph Q is a directed multigraph
over a label set {role, spec,gen, eltrole,cIt_role}. Edges
with label spec or gen are called subtype edges, The type
graph may not contain cycles consisting solely of subtype
edges. Further, there is a bijective function clt from edges
with label cILrole to edges with label eILrole such that
related edges have identical sources. The function type
yields the label of an edge.

An edge e, labelled with role, from a node A to a node B
indicates that A is a relationship type in which B plays a role.
If e is labelled with spec, then A is a specialization of B ,
while if e is labelled with gen then B is a generalization of A
(and possibly other object types). If edge e:A B is
labelled with clLrole, edge f \ A C is labelled with
elLrole and cit(e) = ƒ, then B is a collection type with as
element type C (collection types will be explained in depth
in subsection 3.5).

The definition of a type graph is very liberal, only cyclic

T h e C o m p u t e r J o u r n a l ,

subtype structures are (obviously) excluded. The definition
allows a node to be a collection type as well as a relationship
type, a binary relationship type to be a subtype of a ternary
relationship type, a collection type to have several element
types etc. Excluding these ‘peculiarities’ from data models
turns out to be unnecessary from a theoretical point of view
as it is possible to give such data models a formal semantics.
Hence, restrictions, other than on cyclic subtype structures,
will not be imposed.

As an example of how data models can be represented as
type graphs, consider the type graph in Figure 5, which
represents the NLAM data model in Figure 4. Object types in
NIAM are represented as circles, roles as boxes and arrows
between circles represent subtype relations (for a complete
overview of the graphical conventions of NIAM refer to

[5]).

3 .2 . T yp e m od els

The semantics of a data model is the set of all possible
instantiations, also referred to as popula tions. In our
approach, a population is defined as a m odel from the type
graph to a category. A model is a graph homomorphism
from a graph to a category (interpreted as a graph).

D é f in i t io n 3 ,2 , Given a category F , a type m o d el for a
given type graph G in F , is a model M : Q —► F . F is referred
to as the instance category of the model.

A type model maps, the object types in the type graph onto
objects in the instance category and the edges onto arrows
in this category. To avoid notational clutter, the model is
sometimes omitted if it is clear from the context. For
example, the product of two object types is sometimes
written as A x B instead of AT (A) x M (B) .

At this point no requirements on the mapping of edges in
relation to their labels is imposed. These requirements will
be discussed in the remainder of this section and will lead to
the definition of a valid type model in subsection 3.6.

The above definition implies that the semantics of a
data model depends on the instance category chosen, Not
all categories provide a meaningful semantics for data
models. Instance categories are required to be members of
a class of categories F u n d . Categories of this class have to
fulfill a number of requirements that will be discussed in
section 3.7.

In Figure 6, some examples of categories in F u n d are
shown. The label of each arrow denotes a feature that exists
in the category that is target of that arrow, but not in the
category that is source of that arrow. For example, in the
category P a rtS et functions do not have to be total, contrary
to the category Set. As will be shown in subsection 3.3, this
category should be considered if one is interested in the
study of ‘null’-values in relationship types. Other categories
in Figure 6 are:

• The category T o tR el where the objects are sets and the
arrows total relations.

• The category B a g where the objects are bags (multisets)

V o l ~ 3 9 , No. 3 , 1 9 9 6 *

C o n c e p t u a l D a t a M o d e l l i n g f r o m a C a t e g o r i c a l P e r s p e c t i v e 221

is-w ritten-by

D eath

is-dead

Song-

w riting has-w ritten

Song-

recording

B and-M em bersh ip

is-recorded-by

has-recorded

C om poser

is-m em ber-of has-as-m em ber

comprises

of

In s tru m en ta tio n

Ins trum en ta l-

C apab ility
plays is-played-by

F IG U R E 4. A NIAM data model,

and the arrows total functions, such that the frequency of
an original never exceeds the frequency of an image.
The category P o set where the objects are partially
ordered sets and the arrows monotonous (i.e. order-
preserving) functions.
The category F u zzy S e t where the objects are fuzzy sets
and the arrows special total functions on these sets. A
fuzzy set is a pair (S> a) where S is a set and a is a total
function on S assigning to each element of S the degree
of membership. An arrow /: {£, a) —» (7\ r) is a function
f : S ^ T such that a < r o ƒ.

3 .3 . R e la t io n sh ip typ es

One of the central concepts in conceptual data modelling is

the concept of rela tionship typ e . A relationship type
represents an association between object types and may be
n-ary in some data modelling techniques (where n > 1), as
well as play a role in other relationship types. Yourdon [30]
refers to such relationship types as associative ob jec t type
ind ica tors , while in NIAM relationship types participating
in other relationship types are called objectified fa c t types. A
relationship type consists of a number of roles, capturing the
way object types participate in that relationship type.

In the past, relationship types have often been formalized
by viewing them as subsets of a cartesian product. This has
commonly been referred to as the tuple-oriented approach.
As an example consider Figure 7 which depicts an ER
schema with a relationship type R consisting of roles p and q
played by entity types A and B , respectively. A population

D ea th

role

C om poser
spec

Song
w riting

role

Y
Person -*

I

spec

M usician
i

role

role

role

Song
role

B and-
M em bersh ip

role

role
A

In s tru m e n ta tio n

role

In s tru m en ta l- role

C apab ility
In s tru m e n t

F IG U R E 5. Type graph of the schema of Figure 4.

Song-
recording

role

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

222 A. H . M. t e r H o f s t e d e , E. L i p p e a n d P. J. M, F r e d e r i k s

of this relationship type, represented in the tuple-oriented irrelevant, their components become available by ‘access-
approach, could be:

Pop {R) = { (a 1, b 1) , (a 2, b 1)}.

The disadvantages of the tuple-oriented approach are
obvious: the representation of instances is overly specific.
Instances of relationship type R could as well be considered
elements of the product Pop(J9) x Pop (A) as
Pop(A) x Pop(5). A cartesian product imposes an order
ing on the various parts of the relation. Consequently, the
cartesian product does not have important properties such as
commutativity and associativity. This observation has led to
the m apping-oriented approach [31], where relationship
instances are treated as functions from the involved roles to
values. In this approach, the above sample population would
be represented as:

Pop(i?) = {{p'->a1,qt-^>bi } ,{p t-H i2 , q ^ b 1}}.

Clearly, this approach does not suffer from the drawbacks
of the tuple-oriented approach. No ordering is imposed,
while at the same time the various parts of a relation remain
distinguishable.

Still, however, one may argue that the mapping-oriented
approach imposes unnecessary restrictions. Why do
instances have to be represented as func tio ns? Is not it
sufficient to have access to their various parts? The
categorical approach pursues this line of thought. The
actual representation of relationship instances becomes

P q
B

functions’. As an example consider the interpretation of the
sample population in the category FinSet. The type graph of
the schema of Figure 7 is shown in Figure 8. Category
theoretically, a population corresponds to a mapping from
the type graph to an instance category. The sample
population therefore, could be represented as (note that
there are many alternatives!):

p z= { / ^ i ^ a l i r 2 ^ a 2 } i

q = { r \ ^ b u r2^ b x}.

In this approach, the two relationship instances, r x and r2,
have an identity of their own, and the functions p and q can
be applied to retrieve the respective components. Note that
in this approach it is possible that two different relationship
instances consist of exactly the same components.

Apart from FinSet it is also possible to choose other
instance categories. As remarked before, the category
PartSet allows certain components of relationship instances
to be undefined:

p =

q = { r l ^ b i ^ r 2 ^ b l } .

In this population, relationship instance r x does not have a
corresponding object playing role p.

Another possible choice of instance category is the
category Rei. In Rei the components of relationship
instances correspond to sets, as roles are mapped on
relations. A relationship instance may be related to one or
more objects in one of its components. A sample population

A
role

R
r o le

FIGURE 7. A simple ER schema. FIGURE 8 . Type graph of Figure 7.

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

C o n c e p t u a l D a t a M o d e l l i n g f r o m a C a t e g o r i c a l P e r s p e c t i v e 2 2 3

could be:

p = {> 2^ 1, ' 2^ 2},

q = { r i ^ b u r2^ b u r2^ b 2}.

3.4. Subtype relationships

Many conceptual data modelling techniques offer concepts
for expressing subtype relations. Subtype relations are used to
capture inheritance of properties. In the literature many types
of inheritance relations exist and the terminology is far from
standard. In this section two important types of inheritance
relations are considered: specialization and generalization.
Many conceptual data modelling techniques contain at least
one of these relations, although probably under a different
name. The concepts of specialization and generalization in
this paper correspond to a large extent to specialization and
generalization as defined in IFO [8],

3.4.1, S p ec ia liza tio n

S p ec ia liza tio n is used when specific facts are to be recorded
for only specific instances of an object type. A specialized
object type inherits the properties of its supertype(s), but
may have additional properties. As such, specialization
corresponds to the notion of subtyping in NIAM.

As an example of specialization consider the IFO schema
of Figure c) (adapted from [8]). In this schema the boxes
represent concrete types, the diamonds represent abstract
types and the circles represent subtypes. The double arrows
denote specialization relations. Therefore, in this diagram
S T U D E N T is a subtype of P E R SO N . The object type
T E A C H IN G -A S S IS T A N T is a subtype of both ST U D E N T
and E M P L O Y E E . The subtype hierarchy has been created to
express that only for certain types certain facts are to be
recorded, e,g. only for employees the salary is relevant. As
remarked before, properties are inherited ‘downward’, e.g.
employees have a name as they are also persons.

In set-theoretic terms, the most general formalization of a
subtype relation would be to treat it as an injective function.
This is more general than requiring that Pop(A) Ç Pop(2?)

$

in the case that A is a subtype of ß , as instances may have a
different representation in both object types (this is
particularly so in object-oriented data models). Therefore,
category, theoretically a subtype relation, has to correspond
with a monomorphism (recall that in the category Set a
monomorphism corresponds to an injective function). This
is not sufficient, however, for an adequate formalization of
specialization relations. Consider for example the following
partial population of the schema of Figure 9:

Pop(PERSON) = {Jones, Richards},
Pop(STUDENT) = {ST1943},

Pop(EMPLOYEE) = {EM237},
Pop(TEACHING-ASSISTANT) = {TA999}.

and the following subtype relations (see also Figure 10):

h

h

h

h

{TA999 EM237},
{TA999^ST1943},
{EM237 h-> Jones},
{ST1943 ^Richards},

In this sample population, with as instance category Set,
the instance TA999 of object type T E A C H IN G -A SSIS -
T A N T corresponds to two instances of P E R SO N : R ich a rd s
as well as Jo n es . Clearly, this is undesirable.

To avoid such problems, subtype diagrams, i.e. diagrams
consisting solely of subtype edges, are required to commute.
In terms of the presented subtype diagram this would imply
that the function composition of / 2 with /4 should be
identical to the function composition of I \ with / 3 and
therefore: 74(/2(TA999)) = / 3(/1(TA999)).

Since the subtype diagram is required to commute,
subtypes inherit properties from their supertypes in a unique
way. In the example, every teaching assistant inherits the
name from its supertype person.

3.4.2. G eneraliza tion

G eneraliza tion is a mechanism that allows for the creation
of new object types by uniting existing object types.
Contrary to what its name suggests, generalization is n o t the
inverse of specialization. Specialization and generalization
originate from different axioms in set theory [10,11].

The population of a generalized object type is the union
of the populations of the participating object types, referred
to as the specifiers ,

As an example of generalization consider Figure 11. In
this schema the graphical conventions of PSM [10] have
been used, the dashed lines represent generalization
relations. This PSM schema models the construction of
simple formulas: a F orm ula may be either a Variable or an
expression constructed by some function F from simpler
formulas. This example demonstrates that generalization
can be used for the specification of recursive types.
Generalization is also useful when identical properties are
relevant for different existing types: these properties can
then be related to the generalization of these types.

The application of coproducts yields a possible catego
rical formalization of generalization. The generalized object

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

224 A . H . M . t e r H o f s t e d e , E . L i p p e a n d P . J . M . F r e d e r i k s

R ic h a r d s J o n e s

S T 1 9 4 3

h

I ’

PERSON

STUDENT EMPLOYEE

s p e c

TEACHING-ASSISTANT

<í

E M 2 8 7

T A 9 9 9

F IG U R E 10. A non-commutative diagram.

type has to be mapped on a coproduct in the instance category
and the generalization arrows should correspond to the sum
injections. Of course, as the coproduct represents a disjoint
sum in Set, this formalization implies that specifiers have to
be disjoint. In some data modelling techniques (including
PSM) this is not necessarily true. This problem can be solved
by using the general notion of colimit.

The solution starts with the observation that the collection
of instances of a generalized type with a set of specifiers V is
completely determined by the subtype relationships among
the subtypes of elements in V. The following definitions
give a formal description of a diagram that only contains the
relevant subtype relations among subtypes of elements of V .

D e f in i t io n 3 .3 . Given a graph G and a set of nodes
N C Go, the subgraph o f G dom inated by N is equal to a
subgraph!) of G that is defined as follows: The edges of D
are the edges from G\ that occur on a directed path that
ends in a node n € The nodes of D are the nodes that
occur in one of its edges. □

/
/

V ariable
(V ar-nam e) havrng-

left-
argument

having-
right-

argument

D e f i n i t i o n 3 .4 . Given a diagram D \Q —* C and a set of
nodes V C Go* Let G v be the subgraph of G dominated by V.
Then, D dom inated by V is equal to D functionally restricted
tO G y . □

The instance universe Um represents the collection of all
instances of a set V of object types in a model M . The
instance universe is used as the generalization of a set V of
specifiers.

D e f in i t io n 3 .5 . The instance universe determined by a
set of object types V Ç Gq in a given type model M , denoted
as U lf3 is the apex of the universal cocone with as base the
subtype diagram dominated by V . □

In [32] it is proven that in a category that has disjoint
sums the colimit of a diagram consisting of complemen
table monomorphisms, which is true for the subtype
diagram of definition 3.5., always exists. The associated
arrows are then also complementable monomorphisms.
This result is important as some categories have disjoint
sums, but do not have all colimits (e.g. Rei). Therefore,
rather than requiring instance categories to have all
colimits, it is required that all finite sums exist and are
disjoint, as this is less restrictive.

Finally, it should be pointed out that as a result of the
definition of subtype diagrams, the commutativity require
ment imposed on these diagrams also applies to general
ization.

F IG U R E 11. An example of generalization in PSM.

3 .5 . C o llec tio n typ es

A collection type is an object type of which each instance
corresponds to a (nonempty) set of instances of another
object type. This latter object type is referred to as the
elem ent type of the collection type. As sets are identical if,

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

C o n c e p t u a l D a t a M o d e l l i n g f r o m a C a t e g o r i c a l P e r s p e c t i v e 2 2 5

C onvoy

F I G U R E 12. An example of a collection type in PSM,

and only if, they contain the same elements, the instances of
a collection type are identified by their elements and do not
need external identifications. Collection types correspond to
grouping in IFO, associa tion in ECR [7], grouping classes
in SDM [33], and p o w e r types in PSM.

As a simple example of the application of collection types
consider the schema of Figure 12, which shows a PSM
schema of the so-called C onvoy P roblem of [33]. In this
schema the object type C onvoy is a collection type with as
element type Sh ip , Ships are identified by a code (S~code),
while convoys are identified by their constituent ships.

There are several alternatives for a categorical formaliza
tion of collection types. One alternative is to require the
instance category to be a special kind of category called a
topos. This approach has two serious disadvantages,
however. First, a topos is a complex type of category,
which is not easily understood. Secondly, and more
seriously, many interesting categories are not topoi. The
use of topoi therefore would imply an extra, very restrictive,
requirement on the class of instance categories Fund.
Another alternative would be the use of sketches in order to
allow the general specification of algebraic types [15].
Unfortunately, it turns out that such a solution also imposes
too many restrictions on Fund.

The approach adopted in this paper, does not suffer from
the problems outlined in the previous paragraph and is based
on an alternative treatment of collection types, as presented
in [34]. As pointed out in this paper, collection types
become superfluous by the introduction of a new type of
constraint, the ex is tensiona l un iqueness constra in t, as well
as a new identification scheme. As an example consider
Figure 13. The existensional uniqueness constraint in this
schema expresses that no two convoys may be associated,
via role sa ils in , to the same set of ships. As such this
constraint captures the extensionality property of sets. Also,
the object type C o n vo y , may be identified, via this role, by
the object type Ship ,

To illustrate further the existensional uniqueness con
straint, consider the abstract schema of Figure 14. The
sample population of this schema violates the existensional
uniqueness constraint as both a x and a 2 are related, via role

f :

p

_ < L i

i

ƒ P (f) l (f)

f i 01 h

h a x h

h a 2 h

Í 4 02 h

F IG U R E 14. A population violating the existensional uniqueness
constraint.

q , to b i and b2 and therefore both correspond to the set

The solution to the categorical formalization of the
existensional uniqueness constraint follows from the
observation that such a constraint is violated if and only if
a non-trivial permutation of the ‘set-like’ instances exists
such that application to the population of the involved
relationship type yields the sam e population. In other words,
if changing the members of two sets (which have received
their own identity!) does not lead to a loss of information,
then obviously these two sets have to have identical
representations. In the sample population the interchange
of a x and a2 in each instance of ƒ, does not lead to a change
in the population of relationship ty p e /.

Category theoretically, this requirement states that the
existensional uniqueness constraint of the schema of Figure
14 is violated if, and only if, the arrows p and q are mapped
onto arrows in the instance category such that non-trivial
isomorphisms (i.e. isomorphisms not equal to the
identity) and O f on the objects, corresponding to
the collection type A and the involved relationship ty p e /,
respectively, can be found for which the following
equalities hold (see also the generic type model in
Figure 15):

Oa 0 p O f = p ,

q o O f = q.

The edges p and q are said to fulfill the extensionality
p ro p e r ty . Obviously, this definition does not impose any
requirement on the instance category involved.

As an example of the application of this definition, again
consider the sample population of Figure 14. Suppose that
the instance category involved is the category Set. The
following two choices for the permutations 0 A and O f
satisfy the imposed requirements, as they are non-trivial

clt^role
ƒ

elt_role
B

F I G U R E 13. A translation of the Convoy Problem. F IG U R E 15. A solution for collection types.

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

2 2 6 A . H . M . t e r H o f s t e d e , E . L i p p e a n d P . J . M . F r e d e r i k s

isomorphisms and satisfy the two equalities:

O

O/

a2ĥ 'a ì}'>

{ƒt1 i h |- >ƒ1 î f i 1 >14 } *

3.6. Valid type models

Now the full definition of a valid type model for a type
graph can be presented:

D e f i n i t i o n 3.6. A type model M : Q —¡- F for a given
type graph Q in a category F , is a valid type m odel iff,

1. if x is an edge of Q and type(je) = spec then M (x) is a
complementable monomorphism.

2. if x is an edge of G and type(x) = gen

M(x) = a SQ Urcê x\ where D is equal to the subtype
diagram dominated by the specifiers of target(x).

3. the subtype diagram of M commutes.
4. if x and y are edges of Ç7, with clt(y) = x then M (x) and

M (y) have to fulfill the extensionality property.

then

E x a m p l e The following type graph describes a
simple conceptual data model.

p

F

spec

D * E
t

role
B

t/

clt role elt role role
G

The following is a type model of this type graph in S e t .
The value of the set of elements for each object is equal to
the elements that occur in the corresponding arrows and has
therefore been omitted from the figure.

A <■ F
<i

>B

{c2i al)

(“u f i) (Z i.M

E
t

(«3, f l)
r <«3, h)

(f i t h)
(f M

it

G

(du e i) <ea, cx) (ci.gj)
(¿1, 62) {c2^ 2) (pxiêi)

(Cilgs)

This type model is indeed a valid type model There is
one specialization arrow from C to A that is an injective
function, and in S e t all injective functions are complemen
table monomorphisms. Obviously, the subtype diagram
commutes since it only contains one specialization arrow.
Collection type D has one instance that represents the set
{c1,c2}. It is not difficult to see that s and t fulfill the
extensionality property. □

3 .7 . V a l id in s ta n c e c a te g o r ie s

Instance categories should support the constructions that
have been used in the previous sections. This means that
every member of F u n d should have the following proper
ties:

• All finite sums and products must exist.
• Sums must be disjoint.
• An initial object must exist.

Actually, the last requirement is redundant since the
initial object is the sum of zero objects. This set of
requirements is modest, which implies that there is a large
set of possible instance categories.

Some categories, however, are too trivial to be interesting
as instance categories, for example the category with only
one object and one arrow. Most ‘classical’ formalizations of
conceptual data modelling techniques correspond to a
formalization that results from the choice of F in S e t as
instance category. Therefore, it seems reasonable to require
that other instance categories have at least the same
‘expressive power’, intuitively, every model in F in S e t
should have a counterpart in other instance categories.

As an introduction to the formalization of this require
ment it is useful to define a homomorphism between type
models.

D e f i n i t i o n 3.7. A type m odel hom om orphism between
D is a functortype models M \ \ Q ^ C and M 2:G

F : C —> D , i.e. a graph homomorphism preserving identities
and composition, such that the following diagram commu
tes:

□
The valid type models and their homomorphisms form a

category.
This definition of a type model homomorphism has

inspired the following definition of a valid instance
category.

D ef in it io n 3.8. A category C is a valid instance
category if all finite products and sums exist, sums are
disjoint and there is a functor F: F in S e t —> C which is a
monomorphism in the category of graphs and homomorph
isms between graphs.

The following categories are valid instance categories:
F in S e t , S e t , P a r t S e t , R e i, F u z z y S e t . A description of
various category theory constructs and proofs for these
categories can be found in [32].

One of the most important advantages of using a categorical E x a m p l e 3.2. In several object-oriented databases
approach to the semantics of conceptual data modelling
techniques is that different instance categories can be used. ________ _____ _____ _ ____ __ _ __ ___ ____
The requirements that instance categories should satisfy are (possibly empty) set of attribute values. Models in the
listed together with some illustrations. ~ ‘ ‘

[35,36], objects can have multi-valued (or set-valued)
attributes. This means that the value of an attribute can be a

category R e i can be used to model this behavior.

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

C o n c e p t u a l D a t a M o d e l l i n g f r o m a C a t e g o r i c a l P e r s p e c t i v e 2 2 7

ism.

E x a m p l e A total role constraint on the role with

E x a m p le 3.3, Models in FuzzySet can be used to model target(e) must participate in e. In a model in the category
uncertainties. Every object type A is equipped with a Set this implies that M (e) must be a suijective function,
function crA that captures the degree of membership of More generally we require that M (e) must be an epimorph-
instances. For simplicity’s sake, we assume that application
of this function yields a probability (for an in-depth
treatment of fuzzy sets in a categorical context refer to
[15]). The arrows in FuzzySet are total functions and for
each arrow f \ A —> B it must hold that crA (a) ^ c r B(f (a)) ,

Therefore, the probability that an individual is an element of
a given object type must always be greater or equal to the
probability that this individual is an element of one of the
subtypes of this object type. Intuitively, this is sensible since
if the individual is an element of an object type it must
certainly be an element of all supertypes of that type. In
addition to that, probabilities of instances of relationship
types are less than the probabilities of their parts. If one
considers, for example, the relationship type J3and-M em ber-
ship in the data model of Figure 4, one finds that the
probability that a given person is member of a given band
must be less than the probability that that person exists and
also less than the probability that that band exists. So models
in FuzzySet allow the introduction of uncertainty in
conceptual data models in a natural way.

4 . C O N S T R A I N T S

Constraints represent restrictions on populations. They
exclude populations that do not correspond with a possible
situation in the problem domain. Consider for example the
NIAM data model of Figure 4. In this data model it may be
desirable to express that each person is either a composer or
a musician. This implies the specification of a constraint that
enforces the populations of these object types to be a cover of
the population of the object type person. In general,
constraints may be quite complex and special languages for
their specification exist (mostly founded in logic).

Two important types of constraints that are frequently
used in conceptual data modelling techniques are the total
role constraint and the uniqueness constraint. These
constraint types correpond to a large extent to the
cardinality constraints in ER. They are more general, as
more than one relationship type may be involved. The
semantics of these constraint types is described in the
following sections.

4 .1 . T o t a l r o le c o n s t r a in t

A total role constraint over a number of roles stipulates that
all instances in the object types playing these roles have to
participate in at least one of these roles. Total role
constraints are important for applications as they determine
mandatory/optional properties of objects. For example, in
the Relation Model they determine whether a certain
column is allowed to contain null-values.

Formally, a total role constraint in a given type graph Q is
determined by a set of edges r C Q lt In the simplest
example of a total role constraint, r consists of a single edge
e. This total role constraint means that all elements of

name is~m em ber-of in the schema of Figure 4, implies that
every person has to be a member of a band.

A slightly more complicated example is r —
Two cases can be distinguished, depending on whether both
edges have the same target. In the first case both arrows have
the same target t — t a r g e t ^) = target(e2). The intuitive
meaning of this constraint is that each element of t must
participate in at least one of these two edges.

E x a m p le 4 ,2 . In the context of the schema of Figure 4, a
total role constraint on the roles with names is-m em b er-o f
and has-w ritten implies that every person either is a member
of a band or has written a song or both.

For the semantics of this type of constraint, first construct
the sum arrow ex + e2: source^) + source(e2) t H-1.
Intuitively speaking every element of t must be present in
t a r g e t^ - f e 2), however, as i-1-Ms a disjoint sum every
element is represented twice. Therefore an arrow is needed
that maps each element of t + t onto the corresponding
element of t . This can be achieved as follows. From the
definition of the coproduct it follows that there are two
injection arrows 7/: t -* t + t and I r \ t —> t -I-1. Further, there
is a unique arrow {{Id,; Id,)): / + t t, such that the
following diagram commutes.

t

id,

«Id,; Id,))

Id,

t
h h

t

The meaning of the total role constraint is that
«Id,; Id,)) o (e 1 + e2) must be an epimorphism.

source^) + source(e2)
Ci +02

epi

«Id/jld,»

t

If t a r g e t^) ^ target(e2), it is possible that one of these
is a subtype of the other or for example that both types have
a common supertype. In this case we first inject the elements
of the subtype into the supertype and then follow the same
procedure as in the previous case. Note that the supertype
is always equal to (7^tar9et^ 1)’target^2̂ >

E x a m p le 4.3. As an example of this type of total role
constraint consider the schema of Figure 16. A total role
constraint on the roles with names receives and earns-salary
would imply that every person, which is either a student or
an employee or both, either owns a scholarship or earns a
salary. This is clearly different from the situation in which
every student owns a scholarship and every employee earns

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

228 A . H . M. t e r H o f s t e d e , E . L ip p e a n d P. J. M. F r e d e r i k s

F IG U R E 16. Sample schema.

a salary. As students may have different representations as
employees, it is necessary to use the colimit construction to
identify identical persons. □

The full definition of the semantics of the total role
constraint is given below.

D é f in i t io n 4.1. Given a valid type model M and a total
role constraint in the involved type graph Q over r Ç G\ . Let

{target \ t e r} . The défini-* = E rer M (t) and V =
tion of the instance universe Ufo implies that for each i e ra n

-> Um exists. Since target(s) is aarrow i,: target(M (f)) -h
coproduct, these it determine a unique arrow
0 : target(s) —► £7^. M satisfies the total role constraint r
iff 0 o s is an epimorphism.

source(s)
E ..r"W
------------- >ta r g e t^)

E x a m p le 4.4.

U v

□
In example 3.1. take the total role

{p,w}* Then V = {A,C} and
A + C is the function

constraint over r =
m —A. The sum p -f u : F + G

{ f i^ a i>/2^ fl3î/3l̂ fl3>£iĥ ci)£2,~'4Ciî£ 3H_*c2}- Then 0 :
A ~f* C —> A — , a2\—*̂ 2) ^3*“ ^^3 j Cj1—) C2t~-*ß2}•
The composition 0 o (p + u) — {/xt—>ai —̂«3, ^ 1—̂^3,
g i ^ a i ig 2i-^a ii g3i-^a2} is an epimorphism in Set because
it is a suijective function. Therefore, the total role constraint
over r — {p, u} is satisfied in this model.

The total role constraint over {p} is not satisfied in this
model (as a 2 is not in the range of function p), but the total
role constraint over {<?} is. □

The total role constraint can be seen as a generalization
of several types of constraints found in conceptual data
modelling techniques, such as the collection cover
constraint and the subtype cover constraint. The collection
cover constraint for a collection type specifies that all
instances of its element type should participate in at least
one of its instances. The subtype cover constraint specifies
that all instances of a given object type should be instances
of at least one of a given set of subtypes of that object type.

4.2 . U n iq u en ess co n stra in t

The uniqueness constraint is closely related to the concept
of a key over a relation. A uniqueness constraint in a given
tvne graph G is determined bv a set of edees r C 0,.

In the m ost trivial case r consists of a single edge e . The
intuitive semantics is that each element of target(e)

determines at most one element in source(e). For a
model M in the category S et this implies that M (e) must
be an injective function. More generally, M (e) must be a
monomorphism.

E x a m p le 4.5 . A uniqueness constraint on the role with
name is-written-by in the schema of Figure 4 implies that
every song is written by at most one person.

In the next and more interesting case r = {eu e2} with
source^) = source(e2) = s . In this case the intuitive
semantics is that the combination of an element from
ta rget^) with an element from target(e2) determines at
most one element in source(e1).

E x a m p le 4.6. Consider a ternary relationship between
Person, Duration , and Project, capturing how many hours a
certain person has worked for a certain project. A
uniqueness constraint on the roles attached to the object
types Person and P ro jec t expresses that a person-project
combination has at most one associated duration. □

Formally, start by constructing the product arrow
e1 x e2\s x ^ -> target(ei) x target(e2)« From the defini
tion of the product it follows that there are two projection
arrows 7̂ : s x s —> s and 7t2: j x s —> s. Further, there is a
unique arrow ({lds, IdS)):s —► s x s, such that the following
diagram commutes.

s * s x s
*2

* s

The meaning of the uniqueness constraint is that
(ex x e2) o (()d5, ld5)} must be a monomorphism.

({Id,,Id,))
s -------- >S X s

mono
et x e 2

ta rge t^) x target(e2)

The case that r = { e l l e2} with source^) ^
source(e2) is simple, because it is equivalent to the
combination of two uniqueness constraints over {ei} and

W -
The full definition of the semantics of the uniqueness

constraint is given below.

D e f in i t i o n 4.2 . Given a valid type model M and a
uniqueness constraint in the involved type graph G over
r ç G\. Let p = Y l i(zTM (t) , S — {source(M(f)) | t e r } ,

For each 1 6 r there is an arrow 7rf : s
sou ree (M (t)). From the definition of the product it follows
that these 7r, determine a unique arrow
^ r is s s 5 source(p). Then, M satisfies the uniqueness
constraint r iff p o A is a monomorphism.

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

C o n c e p t u a l D a t a M o d e l l i n g f r o m a C a t e g o r i c a l P e r s p e c t i v e 2 2 9

IL ■»source(p)

mono

target (p)

(Nam e x N r) o ((Id p ersoni I ̂ P erson)) *s a monomorphism,
i.e. a total injective function. This implies that two persons
with the same name must have different numbers, which was
indeed the requirement we tried to express. □

□ Some conceptual data modelling techniques, among
As remarked in section 3.3, relationship types behave by others NLAM, allow uniqueness constraints over more

default as multisets: the same tuple can be represented than one relationship type. Such a uniqueness constraint
multiple times. If this is undesirable, it can be avoided by expresses a key over a derived relationship type which is a
adding a uniqueness constraint over the roles of the join of the relationship types involved. Therefore, the
relationship type.

E x a m p l e 4.7. Take for instance, in example 3.1., the
uniqueness constraint over r = {p, q}. Intuitively speak
ing, this constraint should be satisfied since
every combination from A and B determines at most
one element of F . The arrow A : F —> F x F =

{ h ^ i f u f i) , h ^ k h , f i) , / 3 >}- T h e p ro d u ct

p x q\ F x F —* A x B =

{ (/ h (f u

{ƒ25 / i) 1 ^(^3 > ^ 1) > (f z ì fi)*-* f a i bi) ,

(ƒ 3 » f ï) h^ f a i b \)) (ƒ 3 , / 2)i—^ (« 3 , ^ 1) ,

(f u h) ^ (a \ i b 2)y

(f 21 h) i~ * fa> b2),

(h i h) ^ f a ^ b i) }

The composition (p x q) o À = { f i ^ f a , bi)> f 2
f a) b \)) f a ^ f a) b 2)} is a monomorphism, because it is
an injective function. Therefore, the uniqueness constraint
over r = { p , q } is satisfied.

The separate uniqueness constraints over {p} and { q } are
not satisfied because p and q are not monomorphisms. □

E x a m p l e 4.8. Models in PartS et give a way to handle
missing values. Suppose that persons are identified by their
names. Two different persons with identical names receive
an additional number to distinguish them.

P erson

N a m e

S tr in g In teg er

The arrow N r is a partial function, because persons with a
unique name do not have a number. Suppose that we want to
express that every person must be uniquely identified by a
combination of name and number. This can be achieved by
putting a uniqueness constraint over {N a m e ,N r} .

P e r s o n .---------------- ► P erson x P erson

mono

Name x N r

Y

S tr in g x In teg er

semantics of this type of uniqueness constraint is completely
determined by the way the join condition has to be
computed. As joins can be specified categorically by the
use of pullbacks, we do not consider such uniqueness
constraints explicitly. It should be remarked, however, that
some categories do not have pullbacks (e.g. Rei). In other
words, the introduction of this type of uniqueness constraint
leads to a further restriction on Fund,

5. CONCLUSIONS AND FU RTH ER RESEARCH

This paper presents a unifying framework for conceptual
data modelling techniques. The framework is based on
category theory due to its formality and its high level of
abstraction. As has been pointed out, mathematical
formalizations should not impose representational choices
but instead focus on the essence of concepts.

Since the framework contains most important concepts of
t

existing data modelling techniques it can be seen as a
generalization of these techniques. Therefore, the framework
can be used to compare different conceptual modelling
techniques. As very few limitations are imposed upon type
graphs several restrictions that exist in other techniques can be
lifted. For example, a ternary relationship type may be a
subtype of a binary relationship type as the categorical
semantics only requires subtype instances to have correspond
ing supertype instances.

An important property of the framework is its ‘configur
able semantics’. Features, such as null values, uncertainty
and temporal behavior can be added to the models by
selecting an appropriate instance category. The addition of
such features to traditional (e.g. set or logic-based) semantics
usually requires a complete redesign of the formalization. This
property is also useful for experimenting with these features in
traditional data modelling techniques, since the mapping of
these techniques into the framework automatically defines a
semantics for these features.

Compared with other approaches that use category theory
[16,17] the current framework is simpler as it only uses
basic categorical notions. This makes the framework easier
to understand. Furthermore, the range of possible instance
categories is wider than in those approaches that are usually
limited to topoi or cartesian closed categories.

The model that is described here is very similar to object-
oriented data models. The subtypes in our approach are

The arrow ((I ̂ P erso n ’)) ̂ ̂ P erson ~ { p ^ (p t p) IP ^
Person}. The arrow N am e x N r is interesting, since it maps
the tuple (p ,p) for a person p whose N r is undefined to the analogous to subclasses. Attributes can be modelled using
tuple (N a m e (p) , l) . The uniqueness constraint holds if roles. Attribute inheritance could be incorporated explicitly

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

2 3 0 A . H . M . t e r H o f s t e d e , E . L i p p e a n d P . J . M . F r e d e r i k s

in the type model by adding an attribute that is defined in a
given type to all its subtypes. The value of this subtype
attribute arrow in the type model is the composition of the
original attribute arrow with the subtype arrow from the
subtype to the supertype. The resulting model is similar to
that of [16].

Several extensions to the current framework are the topic
of our current research. It seems to be possible to define
most relational database operators within the current
framework. Further it appears straightforward to incorporate
other types of constraints such as the exclusion, equality and
subset constraint.

A C K N O W L E D G E M E N T S

The authors would like to thank Denis Verhoef for his
comments on an earlier version of this paper. The comments
and suggestions of the referees, which have led to a number
of improvements, are also gratefully acknowledged.

R E F E R E N C E S

[1] H u ll, R. and K ing , R. (1 9 8 7) S em a n tic D a ta b a se M o d e llin g :
S u rvey , A p p lica tio n s and R esearch Issu e s . A C M C o m p u tin g
S u rv e y s , 1 9 , 2 0 1 -2 6 0 .

[2] P eck h a m , J. and M aryan sk i, F. S e m a n tic D ata M o d e ls .

(1 9 8 8) A C M C o m p u tin g S u rv e y s , 2 0 ,1 5 3 - 1 8 9 .

[3] C hen , P. P. (1 9 7 6) T h e E n tity -R ela tio n sh ip M od el; T o w a rd a
U n ified V ie w o f D ata . A C M Trans. D a ta b a s e S y s 1, 9 - 3 6 .

[4] S h ip m an , D . W . (1 9 8 1) T h e F u n ction a l D a ta M o d e l and the
D ata L a n gu age D A P L E X . A C M Trans. D a ta b a s e S y s t., 6 ,
1 4 0 - 1 7 3 .

[5] N ijsse n , G . M . and H alp in , T. A . (1 9 8 9) C o n c e p tu a l S ch em a
a n d R e la tio n a l D a ta b a s e D e s ig n : a f a c t o r ie n te d a p p ro a c h .
P ren tice -H a ll, S y d n ey , A ustralia .

[6] T eo rey , T . J., Y a n g , D . and Fry, J, P. (1 9 8 6) A lo g ic a l d e s ig n
m e th o d o lo g y for relational d atab ases u s in g the ex ten d ed
en tity -re la tion sh ip m o d e l. A C M C o m p u tin g S u rv e y s , 1 8 ,
1 9 7 - 2 2 2 .

[7] E n g e ls , G ., G o g o lla , M ., H o h en ste in , U ., H ü lsm an n , K .,
L öhr-R ich ter, P ., S aak e, G . and E h rich , H .-D . (1 9 9 2)
C on cep tu a l m o d e llin g o f database a p p lica tio n s u s in g an
ex ten d ed ER m od el. D a ta K n o w le d g e E n g in e e r in g , 9 , 1 5 7 -

2 0 4 .

[8] A b iteb o u l, S . and H u ll, R. (1 9 8 7) IFO : A F orm al S e m a n tic
D a ta b a se M o d e l. A C M Trans. D a ta b a s e S y s te m s , 1 2 , 5 2 5 -
5 6 5 .

[9] H alp in , T . A . and O rlow sk a , M . E . (1 9 9 2) F act-or ien ted
m o d e llin g for data a n a ly sis . J o u rn a l o f In fo rm a tio n S y s te m s ,

2, 97-119.
[1 0] ter H o fsted e , A . H . M . and van der W e id e , T h , P. (1 9 9 3)

E x p r ess iv en es in co n cep tu a l data m o d e llin g , D a ta &
K n o w le d g e E n g in e e r in g , 1 0 , 6 5 - 1 0 0 .

[11] ter H o fsted e , A . H . M ., Proper, H . A . and v a n der W e id e , T h .
P . (1 9 9 3) F orm al d efin itio n o f a co n cep tu a l la n g u a g e fo r the
d escr ip tio n and m an ip u la tion o f in form ation m o d els . In fo r

m a tio n S ystem s, 1 8 , 4 8 9 -5 2 3 .

[1 2] A v is o n , D . E . and F itzgera ld , G. (1 9 8 8) In fo rm a tio n S y s te m s
D e v e lo p m e n t: M e th o d o lo g ie s , T ech n iq u es a n d T o o ls . B la c k -
w e ll S c ie n tif ic P u b lica tio n s, O xford .

[1 3] B u b e n k o , J. A . (1 9 8 6) In fo rm a tio n S y s te m M e th o d o lo

g ie s — A R e sea rc h V ie w . In O lle , T . W ., S o l , H . G . and
V err ijn -S tu a rt, A . A . (e d s) , In fo rm a tio n S y s te m s D e s ig n

M e th o d o lo g ie s : I m p r o v in g th e P r a c t i c e , p p . 2 8 9 - 3 1 8 .
N o r th -H o lla n d , A m ste r d a m .

[1 4] v a n G r ie th u y se n , J. J. (e d) , (1 9 8 2) C o n c e p ts a n d T erm in o l

o g y fo r the C o n cep tu a l S ch em a a n d th e In fo rm a tio n B a se .
P ubi. nr. I S 0 /T C 9 7 /S C 5 -N 6 9 5 , IS O , ISO C entral Secretariat,
G en eva .

[1 5] B arr, M . and W e lls , C . (1 9 9 0) C a te g o r y T h e o ry f o r
C o m p u tin g S c ie n c e . P ren tice -H a ll, E n g le w o o d C lif f s , N J.

[16] T u ijn , C . (1 9 9 4) D a ta M o d e lin g f r o m a C a te g o r ic a l
P e r s p e c t iv e . P h .D . th es is , U n iv ers ity o f A n tw e rp , A n tw erp ,
B e lg iu m .

[1 7] B a c la w sk i, K ., S im o v ic i , D , and W h ite , W . (1 9 9 4) A
ca tegorica l approach to database sem a n tics . M a th e m a tic a l
S tru ctu res in C o m p u ter S c ien ce , 4 , 1 4 7 -1 8 3 .

[18] M cL arty , C . (1 9 9 2) E le m e n ta ry C a te g o r ie s , E le m e n ta ry
T o p o s es. V o lu m e 2 1 o f O x fo rd L o g ic G u id e s . C la ren d o n
P ress, O xford .

[1 9] H o a re , C . A . R . (1 9 8 9) N o te s o n an A p p ro a ch to C a teg o ry
T h eo ry fo r C o m p u ter S c ie n tis ts . In, B r o y , M . (ed), C o n

s tru c tiv e M e th o d s in C o m p u tin g S c ie n c e . V o lu m e 5 5 o f N A T O
A d v a n c e d S c ie n c e In stitu te S eries , pp. 2 4 5 - 3 0 5 . Springer-
V erlag , B erlin .

[2 0] G ogu en , J. A . (1 9 9 1) A ca tegorica l m a n ifesto . M a th e m a tic a l
S tru c tu res in C o m p u ter S c ie n c e , 1, 4 9 - 6 7 .

[2 1] A d á m e k , J., H err lich , H . and S treck er , G . E . (1 9 9 0) A b s tr a c t
a n d C o n c re te C a te g o r ie s . Pure and a p p lied m a th em a tic s .
John W ile y and S o n s , N e w Y ork .

[2 2] E hrich , H .-D . and S ern ad as, A . (1 9 9 1) O b ject c o n c e p ts and
constructions. In S aak e, G. and Sernadas, A . (ed s), P ro c e e d in g s
o f th e IS -C O R E W o rk s h o p ’91. (In fo rm a tik -B e r ic h te 9 1 -0 3) ,
pp. 1 -2 4 . T ech n isch e U niversität B rau nschw eig , B raunschw eig .

[2 3] F ia d eiro , J., S ern ad as, C ., M a ib au m , T . and S a a k e , G . (1 9 9 1)
P r o o f-th e o r e tic sem a n tic s o f o b jec t-o r ien ted sp e c if ic a tio n
co n stru cts . In M eersm a n , R ., K en t, W . and K h o s la , S . (ed s) ,
O b je c t-o r ie n te d d a ta b a s e s : a n a lys is , d e s ig n a n d c o n s tru c

tio n , pp . 2 4 3 - 2 8 4 . N o rth -H o lla n d , A

[24] C osta , J. F ., S ern a d a s, A . and S ern ad as, C. (1 9 9 4) O b ject
in h eritan ce b e y o n d su b ty p in g , A c ta In fo rm a tic a , 3 1 , 5 - 2 6 .

[25] S ie b e s , A . (1 9 9 0) O n C o m p le x O b je c ts . P h .D . th es is ,
U n iv e r s ity o f T w e n te , E n sch ed e .

[26] D a m p n e y , C. N . G ,, Joh n son , M . S . J. and M o n ro , G . P.
(1 9 9 2) A n Illu strated M a th em a tica l F o u n d a tio n fo r E R A . In
R attray, C. M . I. and C lark, R. G . (e d s) , T h e U n ified
C o m p u ta tio n L a b o r a to r y , pp. 7 7 - 8 3 . O x fo rd U n iv e r s ity
P ress, O x fo rd .

[27] Islam , A . and P h oa , W . (1 9 9 4) C a teg o ry M o d e ls o f
R ela tio n a l D a ta b a ses I: F ib rational F o rm u la tio n , S ch em a
Integration . In H a g iy a , M . and M itc h e ll , J. C . (ed s),
T h e o re tic a l A s p e c ts o f C o m p u te r S o ftw a re , In te rn a tio n a l
S ym p o siu m T A C S '9 4 i v o lu m e 7 8 9 o f L e c tu r e N o te s in
C o m p u te r S c ie n c e , pp. 6 1 8 - 6 4 1 . S p r in g e r -V er la g , S en d a i.

[28] S ern ad as, C ., F iad eiro , J., M eersm a n , R . and S ern a d a s, A .

(1 9 8 9) P ro o f-th eo re tic co n cep tu a l M o d e llin g : the N IA M
C ase S tu d y . In F a lk en b erg , E . D . and L in d g r ee n , P . (ed s),
In fo rm a tio n S y s te m C o n c ep ts : A n In -d e p th A n a ly s is , pp. 1 -
3 0 . N o rth -H o lla n d , A m sterd a m .

[29] R ydeheard , D . E . and B u rsta ll, R. M . (1 9 8 8) C o m p u ta tio n a l
C a te g o ry T h eo ry . P ren tice -H a ll, E n g le w o o d C lif fs .

[30] Y ou rd on , E . (1 9 8 9) M o d e rn S tr u c tu r e d A n a ly s is . P ren tice-
H all, E n g le w o o d C liffs , N J.

[31] M aier, D . (1 9 8 8) T h e T h eo ry o f R e la t io n a l D a ta b a s e s .
C om p u ter S c ie n c e P ress, R o c k v ille , M D .

[32] L ip p e, E . and ter H o fs te d e , A . H . M . (1 9 9 4) A C a te g o ry
T h eo ry A p p r o a c h to C o n c e p tu a l D a ta M o d e lin g . T ech n ica l
R eport C S I -R 9 4 1 5 , C o m p u tin g S c ie n c e In stitu te , U n iv ers ity
o f N ijm e g e n , N ijm e g e n .

[33] H am m er, M . and M c L e o d , D , (1 9 8 1) D a ta b a se D escr ip tio n
w ith S D M : A S e m a n tic D a ta b a se M o d e l. A C M T ra n sa c tio n s
on D a ta b a s e S y s te m s , 6 , 3 5 1 - 3 8 6 .

I I

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

C o n c e p t u a l D a t a M o d e l l i n g f r o m a C a t e g o r i c a l P e r s p e c t i v e

[3 4] ter H o fs te d e , A . H . M . an d v a n der W e id e , T h . P. (1 9 9 4) F act
O r ie n ta tio n in C o m p le x O b jec t R o le M o d e llin g T ec h n iq u e s .
In H a lp in , T A . and M e e r sm a n , R . (e d s) , P r o c e e d in g s o f th e
F ir s t I n te r n a tio n a l C o n fe r e n c e o n O b je c t 'R o le M o d e llin g
(O R M -1) pp . 4 5 - 5 9 , T o w n s v i l le , Q u e e n s la n d , A u stra lia .

2 3 1

[3 5] K im , W . and L o c h o v s k y , F . H . (e d s) (1 9 8 9) O b je c t-O r ie n te d
C o n c e p ts , D a ta b a s e s , a n d A p p l ic a t io n s . A C M P r ess , F ron tier
S e r ie s . A d d is o n -W e s le y , R e a d in g , Q u e e n s la n d , A u stra lia .

[3 6] Z d o n ik , S . B . and M a ier , D . (e d s) (1 9 9 0) R e a d in g s in O b je c t-
O r e in te d D a ta b a s e S y s te m s . M o rg a n K a u fm a n n , S a n M a teo .

4

T h e C o m p u t e r J o u r n a l , V o l . 3 9 , N o . 3 , 1 9 9 6

