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Humans have a massive capacity to store detailed information in visual long-term memory. The present

studies explored the fidelity of these visual long-term memory representations and examined how

conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800

object images with a different number of exemplars presented from each category. At test, observers

indicated which of 2 exemplars they had previously studied. Memory performance was high and

remained quite high (82% accuracy) with 16 exemplars from a category in memory, demonstrating a

large memory capacity for object exemplars. However, memory performance decreased as more exem-

plars were held in memory, implying systematic categorical interference. Object categories with con-

ceptually distinctive exemplars showed less interference in memory as the number of exemplars

increased. Interference in memory was not predicted by the perceptual distinctiveness of exemplars from

an object category, though these perceptual measures predicted visual search rates for an object target

among exemplars. These data provide evidence that observers’ capacity to remember visual information

in long-term memory depends more on conceptual structure than perceptual distinctiveness.
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The human brain can store a large number of objects, events,

words, and pictures, often after only a single exposure. In a

landmark study of visual long-term memory, Standing (1973)

showed people 10,000 images and found memory performance in

a recognition memory task was quite high (83%). Together with

other studies (Shepard, 1967; Standing, Conezio, & Haber, 1970),

these results demonstrated the existence of a massive capacity

long-term store for visual information. However, fundamental

questions were left unexplored by these seminal studies: How

detailed are the visual representations? How are thousands of

memory representations organized and stored so that they can be

successfully retrieved at a later point in time? In the current work

we begin to address these questions by examining the contribu-

tions of conceptual and perceptual distinctiveness to long-term

memory for visual objects.

The Fidelity of Long-Term Memory for

Visual Information

To estimate the capacity of any storage system, one must eval-

uate not only how many items can be remembered (quantity) but

also how much is remembered per item (fidelity). The work of

Standing (1973) and others made it clear that observers can suc-

cessfully remember thousands of pictures after only a single ex-

posure. However, the representations of the images in these large-

scale memory experiments were assumed to be sparse in detail:

Because all the images were chosen to be visually and categori-

cally distinct, observers could succeed at the two-alternative

forced-choice memory task by using a gist-like representation—

for example, one that captured only the basic category or

meaning of the image (Chun, 2003; Simons & Levin, 1997;

Wolfe, 1998). Only recently have studies systematically probed

the level of detail or fidelity with which hundreds or thousands

of image representations are maintained in long-term memory

(Brady, Konkle, Alvarez, & Oliva, 2008; Hollingworth, 2004;

Vogt & Magnussen, 2007). All of these studies demonstrated

that observers could recognize a significant amount of detail

about each object or image.
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In a study by Hollingworth (2004), for example, observers

remained significantly above chance at remembering which exem-

plar of an object category they had seen after studying about 100

objects embedded in a scene context, even with up to 400 inter-

vening objects in between study and test. This suggests that which

particular object exemplar you saw—not just the category of the

object—can successfully be stored for a hundred or more objects

in visual long-term memory. In Brady et al. (2008), observers saw

thousands of categorically unique objects, each presented once,

over the course of a 5.5-hr study session. Observers’ memory was

then tested using a two-alternative forced-choice task that pitted a

previously seen object against a different object image. Critically,

the foil image could either be an object from a different, novel

category (requiring observers to retain only basic-level category

information to succeed, similar to Standing, 1973), an object from

the same category (requiring observers to know which specific

exemplar from that category they had seen), or the same object, but

in a different configuration or pose (requiring observers to remem-

ber which state the object was in). Surprisingly, observers suc-

ceeded at even the more subtle discriminations, achieving 87%

accuracy in both the state and exemplar conditions. Together with

the previous results, this suggests that visual long-term memory

can store a large number of items with substantial detail, at least

under the experimental conditions that were tested in these studies.

Categorical Distinctiveness in Visual

Long-Term Memory

The items to be remembered from Standing (1973) were gath-

ered from various magazines, and thus presumably reflected ev-

eryday scenes and events. However, Standing also observed that

long-term memory capacity for vivid pictures, images that de-

picted oddities (e.g., a dog holding a pipe, a crashed airplane), was

even better: After seeing 1,000 vivid pictures, Standing calculated

that observers remembered 992 of them. This result suggests that

distinctiveness is a doorway to long-term storage and retrieval:

Memories in a sparsely populated position within the space of

representation are more likely to be retrieved than memories

embedded in a dense space of competing memories (e.g., Eysenck,

1979; Nairne, 2006; Rawson & Van Overschelde, 2008; Schmidt,

1985; von Restorff, 1933).

Even when nonvivid images were used in the previous large-

scale memory studies (Brady et al., 2008; Shepard, 1967; Stand-

ing, 1973; Standing et al., 1970), one salient aspect of these studies

is that the thousands of images presented to observers were dis-

tinctive from each other in at least one important way: They were

largely categorically unique. For instance, in Brady et al. (2008),

the 2,500 objects presented for encoding were from different

basic-level or entry categories (e.g., one bike helmet, one couch,

one coffee mug, etc.). Thus it is possible that the capacity to

retrieve enough information to succeed at subtle within-category

memory tests (e.g., Brady et al., 2008) depends on the categorical

distinctiveness of the items encoded into memory.

A study by Vogt and Magnussen (2007) brings interesting data

to bear on this point. Vogt and Magnussen observed that people

could tell apart an image of a new door from a previously studied

door with about 85% accuracy after studying over 400 images of

doors with surrounding background information. This suggests

that even with 400 images from the same category, observers can

successfully recognize details about each image. However, in an

important follow-up manipulation, Vogt and Magnussen showed

that observers were not remembering the doors, per se, but local

visual details: When the images were edited to remove other

objects and nondoor details from the scene (e.g., light fixtures,

window signs, structures on the surrounding walls), performance

dropped by 20%. In other words, when asked to remember only the

doors with nondoor details removed, people were not as success-

ful. Observers’ memory performance instead seemed to depend on

encoding distinctive details about the background of each of the

doors.

Perceptual Versus Conceptual Distinctiveness

There are many reasons to suppose that categorical uniqueness

is particularly important for supporting such high memory perfor-

mance in visual long-term memory. For example, it is widely

accepted that categories are the organizing structure of long-term

knowledge in the verbal domain (e.g., by spreading activation

models; J. R. Anderson, 1983; Collins & Loftus, 1975), with some

privileged status for basic-level categories (Mervis & Rosch, 1981)

or entry-level categories (Jolicoeur, Gluck, & Kosslyn, 1984). This

suggests that a unique basic-level category may be a powerful

retrieval cue, preventing interference from other perceptually sim-

ilar memories. Classic studies also demonstrate the critical role of

semantic organization in verbal memory; for example, details of a

story that are consistent within an existing schema are more likely

to be remembered than those which are not (e.g., R. C. Anderson

& Pichert, 1978; Bransford & Johnson, 1972). Semantic informa-

tion can also lead to systematic errors; for example, when recalling

word lists, semantically related nonpresented words will be falsely

remembered (Deese, 1959; Roediger & McDermott, 1995). These

kinds of results provide further evidence that conceptual knowl-

edge is an organizing principle for the storage and retrieval of

information in memory.

However, our understanding of the role of conceptual knowl-

edge for organizing and retrieving information from long-term

memory has predominantly been derived from studies that exam-

ine memory for text or verbal stimuli. When considering long-term

memory for visual information, perceptual features are likely to

play a more central role in long-term memory. Object categories

have a range of perceptual features: dominoes all have the same

shape, whereas leaves have very different shapes; pumpkins have

similar colors, whereas stamps have very different colors. Are

these perceptual dimensions critical for organizing and retrieving

memory for visual object information? One reason to believe this

is the case is that the nature of the content to be remembered is

perceptual (images): Attending to the perceptual features of words

(the case or font of text, the gender of a speaker’s voice) may not

help memory for the words, but similar “surface-level” attention

might be critical for visual long-term memory.

On the other hand, we might not expect a strong role for

perceptual distinctiveness in memory because objects can be rec-

ognized with line drawings, in different lighting conditions, and

from different viewpoints (e.g., Biederman, 1987), suggesting the

underlying representations may not necessarily require perceptual

details for accurate retrieval. Further, object categories have a

range of subordinate category structure; for example, there are

many kinds of cookies and only a few kinds of bowties. This
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subcategorical structure arises from knowledge and experience and

does not necessarily reflect the perceptual features of the objects.

As more items from a category are loaded into memory, how do

perceptual and conceptual dimensions of variation matter for re-

taining detailed object representations in memory?

The Current Study

Here we present a series of experiments that explore the fidelity

of our visual long-term memory and examine which stimulus

dimensions support detail in visual long-term memory representa-

tions. Understanding which dimensions predict memory perfor-

mance constrains models of encoding and retrieval and enables us

to make inferences about the underlying organization of visual

long-term memory. In Experiment 1, observers viewed thousands

of objects with a variable number of exemplars from each cate-

gory. If categories matter for visual long-term memory, then the

more items per category are studied, the worse memory perfor-

mance should be.

In Experiments 2 and 3 we obtained estimates of the conceptual

and perceptual distinctiveness of the exemplars within an object

category to examine the contributions of such distinctiveness to

memory interference. We find that the conceptual distinctiveness

within an object category predicts the difficulty of remembering

multiple exemplars within that category. Surprisingly, the percep-

tual distinctiveness within a category does not predict interference

in long-term memory. Finally, in Experiment 4 we show that our

measures of perceptual distinctiveness predict visual search times

using the same stimuli, demonstrating that the lack of correlation

between perceptual distinctiveness and memory interference is not

due to invalid ranking measures. Our results, showing a double

dissociation between the perceptual and conceptual contributions

to visual long-term memory and visual search, support the con-

clusion that conceptual distinctiveness plays a more prominent role

in supporting detailed representations in visual long-term memory

than perceptual distinctiveness.

Experiment 1: Interference in Visual Long-Term

Memory

In nearly all previous large-scale studies investigating the ca-

pacity of visual long-term memory (Brady et al., 2008; Standing,

1973), the items presented were categorically unique—for exam-

ple, a single hairdryer, a single coffee mug, and so on. Thus, it is

possible that the capacity to retain detailed information about

thousands of visual objects in long-term memory relies on having

encoded categorically distinctive items.

In the present experiment we examined this question by show-

ing observers thousands of objects, where we varied the number

of exemplars seen from each category from one exemplar to 16

exemplars (see examples of object categories in Figure 1). For

each of these conditions, we tested memory by presenting a new

exemplar and a previously studied exemplar, and observers indi-

cated which item they viewed during the study session. This

Figure 1. Sixteen categories of object exemplars, sampled from the set of 200 categories used for the

recognition memory task. The full database of stimuli is available from our website.
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allowed us to examine the role of categorical interference in

memory: If observers can remember 16 exemplars from a category

as well as they can remember one exemplar from a category, then

memory performance across these conditions will be equal. This

pattern of data would suggest that retaining detailed object repre-

sentations does not depend on the categorical distinctiveness of the

items in the set. Alternatively, if memory performance decreases

systematically as more and more exemplars from a category are

loaded into memory, then this pattern of data would suggest an

important role for categorical distinctiveness in visual long-term

memory.

Method

Participants. Eighteen adults (aged 20–35) gave informed

consent and received a compensation of $100 for participating in

the 6-hr experiment. All participants had self-reported normal or

corrected-to-normal vision. All of the participants were tested

simultaneously, using computer workstations that were closely

matched for monitor size and viewing distance.

General procedure. The general procedure is illustrated in

Figure 2. In the study phase, observers were presented with 2,800

color images of real-world objects. Each image (subtending 7.5° �

7.5° visual angle) was presented for 3 s, followed by an 800-ms

fixation cross. Observers were instructed that they would be pre-

sented with a stream of thousands of objects and that the task was

to “remember them all.” While studying the items, observers

additionally performed a repeat detection task to maintain focus.

For this task they were told to press a button to indicate if the

current item had been presented previously in the study stream.

The study session was broken up into 10 blocks of 20 min each in

which 280 images were shown. Between blocks, participants were

given a 5-min break and were not allowed to discuss any of the

images they had seen. Halfway through the study session, a 20-min

break was given.

At the end of the study session, observers were given a 10-min

break and then participated in the test phase, in which they com-

pleted a recognition memory task. Two items were presented on

the screen—one previously seen old item and one new foil item—

and observers reported which item they had seen before in a

two-alternative forced-choice task. Observers completed 240

forced-choice tasks: 200 exemplar-level tests and 40 in a baseline

novel category condition. They completed these trials at their own

pace and were asked to emphasize accuracy, not speed, in making

their responses. Before starting the experiment, we explained to

observers exactly how their memory for the items in the study

phase would be tested and presented several examples of the kinds

of two-alternative forced-choice tasks to expect. None of these

example object images or categories were used in the subsequent

experiment.

Recognition memory task. To probe the role of categorical

interference on recognition memory, we systematically varied how

many exemplars were presented in the study phase for each cate-

gory. For any given object category, observers studied either 1, 2,

4, 8, or 16 exemplars during the study phase. For each observer, 40

Figure 2. Left panel: Methods. During the study phase, 2,800 images were presented, one at a time, for 3 s

each, with an 800-ms fixation between images. The number of exemplars presented from a given category was

varied from one to 16. At test, two images were presented on the screen, and observers had to indicate which

object they had seen during the study phase. In the novel condition, the foil image was a categorically distinct

item, and in the categorical interference conditions, the foil item was a new exemplar from the same category.

Right panel: Recognition memory performance. When observers viewed a singleton item from a category and

were tested against an item from a distinct category (novel condition), memory performance was 93%. When a

singleton item from a category was tested against an exemplar foil (one studied-exemplar condition), perfor-

mance was 89%. Recognition memory performance decreased approximately 2% for each doubling of exemplars

in memory. Error bars reflect �1 SEM.
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object categories were assigned to each interference condition,

such that across observers each category was used in each condi-

tion. This means that for all 200 object categories used in the

exemplar-level recognition memory task, the category was pre-

sented equally often with 1, 2, 4, 8, or 16 exemplars. All the

images from these 200-object categories were distributed uni-

formly throughout the study phase.

The exemplar-level tests contained one previously seen old item

and one new foil item from the same category. Because a variable

number of exemplars from a category could be presented during

the study phase, we always tested memory for the first item

presented from each category. This helped ensure that all tested

items were at “equal ground” at the time of encoding. Further,

because the remaining object exemplars from that category were

presented after the tested item, we are examining the role of

retroactive interference: Any decrease in memory performance as

the number of studied exemplars per category increases is due to

interference from subsequently presented items. Participants were

not aware of this manipulation or of the number of exemplars per

category.

Importantly, the stimuli used as the test and the foil image in the

two-alternative forced-choice task were the same for each ob-

server. To choose these, for each category a pair of two exemplars

was drawn randomly from the 17 available exemplar images. One

of these exemplars was presented during the study stream, and the

other was only viewed as the foil at the memory task. Which image

served as the foil or the studied item was counterbalanced across

observers.

Because all of the memory tasks were the same for all observers,

the only varying factors across observers were (a) which item of

the test–foil pair was presented during the study phase and (b) how

many other exemplars were presented within that category. Be-

cause all categories were seen in all conditions, across observers

the stimulus set is completely counterbalanced. This means than

any effects on performance at the recognition tests are due to

interference from studied exemplars, and cannot be driven by

test–foil pairings that may be easy or more difficult, or any overall

ease or difficulty of particular object categories.

We also included a baseline memory task condition, consisting

of a studied item and a foil of a different basic-level category (a

novel condition, as in Standing, 1973, and Brady et al., 2008).

Forty objects with distinct categories were presented in the study

session. At test these were paired with 40 other objects, from

categories distinct from all other object categories seen during

study phase. As before, the test pair items were always the same,

and which novel item was presented in the study stream was

counterbalanced across observers. To choose these, the 80 items

from 80 distinct categories were randomly assigned to make 40

test pairs.

Repeat detection task. To maintain attention and to probe

memory online, participants performed a repeat detection task

during the study phase. Observers were told that an item could be

repeated from any point in the entire study session, and they

responded to exact repeat items by pressing the spacebar. They

were given feedback only when they responded, with the fixation

cross turning red if they incorrectly pressed the space bar (false

alarm) or green if they correctly detected a repeat (hit), and were

given no feedback for misses or correct rejections. Of the 2,800

images shown in the study session, 240 were repeated images (e.g.,

on average about one in every 12 items was a repeat image, or one

every �40 s). Which particular image repeated was randomized

across observers. All object categories used for the repeat detection

task were distinct from the object categories used for the recogni-

tion memory task.

Unbeknownst to the participants, the repeat images were sys-

tematically inserted to test both the impact of categorical interfer-

ence and the impact of the number of intervening items. To probe

the role of categorical interference in repeat detection, repeated

items could come from categories in which 1, 2, 4, 8, or 16

exemplars had been previously viewed. The repeated image was

always the last item of that category to be shown. Thus, we can

measure repeat detection performance as a function of number of

preceding within-category items, examining the role of proactive

interference. There were 40 repeat trials for each condition of

preceding exemplars (16, 8, 4, 2, 1) with an additional 40 trials for

the one-exemplar condition, yielding a total of 240 repeats.

Additionally, we manipulated how many intervening items oc-

curred between the repetition of an image, from 1, 15, 63, 255, to

1,023 intervening items. Repeat items were inserted into the

stream uniformly, with the constraint that all of the lengths of

n-backs (2-back, 16-back, 64-back, 256-back, and 1,024-back) had

to occur equally in the first half of the experiment and the second

half. This ensured that fatigue would not differentially affect

images that were repeated from further back in the stream. Of the

240 repeat trials, 48 happened after one item, 48 happened after 15

items, and so forth. This manipulation was crossed with the cate-

gorical interference manipulation. Thus, for example, each of the

48 repeats with one intervening item was preceded by a variable

number of exemplars from the same category, from one to 16.

Specifically, there were eight repeats for each categorical interfer-

ence condition � n-back length, with eight additional repeats for

all n-back conditions with one exemplar.

Stimuli. The total image database contained 4,760 different

images of single objects, from 520 different object categories. A

set of 200 object categories, each with 17 exemplars (3,400 im-

ages), was used for the recognition memory task. This allowed a

full counterbalance of these items across observers, with up to 16

presented in the study phase, and one more reserved as the foil

item in the test phase. Additionally, 80 distinct categories with one

exemplar each were used for the novel condition in the recognition

memory task (80 images). The remaining 240 object categories

were used in the repeat detection task, in which we did not perform

a full counterbalance across stimuli. Therefore the same categories

were seen with 16, 8, 4, 2, or one exemplar(s) by each observer.

There were 40 categories with 16 exemplars, 40 categories with

eight exemplars, 40 categories with four exemplars, 40 categories

with two exemplars, and 80 categories with one exemplar (1,280

images).

Stimuli were gathered using both a commercially available

database (Hemera Photo-Objects, Vol. I & II) and Internet

searches using Google Image Search. The 200 categories used in

the memory recognition task were the first 200 categories for

which we could obtain 17 exemplars. For each category, care was

taken to try to span the variety of exemplars, colors, and shapes

that existed in the category, but all exemplars within a category

were chosen to have a similar viewpoint. Figure 1 illustrates some

example sets. The full database of stimuli is available on our

website.
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Data analysis. All analyses of variance (ANOVAs) reported

are 1 � 5 repeated measures unless otherwise indicated, and effect

sizes are reported as eta-squared (�2), which can be interpreted as

the proportion of variance accounted for by the independent vari-

able (iv): �2 � SSiv/(SSiv � SSerror). For d� calculations, perfect hit

rates were adjusted to .995, and zero false alarm rates were

adjusted to .005.

Results

Recognition memory task. The results of the forced-choice

memory task are shown in Figure 2. When a singleton item in the

study stream was tested against a novel category at test (novel

condition), memory performance was 92.6% correct (SEM �

1.3%), consistent with previous findings of visual long-term mem-

ory requiring only memory for the item’s category (Brady et al.,

2008). When a singleton item was tested against an exemplar foil

(one-exemplar condition), memory performance was 88.6%

(SEM � 2.0%). There was a difference that approached signifi-

cance in performance between novel and one-exemplar conditions:

In other words, when a single item from a distinct category was

studied, memory performance for such an item is slightly higher

when tested against a foil from a different basic-level category

than when tested against an exemplar-level foil, t(17) � 2.03, p �

.06. These data replicate the results of Brady et al., 2008, and also

demonstrate that the ability to remember a categorically unique

item (at both the novel and exemplar level) is not affected by the

presence of many exemplars of other object categories within the

study stream.

Next, we examined the impact of subsequently presented items

from the same category. As the number of exemplars presented in

the study stream increases, memory at the subsequent two-

alternative forced-choice task decreases, F(4, 68) � 6.46, p �

.001, �2 � .28. We calculated the slope of memory performance as

a function of the log2 number of exemplars for each observer and

use this as a measure of interference attributable to the number of

exemplars from a category in memory (average interference �

–2.0%, SEM � 0.4%). Surprisingly, the degree of interference

from multiple exemplars was minimal, averaging only a 2% drop

in memory performance with each doubling of the number of the

exemplars in memory: Even with 16 exemplars from a category in

mind, observers could still distinguish one of those from a new

17th exemplar with 82% accuracy. Thus, overall, the memory

performance in this task was quite high. However, this interference

slope was significantly different than zero, demonstrating that

there was minimal, but reliable, interference, t(17) � 4.6, p �

.0001.

Although observers were told to emphasize accuracy, not speed

in their unpaced memory task trials, we also recorded reaction

times (RTs). Correct responses had a mean RT that was 1.2 s faster

than the mean RT for errors (correct RT � 2.5 s, incorrect RT �

3.7 s), t(17) � 5.10, p � .001. Additionally, when only a single

exemplar of a category was studied, correct responses were faster

when the foil item was from a novel category than when it was

another exemplar from the same category (novel condition RT �

2.2 s, one-exemplar condition RT � 2.3 s), t(17) � 2.06, p � .05.

RTs for correct responses increased monotonically as the number

of exemplars in memory increased, from 2.3 s in the one-exemplar

condition to 2.7 s in the 16-exemplar condition [RT � 2,300 ms �

106 ms*log2(exemplars)], F(4, 68) � 9.45, p � .001, �2 � .36.

Incorrect RTs were not different as a function of the number of

studied exemplars, F(4, 68) � 1, ns, �2 � .03.

Repeat detection performance. We first examined the effect

of number of intervening items between the item and its repetition,

collapsing across how many exemplars of the same category were

previously studied. Sensitivity (d�) for repeat detection was calcu-

lated for each condition, which takes into account hit rates cor-

rected by the overall false alarm rate. As the number of intervening

items increases, repeat detection performance decreases systemat-

ically, F(4, 68) � 43.5, p � .001, �2 � .72. Performance on the

repeat detection task during the study session is shown in Figure 3

(left panel). Note that in these data, we cannot distinguish between

effects due to the amount of elapsed time and effects due to the

number of total items intervening.

The corresponding false alarm rate and hit rates for these data

are as follows: 95% hits for one intervening item, 94% hits for 15

intervening items, 87% hits for 63 intervening items, 79% hits for

255 intervening items, and 63% hits for 1,023 intervening items,

with an overall false alarm rate of 3.9% (SEM � 0.5). With one

Figure 3. Repeat detection performance. Left panel: Sensitivity for detecting repeated images in the stream, as

a function of how many intervening items appeared between the first presentation of the image and the repeat

presentation. Note that these data could be due to the amount of elapsed time between repetitions or the number

of intervening items. Right panel: Sensitivity for detecting repeated images in the stream, as a function of the

number of prior exemplars presented before the first presentation of the to-be-repeated image. All error bars

reflect �1 SEM.
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intervening item, the hit rate was 95%, suggesting that people were

maintaining focus throughout the entire 5.5-hr study session. Fur-

ther, even for repeats with 1,023 intervening items, in which the

item was initially presented over 2 hr before it was repeated, repeat

detection performance was still high (63% hit rate, d� � 2.2).

Finally, people rarely had false alarms, with on average 100 false

alarm responses out of 2,560 possible correct rejections.

We next examined repeat detection performance as a function of

the number of preceding items of the same category, collapsing

across the number of intervening items between initial presentation

and repeat presentation. There was a significant effect of the

number of preceding within-category items on d�: As the number of

preceding items within the category increases, the repeat detection

sensitivity decreases, F(4, 68) � 69.0, p � .001, �2 � .80. Measures

of sensitivity are shown in Figure 3 (right panel). Again, overall the

repeat detection performance was high (all d� scores 	 2.0). Hit rates

were 84% for one preceding exemplar, 88% for two preceding

exemplars, 85% for four preceding exemplars, 81% for eight

preceding exemplars, and 79% for 16 preceding exemplars; this

decrease is reliable, F(4, 17) � 12.2, p � .001, �2 � .42. The false

alarm rate was calculated such that only false alarms to the items

of the same category were counted; they were 0.2%, 2.5%, 2.7%,

4.4%, and 6.4%, respectively, for the 1-, 2-, 4-, 8-, and 16-

preceding exemplar conditions; this increase is also reliable, F(4,

17) � 9.4, p � .001, �2 � .36. Finally, observers’ overall perfor-

mance in the recognition memory task was positively correlated

with their overall performance in the repeat detection task (r2 �

.61, p � .001).

Discussion

Recognition memory task. Overall, memory performance at

test was high: Even after spending 5 hr viewing 2,800 objects—

including 16 different backpacks, 16 different binoculars, 16 dif-

ferent apples, and so on—observers could discriminate between

old and new exemplars 82% of the time. These data demonstrate

that observers are remembering more than a gist-like representa-

tion in these large-scale memory studies, and they are consistent

with the results of Brady et al. (2008) showing high-fidelity

memory representations (see also Koutstaal & Schacter, 1997).

These data also suggest that categorical organization has a

strong effect on the maintenance of detailed visual long-term

memory representations. To place the effect of categorical inter-

ference in perspective, compare the present results to the landmark

findings of Standing (1973; Standing et al., 1970). Standing et al.

(1970) presented observers with 2,500 items and found 91% cor-

rect recognition performance for items foiled against a novel item,

quite similar to the present study (2,800 items, 93% correct).

Standing (1973) then increased the number of items to remember

dramatically: After studying 10,000 items, observers’ performance

dropped to 83% correct. This suggests that the addition of 7,500

items in Standing’s studies caused performance to drop from 91%

to 83%. It is interesting that, in the present experiment, the addition

of only 16 items of the same category caused a drop in perfor-

mance for our exemplar-level foils from 89% to 82%. This drop is

similar in magnitude to the addition of 7,500 new categorically

distinct items in Standing’s studies. Of course, in both cases, it is

important to point out that memory performance at a level of 83%

correct after 10,000 items in the case of Standing or 16 exemplars

and 2,500 total unique items is still quite high.

The present results suggest that category information is an

organizing principle in visual memory, showing strong support for

the idea that categorical uniqueness can prevent items from inter-

fering with each other in visual long-term memory.

Repeat detection task. The primary purpose of the repeat

detection task was to require a sustained task so participants

maintained focus throughout the study phase. However, the accu-

racy and RT data also allow us to probe online memory perfor-

mance with a low-prevalence old–new recognition task (rather

than a two-alternative forced-choice task in the memory task).

Additionally, the old–new discrimination performance in the

present study required exemplar-level precision in memory

(whereas in Brady et al., 2008, only categorical precision was

needed to succeed at the repeat detection task). Overall, perfor-

mance was high, with observers at 63% hits (d� � 2.2) when the

item repeated over 2 hr previous, and at 79% hits (d� � 2.4) when

the item was preceded by 15 other exemplars from the same

category before it was repeated.

These data suggest a strong effect of categorical organization on

visual memory: As the number of preceding exemplars increased

from one to 16, d� dropped. This drop was comparable to the drop

that occurred when the total number of intervening items increased

from one to 1,023. Thus, remembering 16 exemplars from the

same category caused about as much interference as remembering

over 1,000 objects of different categories. These data reinforce the

idea that categorical organization plays an important role in the

storage and retrieval of information in visual long-term memory.

Although the purpose of study was not to distinguish between

different models of item-recognition memory, there are systematic

effects in the hit rate and false alarm rates that constrain models of

memory retrieval (e.g., global-matching retrieval models; McClelland

& Chappel, 1998; Shiffrin & Steyvers, 1997). For example, we

observed that false alarm rates increased as more exemplars were

already in memory, presumably because any given new item is

more likely to falsely match an old item (e.g., Koutstaal &

Schachter, 1997). In other words, when presented with a new

image of a book, an observer may be unsure if she has seen this

particular book before, but because she has seen many books, she

may be more likely to believe this was one of them. This would

lead to more false alarms with more exemplars studied. However,

this same logic also predicts observers should get more hits,

because repeated items will also benefit from having many other

categorically similar items studied (e.g., see Shiffrin, Huber, &

Marienelli, 1995). In our data, however, we observed that the hit

rate decreased slightly with more exemplars in memory.

Why should hit rates decrease here—for example, why should

one be less accurate in saying “yes that’s a book I saw already” if

one has seen that book and 16 others? One possibility is that the

presence of many book representations in memory degrades the

trace of a new book via proactive interference, leading to a worse

match when that book is repeated. An alternate possibility is that

there is no trace degradation but that the decrease in hits results

from noise during the retrieval process. For example, if the current

book leads to the retrieval of the proper stored representation as

well as the representation of other similar books, then the trace

activated during retrieval would be a poor match to the current

item’s representation, leading to fewer hits. Although the current
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data do not distinguish between these hypotheses, they do con-

strain existing global-matching models.

The memory task and the repeat detection task let us probe,

respectively, the impact of retroactive and proactive interference.

The items tested in the two-alternative forced-choice memory task

were always the first of their category to be presented in the study

stream, with additional exemplars presented afterwards. Thus the

decrease in recognition memory performance with increasing ex-

emplars from a category was caused by subsequently presented

items, or retroactive interference. Conversely, in the repeat detec-

tion task performed during the study stream, the repeated item was

always the last exemplar presented from an object category. Thus

the decrease in repeat detection as a function of increasing exem-

plars was caused by interference from preceding items, or proac-

tive interference. Although the present data do not allow us to

examine the relative impact of these two kinds of interference, they

do demonstrate that visual memory representations are subject to

interference by both preceding items and following items that are

categorically similar.

Experiment 2: Distinctiveness Rankings

and Visual Memory

Experiment 1 suggests that the more categorically distinct the

thousands of items to be remembered are, the better the memory

performance observed in the forced-choice task. However, increas-

ing the number of exemplars presented for each category effects

both how conceptually distinct an item is in the set of to-be-

remembered items and also how perceptually distinct an item is,

assuming that on average two items from the same category are

more perceptually similar than two items from different categories.

In Experiments 2 and 3, we aimed to understand what is contrib-

uting to within-category interference in memory by examining

both the conceptual and perceptual distinctiveness of items within

a category.

By perceptual distinctiveness, we are specifically referring to

dimensions of perceptual variation that can be assessed for any

object category (e.g., color, shape), without any existing knowl-

edge about what an object is. Beyond these basic dimensions,

perceptual features are likely to be category specific (e.g., the

curvature of the mug relative to the curvature of the handle) and to

be acquired through visual experience (e.g., Schyns, Goldstone, &

Thibaut, 1998), and thus begin to blur the line between perceptual

and conceptual features. We chose to focus on shape and color

dimensions for several reasons. First, evidence suggests that there

are neural mechanisms in the visual cortex that are dedicated to

processing these object properties (e.g., for color, see, Bartels &

Zeki, 2000; Brouwer & Heeger, 2009; Conway, Moeller, & Tsao,

2007; Hadjikhani, Liu, Dale, Cavanagh, & Tootell, 1998; for

shape, see, Malach et al., 1995; Grill-Spector, Kushnir, Edelman,

Itzchak, & Malach, 1998; Kourtzi & Kanwisher, 2000, 2001).

Second, influential theories of cognitive development have iden-

tified shape and color as core object properties which young

children use for object individuation (Tremoulet, Leslie, & Hall,

2000; Wilcox, 1999) and object classification (Carey, 1985; Keil,

1989; Keil, Carter Smith, Simons, & Levin, 1998). Finally, shape

and color are basic feature dimensions with consequences for

many perceptual tasks such as visual search (e.g., Duncan &

Humphreys, 1989).

To address the role of conceptual distinctiveness, we specifi-

cally targeted the subordinate category structure, that is, the num-

ber of kinds of a given object category, such as kinds of cars.

Given the importance of basic-level categories from Experiment 1,

we predicted that further subordinate category structure might

provide additional support for high-fidelity visual object represen-

tations. That is, objects in memory will interfere with each other

less if they are conceptually distinctive at the subcategory level. It

is important to note that conceptual differences between two kinds

have to, at some point, be realized in perceptual features or else the

two images will be the same. However, for some object categories,

there are many different kinds that are similar in color and shape

(e.g., cell phones, TVs), and other categories may be highly

distinctive in color and shape but be of all of the same kind (e.g.,

bottles, buckets). Thus, to the extent that shape, color, and kinds

are uncorrelated in our 200-category set, we can probe for the

independent contributions of perceptual and conceptual distinc-

tiveness on alleviating interference in memory.

Experiment 2 used the following procedure. First, we obtained

quantitative estimates of each object category’s variation along

three focused dimensions—color, three-dimensional shape, and

subordinate category structure (i.e., the variety of kinds). Next, we

calculated an interference slope for each category reflecting how

memory performance in Experiment 1 was impacted by increasing

the number of exemplars. Finally, we examined if there was any

correlation between the distinctiveness measures and the memory

interference scores.

Method

Stimuli. The database consisted of the 200 object categories

with 17 exemplars from each category used in Experiment 1.

Participants. Eighteen adults (aged 20–35) gave informed

consent and participated in one to three of the ranking experiments.

They received $10/hr of participation. Twelve observers ranked

each dimension. Seven participants completed one ranking exper-

iment, four completed two ranking experiments, and seven com-

pleted all three ranking experiments. Because the aim was to

obtain estimates for each category and each dimension, we allowed

observers to rate more than one dimension if they had time, with

the order of rating tasks randomized within and across observers.

Further, as these ranks were gathered to predict memory interfer-

ence in Experiment 1, no observers in Experiment 2 were the same

as in Experiment 1.

Procedure. Participants were given instructions about the di-

mension along which they were going to rank the stimuli. For each

trial, all 17 exemplars of a category were presented on a 30-in.

computer monitor. Each object was displayed to fit within approx-

imately 8° � 8° of visual angle. Observers were instructed to

assign a rating to characterize the set of items in the object

category on a scale from 1 (very similar) to 5 (very distinctive) by

clicking a numbered button on the screen. Participants completed

200 trials, one for each category, and were given as much time as

they needed to respond. The order of trials was randomized across

observers and ranking dimensions.

For color rankings, participants rated how similar or varied the

colors were between all the exemplars of a category. Example

categories at the low and high end of the scale were given for

reference. Here a category with very similar colored exemplars
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was jack-o-lanterns, and one with very different colored exemplars

was flags. For shape rankings, participants rated how similar or

varied the three-dimensional shapes of the objects were, with

example categories of golf balls for similar shapes and leaves for

different shapes. For kind rankings, participants rated how few or

many kinds of that object there were. Here, example categories

were bowties and soda: There are few kinds of bowties but many

kinds of soda pop. The example categories used in the instructions

to the participants were chosen on the basis of pilot ranking

completed by the four authors. Participants were instructed to

focus solely on the dimension of interest and to ignore the others.

Data analysis. The reliability of the distinctiveness judgments

was assessed using two different measures. First, the mean corre-

lation (MC) reflects the average of all observer pairwise correla-

tions. Second, the effective rater reliability (R) takes into account

the MC across observers as well as the number of observers. R can

be interpreted as the percent of the underlying true ranks that has

been recovered for a given set of raters (Rosenthal & Rosnow,

1991). We also calculated the intraclass correlation (ICC) esti-

mates on the rank data, which showed similar results as the MC

estimates. ICC estimates are reported in Appendix A, Table A1.

Results

Data from two observers were excluded because their average

correlation with other observers’ data was greater than 2 SDs from

the set of observers’ average correlations. Postexperiment surveys

suggest that these two observers might have used the 1–5 scale

backward. Therefore, the analyses presented below were per-

formed on 12 observers for the kind ranks and 11 observers for the

shape and color ranks.

For all 200 categories, the mean rating was calculated for the

color, shape, and kind tasks. These mean ratings were used as a

measure of distinctiveness for each category along each dimen-

sion. For example, the set of 17 coffee mug images were highly

distinctive in color (4.8), moderately distinctive in shape (2.9), and

not very distinctive in the number of kinds represented (1.3).

Figure 4 shows an example category with low and high distinc-

tiveness for kinds, shapes, and colors. In our image database, there

are few kinds of mugs but many kinds of cars; balls are very

similar in three-dimensional shape, whereas different pieces of

exercise equipment are very distinctive from each other in shape;

keyboard keys are similar in color, while water guns are distinctive

in color.

Across the 200 categories, the average pairwise correlation

between observers was 0.64 for color ranks (z � 9.00, p � .001),

0.55 for shape ranks (z � 7.69, p � .001), and 0.25 for kind ranks

(z � 3.57, p � .001). R, calculated based on the average pairwise

correlation, accounting for the number of observers, was high for

all three dimensions (shape: R � .91; color: R � .95; kind: R �

.80). Comparing the dimensions, the conceptual distinctiveness

(kinds) and the shape distinctiveness of that category were mod-

erately correlated (r � .307, p � .001). Color and shape ratings

showed a trend for a negative correlation (r � 
.136, p � .06).

Finally, color was not significantly correlated with kinds (r �


.122, p � .08).

Distinctiveness and interference. We next obtained a mea-

sure of interference for each category using the data from Exper-

iment 1. That is, for each of the 200 categories, we calculated the

change in memory performance for increasing numbers of studied

exemplars (i.e., 1, 2, 4, 8, and 16). If a category has an interference

slope of 0, this indicates that there was no impairment in memory

as the number of exemplars to be remembered from that category

increased. As the interference slope becomes more negative, this

indicates worse memory performance with additional exemplars.

The slope was calculated for each category as the change in

percent correct as a function of log2(exemplars). Due to the across-

Figure 4. Distinctiveness rankings. Distinctiveness ratings were gathered for all 200 object categories along

three dimensions: conceptual distinctiveness (are there few or many different kinds of this object?), shape

distinctiveness (how similar or distinctive are the three-dimensional shapes of these objects?), and color

distinctiveness (how similar or distinctive are these items in color?). Example categories at each end of the

continuum (very similar and very distinctive) are shown for all three dimensions.
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subjects design, the estimate of any single category’s interference

slope was noisy (see Appendix A for measures of reliability);

however, the large number of object categories made it possible to

examine the correlation between distinctiveness and the degree of

interference in memory.

The correlations between interference in memory and the three

distinctiveness ratings are shown in Figure 5. Categories composed

of conceptually similar items showed more interference with in-

creasing exemplars in memory; categories composed of conceptu-

ally distinct items were relatively spared from interference with

increasing exemplars in memory. Overall, this correlation between

conceptual distinctiveness of a category and the memory interfer-

ence slope was significant (r � .150, p � .03). In contrast, there

was no correlation between either of the perceptual distinctiveness

measures and the interference slope (color: r � 
.020, p � .78;

shape: r � .040, p � .58). In other words, as more exemplars are

loaded into memory, subsequent memory performance was not

affected by whether these additional items were of similar or

distinctive colors. Likewise, categories with items that were sim-

ilar or distinctive in shape were equally likely to cause interference

in memory with increasing exemplars.

For visualization purposes, the 200 categories were divided into

three bins, based on the mean and standard deviation of the

distinctiveness scores (�1 SD, within �1 SD, and 	1 SD). For

statistical purposes, the correlations and calculations were per-

formed without the binned ranks, using the average rank for each

category and the interference slope. Although the correlations

between conceptual ranks and memory interference were reliable,

the magnitude was small. When we take into account the reliability

of the measures of these factors, this correlation indicates that

conceptual distinctiveness accounts for about 13% of the explain-

able variance in memory interference (see Appendix A, Table A1,

r2 adjusted column).

To assess the contributions of these three factors on memory

interference, we also conducted a stepwise multiple linear regres-

sion analysis. This yielded a model with only the conceptual

ranking included (partial correlation denoted with the abbreviation

pr; conceptual included, pr � .153, t[198] � 3.60, p � .03; color

excluded, pr � .003, t � 1, p � .96; shape excluded, pr � 
.010,

t � 1, p � .89).

Discussion

These data present a dissociation between the contribution of

perceptual and conceptual distinctiveness in visual long-term

memory. When categories have subordinate category structure—in

other words, there are many kinds of objects—people can remem-

ber more of them, even if they all have similar shapes and colors

(e.g., cell phones, televisions). Indeed, the most distinctive cate-

gories had an average interference slope of zero, suggesting that

there was no cost to increasing the number of conceptually dis-

tinctive exemplars in memory. However, perceptual distinctive-

ness did not predict how well objects would be remembered as the

number of exemplars increased. This finding is important given

that we are examining memory for visual information, where

exemplars are often different on perceptual dimensions (e.g., the

shapes and arrangements of buttons on remote controls).

For terminological purposes, we refer to distinctiveness in the

number of kinds as conceptual distinctiveness (rather than kind-

distinctiveness). However note that the instructions were explicitly

aimed at the number of kinds, and not about general knowledge or

functions of the items per se. The conceptual distinctiveness of

items depends on knowledge or experience with that category. For

example, some raters might know much about cars or kinds of

bread and give them high rankings, whereas other raters might

perceive no obvious subordinate categorical structure to kinds of

bread or cars and might give low rankings to these categories. For

each category, we average the distinctiveness measures across

raters and presume this reflects the average subordinate category

structure for each category across the general population. In the

memory interference measures, we also collapse over any individ-

ual differences with particular object categories when we calculate

the interference score for each category. This, if anything, would

make a correlation between conceptual distinctiveness and inter-

ference in memory more difficult to find. However, even in aver-

aging people’s expertise in the ranking and the memory measures,

we still observe a significant correlation between conceptual dis-

tinctiveness and memory interference.

In this study, we did find a moderate correlation between shape

ratings and conceptual ratings, consistent with a “shape” bias in

category formation (Landau, Smith, & Jones, 1988). However, in

Figure 5. Memory interference and distinctiveness ratings. Object categories were divided into three bins based on

the mean rank and standard deviation of the distinctiveness scores. The average interference slope from Experiment

1 is plotted against distinctiveness scores for conceptual, shape, and color ranking dimensions. Negative slope values

indicate memory interference, and the steeper the slope the greater the interference. Conceptual distinctiveness

correlated with the interference slope: The more conceptually distinct items from a category there were, the less

interference there was as the number of exemplars in memory increased. Perceptual dimensions of color and shape

did not correlate with the degree of interference in memory. Error bars reflect �1 SEM.
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general the three dimensions were not highly correlated, suggest-

ing that conceptual variation for these stimuli is not directly

proportional to the amount of perceptual variation along these

dimensions. Importantly, it is variation along this conceptual di-

mension that predicts the degree to which items will interfere in

memory, and not variation along perceptual dimensions.

One potential concern is that the perceptual rankings were along

focused dimensions of shape and color, rather than capturing a

more general perceptual distinctiveness over many perceptual fea-

tures. This may account for why we did not observe a relationship

between the perceptual distinctiveness measures and memory in-

terference. To address this possibility, in Experiment 3 we ob-

tained ratings on overall perceptual distinctiveness.

Experiment 3: Overall Perceptual Distinctiveness

Rankings

In Experiment 3, observers made judgments about the overall

perceptual distinctiveness of a set of exemplars. Observers were

instructed to judge only overall visual appearance, including fea-

tures such as size, color, shape, and texture, and so forth, and to

ignore any knowledge they had of the depicted items, including

their functions, the number of kinds, and so on. Additionally, a

different set of observers completed the same task but with the

images presented upside down. We expected this manipulation to

help observers focus on the visual appearance and draw less on

existing knowledge about what the objects were.

Method

Twenty-six adults (aged 20–35) gave informed consent and

participated in the overall perceptual ranking experiment, with 13

observers presented with upright images and 13 observers pre-

sented with inverted images. One observer from each task also

participated in Experiment 2, and no observers were the same as

those in Experiment 1.

Observers were instructed to give the set of 17 objects a rating

on a scale from 1 (very similar in overall visual appearance) to 5

(very different in overall visual appearance). Care was taken to

remind observers to focus only on the visual or perceptual features

such as size, color, shape, texture, and so forth and to ignore other

aspects such as the number of kinds, the functions, or any other

knowledge of the object category. For the inverted task, observers

were told that, to help them focus on the visual appearance, the

objects would be presented upside down. Example categories were

jack-o-lanterns (very similar in overall visual appearance) and

sippy cups (very different in overall visual appearance). All other

methods were the same as in Experiment 2.

Results

Data from two observers were excluded because their average

correlation with other observers’ data was greater than 2 SDs from

the set of observers’ average correlations. Postexperiment surveys

again suggest that these observers might have used the 1–5 scale

backward. The analyses below used data from 12 observers for

both upright and inverted versions of the overall perceptual dis-

tinctiveness task.

For all 200 categories, the mean overall perceptual distinctive-

ness rating was calculated for the upright and inverted groups. For

example, birds were highly distinctive in overall perceptual judg-

ments (4.0 upright, 4.1 inverted), whereas chessboards were not

distinctive in overall perceptual judgments (1.8 upright, 2.0 in-

verted). Across the 200 categories, the average pairwise correla-

tion between observers was .31 for upright images (z � 4.42, p �

.001) and .24 for inverted images (z � 3.4, p � .001). Adjusting

for the number of observers, both variants of the task showed a

high effective rater reliability (upright: R � .84; inverted: R �

.79). Further, upright and inverted overall perceptual distinctive-

ness judgments were significantly correlated with each other (r �

.71, p � .001).

Next we examined the relationship between overall perceptual

distinctiveness measures and the color, shape, and kind ranks from

Experiment 2. When upright, overall perceptual judgments were

highly correlated with shape (r � .70, p � .001) but were more

correlated with the number of kinds than with color (kinds: r �

.35, p � .001; color: r � .22, p � .01). When the same judgment

was made by different observers on inverted images, overall per-

ceptual distinctiveness was more evenly correlated with both shape

and color (shape: r � .51, p � .001; color: r � .44, p � .001), and

the correlation with number of kinds was numerically reduced, but

still present (r � .28, p � .001).

Distinctiveness and interference. Next we examined the re-

lationship between the overall perceptual distinctiveness ranks and

memory interference. Neither of the overall perceptual distinctive-

ness ranks made on upright images or inverted images was signif-

icantly correlated with memory interference slopes (upright: r �

.10, p � .17; inverted: r � .01, p � .83). Thus, consistent with the

results of Experiment 2, categories composed of overall visually

similar items showed no more interference in memory with in-

creasing exemplars than did categories with overall visually dis-

tinctive items. The correlations between interference in memory

and the two measures of overall perceptual distinctiveness are

shown in Figure 6.

Although nonsignificant, there was a moderate correlation

strength between overall perceptual distinctiveness on upright im-

ages and memory interference (r � .10, p � .17). A post hoc

analysis suggests that this correlation is driven solely by the shared

variance between upright overall perceptual distinctiveness and

conceptual distinctiveness ratings of the number of kinds (see

Appendix B).

Stepwise linear regression analysis using all of the ranking

dimensions to predict memory interference also confirmed these

findings, yielding a model with only conceptual ranking included,

and all other predictors excluded (kinds included: pr � .153,

t[198] � 3.60, p � .03; color excluded: pr � .003, t � 1, p � .96;

shape excluded: pr � 
.01, t � 1, p � .89; upright overall percept

excluded: pr � .047, t � 1, p � .51; inverted overall percept

excluded: pr � 
.028, t � 1, p � .69).

Discussion

Measures of overall perceptual distinctiveness, whether on up-

right or inverted images, were only moderately correlated with the

specific shape and color rankings, leaving open the possibility that

these new perceptual ranking might correlate with memory inter-

ference slopes. However, neither upright nor inverted versions of
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overall perceptual distinctiveness significantly correlated with

memory interference.

We also observed that judgments of overall perceptual distinc-

tiveness were not the same when images were upright versus

inverted. One possible explanation for this difference is that when

judging overall visual appearance, especially on upright objects,

knowledge about different object categories might cause observers

to adjust the amount of weight given to different feature dimen-

sions. For example, given a category such as “apples” for which

color variation is relevant for distinguishing which kind it is and

shape variation is less important, observers might have intrinsi-

cally discounted shape variation and relied more on color variation

when making the overall visual distinctiveness judgment. When

inverted, observers may more easily discount what the objects are

to focus on what they look like. Although it may not be possible

to fully separate overall visual appearance from existing object

knowledge, our attempts to do so with explicit instruction and

inverted object images support the conclusion that perceptual

distinctiveness does not account for the degree of within-category

interference observed in Experiment 1.

In Experiments 2 and 3, we employed a correlational approach to

explore the nature of the category interference effect observed in

Experiment 1 (i.e., the finding that memory performance decreased as

the number of within-category exemplars increased). This approach

takes advantage of natural variation in object knowledge and the

perceptual variability of the object categories tested. Future experi-

ments can experimentally manipulate these factors by training observ-

ers to learn new categories (e.g., arbitrary categories for novel objects)

which vary in their degree of perceptual distinctiveness. We predict

that the degree of interference from additional exemplars within a

category will depend on the degree of subcategorical knowledge, and

not the degree of perceptual similarity within a category. However,

these factors may be difficult to manipulate independently, as percep-

tual similarity judgments have been shown to depend on learned

categories (Gauthier, James, Curby, & Tarr, 2003). Although future

research should experimentally manipulate conceptual and perceptual

distinctiveness, for the present purposes it is important to validate our

perceptual distinctiveness measures, to make sure that the lack of

correlation with memory interference is not due to limitations of the

ranking procedures employed.

Experiment 4: Distinctiveness Rankings and Visual

Search

The previous experiments support the hypothesis that concep-

tual distinctiveness, and not perceptual distinctiveness, alleviates

memory interference. However, one concern with the lack of

correlation between perceptual ranking on memory is that the

perceptual rankings might not be valid measures of perceptual

distinctiveness (e.g., because they are too noisy, the range is too

restricted, or they simply do not provide a measure of perceptual

distinctiveness that can predict performance on any other task). To

address these concerns, we used a task that is known to depend on

perceptual distinctiveness of items—visual search (e.g., Duncan &

Humphreys, 1989). If the perceptual rankings correlate with search

times, then we can conclude that the lack of correlation between

perceptual distinctiveness and memory interference is not due to

invalid measures of perceptual distinctiveness.

Method

Participants. Six adults (aged 20–35 years old) gave informed

consent and received $40 for participating in the 4-hr search experi-

ment. No observers in Experiment 4 participated in Experiment 1.

Stimuli. The image database was the same set used in Exper-

iments 2 and 3, consisting of 200 object categories with 17

exemplars each. On each trial, all images were selected from one

of the 200-object categories and presented in randomly selected

locations from an invisible 7 � 5 grid (with each object subtending

approximately 5° � 5° visual angle). At the center of the display

one of the 17 exemplars was presented with a black outline frame,

designating that item as the target item. Sixteen other items were

placed randomly in the remainder of the display (see Figure 7). On

target present trials, the target could appear at any location within

the 7 � 5 grid.

Procedure. Observers performed a visual search task. On

each trial, a random category from the set of 200 was selected, and

a random exemplar from the set was chosen to be the target for that

trial. The target item was presented at the center of the display

highlighted with a black outline frame, and the remaining items

were randomly placed on the rest of the display (see Figure 7). The

Figure 6. Memory interference and overall perceptual distinctiveness ratings. Object categories were divided

into three bins based on the mean rank and standard deviation of the distinctiveness scores. The average

interference slope from Experiment 1 is plotted against distinctiveness scores for overall perceptual ratings on

images presented either upright or inverted. Error bars reflect �1 SEM.
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task was to determine as quickly and as accurately as possible

whether the target item appeared anywhere else on the display. On

half of the trials, the target was absent and all 16 nontarget

exemplars were presented. On the other half of the trials, the target

was present, and 15 different nontarget exemplars were shown

(randomly chosen without replacement from the set of 16 nontar-

gets). Observers completed four 1-hr sessions of 800 trials, yield-

ing 16 trials per category.

Results

The overall error rate was low (�8%), and the following anal-

yses were conducted on mean RT for correct responses collapsed

across target presence (present vs. absent). RT was collapsed

across observers and was calculated separately for each of the 200

categories, and it was then correlated with the conceptual and

perceptual rankings obtained in Experiments 2 and 3.

There was no reliable correlation between conceptual distinc-

tiveness and RT (r � 
.015, t � 1, p � .84). However, both

focused perceptual measures showed a significant correlation with

RT: RT was faster when the within-category colors were more

distinctive (r � 
.667), t(198) � 12.6, p � .001, and when the

within-category shapes were more distinctive (r � 
.146),

t(198) � 2.08, p � .04. Furthermore, both estimates of overall

perceptual distinctiveness correlated with RT as well (upright: r �


.520, p � .001; inverted: r � 
.610, p � .001). Taking into

account the reliability of the ranks and search RTs, the amount of

explainable variance accounted for by each dimension is, in order,

inverted overall perceptual distinctiveness (64%), color (61%),

upright overall perceptual distinctiveness (43%), and shape (4%;

see Appendix A, Table A1, r2 adjusted column). Figure 8 plots

search RT as a function of the five distinctiveness rankings from

Experiment 2 and 3, illustrating that perceptual, not conceptual,

distinctiveness modulates search performance.

A stepwise multiple linear regression analysis using only the

focused distinctiveness measures along color, shape, and concep-

tual dimensions yielded a model with both the color and shape

included (partial correlation denoted with the abbreviation pr;

color included: pr � 
.705, t[197] � 13.94, p � .001; shape

included: pr � 
.335, t[197] � 4.99, p � .001; kinds excluded:

pr � 
.036, t � 1, p � .62). A stepwise linear regression analysis

including all five distinctiveness measures includes both upright

and inverted overall perceptual ranks and color and excludes shape

and kinds (color included: pr � 
.601, t[196] � 10.52, p � .001;

upright overall percept included: pr � 
.301, t[196] � 4.41, p �

Figure 7. Visual search experiment methods. An example search display

is shown. The target item was presented in a box at the center of the

display. Observers responded as quickly as possible whether the target was

present or absent in the surrounding display. Average search time was

measured for each of the 200 object categories.

Figure 8. Search time and distinctiveness ratings. Object categories were divided into three bins based on the

mean rank and standard deviation of the distinctiveness scores. The average search time from Experiment 4 is

plotted for each bin, for conceptual, shape, and color ranking dimensions (Experiment 2), and overall perceptual

rankings for upright and inverted images (Experiment 3). All perceptual measures correlated with search time:

The more distinctive items were in color, shape, or overall appearance, the easier it was to find the search target

amidst an array of exemplar distracters. Conceptual distinctiveness did not correlate with search time. Error bars

reflect �1 SEM.
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.001; inverted overall percept included: pr � .178, t[196] � 2.53,

p � .01; shape excluded: pr � .13; t[196] � 1.86, p � .07; kinds

excluded: pr � .12; t[196] � 1.7, p � .09).

Finally, visual search RT does not predict memory interference

(r � .04, p � .54). This provides an additional measure of

perceptual distinctiveness that does not predict memory interfer-

ence.

Discussion

Visual search rates for a target among exemplar foils was well

predicted by how distinctive the set of exemplars within a category

were in both color and shape, as well as in overall perceptual

appearance. These results demonstrate that the within-category

perceptual rankings are valid, and they confirm well-established

findings that search is affected by similarity between targets and

distracters and similarity between distracters and other distracters

(Duncan & Humphreys, 1989). We did not observe a correlation

between conceptual distinctiveness and search rates, even when

taking into account the contributions of the other two factors. This

is somewhat surprising, given that the visual search task has a

slight memory demand: After fixating the target to find it among

the field of distracters, a memory trace must be maintained so that

inspected items can be compared to the target (see Shore & Klein,

2001, for a review of the role of memory in search). However, by

design, we attempted to reduce the memory demands in the visual

search task by having the target preview always present at the

center of the display. Together, these correlations present a second

dissociation between perceptual and conceptual contributions, here

within the context of an online visual processing task.

We also found that the visual search RTs did not predict mem-

ory interference slopes from Experiment 1. Examining these two

tasks of search and memory, there are some striking similarities:

For search, observers are finding a target among distracters in

view, whereas for recognition memory, observers “find” the same

target from among the same “distracters” in memory. The lack of

correlation between these two tasks implies that the factors that

influence search times are not the same as the ones that influence

visual long-term memory. Of course, in some sense this must be

true; for example, in a search array visual acuity constrains the

features that can be seen from items in the periphery and thus how

attention is guided through the search array, whereas similar visual

acuity constraints are not present in memory. However, one might

expect at least a partial overlap between categories with easy

targets to find online (search) and offline (memory), and we did not

find any support for this prediction in the present data.

Finally, these data give rise to a double dissociation with the

long-term memory experiment. Conceptual distinctiveness sup-

ports memory more than perceptual distinctiveness, whereas per-

ceptual and not conceptual distinctiveness predicts search time.

These data further confirm the results of Experiment 1, wherein

memory for object details, seemingly “perceptual” information, is

retrieved more easily and/or stored more efficiently when the item

is conceptually distinct from other items in memory. Furthermore,

the degree of perceptual overlap within a category does not predict

what categories will be easier or harder to remember, but it does

predict how difficult it will be to search for one among many.

These results support, at a minimum, the conclusion that concep-

tual distinctiveness plays a more prominent role than perceptual

distinctiveness in supporting detailed representations in visual

long-term memory.

General Discussion

Observers are capable of remembering thousands of visual

representations in long-term memory (e.g., Shepard, 1967; Stand-

ing, 1973), including detail beyond just the “gist” of the image

(e.g., Brady et al., 2008; Hollingworth, 2004; Vogt & Magnussen,

2007). The aim of the current experiments was to explore what

kind of information supports this detailed visual long-term mem-

ory. Our initial hypothesis was that knowledge about object cate-

gory might provide a “conceptual hook” on which to index a single

detailed representation but that multiple exemplars might exhaust

the benefits of a conceptual hook quickly.

To examine this possibility, in Experiment 1 we presented

observers with thousands of objects with a variable number of

exemplars from each object category. We found that memory

performance was quite high—even with 16 exemplars per cate-

gory, observers were still well above chance at recognizing which

of two exemplars they had previously seen (82%). This result

indicates that 16 exemplars do not reach the bounds of exemplar-

level memory capacity. However, we also found that memory

performance was systematically lower as the number of stored

exemplars increased, demonstrating that object categories play a

role in maintaining such detailed memory representations.

To explore the nature of this categorical interference, our ap-

proach was to predict which object categories suffered from more

interference or less interference in memory. In Experiments 2 and

3, for each category we estimated how distinctive the exemplars

were in visual appearance (perceptual distinctiveness) and number

of kinds (conceptual distinctiveness). We found that there was less

interference for categories in which the exemplars were concep-

tually distinctive. On the other hand, the degree of perceptual

distinctiveness did not predict the amount of interference: Percep-

tually distinctive exemplars lead to impaired memory performance

just as much as perceptually similar exemplars. This was true for

all four measures of perceptual distinctiveness we measured:

shape, color, overall visual similarity, and inverted overall visual

similarity. Experiment 4 verified that these perceptual measures

are valid and predict performance on a visual search task, thus

providing a double dissociation for the role of conceptual and

perceptual distinctiveness in visual memory and visual search.

The present experiments expand our understanding of visual

long-term memory in two ways. First, the fidelity of visual long-

term memory representations appears to be higher than previously

demonstrated, as observers succeeded at exemplar-level memory

tasks after viewing thousands of objects with multiple exemplars

per object category. Second, there was minor but reliable interfer-

ence due to additional exemplars in memory, where the degree of

memory interference can be predicted by how conceptually dis-

tinctive the exemplars are from each other, but not by their

perceptual distinctiveness. The correlation between interference

and conceptual distinctiveness ranks suggests that conceptual

structure at the basic level and subordinate level supports the

massive capacity of visual long-term memory.
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Conceptual Knowledge Supports Detailed Visual

Memory

Previous research has demonstrated that concepts can help sup-

port visual long-term memory representations. For example, Wise-

man and Neisser (1974) presented observers with two-tone am-

biguous face images (Mooney faces) and asked them to judge

whether there was a face present. Although all of the images

contained faces, observers remembered the images they had seen

as faces better than images that did not make contact with this

organizing concept. Similarly, memory for ambiguous shapes is

improved when studied with an accompanying semantic label

(Koutstaal et al., 2003, Experiment 1), and memory for real-world

objects is better than memory for perceptually rich but nonmean-

ingful objects (Koutstaal et al., 2003, Experiment 2). Broadly,

these data support the idea of a conceptual hook, wherein existing

knowledge about object categories supports long-term storage. The

current results expand upon this idea, suggesting that subordinate

category structure can provide multiple hooks, which support

long-term memory for item-specific details.

Although conceptual knowledge supports detailed long-term mem-

ory, it is still necessary to attend to the details in order to encode them

into memory. For instance, focusing on the conceptual aspects of a

stimulus can actually lead to impaired memory for visual details or

other item-specific perceptual information (Intraub & Nicklos, 1985;

G. R. Loftus & Kallman, 1979; Lupyan, 2008; Marks, 1991). For

example, Marks (1991) found that observers had better memory

for pictorial details when the study task required them to judge the

physical features of the pictures (an item-specific task) compared

to when they judged how well the pictures fit into scenes (a

semantic task). This is consistent with the idea of transfer-

appropriate processing (e.g., Morris, Bransford, & Franks, 1977;

Roediger & Blaxton, 1987; Roediger, Weldon, & Challis, 1989),

where memory performance depends on the match between how

information was studied and how it is tested. These results suggest

that attention to the details is necessary to remember them, and the

current results add that item-specific details cannot be stored in

memory without the support of preexisting conceptual knowledge.

Role of Concepts at Encoding and Retrieval

How might conceptual knowledge support detailed memory rep-

resentations? One possibility is that prior knowledge of object cate-

gories can enable compressive encoding, reducing the information

load of a presented stimulus. For example, compressive encoding has

been demonstrated in working memory. In the verbal domain remem-

bering familiar letter strings (e.g., FBI–CBS–NCAA–PBS) is much

easier than unfamiliar strings (FB–ICB–SNA–AAP–BS; Bower &

Springston, 1970). Similarly, in visual working memory, learned

knowledge about color pairs enables more colors to be remembered

(Brady, Konkle, & Alvarez, 2009; see also Feigenson & Halberda,

2008). Just as these working-memory representations rely on existing

knowledge, long-term memory representations might rely on similar

mechanisms. For example, using category-specific knowledge, it

could take less space in memory to encode that an apple is round than

that a bread loaf is round, because observers already know that apples

are round and bread loaves can come in many shapes. On this account,

compressive encoding allows observers to maintain more features

from objects for which they have more prior knowledge. When

presented with an item again at test, the richer representation stored in

long-term memory would be more likely to match, improving recog-

nition accuracy for objects for which we have more prior knowledge.

Alternatively, prior knowledge might support high memory

performance by directing attention and encoding resources to only

the details that are likely to distinguish between exemplars (e.g.,

Eysenck, 1979; Nosofsky, 1986; see also Goldstone, 1998). In-

deed, the notion that diagnostic features support successful re-

trieval is fundamental to distinctiveness models of memory

(Nairne, 2002; see also Hunt & Worthen, 2006; Schmidt, 1991), as

well as models of categorization (Nosofsky, 1984, 1986; see also

J. R. Anderson, 1991; Tenenbaum & Griffiths, 2001). In these

models, the effectiveness of some cue or feature at retrieval de-

pends not only on how likely it is to match an item stored in

long-term memory but also on how unlikely it is to match other

items. Thus, observers in our experiment may have used prior

knowledge to encode only diagnostic features that would enable

them to distinguish the item from exemplars within the category

and from items across categories. At retrieval, these diagnostic

features may enable observers to more accurately recognize which

item was studied. Although the compressive encoding account

predicts that observers are maintaining richer representations for

some items and not others, this directed encoding account predicts

that observers are maintaining a sparse representation of each item,

where more informative and diagnostic details are stored for items

for which we have more prior knowledge.

A final possibility is that prior knowledge creates new features

for items people know more about, leading to an expanded repre-

sentation. Studies of category learning provide support for this

hypothesis, demonstrating that category learning can go beyond a

strategic reweighting of relevant stimulus dimensions and instead

involve the creation of new features to represent objects (Gold-

stone, Lippa, & Shiffrin, 2001; Hock, Webb, & Cavedo, 1987;

Schyns & Murphy, 1994; Schyns & Rodet, 1997). For example,

Schyns and Rodet (1997) showed that exposing observers to one

kind of categorization task affects the features they use on a later

categorization task, revealing that features are flexibly created and

depend on an observer’s past history with an object (i.e., their

preexisting knowledge). Importantly, Schyns argued that new fea-

tures for representing visual stimuli are created as a consequence

of the categorization task and terms them functional features (e.g.,

Schyns & Murphy, 1994; see also Archambault, O’Donnell, &

Schyns, 1999). On this account, observers in our experiments use

preexisting knowledge about object categories to encode each

item, where the richer the category and subordinate category

information, the more functional features can be encoded. This

enhanced coding model would allow observers to store more

information from these stimuli. On this expanded encoding ac-

count, observers have a richer representation of some items, pro-

viding a higher probability of a match between a target item and

this representation during retrieval. Both enhanced and compres-

sive encoding (also called chunking or unitization) argue that

observers have a richer representation for conceptually distinctive

items but differ in that compression relies on hierarchically com-

bining smaller parts into a larger whole, whereas newly created

features might be large and not composed of smaller discrete parts

(for discussion, see Goldstone, 1998; Schyns et al., 1998).

Although preexisting knowledge may allow for efficient encod-

ing, it is also possible that conceptual distinctiveness is solely (or
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additionally) important at retrieval. In the strong version of this

account, visual long-term memory representations are encoded

with “equal” fidelity, and conceptual distinctiveness supports suc-

cess at the memory task by providing an effective retrieval cue.

This is a variant of the cue-overload hypothesis, which states that

a memory retrieval cue becomes less effective as the number of

studied items associated with that cue increases (M. J. Watkins,

1979; O. C. Watkins & Watkins, 1975) and that forgetting arises

due to the ineffectiveness of retrieval cues, as opposed to memory

trace degradation and retroactive interference (Wixted, 2004). To

account for our results on this view, one would have to assume that

memory is accessed on the basis of categorical retrieval cues, even

when making exemplar-level comparisons. Consequently, increas-

ing the number of remembered items sharing a single category cue

will decrease the likelihood of accurate retrieval and recognition.

When we have more knowledge about a category, subcategorical

retrieval cues can be used, reducing the degree of cue overload.

Our results demonstrate that conceptual distinctiveness supports

successful memory performance for visual memory tasks requiring

exemplar-level detail. Future studies are required to understand

whether this capacity is supported by compressive, directed, or en-

hanced encoding of the items, or if categorical interference occurs

only at retrieval, and to what extent there is interference and degra-

dation of stored memory traces due to conceptually similar items.

Content and Organization of Long-Term Memory

In the present experiments, we explored which features support

the ability to maintain detailed long-term memory representations

by looking for effects of similarity along different dimensions

(conceptual and perceptual). Previous research has employed a

similar approach to examine the content and organization of both

short-term and long-term verbal memory representations. For in-

stance, Baddeley (1966b) found that verbal short-term memory

retention is much worse for a list of acoustically similar words than

a control list, whereas there is a relatively small effect of semantic

similarity on short-term memory for words. Long-term memory

appears to show the opposite pattern: Lists of semantically similar

words are remembered worse than a control list, whereas there is

no effect of acoustic similarity on long-term memory for words

(Baddeley, 1966a). On the basis of these patterns of acoustic and

semantic interference, Baddeley argued that verbal long-term

memory representations are largely conceptual in nature.

However, contrary to this hypothesis of purely conceptual en-

coding in verbal long-term memory, retrieval from long-term

memory is primed not only by conceptually related items (E. F.

Loftus, 1973) but also by phonetically similar items (E. F. Loftus,

Senders, & Turkletaub, 1974). Moreover, it appears that words can

be encoded acoustically in long-term memory when subjects are

not required to perform a distracting short-term memory task just

after learning the word list (Baddeley, 1966a). Combined, these

results suggest that verbal long-term memory is organized in terms

of both conceptual and phonetic information, favoring a multimo-

dal view of memory in which each item is encoded and represented

along multiple dimensions (E. F. Loftus et al., 1974). These

findings from verbal long-term memory suggest our own results on

visual long-term memory should be interpreted with caution.

Although we did not observe perceptual interference effects in

the current study, observers were able to make exemplar-level

discriminations which require memory for item-specific details. It

is thus possible that visual long-term memory is organized primar-

ily by categorical structure and that this conceptual representation

provides a hook into an entire multimodal memory trace, enabling

the storage and retrieval of both the conceptual content and item-

specific perceptual details.

Relationship Between Visual and Verbal Long-Term

Memory

It is widely found that stimuli presented in picture form lead to

better memory performance than when those stimuli are presented

in word form—the picture superiority effect (T. O. Nelson, Met-

zler, & Reed, 1974; Paivio, 1971; Paivio & Csapo, 1973; Weldon

& Roediger, 1987). Put another way, memory capacity for pictures

is larger than memory capacity for words (Shepard, 1967; Stand-

ing, 1973). A classic account for this is Paivio’s dual-coding

hypothesis (Paivio, 1971, 1986, 1991), in which pictures are likely

to be implicitly named (e.g., Grill-Spector & Kanwisher, 2005)

and thus benefit from both visual and verbal codes, whereas words

are less likely to spontaneously be imagined pictorially and thus do

not benefit from dual coding. However, pictures show better

memory than words even when they are not being named (Madi-

gan, 1983), and dual-coding predictions on memory performance

when observers study pictures and are tested with words, and visa

versa, are not borne out in experimental results (e.g., Mintzer &

Snodgrass, 1999; Stenburg, Radeborg, & Hedman, 1995).

The sensory–semantic model (D. L. Nelson, Reed, & Walling,

1976) provided an alternate account for the picture superiority

effect and suggested that pictures have stronger sensory codes than

words do, leading to more distinct memory traces. Consistent with

this idea, when semantically related pictures are studied, there is

less interference in recognition memory than when corresponding

semantically related words are studied (Dodson & Schacter, 2001;

Israel & Schacter, 1997; Schacter, Israel, & Racine, 1999; Smith &

Hunt, 1998; see also Shiffrin et al., 1995). On this account, pictures

show less interference in recognition memory because they rely

more on perceptual rather than conceptual features (cf. Hunt &

McDaniel, 1993). However, this interpretation has largely been

ruled out by subsequent studies (e.g., Schacter, Cendan, Dodson,

& Clifford, 2001; Stenburg, 2006). For example, if the memory

task is to identify whether an item from a previously studied

category, requiring memory for conceptual information, memory

is no worse when pictures were studied compared to when words

were studied (Schacter et al., 2001). These data do not support the

claim that pictures have less conceptual information than words

(see also Potter & Faulconer, 1977; Stenburg, 2006).

One intuitive explanation for the difference in memory perfor-

mance for pictorial and verbal stimuli is that when a picture is

presented, much more preexisting knowledge can be brought to

bear on the stimulus (e.g., not only that a car is pictured, but what

kind of car it is, when it was likely made, etc.). This subordinate

and associated knowledge is not present in a verbal stimulus that

is a single word at the basic-level category (e.g., “car”). In this

sense, pictures may simply give rise to more distinct conceptual

traces than words, accounting for superior memory performance

for pictures during standard recognition memory tasks.
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Caveats

Given the fidelity of memory representations required to suc-

ceed at the current memory tasks, one might be tempted to believe

that everyone has near photographic memory. However, we want

to emphasize that this is certainly not the case for several reasons.

First, we tested memory for subtle but meaningful differences

(e.g., those along which exemplars differ from each other). Had we

presented two objects that differed on an arbitrary dimension, say

by a 1° rotation, it is likely that observers would have very poor

memory performance. Second, the old–new repetition detection

task provides a way to estimate how memory performance changes

with elapsed time, given a continuous stream of input much like

typical visual experience. Power law fits (see Wixted & Carpenter,

2007) suggest that while d� for the old–new task would still be

above 1.0 after a day, it would likely fall below 1.0 after a month,

and to below 0.6 after a year. Finally, memory for visual infor-

mation is fundamentally a constructive process, which has been

well documented in cases of eyewitness testimony (E. F. Loftus,

2003; see also Bower, Karlin, & Dueck, 1975; Carmichael, Hogan,

& Walter, 1932). These studies demonstrate that the way a visual

memory is queried influences the accuracy with which details are

recalled (e.g., how fast were the cars going when they smashed vs.

bumped into each other; E. F. Loftus & Palmer, 1974). Impor-

tantly, the idea that memory is reconstructed on the basis of

experience and knowledge fits well with the central claim of this

article that visual memory is supported by conceptual knowledge.

A great challenge for visual memory research is to understand the

relationship between knowledge of object categories and the visual

features of underlying visual object representations (Palmeri &

Tarr, 2008).

Conclusions

Visual long-term memory has a massive capacity to store infor-

mation, both in the number of items that can be remembered and

the amount of information that can be remembered about each

item. Detailed memory representations seem to depend on concep-

tual knowledge, by which we mean that an item is more likely to

interfere with another item if it has similar category or subordinate

category information. Importantly, conceptual knowledge enables

observers to maintain high-fidelity representations, and not simply

gist-like representations that are fully abstracted away from per-

ceptual detail. Here we show that existing knowledge about object

categories and subordinate categorical structure supports the main-

tenance of detailed visual long-term memory. Visual memory

capacities, often studied with controlled stimuli with which we

have no prior experience, are part of an integrated conceptual

system; as such visual memory capacity is intrinsically tied to what

we know about what we are seeing.
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Appendix A

Test–Retest Reliability Estimates for Memory Interference Slopes

The interference slopes for each category were calculated using

performance from several observers (e.g., no single observer saw a

category with 1, 2, 4, 8, and 16 exemplars); thus neither the average

pairwise observer correlation nor the effective rater reliability R could

be calculated from these data. Instead, to obtain a reliability estimate

for these measures, we simulated test–retest reliability estimates. In

general, the test–retest reliability of a Measure X is var(X)/var(Xhat),

that is, the true variance in the underlying signal divided by the

observed variance of the measured signal.

To obtain the reliability measures, reported in Table A1, we

estimated the reliability of the slope measure using a simulation

procedure. Here, the general approach was to draw two samples

from the estimated slope distributions for each category, correlate

these, repeat for 1,000 iterations, and then compute the average of

the 1,000 correlations to estimate test–retest reliability. The spe-

cific simulation procedure was as follows. For each category, a

linear model was used to estimate the slope in memory perfor-

mance as a function of the number of studied exemplars (Xhat), and

the standard error of that slope estimate (Xse). Next, the variance of

Xhat was rescaled to be equal to var(Xhat) 
 mean(Xse
2 ). This step

is necessary because the original slope distribution, Xhat, al-

ready reflects noise from Xse. Next, we drew two samples from

the rescaled slope distributions (Xhat-rescaled and Xse), generating

two possible sets of interference measures for all 200 catego-

ries. We then computed the correlation between these two

vectors and repeated this sampling procedure for 1,000 itera-

tions. Finally, we calculated the average correlation of the

1,000 simulated correlations, which reflects our estimate of the

test–retest reliability, Rsim (see Table A1). The simulation code

is available on our website.

This estimate of reliability was also calculated for the distinc-

tiveness ranks, where Xhat was the average rating across observers

and Xse was the standard error of the mean across observers. The

simulated test–retest reliability (Rsim) and effective rater reliability

(R) are similar in magnitude and are reported in Table A1.

Calculating Percent of Explainable Variance

After correlating the distinctiveness measures and interference

slopes, we subsequently computed the percent of the maximum

variance that can be accounted for (radjusted
2 ), given the reliability

of the measures. Assuming a perfect correlation between two

measures, the maximum correlation that can be observed between

two measures is limited by the reliability of both the measures:

Robs � Rtrue � (R1 * R2), where R1 and R2 are the reliability

estimates of the two measures and Robs is the highest possible

correlation that can be observed given that the true correlation

between R1 and R2 (Rtrue) is 1 (see Vul, Harris, Winkielman, &

Pashler, 2009). All estimates of Radjusted use the test–retest reli-

ability estimates from the simulation; thus both the distinctiveness

and memory interference slopes have a reliability measure calcu-

lated from the same procedure.

Table A1

Reliability Measures and Correlations

Variable

Reliability measure

Distinctiveness rank correlation

Interference slope Search RT

MC ICC R Rsim original r2 max robs
2 radjusted

2 original r2 max robs
2 radjusted

2

Kinds .25 .18 .80 .74 .023� .178 .127 .000 .577 .000
Shape .55 .50 .93 .93 .002 .223 .007 .026� .725 .035
Color .64 .62 .95 .95 .000 .228 .002 .449� .741 .606
Overall percept (upright) .30 .23 .84 .81 .010 .194 .051 .270� .632 .428
Overall percept (inverted) .24 .17 .79 .75 .000 .180 .001 .372� .585 .636
Interference slope .24 — — — — — —
Search RT .75 .35 .95 .78 — — — — — —

Note. Four measures of reliability are shown for each of the rating experiments as well as the memory interference slopes and the search reaction times
(RT). MC is the mean pairwise correlation across subjects; ICC is the intraclass correlation, which is an alternate measure of rater reliability (Bartko, 1966);
R is the effective rater reliability (Rosenthal & Rosnow, 1991), which takes into account MC and the number of subjects and can be thought of as the percent
signal recovered from the true ranks; and Rsim is the average test–retest correlation simulated from sampling each measurement, adjusted for the standard
error in the measurement. We correlated the five distinctiveness dimensions with interference slope and search RT, with the percentage of variance
accounted for shown in the original r2 column. The maximum possible r2 value that could be observed, given the reliability of the two measures and
assuming a perfect underlying correlation, is shown in the max robs

2 column. The proportion of explainable variance accounted for, given this maximum
r2 value, is shown in the radjusted

2 column.
� p � .05.

(Appendices continue)
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Appendix B

Post Hoc Analysis of Overall Perceptual Rankings and Conceptual Ranks

The correlation between overall perceptual distinctiveness mea-

sures (made on upright images) and memory interference slopes

showed a moderate correlation strength, though it was not statis-

tically significant (r � .10, p � .17). We also observed that upright

perceptual ratings were significantly correlated with conceptual

ratings (r � .35, p � .001). In this post hoc analysis, we examined

the possibility that the correlation between memory interference

and upright perceptual ratings was driven by shared variance with

the conceptual ratings.

To do so, we divided the set of 200 categories into two subsets.

The first subset contained the categories that had similar ranks for

upright perceptual distinctiveness and conceptual distinctiveness

(kinds). Of the 200 categories, 47 categories had average ranks

within �0.5 for these two dimensions. Examining only these

categories, there was a significant correlation between memory

interference and these 47 categories’ conceptual ranks (r � .34,

p � .02) and upright overall perceptual ranks (r � .31, p � .04).

The second subset contained the remaining 153 categories,

which had different ranks for the overall perceptual and conceptual

dimensions. Importantly, the conceptual ranks of these 153 cate-

gories still showed a correlation with memory slope (r � .16, p �

.05), whereas the overall perceptual ranks did not (r � .01, p �

.88). This analysis suggests that the moderate correlation observed

between upright overall perceptual ranks and memory interference

can be attributed to its correlation with the conceptual dimension

of the number of kinds.
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