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ABSTRACT 

 
As the volume of information available on the Internet increases, there is a growing need for tools helping 

users to find, filter and manage these resources. While more and more textual information is available on-

line, effective retrieval is difficult without proper indexing and summarization of the content. One of the 

possible solutions to this problem is abstractive text summarization.  The idea is to propose a system that 

will accept single document as input in English and processes the input by building a rich semantic graph 

and then reducing this graph for generating the final summary. 
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1.INTRODUCTION 

 
Text summarization is one of the most popular research areas today because of the problem of the 
information overloading available on the web, and has increased the necessity of the more strong 
and powerful text summarizers. The condensation of information from text is needed and this can 
be achieved by text summarization by reducing the length of the original text. Text 
summarization is commonly classified into two types extractive and abstractive. Extractive 
summarization means extracting few sentences from the original document based on some 
statistical factors and adding them into summary. Extractive summarization usually tends to 
sentence extraction rather than summarization. Whereas abstractive summarization are more 
powerful than extractive summarization because they generate the sentences based on their 
semantic meaning. Hence this leads to a meaningful summarization which is more accurate than 
extractive summaries. 
 
Summarization by extractive just extracts the sentences from the original document and adds 
them to summary. Extractive method is based on statistical features not on semantic relation with 
sentences [2] and are easier to implement. Therefore the summary generated by this method tends 
to be inconsistent. Summarization by abstraction needs understanding of the original text and then 
generating the summary which is semantically related. It is difficult to compute abstractive 
summary because it needs understanding of complex natural language processing tasks.  
 
There are few issues of extractive summarization. Extracted sentences usually tend to be longer 
than average. Due to this, parts of the segments that are not essential for summary also get 
included, consuming space. Important or relevant information is usually spread across sentences, 
and extractive summaries cannot capture this (unless the summary is long enough to hold all 
those sentences). Conflicting information may not be presented accurately. Pure extraction often 
leads to problems in overall coherence of the summary. These problems become more severe in 
the multi-document case, since extracts are drawn from different sources. Therefore abstractive 



International Journal on Natural Language Computing (IJNLC) Vol. 4, No.1, February 2015 

40 
 

summarization is more accurate than extractive summarization. 
 

In this paper, an approach is presented to generate an abstractive summary for the input document 
using a graph reduction technique. This paper proposes a system that accepts a document as input 
and processes the input by building a rich semantic graph and then reducing this graph for 
generating summary. Related work and literature survey is discussed in section 2. The proposed 
system is discussed in section 3 and conclusion in section 4. 
 

2. LITERATURE SURVEY 
 
In this section we cite the relevant past literature that use the various abstractive summarization 
techniques to summarize a document. Techniques till today focused on extractive summarization 
rather than abstractive. Current state of art is statistical methods for extractive summarization.   
 
Pushpak Bhattacharyya [3] proposed a WordNet based approach to text summarization. It extracts 
a sub-graph from the WordNet graph for the entire document. Each nodes of the sub-graph are 
assigned weights with respect to the synsnet using the WordNet. WordNet[11] is a online lexical 
database. The proposed algorithm captures the global semantic information using WordNet. 
 
Silber G.H., Kathleen F. McCoy [4][5] presents a linear time algorithm for lexical chain 
computation. Lexical chain is used as an intermediate representation for automatic text 
summarization. Lexical chains exploit the cohesion among an arbitrary number of related words. 
Lexical chains can be computed in a source document by grouping (chaining) sets of words that 
are semantically related. Words must be grouped such that it creates a strongest and longest 
lexical chain. 
 
J. Leskovec[6] proposed approach which produces a logical form analysis for each sentence. The 
author proposed subject-predicate-object (SPO) triples from individual sentences to create a 
semantic graph of the original document. Difficult to compute SOP semantic based triples as it 
requires deep understanding of natural language processing. 
 
Clustering is used to summarize a document by grouping and clustering the similar data or 
sentences. Zhang Pei-yin, LI zcun-he[7] states that summarization result depends on the sentence 
features and on the sentence similarity measure. MultiGen[7] is a multi-document system in the 
news domain. 
 
Naresh Kumar, Dr.Shrish Verma[8] proposed a single document frequent terms based text 
summarization algorithm. The author suggests an algorithm based on three steps: First the 
document which is required to be summarized is processed by eliminating the stop word. Next 
step is to calculate the term-frequent data from the document and frequent terms are selected, and 
for these selected words the semantic equivalent terms are also generated. Finally in third step, all 
the sentences in document, which contains the frequent terms and semantic equivalent terms are 
filtered for summarization. 
 
I. Fathy, D. Fadl, M. Aref[9] proposed a new semantic representation called Rich Semantic 
Graph(RSG) to be used as an intermediate representation for various applications. A new model 
to generate an English text from RSG is proposed. The method access a domain ontology which 
contains the information needed in same domain of RSG. 
 
The author suggested a method [10] for summarizing document by creating a semantic graph and 
identifies the substructure of graph that can be used to extract sentences for a document summary. 
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It starts with deep syntactic analysis of the text. For each sentence it extracts logical form triples 
in the form of subject-predicate and object. 
 

Many approaches addressed above uses lexical chain, word net and clustering method to produce 
abstractive summary. Some of the methods provided a graph-based approach to generate 
extractive summary. 
 

3. PROPOSED APPROACH 
 

The idea is to summarize an input document by creating semantic graph called rich semantic 
graph(RSG) for the original document, reducing the generated semantic graph, and the finally 
generating the final abstractive summary from the reduced semantic graph. The input to the 
system is a single text document in English and output will be a reduced summary. 
 

The proposed approach includes three phases: Rich Semantic Graph creation (RSG) phase, Rich 
Semantic Graph reduction (RSG) phase and generating summary from reduced RSG. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.  Proposed approach 

 
First step is to pre-process the input document. For each word in the document, apply part-of-
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speech tagging, named entity recognition and tokenization. Then for each sentence in the input 
document, graphs are created. Finally the sentences RSG sub graph are merged together to 
represent whole document semantically. The final RSG of entire document is reduced with the 
help of some reduction rules. Summary is generated from reduced RSG.  
 

Algorithm: 
 
Input: Accepts a single document as input. 
Output: Summarized document. 
 
Accept the text document as input in English 
 for each sentence in the input document 
   for each word in the sentences 
   do tokenization 
   part-of-speech tagging (POS) 
   named entity recognition (NER) 
 Generate the graph for each sentence  
for entire document do 
 merge all sentence graph to represent whole document 
 reduce the graph using reduction rules 
 generate from reduced graph 
 

3.1. Rich Semantic Graph (RSG) Creation Phase 

 
This phase analyses the input text, and detects the sentence and generates tokens for the entire 
document. For each word it generates POS tags and locates the words into predefined categories 
such as person name, location and organization. Then it builds the graph for each sentence and 
later it interconnects rich semantic sub-graphs. Finally the sub-graphs are merged together to 
represent the whole document semantically. RSG creation phase involves following tasks: 
 
3.1.1. Pre-processing module 

  
This phase accepts an input text document and generates pre-processed sentences. Initially the 
entire text document is taken as input. First step is to perform tokenization for document. Once 
tokens are generated, next step is to identify part-of-speech tag for every word or token and assign 
parts of speech to each word such as noun, verb, and adjective. These tags are useful for 
generating graph for entire document. Next task is to perform named entity recognition to identify 
the entities in the document. Pre-processing consists of 3 main processes: tokenization, parts of 
speech tagging (POS) and named entity recognition (NER)[1]. Once tokens, part-of-speech 
(POS), Named Entity Recognition (NER) are ready these tags are used for further generating 
graph of each sentence.  
 
Steps for pre-processing module [1]: 
 
1. Tokenization & Filtration: Accept the input document, detect sentences and generate the tokens 
for entire document and filter out the special characters. 
 
2. Name Entity Recognition (NER): It locates atomic elements into predefined categories such as 
location, person names, organization etc.To perform this task we have used Stanford NER tool 
[15] which is available freely. 
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3. Part of speech tagging (POS): It parses the whole sentence to describe each word syntactic 
function and generates the POS tags for each word. To perform this task, Stanford parser tool [12] 
is used for implementation. 
 
Algorithm for pre-processing module: 
 
Input: Original input document. 
Output: Tokens, POS tags & NER. 
 
 
accept the single text document as input 
 generate tokens for entire document and store in a file 
  for each sentence, apply POS tagging and generate the POS tags for each words  
 in sentences 
  for each sentence, locate the atomic elements into  predefined categories such  
 as person, organization etc and identify the proper nouns 
 apply sentence detection algorithm to generate the sentence in proper order. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 2.  Pre- Processing module 

 
This phase accepts a input document and filters special character and unwanted script other than 
English. Then it generates tokens, Name Entity Recognition (NER) and part-of-speech (POS) tags 
for all the sentences. 
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Tokenization & Filtration: 

 
Tokenization is a process of breaking a stream of sentences into tokens. This is done by searching 
a space after each word. All the generated tokens are saved in a separate file for further 
processing. In this phase the input text is filtered so as to remove all the special characters such as 
* &^%$ #@,.’;+{}[]. Including special characters in the further processing will result in only 
degradation of the performance. Also filtration of Devanagari script(Marathi, Hindi) is also done 
to validate that input document is in English language only. 
 
Algorithm:  
 

1. Generate a list of all the possible special characters.  
2. Then compare each character of input text file with a given list of special characters. 
3. If match founds then we simply ignore the matched character. 
4. If no match found then that character is not a special character, simply copy the character into 
another file containing no special characters. 
5. Repeat the step from 2 to 4 till every character from the input text get processed. 
6. Give generated file with no special characters to next step 
7. Stop. 
 
Input: 
 

!@$%#&*()&^^%%+_?><": प्रतापगडाची लढाई ही इतिहासािील महत्वाची Alice Mathew is a 

graduate student. Alice lives in Mumbai. Bob John is a graduate student. Bob works in Mastek. 
 
Output: 
 
Alice 
Mathew 
is  
a 
graduate 
student 
Alice 
lives  
in  
Mumbai 
Bob 
John  
is 
a 
graduate 
student 
 
After tokenization & filtration all the special characters will be removed and non English words 
will be removed and tokens will be generated and saved in a separate file. 
 
Named Entity Recognition (NER): 
 
Named Entity Recognition (NER) labels sequences of words in a text which are the names of 

mailto:*&%5e%25$#@,.’;+
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things, such as person and company names, or organization and location. Good named entity 
recognizers for English, particularly for the 3 classes (PERSON, ORGANIZATION, and 
LOCATION) are available. There are tools available for performing these tasks such as Stanford 
NER tool and Open NLP tool. Consider the following sentence and expected named entity tags 
are identified by using Stanford NER tool [15]: 
 
Input: 
 
Alice Mathew is a graduate student. Alice lives in Mumbai. Bob John is a graduate student. Bob 
works in Mastek. 
 
Output: 
 
Alice Mathew  Person 
Mumbai      Location 
Bob John  Person 
Mastek         Organization 
 
POS tagging 
 
A Part-of-Speech Tagger (POS Tagger) is a piece of software that reads text in some language 
and assigns parts of speech to each word, such as noun, verb, adjective, etc.  OpenNLP POS 
tagging tool and Stanford parser tool [12] is available that can be used as a plug-in.  The 
OpenNLP POS Tagger uses a probability model to predict the correct POS tag out of the tag set. 
Penn Treebank POS tag set [13][14] is available which are used by many applications. The 
proposed method used Stanford parser tool [12] for part-of-speech tagging. 
 
Input: 
 
Alice Mathew is a graduate student. Alice lives in Mumbai. Bob John is a graduate student. Bob 
works in Mastek. 
 
Output: 
 
Alice_NNP Mathew_NNP is_VBZ a_DT graduate_NN student._NN Alice_NNP lives_VBZ 
in_IN Mumbai_NNP. Bob_NNP John_NNP is_VBZ a_DT graduate_NN student._NN. 
Bob_NNP works_VBZ in_IN Mastek_NNP. 
 
3.1.2. Rich Semantic sub-graph generation module 
 
This module accepts the pre-processed sentences as input and generates graph for each sentence 
and later the sub-graphs are merged together to represent the entire document. For every sentence 
graphs are generated. The semantic graph is generated with the help of generated POS tags and 
tokens where the noun are coloured in orange and verbs in red color in the form of subject-
predicate-object(SPO) triples. 
 
Input: 
 
Alice Mathew is a graduate student. Alice lives in Mumbai. 
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Output: 
 

 
 

Figure 3. Sentence graph 
 
3.1.3. Rich Semantic Graph Generation module 

 

Graph theory [6] can be applied for representing the structure of the text as well as the relationship 
between sentences of the document. Sentences in the document are represented as nodes. The 
edges between nodes are considered as connections between sentences. These connections are 
related by similarity relation. By developing different similarity criteria, the similarity between two 
sentences is calculated and each sentence is scored. Whenever a summary is to be processed all the 
sentences with the highest scored are chosen for the summary. In graph ranking algorithms, the 
importance of a vertex within the graph is iteratively computed from the entire graph. Therefore 
the graphs can be generated for the entire document. 

 
The rich semantic graph generation module is responsible to generate the final rich semantic 
graphs of the whole document. The semantic sub-graphs are merged together to form the final 
RSG. The graph can be built by subject-predicate-object (SPO) triples from individual sentences 
to create a semantic graph. It uses linguistic properties of the nodes in the triples to build semantic 
graphs for both documents and corresponding summaries. 
 
Extracting summary by semantic graph generation [10] is a method which uses subject-predicate-
object (SPO) triples from individual sentences to create a semantic graph of the original 
document. Subjects, Objects, and Predicates are the main functional elements of sentences. 
Identifying and exploiting links among them could facilitate the extraction of relevant text. A 
method that creates a semantic graph of a document, based on logical form triples subject– 
predicate–object (SPO), and learns a relevant sub-graph that could be used for creating 
summaries. 
 
The semantic graph is generated in two steps [10]: 
 
1. Syntactic analysis of the text – First apply deep syntactic analysis to document sentences , and 
extract logical form triples. 
 
2. Finally merge the resulting logical form triples into a semantic graph and analyze the graph 
properties. The nodes in graphs correspond to Subjects, objects and predicate. 
 
Input: Pre-processed sentences as input (POS tags and NER). 
Output: Rich Semantic Graph. 
 
Consider the following input and graph generated for same. 
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Input:  
 
Rini lives in Mumbai. She works in Infosys. Nikita is pursuing master degree in computer 
engineering. Nikita is specialized in machine learning field. Rini John is a graduate student 
completed engineering in computer science. She is specialized in Web NLP. Rini is also pursuing 
post graduation in computer science. Rini is a friend of Nikita. Ashish Mathew is also friend of 
Nikita. Nikita Munot published two papers in international conferences under guidance of 
Prof.Sharvari Govilkar. Rini John also published two papers in international conferences under 
guidance of Prof.Sharvari Govilkar. 
 
Output: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Rich semantic graph 

 
The graphs are generated in subject-predicate-object form where the noun are coloured orange 
and verbs in red and proper noun in orange.  
 

3.2. Rich Semantic Graph Reduction Phase 

 

This phase reduces the generated rich semantic graph of the original document. In this process a 
set of rules are applied on the generated RSG to reduce it by merging, deleting or consolidating 
the graph nodes. Many rules can be derived based on many factors: the semantic relation, the 
graph node type (noun or verb), the similarity or dissimilarity between graph nodes.  
 
Few rules are discussed that can be applied on the graph nodes of two simple sentences: 
 

Sentence1= [SN1, MV1, ON1] 
Sentence2= [SN2, MV2, ON2] 

 
Each sentence is composed of three nodes: Subject Noun (SN) node, Main verb (MV) node and 
Object Noun (ON) node. 
 
Input: Rich Semantic Graph (RSG) of the whole document. 
 
Output: Reduced rich semantic graph (RSG). 
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Reduction rules examples [1]: 
 
Rule 1. IF SN1 is instance of noun N   And 
  SN2 is instance of noun N   And 
  MV1 is similar to MV2    And 
  ON1 is similar to ON2 
 THEN 
  Merge both MV1 and MV2   And 
  Merge both ON1 and ON2 
 
Rule 2. IF SN1 is instance of subclass of noun N  And 
  SN2 is instance of subclass of noun N  And 
  {[MV11, ON11],..[MV1n, ON1n]}  is similar to 
  {[MV21, ON21],..[MV2n, ON2n]} 
 THEN 
  Replace SN1 by N1 (instance N)  And 
  Replace SN2 by N2 (instance N)  And 
  Merge both N1 and N2 
 
Rule 3. IF SN1 and SN2 are instance of noun N  And 
  MV1 is instance of subclass of verb V  And 
  MV2 is instance of subclass of verb V  And 
  ON1 is similar to ON2 
 THEN 
  Replace MV1 by V1 (instance V)  And 
  Replace MV2 by V2 (instance V)  And 
  Merge both V1 and V2    And 
  Merge both ON1 and ON2  
 
With the help of such rules, the graph is reduced then final summary is generated from reduced 
graph. The system is to be trained and more such rules are to be added to make the system more 
strong. 

 

3.3 Summarized Text Generation Phase 

 

This phase aims to generate the abstractive summary from the reduced RSG. The sentences are 
merging with the help of rules and final summary can be generated. 

 

4. CONCLUSION 
 
As natural language understanding improves, computers will be able to learn from the 
information online and apply what they learned in the real world. Information condensation is 
needed. Extractive summary leads usually for sentence extraction rather the summarization. So 
the need is to generate summary that captures the important text and relates the sentences 
semantically. The work is applicable in open domain. 
 
Abstractive summarization will serve as a tool for generating summary which is semantically 
correct and produced fewer amounts of sentences in summary. Extractive summarization leads to 
sentence extraction based on statistical methods which are not useful always. This paper proposes 
an idea to create a semantic graph for the original document and relate it semantically and by 
using several rules reduce the graph and generate the summary from reduced graph. 
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