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Abstract Open answer set programming (OASP) solves the lack of modularity
in closed world answer set programming by allowing for the grounding of logic
programs with an arbitrary non-empty countable superset of the program’s constants.
However, OASP is, in general, undecidable: the undecidable domino problem can be
reduced to it. In order to regain decidability, we restrict the shape of logic programs,
yielding conceptual logic programs (CoLPs). CoLPs are logic programs with unary
and binary predicates (possibly inverted) where rules have a tree shape. Decidability
of satisfiability checking of predicates w.r.t. CoLPs is shown by a reduction to
non-emptiness checking of two-way alternating tree automata. We illustrate the
expressiveness of CoLPs by simulating the description logic SHIQ. CoLPs thus in-
tegrate, in one unifying framework, the best of both the logic programming paradigm
(a flexible rule-based representation and nonmonotonicity by means of negation as
failure) and the description logics paradigm (decidable open domain reasoning).
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1 Introduction

In traditional logic programming paradigms a closed world assumption holds. In
practice, this means that, in order to make valid deductions, one only takes into
account the known objects. More specifically, one considers the constants that are
specified in the logic program. Take, for example, a logic program consisting of the
following rules

study(X ) ∨ not study(X ) ←
pass(X ) ← study(X )

fail(X ) ← not pass(X )

pass(john) ←
This program represents the knowledge that one may study or not, and if one does,
one will pass, otherwise one will fail. In particular, we have a fact stating that student
john passes.

Logic programming paradigms, as, e.g., answer set programming [18], will then
ground the program with all constants in the program, resulting in the answer sets
{pass(john)} and {pass(john), study(john)},1 none of them containing a fail-atom.
One might then conclude, since there is no fail-literal in any answer set, that one
can never fail, or, formally, that the fail-predicate is not satisfiable. However, in the
setting where the first three rules of the example program are just specifying some
general knowledge about studying, passing, and failing, such a conclusion is wrong.
Given other instance data than the rule pass(john) ← the conclusions of the program
may be different and individuals can fail (the predicate fail is satisfiable). Thus, listing
more students in the program might solve the problem in this case. However, in
general, this puts a serious burden on the knowledge engineer, having to handle all
‘influential’ constants.

The illustrated behavior of closed world reasoning indicates a lack of modularity,
as discussed in [43]. In [43], it is argued that, like in normal software, ‘procedures’
should be independent of the environment, i.e., adding new procedures to the system
should not interfere with the conclusions the already defined procedures make. In
essence, procedures should be able to cope with unknown objects, or, in a logic
programming context, deductions made by logic programming semantics should
be robust against the addition of new constants and should take into account the
existence of unspecified, anonymous elements.

Gelfond and Przymusinska [19] solves the described problem in the context of
answer set programming by introducing k new constants, k finite, and grounding
the program with this extended universe; the answer sets of the grounded program
are called k-belief sets. We extend the principle of k-belief sets in [19] by allowing
for arbitrary, thus possibly infinite, non-empty countable supersets of the program’s
constants, so-called universes. Open answer sets are then pairs (U, M) with M an
answer set of the program P grounded with the universe U . Recapitulating our
example, we have that ({john, x}, {pass(john), fail(x)}) is an open answer set of the
program. Indeed, the grounding is now w.r.t. {john, x} instead of {john} where x is a

1Note the effect of study(X ) ∨ not study(X) ←, which freely allows for john to study or not. We call
such rules free rules.
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new anonymous element. The grounding has an answer set {pass(john), fail(x)} such
that the predicate fail is indeed satisfiable, or, intuitively, there is instance data such
that the fail predicate can be populated.

However, as reasoning with k-belief sets is already undecidable [37] it comes as no
surprise that open answer set programming (OASP) is too. We show this by reducing
a well-known undecidable problem, the domino problem, to satisfiability checking
of predicates under an open answer set semantics.2 In order to regain decidability
but still have the desired openness, we will compromise on the shape of programs
and look for a specific form of programs for which reasoning under the open answer
set semantics is decidable, but which is still expressive enough to represent useful
knowledge.

Satisfiability checking for such conceptual logic programs (CoLPs) is reduced to
checking non-emptiness of two-way alternating tree automata (2ATA) [45]. The
reduction yields an exptime-upper bound for satisfiability checking w.r.t. CoLPs.
CoLPs turn out to be useful for expressing conceptual knowledge, hence their
naming, as they can simulate expressive description logics (DLs). Description logics
[3] constitute a family of logical formalisms that are based on frame-based systems
and useful for knowledge representation, e.g., the representation of taxonomies in
certain application domains. The basic language features of such languages include
the notions of concepts and roles. Different DLs can then be identified by the set of
constructors that are allowed to form complex concepts or roles.

Reasoning in the particular DL SHIQ can be reduced to reasoning w.r.t. CoLPs.
Since SHIQ reasoning is exptime-complete, this yields exptime-hardness for rea-
soning w.r.t. CoLPs. Together with the exptime-membership for CoLPs, we have
exptime-completeness for CoLP reasoning.

A promising area of application for open answer set programming is the envi-
sioned Semantic Web. The Semantic Web [7] seeks to improve on the current World
Wide Web, making knowledge not only viewable and interpretable by humans, but
also by software agents. Ontologies play a crucial role in the realization of this next
generation web by providing a ‘shared understanding’ [40] of certain domains.

Although DLs are being heavily promoted as an ontology language standard (see
the ontology language OWL DL [6]), they are by no means a synonym for ontology
language. Possible alternatives to DL ontologies include, e.g., ORM [21] ontologies
as illustrated in the DOGMA framework [27], or, as we will argue, logic programs
under an open answer set semantics.

In the context of the Semantic Web, the integration of rules and ontologies has
gained renewed interest, e.g., in [31]. Note that this naming is rather confusing,
in the sense that sets of rules (like in logic programming) can be considered to
be ontologies as well, in fact, the programs under an open answer set semantics
are, syntactically, rule-based, while they are suitable for expressing ‘ontological’
knowledge as well. What is usually meant in the literature with such an integration
of rules and ontologies is the integration between a logic programming paradigm
and a particular description logic, intended to provide a more powerful framework,
see, e.g., [1, 13–15, 20, 22, 25, 26, 28, 31, 35, 38, 41].

2Note that we cannot use the undecidability of reasoning with k-belief sets to show undecidability of
reasoning with open answer sets, as the latter may be infinite while the former are always finite.
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More specifically, from the logic programming side, one can, e.g., attempt to retain
the nonmonotonicity (typically provided by negation as failure), while from the
description logics side exactly the open domain reasoning is one of the interesting
features (besides decidability of reasoning). Logic programs under an open answer
set semantics naturally combine both of those features in one unifying decidable
framework, allowing for both negation as failure and open domains in a rule-based
formalism.

The remainder of the paper is organized as follows. We introduce the basic
definitions and properties of open answer set programming in Section 2.1. Section 2.2
shows that open answer set programming is undecidable in general, while Section 2.3
identifies conceptual logic programs as a decidable fragment. In Section 3.1 we recall
the DL SHIQ. The simulation of SHIQ reasoning with CoLPs can be found in
Section 3.2. Section 3.3 discusses the advantages of CoLPs over SHIQ and Section 4
contains an overview of related work. Finally, we conclude and give directions for
further research in Section 5.

2 Open answer set programming

2.1 Basic definitions and properties

We define the language of OASP. Constants, variables, terms, and atoms are defined
as usual. A literal is an atom p(t) or a naf-atom not p(t).3 The positive part of a
set of literals α is α+ = {p(t) | p(t) ∈ α} and the negative part of α is α− = {p(t) |
not p(t) ∈ α}. We assume the existence of binary predicates = and �=, where t = s is
considered as an atom and t �= s as not t = s. E.g. for α = {X �= Y, Y = Z }, we have
α+ = {Y = Z } and α− = {X = Y}. A regular atom is an atom that is not an equality
atom. For a set X of atoms, not X = {not l | l ∈ X}.

A program is a countable set of rules α ← β, where α and β are finite sets of
literals, and ∀t, s · t = s �∈ α+, i.e., the positive part of α does not contain equality
atoms. The set α is the head of the rule and represents a disjunction of literals, while
β is called the body and represents a conjunction of literals. If α = ∅, the rule is
called a constraint. Atoms, literals, rules, and programs that do not contain variables
are ground.

For a program P, let cts(P) be the constants in P, vars(P) its variables, preds(P)

its predicates, upreds(P) its unary and bpreds(P) its binary predicates. Let BP be the
set of regular atoms that can be formed from a ground program P.

An interpretation I of a grounded program P is any subset of BP. For a ground
regular atom p(t), we write I |= p(t) if p(t) ∈ I; For an equality atom p(t) ≡ t = s,
we have I |= p(t) if s and t are equal terms, while we have I |= not p(t) if I �|= p(t).
For a set of ground literals X, I |= X if I |= l for every l ∈ X. A ground rule r : α ← β

is satisfied w.r.t. I, denoted I |= r, if I |= l for some l ∈ α whenever I |= β. A ground
constraint ← β is satisfied w.r.t. I if I �|= β. For a ground program P without not, an
interpretation I of P is a model of P if I satisfies every rule in P; it is an answer set
of P if it is a subset minimal model of P. For ground programs P containing not, the

3We have no negation ¬, however, programs with ¬ can be reduced to programs without it, see
e.g. [29].
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GL-reduct [18] w.r.t. I is defined as PI , where PI contains α+ ← β+ for α ← β in P,
I |= not β− and I |= α−. I is an answer set of a ground P if I is an answer set of PI .

Definition 1 A universe U for a program P is a non-empty countable superset of
the constants in P: ctsP ⊆ U . We call PU the ground program obtained from P by
substituting every variable in P by every possible element from U .

For objects o (rules, (sets of) literals, . . . ), we denote with o[Y1|y1, . . . , Yd|yd],
the grounding of o where each variable Yi is substituted with yi. Equivalently, we
may write o[Y|y] for Y = Y1, . . . , Yd and y = y1, . . . , yd, or o[] if the grounding
substitution is clear from the context, or if it does not matter what the substitution
exactly looks like.

In the following, a program is assumed to be a finite set of rules; infinite programs
only appear as byproducts of grounding a finite program with an infinite universe.
Computing the (normal) answer sets of a program amounts to grounding the
program P with the universe cts(P), resulting in Pcts(P).

Definition 2 An open interpretation of a program P is a pair (U, M) where U is a
universe for P and M is an interpretation of PU . An open answer set of P is an open
interpretation (U, M) of P where M is an answer set of PU .

Example 1 Take a program P with rules p(X ) ← not q(X) and q(a) ← . Then
cts(P) = {a} such that the universes for P have to be countable supersets of {a}. Some
possible universes are {a}, {a, b}, and {a, x1, x2, . . .} where the latter is an infinite one.
Grounding P with {a, x1, x2, . . .} yields the program

p(a) ← not q(a) p(x1) ← not q(x1)

p(x2) ← not q(x2) . . .

q(a) ←
such that ({a, x1, x2, . . .}, {q(a), p(x1), p(x2), . . .}) is an open answer set of P. The
open answer set that corresponds to the normal answer set is ({a}, {q(a)}).

The main reasoning procedure we consider for the open answer set semantics is
satisfiability checking.

Definition 3 For an n-ary predicate p, appearing in a program P, p is satisfiable w.r.t.
P if there exists an open answer set (U, M) of P and a x ∈ Un such that p(x) ∈ M.

Note that the predicate p in the program P in Example 1 is satisfiable. This
example also shows that the open and normal answer set semantics yield different
conclusions: in the normal, closed world, answer set semantics one concludes that
the predicate p is not satisfiable since there is no answer set that contains a p-literal,
while in the open answer set semantics p is satisfiable.

There are programs such that a predicate is only satisfiable w.r.t. that program by
an infinite open answer set. We call such programs infinity programs.
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Example 2 Take the program

r1 : restore(X ) ← crash(X ), y(X, Y ), backSucc(Y)

r2 : backSucc(X ) ← not crash(X), y(X, Y ), not backFail(Y)

r3 : backFail(X ) ← not backSucc(X)

r4 : ← y(Y1, X ), y(Y2, X ), Y1 �= Y2

r5 : y(X, Y ) ∨ not y(X,Y) ←
r6 : crash(X ) ∨ not crash(X) ←

Rule r1 represents the knowledge that a system that has crashed on a particular day X
(crash(X )), can be restored on that day (restore(X )) if a backup of the system on the
day Y before (y(X, Y ), y stands for yesterday) succeeded (backSucc(Y )). Backups
succeed if the system does not crash and it cannot be established that the backups
at previous dates failed (r2) and a backup fails if it does not succeed (r3). Rule r4

ensures that for a particular day there can be only one day after. Rules r5 and r6

allow to freely introduce y and crash literals. Take, e.g., crash(x) in an interpretation;
the GL-reduct w.r.t. that interpretation contains then the rule crash(x) ← which
motivates the presence of the crash literal in an (open) answer set. If there is no
crash(x) in an interpretation then the GL-reduct removes the rule r6 (more correctly,
its grounded version with x). Below, we formally define rules of such a form as free
rules in correspondence with the intuition that they allow for a free introduction of
literals.

Every open answer set (U, M) of this program that makes restore satisfiable must
be infinite. An example of such an open answer set is (we omit U if it is clear
from M) M ≡ {restore(x), crash(x), backFail(x), y(x, x1), backSucc(x1), y(x1, x2),

backSucc(x2), y(x2, x3), . . .}. One can check that every backSucc literal with element
xi enforces a new y-successor xi+1 since none of the previously introduced uni-
verse elements can be used without violating rule r4, thus enforcing an infinite open
answer set.

For an open answer set (U, M) of a ground program P and an arbitrary universe
U ′ for P, we have that (U ′, M) is also an open answer set, i.e., for ground programs
the universe does not matter and one can stick to cts(P) such as in the normal answer
set semantics.

Theorem 1 Let P be a ground program. (U, M) is an open answer set of P iff ∀U ′ ·
(U ′, M) is an open answer set of P, where U ′ is a universe for P.

Proof This follows from ∀U ′ · PU ′ = P. 
�

The groundness is necessary for Theorem 1 to hold.

Example 3 Take the non-ground program with rules q(a) ← not p(X ) and p(a) ← .
Then ({a, x}, {p(a), q(a)}) is an open answer set, while the open interpretation
({a}, {p(a), q(a)}) is not.

In order to be able to define an immediate consequence operator, we restrict
ourselves in the rest of this paper to programs where rules α ← β are such that
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|α+| ≤ 1. This restriction ensures that the GL-reduct contains no disjunction in
the head, i.e., the head will be an atom or it will be empty. This property of the
GL-reduct allows us to define an immediate consequence operator [42] T that
computes the closure of a set of literals w.r.t. a GL-reduct.

For a program P and an open interpretation (U, M) of P, T(U,M )

P : BP → BP

is defined as T(B) = B ∪ {a | a ← β ∈ PM
U ∧ B |= β}. Additionally, we define

T0(B) = B, and Tn+1(B) = T(Tn(B)).4 Although we allow for infinite universes, we
can motivate the presence of atoms in open answer sets in a finite way, where the
motivation of an atom is formally expressed by the immediate consequence operator.

Theorem 2 Let P be a program and (U, M) an open answer set of P. Then, ∀a ∈ M ·
∃n < ∞ · a ∈ Tn.

Proof Sketch Assume, by contradiction, ∃a1 ∈ M · ∀n < ∞ · a1 �∈ Tn. We then
know that for every rule with head a1 that has a true body, there must be a body
literal that satisfies the same conditions as a1, i.e., it cannot be in a finite application
of T to the empty set. One can continue this way and define an interpretation that
equals M without those identified literals. One can show that this new interpretation
is a model of PM

U , contradicting the minimality of M. 
�
We restrict ourselves in the remainder of this paper to programs with unary and

binary predicates only. This allows us to introduce, similar to some description logics
(DLs, see Section 3), inverted predicates f i for a binary predicate f .5 Intuitively,
f (x, y) will hold iff its inverse f i(y, x) holds. For a set X of binary (possibly inverted)
predicate names, X i ≡ { f i | f ∈ X} where f ii ≡ f . We call atoms f i(s, t), where f
is a predicate, inverted atoms. The Herbrand Base is still the set of ground regular
atoms that can be formed from the language in P, but a language includes now the
inverted predicates that can be formed: if there is a binary f i or a binary f in the
program, the Herbrand Base contains atoms with predicate f i and f . We further
have that bpreds(P) includes both f and f i for a f or f i in P.

Intuitively, f i(x, y) is defined, like in DLs, as the inverse of f . We formally
capture this using an inverted world assumption (IWA).

Definition 4 Let P be a ground program and M an interpretation of P. Then
IWA(P, M ) is the formula

∀ f ∈ bpreds(P) · f (x, y) ∈ M ⇐⇒ f i(y, x) ∈ M . (1)

We define open answer sets under IWA by defining, for ground programs P, an
interpretation M under IWA of P as an interpretation M of P such that IWA(P, M )

holds. Models, minimal models, and answer sets under IWA of a ground program

4We omit the sub- and superscripts P and (U, M) from T(U,M )
P if they are clear from the context and,

furthermore, we will usually write T instead of T(∅).
5We deviate from the convention in DLs to denote inverted roles as f −, and instead denote
them with f i, this to avoid confusion with the negative part β− of a body β in (open) answer set
programming.
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P are then defined as usual but with interpretations under IWA, instead of just
interpretations.

Definition 5 An open interpretation under IWA of a program P is a pair (U, M)

where U is a universe for P and M is an interpretation under IWA of PU . An open
answer set under IWA of P is an open interpretation under IWA (U, M) of P with
M an answer set of PU . For an n-ary predicate p, 1 ≤ n ≤ 2, appearing in P, p is
satisfiable under IWA w.r.t. P if there exists an open answer set under IWA (U, M)

of P and a x ∈ Un such that p(x) ∈ M.

Example 4 Modify the program of Example 2 by adding inverted predicates, i.e., re-
place ← y(Y1, X ), y(Y2, X ), Y1 �= Y2 by its counterpart ← yi(X, Y1), yi(X, Y2),

Y1 �= Y2 with inverses. An open answer set under IWA is then {restore(x), crash(x),

backFail (x), y(x, x1), yi(x1, x), backSucc (x1), y(x1, x2), yi(x2, x1), backSucc (x2), y
(x2, x3), yi(x3, x2), . . .}.

Satisfiability under IWA does not imply (normal) satisfiability.

Example 5 Take the program containing the rules q(X ) ← f (X, Y ) and f i(X, Y )∨
not f i(X, Y ) ← . Then q is satisfiable under IWA by the open answer set ({x, y},
{q(x), f (x, y), f i(y, x)}). However, there are no rules with an f -atom in the head,
and thus q is not satisfiable.

The other way around, we have that satisfiability does not imply satisfiability under
IWA either.

Example 6 Take the program P:

f (X, Y ) ← p(X ) ← not q(X )

q(X ) ← f i(X, Y ) f i(X, Y ) ∨ not f i(X, Y ) ←
Then p is satisfiable by the open answer set

({x, y}, { f (x, y), f (y, x), f (x, x), f (y, y), p(x), p(y)}) .

However, p is not satisfiable under IWA: the rule f (X, Y ) ← introduces all possible
groundings of f (X, Y ), which then leads, by the IWA, to all possible groundings of
f i(X, Y ), such that all possible groundings of q(X ) are in an open answer set under
IWA. With the rule p(X ) ← not q(X ) one then has that p is never satisfiable.

If we allow for a modification of the program, we can, nevertheless reduce
satisfiability checking under IWA to satisfiability checking.

Theorem 3 Let P be a program and p a unary predicate in P. Then, p is satisfiable
under IWA w.r.t. P iff p is satisfiable w.r.t. P′, where P′ is P with all f i replaced by f ′
and the following rules added:

f ′(X, Y ) ← f (Y, X )

f (X, Y ) ← f ′(Y, X )
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Proof Intuitively, the added rules ensure that a f ′(x, y) is in an open answer set if
f (y, x) is (and similarly for a f (x, y)). Note that one still needs to motivate either f
or f ′ with other rules (just as is the case with f i and f ). 
�

For programs that do not contain inverted predicates satisfiability is equivalent
to satisfiability under IWA. Theorem 3 shows that the IWA does not add extra
expressiveness, however, it allows for an elegant definition of conceptual logic
programs, see below. Note that for a program without inverted predicates and p a
n-ary predicate, 1 ≤ n ≤ 2, we have that p is satisfiable w.r.t. P iff p is satisfiable
under IWA w.r.t. P.

We define a modified immediate consequence operator for programs with in-
verted predicates. For a program P and an open interpretation under IWA (U, M)

of P, T i(U,M )

P : BP → BP is defined as T i(B) = B ∪ {a, ai | a ← β ∈ PM
U ∧ B |= β},

where ai ≡ a if a is a unary atom and f (s, t)i ≡ f i(t, s) otherwise. Additionally, we

have T i0
(B) = B,6 and T in+1

(B) = T i(T in
(B)). We can still motivate the presence

of literals in open answer sets under the IWA in a finite way.

Theorem 4 Let P be a program and (U, M ) an open answer set under IWA of P.

Then, ∀a ∈ M · ∃n < ∞ · a ∈ (T i)
n
.

Proof The proof is similar to the proof of Theorem 2. 
�

2.2 Undecidability of open answer set programming

We show the undecidability of open answer set programming for unrestricted
programs by a reduction from the undecidable origin constrained domino problem.

Intuitively, the domino (or tiling) problem asks whether, given a set of dominoes
D and a d ∈ D, there is a tiling of the plane N × N that contains d. Formally, a domino
system is a tuple (D, H, V ) where D is a finite set of dominoes and H ⊆ D × D (V ⊆
D × D) indicates how the dominoes must be positioned horizontally (vertically). A
domino system (D, H, V ) tiles the plane N × N if there exists a tiling function (or
tiling for short) τ : N × N → D of the plane N × N such that, for all (x, y) ∈ N × N,

– (τ (x, y), τ (x + 1, y)) ∈ H, and
– (τ (x, y), τ (x, y + 1)) ∈ V,

i.e., horizontally (vertically) adjacent positions must be in H (V): a domino d1 may be
tiled on the left of (below) d2 if the right (upper) side of d1 matches the left (lower)
side of d2 ((d1, d2) ∈ H, (d1, d2) ∈ V, respectively).

A domino is present in a tiling τ if there is some (x, y) ∈ N × N such that τ

(x, y) = d; the domino problem is then Given a domino system D and a domino
d ∈ D, does D tile the plane N × N such that d is present in the tiling? The domino
problem is undecidable [9].

6We omit the sub- and superscripts if they are clear from the context and, furthermore, we will usually
write T i instead of T i(∅).
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We can reduce the domino problem to satisfiability checking under the open an-
swer set semantics. Let D = (D, H, V ) be a domino system where D = {d1, . . . , dk}.
We define the corresponding domino program [D] as in Table 1. The rules in the
N × N part of the table encode the plane: h (v) makes sure that every point in N × N

has only one horizontal right (vertical upper) successor, s ensures that going up
vertically and then horizontally right is the same as going horizontally right and then
vertically up. hh encodes a horizontal has-successor relation such that hhc makes sure
that every element in the domain has a horizontal successor, and similarly for hv and
hvc in the vertical case. Finally, f1 and f2 are free rules; they can be used to introduce
the h and v atoms.

The domino conditions ensure that we can construct a valid tiling out of an open
answer set of the domino program: di, j

1 (di, j
2 ) ensure that horizontally (vertically)

adjacent domino types are allowed according to H (V), d3 ensures that every position
in the grid is assigned to some domino, and di, j

4 ensures that at most one domino type
is assigned to each position. Finally, f i

3 introduces the dominoes itself.

Theorem 5 Let D be a domino system and di some domino in D. Then, D tiles the
plane N × N such that the domino di is present in the tiling iff the corresponding
predicate di is satisfiable w.r.t. [D].

Proof For the ‘only if’ direction, assume D tiles the plane such that di is present in
the tiling τ . Define U ≡ N × N, and

M ≡ {d(u) | τ(u) = d}
∪{h((x, y), (x + 1, y)) | x, y ∈ N} ∪ {v((x, y), (x, y + 1)) | x, y ∈ N}

∪ {hh(u), hv(u) | u ∈ N × N} .

We have that di is satisfied in M: di is present in τ , such that there is a (x, y) ∈ N × N

with τ(x, y) = di. By definition of M, we have that di(x, y) ∈ M. One can show that
(U, M) is an open answer set of [D].

Table 1 Domino program.

N × N h : ← h(U, V1), h(U, V2), V1 �= V2

v : ← v(U, V1), v(U, V2), V1 �= V2

s : ← h(U, X ), v(X, V1), v(U, Y ), h(Y, V2), V1 �= V2

hh : hh(U ) ← h(U, X )

hv : hv(U ) ← v(U, X )

hhc : ← not hh(U )

hvc : ← not hv(U )

f1 : h(U, V ) ∨ not h(U, V ) ←
f2 : v(U, V ) ∨ not v(U, V ) ←

Domino conditions di,j
1 : ← di(U ), dj(V ), h(U, V ) for (di, d j ) �∈ H

di,j
2 : ← di(U ), dj(V ), v(U, V ) for (di, d j ) �∈ V

d3 : ← not d1(X ), . . . , not dk(X )

di,j
4 : ← di(X ), dj(X ) for i �= j

f i
3 : di(U ) ∨ not di(U ) ← for 1 ≤ i ≤ k
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For the ‘if’ direction, assume that (U, M) is an open answer set of [D] containing
a di(u0) for u0 ∈ U . For each (x, y) ∈ N × N, define τ such that τ(x, y) ≡ d if there is
a sequence

h(u0, s1), h(s1, s2), . . . , h(sx−1, sx), v(sx, t1), v(t1, t2), . . . , v(ty−1, ty)

in M such that d(ty) ∈ M; one thus assigns d to position (x, y) if for the element ty ∈ U
that is obtained by ‘moving’ horizontally x times with h and vertically y times with
v, we have that d(ty) ∈ M (thus ty corresponds with (x, y)). One can show that τ is
well-defined and that the domino conditions are satisfied.

First, we show that τ is well-defined:

– Every element in N × N has an image through τ . Indeed, take (x, y) ∈ N ×
N. We have that u0 ∈ U . And thus hh(u0) ∈ M such that h(u0, s1) ∈ M (by
minimality of M). With a similar reasoning, we can thus deduce a sequence
h(u0, s1), h(s1, s2), . . . , h(sx−1, sx), v(sx, t1), v(t1, t2), . . . , v(ty−1, ty) in M. With d3,
we then have that there is some di such that di(ty) ∈ M, and thus τ(x, y) = di, per
definition of τ .

– An element (x, y) ∈ N × N has at most one image: assume not, i.e., there are
di and d j for i �= j such that τ(x, y) = di and τ(x, y) = d j. We have then two
sequences

h(u0, s1), h(s1, s2), . . . , h(sx−1, sx), v(sx, t1), v(t1, t2), . . . , v(ty−1, ty)

and

h(u0, s′
1), h(s′

1, s′
2), . . . , h(s′

x−1, s′
x), v(s′

x, t′1), v(t′1, t′2), . . . , v(t′y−1, t′y)

with di(ty) ∈ M and d j(t′y) ∈ M. Using the functionality of predicates h and v in
M (with constraints h and v), one can deduce that si = s′

i, 1 ≤ i ≤ x, and ti = t′i,
1 ≤ i ≤ y. Such that di(ty) ∈ M and d j(ty) ∈ M for i �= j, a contradiction with di, j

4 .

Next, we show that

– (τ (x, y), τ (x + 1, y)) ∈ H, and
– (τ (x, y), τ (x, y + 1)) ∈ V.

We only check the first condition (the second condition is similar). Take di ≡ τ(x, y)

and d j ≡ τ(x + 1, y). By definition of τ , we have that

h(u0, s1), h(s1, s2), . . . , h(sx−1, sx), v(sx, t1), v(t1, t2), . . . , v(ty−1, ty) ∈ M

and

h(u0, s′
1), h(s′

1, s′
2), . . . , h(s′

x−1, s′
x), h(s′

x, s′
x+1), v(s′

x+1, t′1),

v(t′1, t′2), . . . , v(t′y−1, t′y) ∈ M

with di(ty) ∈ M and d j(t′y) ∈ M. We show that h(ty, t′y) ∈ M, which leads, with di, j
1 , to

the conclusion that (di, d j) ∈ H.
With the functionality of h, we can deduce that si = s′

i, 1 ≤ i ≤ x. Thus, we have
that v(sx, t1) ∈ M, h(sx, s′

x+1) ∈ M, and v(s′
x+1, t′1) ∈ M. We have that for t1, there is

some h(t1, t′′1) ∈ M (every element has a successor in M). Then, with constraint s, we
have that t′′1 = t′1, and h(t1, t′1) ∈ M.



114 Ann Math Artif Intell (2006) 47: 103–137

We then have that v(t1, t2) ∈ M, h(t1, t′1) ∈ M, and v(t′1, t′2) ∈ M. We have that
for t2, there is some h(t2, t′′2) ∈ M (every element has a successor in M). Then, with
constraint s, we have that t′′2 = t′2 and h(t2, t′2) ∈ M.

Continuing this way, eventually, leads to h(ty, t′y) ∈ M.
Finally, we have that di is present in the tiling τ : we have that di(u0) ∈ M and thus

τ(0, 0) = di by definition of τ . 
�

Corollary 1 Satisfiability checking is undecidable.

Proof This is an immediate consequence of the undecidability of the domino prob-
lem and Theorem 5. 
�

Corollary 2 Satisfiability checking under IWA is undecidable.

Proof The domino program in Table 1 contains only unary and binary predicates
and no inverted predicates. The result follows from the undecidability of satisfiability
checking that was established in Corollary 1. 
�

2.3 Decidable open answer set programming under the IWA using 2ATAs

In this subsection, we identify an expressive class of programs, so-called conceptual
logic programs (CoLPs), for which reasoning is decidable.

Inspired by modal logics (and DLs in particular), we restrict arbitrary programs
to CoLPs as to obtain programs such that if a unary predicate is satisfied by
an open answer set, then it can be satisfied by an open answer set with a tree
structure. I.e., CoLPs have the tree model property. In [44], this tree model property
is held responsible for the robust decidability of modal logics. Confirming this, the
tree model property proves to be of significant importance to the decidability of
satisfiability checking in CoLPs; it allows the reduction of satisfiability checking w.r.t.
a CoLP to checking non-emptiness of a two-way alternating tree automaton (2ATA).

2.3.1 Conceptual logic programs

We first give some preliminary definitions of (infinite) trees as in [45]. A (finite) tree
T is a (finite) subset of N∗

0
7 such that if xc ∈ T for x ∈ N∗

0 and c ∈ N0, we have that
x ∈ T. A tree T is complete if for xc ∈ T also xc′ ∈ T for 0 < c′ < c.

Elements of T are called nodes and the empty word ε is the root of T. For a node
x ∈ T we call xc, c ∈ N0, successors of x. By convention, x0 = x and (xc) − 1 = x
(ε − 1 is undefined). If every node x in a tree has k successors we say that the tree is
k-ary. An infinite path P of T is a prefix-closed subset of T such that for every 0 ≤ i
there is a unique x ∈ P such that the length of x is i (|x| = i). A labeled tree over an
alphabet � is a function t : T → � where T is a tree, labeling the nodes of T with
elements from the alphabet.

7
N

∗
0 is the set of finite sequences that can be formed using the natural numbers, excluding 0.
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Recall the program in Example 2, which has an open answer set (U, M) with
U ≡ {x, x1, . . .} and M ≡ {restore(x), crash(x), backFail(x), y(x, x1), backSucc(x1),

y(x1, x2), backSucc(x2), y(x2, x3), . . .}.
One can rewrite this open answer set as an open answer set (U ′, M′) such that U ′

is a tree: take U ′ ≡ {ε, 1, 11, 111, 1111, . . .} and

M′ ≡ {restore(ε), crash(ε), backFail(ε), y(ε, 1), backSucc(1), y(1, 11),

backSucc(11), y(11, 111), . . .}.

Then (U ′, M′) is clearly also an open answer set of the program.
Observe that this open answer set can be encoded as a labeled tree t : U ′ →

2preds(P): it maps nodes to a set of unary or binary predicates such that, for unary
predicates a in P and binary predicates f in P:

– a(x) ∈ M′ iff a ∈ t(x), and
– f (x, y) ∈ M′ iff y = xi ∧ f ∈ t(y).

Intuitively, unary literals a(x) can be encoded in the label of node x and binary literals
f (x, xi) can be encoded in the label of xi, the ith successor of x. A particular f in
the label of a node xi indicates that f (x, xi) ∈ M since each node xi has the unique
predecessor x. The open answer set (U ′, M′) can be encoded as the linear tree in
figure 1.

If we consider open answer sets under the IWA, we can also encode literals
f (xi, x), where the first argument is a successor of the second argument. Indeed,
by the IWA we know that open answer sets under the IWA that contain f (xi, x)

also contain f i(x, xi). Similarly to the above, we place f i in the label of xi. Since xi
has only one predecessor, x, such a label uniquely identifies f i(x, xi) and thus also
f (xi, x).

Figure 1 Backup example
tree.

{y, backSucc}

{restore, crash, backFail}

{y, backSucc}
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Similarly, we can encode f i(xi, x) in open answer sets under the IWA since
f (x, xi) is present in the open answer set under the IWA: place f in the label of
xi.

Example 7 Modify the program in Example 4 by adding the rule

tomori(X, Y ) ← y(X, Y ) .

The modified program then has an open answer set under IWA (U, M) that can be
encoded as the labeled tree t in figure 2.

Such a labeling function t maps nodes to a set of unary and/or (possibly inverted)
binary predicates such that, for unary predicates a in P and (possibly inverted) binary
predicates f in P:

– a(x) ∈ M′ iff a ∈ t(x),
– f (x, y) ∈ M′ iff y = xi ∧ f ∈ t(y) or x = yi ∧ f i ∈ t(x).

Further note that the encoded trees in both of the above examples are minimal, in
the sense that for every node zi in the tree-shaped universe there is some f (z, zi) in
the open answer set under the IWA where f is possibly inverted. Intuitively, the tree
cannot contain dangling nodes. A unary predicate p is tree satisfiable under IWA if
there is an open answer set (U, M) under the IWA that can be encoded as a tree,
as described above, and such that p(ε) ∈ M, i.e., the predicate p is in the label of
the root.

Definition 6 Let P be a program. A p ∈ upreds(P) is tree satisfiable under IWA w.r.t.
P if there exists

– An open answer set (U, M) under IWA of P such that U is a tree of bounded
arity, and

– A labeling function t : U → 2preds(P) such that

Figure 2 Modified backup
example tree.

{tomori, y, backSucc}

{restore, crash, backFail}

{tomori, y, backSucc}
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- p ∈ t(ε) and t(ε) does not contain (possibly inverted) binary predicates, and
- zi ∈ U , i > 0, iff there is some f (z, zi) ∈ M where f is possibly inverted, and
- for y ∈ U , q ∈ upreds(P), f ∈ bpreds(P),

• q(y) ∈ M iff q ∈ t(y), and
• f (x, y) ∈ M iff y = xi ∧ f ∈ t(y) or x = yi ∧ f i ∈ t(x), where f is possi-

bly an inverted predicate.

We call such a (U, M) a tree model (under IWA) and a program P has the tree model
property (under IWA) if the following property holds: if p ∈ upreds(P) is satisfiable
under IWA w.r.t. P then p is tree satisfiable under IWA w.r.t. P.

We will often denote a set like, e.g., {a(X ), not b(X )} as α(X ) with α = {a, not b};
similarly for sets of binary (possibly inverted) literals, e.g., { f (X, Y ), not gi(X, Y )}
will be denoted as α(X, Y ) for α = { f, not gi}. If we only write α(X ), without
specifying α, it is assumed that α is a (possibly empty) set of unary predicate names,
possibly preceded with the negation as failure symbol, and similarly for α(X, Y ).

We next identify a syntactical class of programs such that every program of that
type has the tree model property.

Definition 7 A conceptual logic program (CoLP) is a program with only unary and
binary predicates, without constants, and such that any rule is of one of the following
types,

– Free rules a(X ) ∨ not a(X ) ← or f (X, Y ) ∨ not f (X, Y ) ← , where f is possibly
inverted (similarly for the subsequent rule types),

– Unary rules

r : a(X ) ← β(X ),
⋃

1≤m≤k

γm(X, Ym),
⋃

1≤m≤k

δm(Ym), ψ

with k a finite natural number and where

1. ψ ⊆ ⋃
1≤i �= j≤k{Yi �= Y j} and {=, �=} ∩ γm = ∅ for 1 ≤ m ≤ k,

2. ∀Yi ∈ vars (r) · γ +
i �= ∅, i.e., for variables Yi there is a positive atom that

connects Yi and X.

– binary rules f (X, Y ) ← β(X ), γ (X, Y ), δ(Y ) with γ + �= ∅, {=, �=} ∩ γ = ∅,
– constraints ← a(X ) or ← f (X, Y ).

Intuitively, unary rules allow to deduce a(X ) if β(X ) hold, and for all neighbors
Ym, γm(X, Ym) as well as δm(Ym) hold. Furthermore, one can impose that some of
those neighbors must be different. E.g.,

a(X ) ← f (X, Y1), f (X, Y2), Y1 �= Y2

deduces a at X if X has two different neighbors Y1 and Y2. E.g.,

a(X ) ← f (X, Y1), not g(X, Y2), h(X, Y2), Y1 �= Y2

expresses that if x and y1 are connected by f (i.e., f (x, y1) holds), x and y2 are
connected by h and g does not hold for that connection, and y1 and y2 are different,
then a must hold at x. Unary rules have a branching or tree structure if we regard X
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as a node and Y1 and Y2 as its successors. The restriction ∀Yi ∈ vars(r) · γ +
i �= ∅ is

necessary to have the tree model property: in the above rule if h(X, Y2) were missing
it would not be a valid CoLP rule.

Indeed, take a program containing rules8

q(X ) ← a(X ), not p(X )

p(X ) ← not r(X, Y ), a(Y )

In order to make q satisfiable, one needs some q(x) to hold. By minimality of open
answer sets, we have that the body of the first rule must be true, i.e., a(x) holds and
p(x) does not hold. The latter implies that the body of the second rule cannot be
true, i.e., if there is some y such that r(x, y) does not hold, then a(y) cannot hold.
Since a(x) holds, we have that r(x, x) must always hold, resulting in a cycle. Hence,
open answer sets of the program that satisfy q can never be rewritten as a tree since
such a cycle will always arise.

A similar restriction, γ + �= ∅, holds for binary rules. E.g., a rule f (X, Y ) ← v(X )

is not a valid CoLP rule; a true v(x) may impose connections between x and y without
y being a successor of x.

The idea of ensuring such connectedness of models in order to have desirable
properties, like decidability, is similar to the motivation behind the guarded fragment
of predicate logic [2].

A unary rule is a live rule if there is a γm �= ∅. A unary predicate a is live if there is
a live rule r with a in head(r) and a is not free. The intuition behind a live predicate
a is that a new individual y might need to be introduced in order to make a(x) true
for an existing x. We denote the set of live predicates for a CoLP P with live (P).
A degree for the liveliness of a rule r, i.e., how many new individuals might need
to be introduced to make the head true, is degree(r) ≡ |{m | γm �= ∅}|. The degree
of a live predicate a in P is degree(a) ≡ max{degree(r) | a ∈ head(r)}. The rank of a
CoLP P is the sum of the degrees of the live predicates in P:

∑
a∈live(P) degree(a).

Intuitively, given a node in an encoded tree with a certain label that contains some
unary predicates, every live unary predicate in label of the node appears in the
head of some rule and its degree indicates precisely those neighboring nodes that
need to be present to motivate the predicate in the label. The sum of those degrees
corresponds then to the maximum branching of the tree at that node. The rank of a
program is the maximum number of successor nodes one may need to introduce at
any time.

Theorem 6 Conceptual logic programs have the tree model property.

Proof Take a CoLP P and p ∈ upreds (P) s.t. p is satisfiable under IWA, i.e., there
exists an open answer set (U, M) under IWA with p(u) ∈ M. Let n be the rank of P.

We first define θ : {1, . . . , n}∗ → U , a mapping from the complete n-ary tree to
the domain U . Intuitively, θ associates some of the nodes in the complete tree with
elements in the domain.

8The example is an adaptation of the DL concept A 
 ∀¬R.¬A which is not satisfiable by tree
models, see, e.g., [30].
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Initially, assume that θ is undefined for the whole tree {1, . . . , n}∗. If θ is defined
on some node x, we will call the node x defined. θ is then constructed by first
defining θ(ε) = u. Subsequently, assume we have considered, as in [45], every node in
{1, . . . , n}k, for some k, as well as every successor node of the defined z′ ∈ {1, . . . , n}k

with |z′| = k until9 zm for some defined z ∈ {1, . . . , n}k with |z| = k. Consequently,
we have considered the nodes z1, . . . , zm.

Since θ is defined on z, we have that θ(z) ∈ U . For every q(θ(z)) ∈ M, there

is, by Theorem 2, some l < ∞ s.t. q(θ(z)) ∈ T il
. By definition of the immediate

consequence operator, we have that there is a rule rq(θ(z)) : q(θ(z)) ← β+[] ∈ PM
U

with M |= β+[], originating from r : q(X ) ∨ α ← β ∈ P such that M |= α−[], M |=
not β−[], and T il−1 |= β+[]. If r is not live, we do nothing. Else, the body of
rq(θ(z)) is of the form γ +(θ(z)),

⋃
i γ

+
i (θ(z), yi),

⋃
i δ

+
i (yi) with at least one γ +

i �= ∅.
Without loss of generality, we can assume that for all i, γ +

i �= ∅. If there is a zj ∈
{z − 1, z1, . . . , zm, . . . , z(m + i − 1))} with θ(zj) = yi then θ remains undefined on
z(m + i), otherwise θ(z(m + i)) = yi. Intuitively, if θ is already defined on a neighbor
of z as equal to yi, there is no need to define θ on another successor as equal to yi.

Define a labeled tree t : dom(θ) → 2preds(P), where dom(θ) are those elements for
which θ is defined, as follows:

– t(ε) ≡ {q | q(u) ∈ M},
– t(zi) ≡ {q | q(θ(zi)) ∈ M} ∪ { f | f (θ(z), θ(zi)) ∈ M, f poss. inv.}.
Define the open interpretation (V, N) such that V ≡ dom(θ) and N ≡ {q(z) | q ∈
t(z)} ∪ { f (z, zi), f i(zi, z) | f ∈ t(zi), f poss. inverted}. It is then straightforward to
check that (V, N) is a tree model under IWA satisfying p according to Definition 6.


�

2.3.2 Decidability of conceptual logic programs

Two-way alternating tree automata (2ATA) [45] are automata that take infinite
labeled trees as input. They either accept or reject such an infinite tree based on the
notion of accepting run of the 2ATA on the tree. A run is again a labeled tree that
describes the execution of the 2ATA on a given input tree: its root is labeled by the
initial state of the 2ATA and the root of the input tree. In general, the nodes of a run
are labeled with the state the 2ATA is in together with the node it is scanning. Each
successor of a node in the run corresponds to the state and the scanning node of (a
copy) of the 2ATA at a next time step. Those transitions from a node to a successor
node are constrained by a transition function.

E.g., when the 2ATA is in a state q and reading a label a of a certain node, the
transition function δ can express that the 2ATA should enter state q1 and move to
the predecessor node or enter q2 in the first successor and q3 in the third successor
as follows: δ(q, a) = (−1, q1) ∨ ((1, q2) ∧ (3, q3)). Note that, intuitively, a 2ATA can
‘fork’ into multiple instances by starting to scan the first and third successor of the
current node. The fact that the automaton can go up in the input tree (indicated
by −1) explains the naming two-way and the alternating considers the fact that the

9By saying ‘until’, we assume that there is an ordering from left to right in the graphical representa-
tion of the tree.
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definition of the transition function may be a positive boolean formula (in normal
tree automata, the automaton always forks one version of itself into all of the
successors).

An accepting run is a run of the 2ATA on an infinite tree that satisfies the
acceptance condition. This acceptance condition can indicate which states of the
2ATA must be visited infinitely often or which states cannot be visited infinitely
often. E.g., a 2ATA can recognize infinite trees that contain only a finite number
of labels containing some symbol a.

Formally, let B+(I) be the set of positive boolean formulas over a set I. A set
J ⊆ I satisfies a positive boolean formula φ if assigning true to the elements in J
and false to the elements in I \ J makes φ true according to the standard inductive
semantics for boolean formulas. A two-way alternating tree automaton (2ATA) [45]
over k-ary infinite trees is a tuple (�, Q, q0, δ, �) where � is the input alphabet, Q
is a finite set of states, δ : Q × � → B+([k] × Q), with [k] = {−1, 0, . . . , k}, q0 ∈ Q is
the initial state and � is the acceptance condition.

A run over a tree t : T → � is a tree10 r : R → T × Q such that:

1. r(ε) = (ε, q0),
2. If y ∈ R, r(y) = (x, q), and δ(q, t(x)) = φ, then there exists a (possibly empty) set

S = {(c1, q1), . . . , (cn, qn)} ⊆ [k] × Q such that

(a) S satisfies φ, and
(b) yi ∈ R, for all 0 < i ≤ n, xci is defined and r(yi) = (xci, qi).

Thus, the label (x, q) of a node in a run indicates the node x that the automaton
is scanning as well as the state q it is in. A run r is accepting if all its infinite paths
satisfy the acceptance condition �. We consider parity acceptance conditions, i.e.,
� = (G1, . . . , Gm) such that G1 ⊆ G2 ⊆ . . . ⊆ Gm = Q, and a run r satisfies � if for
every path π in r, there exists an even i such that In(π) ∩ Gi �= ∅ and In(π) ∩ Gi−1 =
∅, where In(π) are the states that appear infinitely often in the labels of nodes in π . A
tree is accepted by a 2ATA A if there is an accepting run. We denote the set of trees
that are accepted by A as L(A), i.e., the language of A. Non-emptiness checking of
a 2ATA amounts then to checking whether L(A) �= ∅.

For a given conceptual logic program with a unary predicate to test for satisfia-
bility, we construct a 2ATA such that we can reduce satisfiability checking under
IWA to checking non-emptiness of the automaton. Note that the tree model property
ensures that open answer sets can be written as trees and subsequently fed as input
to a tree automaton.

We define the notion of well-behaved trees. Well-behaved trees are trees with
certain basic properties that make the definition of the main 2ATA for a CoLP less
cumbersome.

Definition 8 An infinite k-ary tree t : T → 2preds(P) ∪ {{dummy}} for a program P
with rank k is well-behaved if the root label does not contain binary predicates
(possibly inverted) from P, and, if the label of a node is {dummy}, then the labels
of all its successors are {dummy}.

10Note that the alphabet of r is infinite.
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One can easily construct a 2ATA that accepts exactly the set of well-behaved trees
of a program P; call this the well-behaved automaton of P.

Let P be a CoLP with rank k and p a unary predicate in P. We define the
2ATA Ap,P as the intersection of the well-behaved automaton of P and the 2ATA
(�, Q, δ, q0, �):

The Alphabet �. The alphabet of the automaton is 2preds(P) ∪ {{dummy}}, i.e., the
label of a node of the input tree is either a set of unary and binary (possibly
inverted) predicates or the dummy label {dummy}.
The Transition Function δ. Instead of first defining the states, we immediately de-
fine the transition function and assume the states we introduce in this definition
are also defined in Q.

– The transition for the initial state q0 is

δ(q0, n) = p ∈ n ∧ (0, q1) (2)

for any n ∈ 2preds(P) ∪ {{dummy}}. In the initial state, we check whether p is in the
label n, i.e., we ensure that the infinite tree corresponds to an open interpretation
that makes p satisfiable. We next enter the state q1, which will check every node
of our tree for conditions that make sure that the tree corresponds to an open
answer set.

– The transition for the recurring state q1 is

δ(q1, n) =
⎛

⎝
∧

a∈n

(0, qa) ∧
∧

a �∈n

(0, qa ) ∧
∧

c constraint
(0, qc) ∧

∧

1≤i≤k

(i, q1)

⎞

⎠

∨ (n = {dummy}) , (3)

where a ∈ preds(P). In state q1, the 2ATA needs to motivate the presence of
every predicate a in the label by means of the state qa, i.e., there must be some
rule in the program that forces a to be there. On the other hand, if there is some
predicate a that is not in the label, qa motivates this as well, i.e., there may be no
rule that forces a to be in the label. It checks in every node that the constraints
c are satisfied by entering the state qc, and it does the same check for the entire
tree by entering q1 again for all its successors, unless the label is the dummy label
in which case it does not perform any more checks.

– We define a function free : preds(P) → {true, false} such that free(q) returns true
if q (or its inverse) is free. For unary predicates a ∈ preds(P) and binary (possibly
inverted) predicates f ∈ preds(P), we have the transitions:

δ(qa, n) = a ∈ n ∧
⎛

⎝ free(a) ∨
∨

r:(a)(X )←β

(0, qr)

⎞

⎠ (4)

and

δ(q f , n) = f ∈ n ∧
⎛

⎜
⎝ f ree( f ) ∨

∨

r: f (X,Y )←β

(0, qr) ∨
∨

r: f i(X,Y )←β

(0, q
r i)

⎞

⎟
⎠ . (5)
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The transitions qa and qf need to motivate the presence of a and f in the label.
They check that a and f are indeed in the label. If a (or f ) is free, the presence
of a (or f ) is vacuously motivated. Otherwise, there has to be some rule r with a
(respectively, f ) in the head such that the body of the rule can be made true; the
latter happens by entering the state qr. For binary predicates f , we have that f
may also be introduced by rules with f i in the head, hence the presence of q

r i .
– Consider a unary rule r : a(X ) ← β(X ), γm(X, Ym), δm(Ym), ψ . A multi-set

I = {iYi | Yi ∈ body(r), iYi ∈ {0, . . . , k}} satisfies ψ if the following holds:
∀iYi , jY j ∈ I · Yi �= Y j ∈ ψ ⇒ iYi �= jY j . Intuitively, such a multi-set I indicates
the allowed directions of the automaton making sure that none of the inequalities
in ψ are violated: if Yi �= Y j then the direction iYi cannot be equal to jY j . The
transition for r is then

δ(qr, n) = (0, qβ) ∧ ∃I satisfies ψ ·
⎛

⎝
∧

mYm ∈I

(mYm , q′
γm

) ∧ (m′
Ym

, qδm)

⎞

⎠ , (6)

with

q′
γm

=
{

q
γm

i if mYm = 0

qγm else
and m′

Ym
=

{
−1 if mYm = 0
mYm else .

Intuitively, when reading a label with a at node X, one has to verify that β holds
at the current node X (hence the 0-direction). One also has to pick a multi-set I
corresponding to a set of directions that does not violate ψ and check γm and δm.
If a direction mYm is such that 0 < mYm , i.e., down the tree, then one has to check
γm in the label of the successor mYm . E.g., if f (X, Ym) ∈ γm(X, Ym) and mYm = 2,
the 2ATA moves to the second successor X2 of X and checks whether f is in
the label of X2 (recall that a f in a label of zi indicates a connection f (z, zi)).
If mYm = 0, we assume the Ym is the predecessor of X and we check that γm

i

holds at X itself and we go one node up (direction −1) to check δm. E.g., assume
f (X, Ym) ∈ γm(X, Ym) and b(Ym) ∈ δm, with mYm = 0. Then, we check that f i

is in the label of X and b is in the label of the predecessor Ym of X (recall that a
f i in a label of z indicates a connection f i(z − 1, z) or f (z, z − 1)).

– The transition for a binary r : f (X, Y ) ← β(X ), γ (X, Y ), δ(Y ) includes

δ(qr, n) = (−1, qβ) ∧ (0, qγ ) ∧ (0, qδ) (7)

and

δ(q
r i , n) = (−1, qδ) ∧ (0, q

γ i) ∧ (0, qβ) . (8)

Intuitively, in the former transition, to motivate f at node Y, we need to go up
and check β at the predecessor X, and γ and δ at the current node. The latter
transition follows from the equivalence of f (X, Y ) ← β(X ), γ (X, Y ), δ(Y ) and
f i(Y, X ) ← β(X ), γ i(Y, X ), δ(Y ).

– For a set γ ⊆ preds(P) and a qγ as introduced in one of the previous steps (γ
contains possibly inverted predicates), we have the transition

δ(qγ , n) =
∧

a∈γ

(0, qa) ∧
∧

not a∈γ

a �∈ n , (9)
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where a is unary or (possibly inverted) binary. Intuitively, motivating positive
predicates amounts to recursively motivating each positive predicate. The nega-
tive predicates can be directly checked in the node label: this corresponds to the
GL-reduct strategy where naf-literals are removed according to their trueness
w.r.t. some open interpretation.

– This concludes the definition of the transition function for positive states, i.e.,
states that motivate the presence of predicates in a label. Next, we define the
states qa that motivate the lack of a predicate in a label. Intuitively, there can
be no applicable rule with a in the head. The transition function for qa is then
basically the De Morgan rules applied to the transitions for qa.
For unary predicates a ∈ preds(P) and binary (possibly inverted) predicates f ∈
preds(P), we have the transitions:

δ(qa, n) = a �∈ n ∧
⎛

⎝¬free (a) ∧
∧

r:a(X )←β

(0, qr)

⎞

⎠ (10)

and

δ(q f , n) = f �∈ n ∧
⎛

⎜
⎝¬free ( f ) ∧

∧

r: f (X,Y )←β

(0, qr ) ∧
∧

r: f i(X,Y )←β

(0, q
r i )

⎞

⎟
⎠ .

(11)

– For a unary rule r : a(X ) ← β(X ), γm(X, Ym), δm(Ym), ψ we have the transition

δ(qr, n) = (0, qβ ) ∨ ∀I satisfies ψ ·
⎛

⎝
∨

mYm ∈I

(mYm , qγm
′) ∨ (m′

Ym
, qδm )

⎞

⎠ (12)

with

qγm
′ =

{
q

γm
i if mYm = 0

qγm else
and m′

Ym
=

{
−1 if mYm = 0
mYm else .

– The transition for a binary r : f (X, Y ) ← β(X ), γ (X, Y ), δ(Y ) comprises

δ(qr, n) = (−1, qβ ) ∨ (0, qγ ) ∨ (0, qδ ) (13)

and

δ(q
r i , n) = (−1, qδ ) ∨ (0, q

γ i ) ∨ (0, qβ ) . (14)

– For a set γ ⊆ preds(P) and a qγ as introduced in one of the previous steps (γ
contains possibly inverted predicates), we have the transition

δ(qγ , n) =
∨

a∈γ

(0, qa) ∨
∨

not a∈γ

a ∈ n , (15)

where a is unary or (possibly inverted) binary.
– For constraints c : ← a(X ), we have

δ(qc, n) = a �∈ n . (16)

A constraint c is satisfied if a is not in the current label of the node.
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– For constraints c1 : ← f (X, Y ) and c2 : ← f i(X, Y ), we have

δ(qc1 , n) = δ(qc2 , n) = f �∈ n ∧ f i �∈ n . (17)

A constraint ci is thus satisfied if neither f nor f i is in the current label of the
node.

Note that we do not need qualifiers in the transition function Definitions (6) and
(12); we can rewrite them as boolean formulas.

The States Q. Take the states Q as introduced above. Denote with Q+ the set of
all states qa for unary and (possibly) inverted predicates a.
The Acceptance Condition �. Take � = (Q+, Q). Then, an infinite path π is
accepting if In(π) ∩ Q �= ∅ and In(π) ∩ Q+ = ∅. Since the former is trivially
satisfied for all paths, the latter condition reduces to forbidding the infinite
occurrence of positive states. Intuitively, positive states qa were used to motivate
the presence of predicates in a label by checking that there was some rule with
a body that again could be motivated by positive states. Since, by the minimality
of open answer sets, this must eventually end we forbid the infinite occurrence
of positive states. E.g., a rule a(X ) ← a(X ), would amount to a path with qa

appearing infinitely often, which we disallow in accordance with the open answer
set semantics where the above rule has an empty open answer set only.

Theorem 7 Let P be a CoLP and p ∈ upreds(P). p is satisfiable under IWA w.r.t. P
iff L(Ap,P) �= ∅.

Proof For the ‘only if’ direction, assume that p is satisfiable under IWA w.r.t. P,
then, by Theorem 6, p is tree satisfiable under IWA w.r.t. P. By Definition 6, there
exists a tree model under IWA (U, M) such that U is a tree with branching at most k,
with k the rank of P, and there is a corresponding labeling function t : U → 2preds(P).

The tree U may be finite, however, a 2ATA demands for an infinite tree input.
We take the infinite complete k-ary tree U ′ and define t′ : U ′ → 2preds(P) ∪ {{dummy}}
such that for x ∈ U , t′(x) ≡ t(x), and for x ∈ U ′ \U , t′(x) ≡ {dummy}. Intuitively, we
fill up all the holes in the tree t and subsequently make it infinite; those new nodes
are all labeled with the dummy label. Clearly, this is a well-behaved tree. One can
then check that t′ is accepted by Ap,P such that L(Ap,P) �= ∅.

For the ‘if’ direction, assume t : T → 2preds(P) ∪ {{dummy}} is an infinite la-
beled k-ary tree that is accepted by Ap,P. Denote the corresponding run with
r. Define (U, M) with U ≡ {x|x ∈ T, t(x) �= {dummy}} and M ≡ {q(x) | q ∈ t(x) ∩
upreds(P)} ∪ { f (x, xi), f i(xi, x) | f ∈ t(xi) ∩ bpreds(P)}. We have that (U, M) is an
open interpretation under IWA w.r.t. P. Since r(ε) = (ε, q0) and by the definition of
a run and transition (2) which says that δ(q0, t(ε)) = p ∈ t(ε) ∧ (0, q1), we have that
p ∈ t(ε). By the definition of M, we then have that p(ε) ∈ M. One can show that
(U, M) is an open answer set under IWA of P. 
�

The reduction yields a complexity upper bound for satisfiability checking under IWA
w.r.t. CoLPs.
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Theorem 8 Satisfiability checking under IWA w.r.t. CoLPs is decidable and
in exptime.

Proof With Theorem 7, we have that p is satisfiable w.r.t. a CoLP P iff L(Ap,P) �= ∅.
The latter can be decided in time exponential in the size of the number of states of
Ap,P [45]. One can see that the number of states of Ap,P is polynomial in the size of
P such that the result follows. 
�

Satisfiability checking w.r.t. CoLPs is more efficient than normal (finite) answer
set programming for arbitrary programs, which is nexptime-complete if the head
contains at most one positive literal, see [12]. A final note regarding the formal
properties of CoLPs is that the syntax of CoLPs can be loosened up without loss
of generality. One can unfold the bodies of unary and binary rules yielding, instead
of tree-shaped rules of one level deep, tree-shaped rules of arbitrary finite depth. We
can also allow for constraints ← β, where β is a body as in a unary or binary CoLP
rule. Such general constraints can be easily rewritten as the CoLP rules a(X ) ← β

and ← a(X ) in the unary case, or as f (X, Y ) ← β and ← f (X, Y ) in the binary
case.

3 Simulating the description logic SHIQ

3.1 The DL SHIQ

Description logics (DLs) constitute a family of logical formalisms useful for knowl-
edge representation, e.g., the representation of taxonomies in certain application
domains [33].

The ‘Semantic Web’ [7] seeks to improve on the current World Wide Web, making
knowledge not only viewable and interpretable by humans, but also by software
agents. Ontologies play a crucial role in the realization of this next generation web,
by providing a ‘shared understanding’ [40] of certain domains. In order to describe
ontologies, one can use ontology languages, such as DAML+OIL, OIL [5, 16, 17], or,
more recently, OWL [6]. A DL can then be used to express the formal semantics
of an ontology written in an ontology language like OIL, but also provide some
basic reasoning services such as checking whether an instance is of a certain type
or whether classes are subclasses of other classes [4, 24].

The semantics of DLs is given by interpretations I = (I,I ) where I is a non-
empty domain and I is an interpretation function.

We define the syntax and semantics of SHIQ [23] expressions in Table 2, where
SHIQ is the formal DL underlying OIL. In the table, R is a role, Ri its inverse, and
A is a concept name which is the basic concept expression; C and D are concept
expressions that can be used to build more complex concept expressions such as
conjunction, disjunction, exists restriction, value restriction, at least restriction, and
at most restriction. The latter two expressions will be referred to as qualified number
restrictions.

A DL knowledge base is a set of axioms, where an axiom is either a terminological
axiom C � D with C and D concept expressions, a role axiom R � S where R, S may
be inverse roles, or a transitivity axiom Trans(R) for an (inverse) role R. We often
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Table 2 Syntax and semantics of SHIQ constructs.

Construct Syntax Semantics

Concept name A AI ⊆ I

Role name R RI ⊆ I × I

Inverse role R− (R−)I = {(x, y) | (y, x) ∈ RI }

Concept conj. C 
 D (C 
 D)I = CI ∩ DI

Concept disj. C � D (C � D)I = CI ∪ DI

Negation ¬C (¬C)I = I \ CI

Exists restr. ∃R.C (∃R.C)I = {x | ∃y : (x, y) ∈ RI and y ∈ CI }
Value restr. ∀R.C (∀R.C)I = {x | ∀y : (x, y) ∈ RI ⇒ y ∈ CI }
At least restr. ≥ nS.C (≥ nS.C)I = {x | #{y | (x, y) ∈ SI and y ∈ CI } ≥ n}
At most restr. ≤ nS.C (≤ nS.C)I = {x | #{y | (x, y) ∈ SI and y ∈ CI } ≤ n}

write A ≡ B if both A � B and B � A hold in a knowledge base. If the knowledge
base contains an axiom Trans(R), we call R transitive. For the role axioms in a
knowledge base, we define �∗ as the reflexive-transitive closure of �. A simple role
R in a knowledge base is a role that is not transitive nor does it have any transitive
subroles (w.r.t. to reflexive transitive closure �∗ of �). Note that, for R � S a role
axiom with (possibly inverted) roles, we always assume R− � S− is also present
in the knowledge base; similarly, if Trans(R) is in the knowledge base, we assume
Trans(R−) is as well.

Terminological and role axioms express a subset relation: an interpretation I
satisfies an axiom C1 � C2 (R1 � R2) if CI

1 ⊆ CI
2 (RI

1 ⊆ RI
2 ). An interpretation

satisfies a transitivity axiom Trans(R) if RI is a transitive relation.An interpretation
is a model of a knowledge base � if it satisfies every axiom in �. A concept C is
satisfiable w.r.t. � if there is a model I of � such that CI �= ∅. The number restrictions
(at most and at least) are always such that the role R in, e.g., ≥ nR.C, is simple; this
in order to avoid undecidability of satisfiability checking (see, e.g., [24]).

Example 8 Consider the knowledge base � with axioms

Personnel ≡ Management � Workers � ∃boss.Management
Management � (∀take_orders.Management) 
 (≥ 3 boss.Workers)

The first axiom expresses that personnel consists exactly of the managers, workers,
and those people that are the boss of some managers. The second axiom says that
every manager takes only orders from other managers and is the boss of at least three
workers. Additionally, we assume � contains the axiom Trans(boss), indicating that
if x is a boss of y and y is a boss of z, then x is a boss of z.

A model of this knowledge base is I = ({ j, w1, w2, w3, m},I ), with I defined
by WorkersI = {w1, w2, w3}, ManagementI = {m}, PersonnelI = { j, w1, w2, w3, m},
bossI = {( j, m), (m, w1), (m, w2), (m, w3), ( j, w1),

( j, w2), ( j, w3)}, and take_ordersI = ∅.

Satisfiability checking of SHIQ concept expressions w.r.t. SHIQ knowledge
bases is exptime-complete [39].
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3.2 Simulating SHIQ with conceptual logic programs

Consider the knowledge base � from Example 8. We translate the two axioms as
three CoLP constraints (the first axiom actually corresponds to two terminological
axioms):11

← Per(X ), not (Man � Wor � ∃boss.Man)(X )

← not Per(X ), (Man � Wor � ∃boss.Man)(X)

← Man(X), not ((∀tak.Man) 
 (≥ 3 boss.Wor))(X)

Intuitively, we associate with the concept expressions on either side of � in
a terminological axiom a new predicate name. We conveniently denote this
new predicate like the corresponding concept expression. The constraints sim-
ulate the behavior of the terminological axioms. E.g., if Man(x) holds, but
((∀tak.Man) 
 (≥ 3 boss.Wor))(x) does not, we have a contradiction. This corre-
sponds to the DL behavior of the corresponding axiom: if x ∈ ManagementI and
x �∈ ((∀tak.Man) 
 (≥ 3 boss.Wor))I , we have a contradiction as the axiom requires
that ManI ⊆ ((∀tak.Man) 
 (≥ 3 boss.Wor))I for models I .

Note that we do not encode the transitivity of boss directly as a constraint
← boss(X, Y ), boss(Y, Z), not boss (X,Z), as this is not a CoLP rule (and cannot

be written as one). Instead, we take into account transitivity of roles when defining
concept expressions that contain transitive roles (such as ∃boss.Man, see below).

After having translated the axioms as CoLP constraints, it remains to define
the newly introduced predicates according to the DL semantics. We define Per
with the free Per(X ) ∨ not Per(X ) ← . Intuitively, the DL semantics gives an open
(first-order) interpretation to its concept names: a domain element is either in the
interpretation of a concept name or not. Similarly, we have, for that particular
constraint, the free rules Man(X ) ∨ not Man(X ) ← , Wor(X ) ∨ not Wor(X ) ← ,
and boss(X, Y ) ∨ not boss(X, Y ) ← . Note that boss is a role name, so we introduce
it as a binary predicate. The predicate (Man � Wor � ∃boss.Man) can be defined by
the rules:

(Man � Wor � ∃boss.Man)(X ) ← Man(X )

(Man � Wor � ∃boss.Man)(X ) ← Wor(X )

(Man � Wor � ∃boss.Man)(X ) ← (∃boss.Man)(X )

Intuitively, if (Man � Wor � ∃boss.Man)(x) is in an open answer set, then, by
minimality of open answer sets, there has to be either a Man(x), Wor(x), or
a (∃boss.Man)(x). Vice versa, if Man(x), Wor(x), or (∃boss.Man)(x) holds, then
(Man � Wor � ∃boss.Man)(x) holds as well since the rules must be satisfied. This
corresponds exactly to the DL semantics for concept disjunction.

The predicate (∃boss.Man) is defined by the rules

(∃boss.Man)(X ) ← boss(X, Y ), Man(Y )

(∃boss.Man)(X ) ← boss(X, Y ), (∃boss.Man)(Y )

11We use short names for compactness: Man for Management, Wor for Workers, Per for Personnel,
tak for take_orders. Furthermore, we assume that a logic program may contain predicate names
starting with a capital letter; this should not lead to confusion with variables, which only appear as
arguments of predicates.
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The rules explicitly say that (∃boss.Man)(x) holds in an open answer set iff there is
some chain boss(x, u0), . . . , boss(un, y), and Man(y) that hold in that open answer
set. By transitivity of boss, we should indeed have then that (x, y) ∈ bossI such that
x ∈ (∃boss.Man)I .

The second axiom does not yield any new rules. The last axiom introduces a new
free rule tak(X, Y ) ∨ not tak(X, Y ) ← and a rule that defines concept conjunction
as conjunction in the body of a rule:

((∀tak.Man) 
 (≥ 3 boss.Wor))(X ) ← (∀tak. Man)(X ), (≥ 3 boss.Wor)(X )

The predicate (∀tak. Man) is defined corresponding to the DL equivalence
∀tak. Man ≡ ¬∃tak.¬Man:

(∀tak. Man)(X ) ← not (∃tak.¬Man)(X )

(∃tak.¬Man)(X ) ← tak(X, Y ), (¬Man)(Y )

(¬Man)(X ) ← not Man(X )

which also shows that negated concept expressions are defined using not. Fur-
ther note that, since tak is not transitive, we have no recursion in the rule for
∃tak.¬Man like for ∃boss.Man: ∃tak.¬Man should hold only when there is a direct
tak-connection with a Man element.

Finally, the number restriction is defined as follows:

(≥ 3 boss.Wor)(X ) ← boss(X, Y1), boss(X, Y2), boss(X, Y3),

Wor(Y1), Wor(Y2), Wor(Y3),

Y1 �= Y2, Y1 �= Y3, Y2 �= Y3

It uses inequality to ensure that there are at least 3 different boss successors y of
some x that are workers in an open answer set iff (≥ 3 boss.Wor)(x) is in the open
answer set.

Before giving the formal translation, define the closure clos(C, �) of a SHIQ
concept expression C and a SHIQ knowledge base �.

Definition 9 The closure clos(C, �) of a SHIQ concept expression C and a SHIQ
knowledge base � is the smallest set satisfying the following conditions:

– C ∈ clos(C, �),
– for each C � D an axiom in � (role or terminological), {C, D} ⊆ clos(C, �),
– for each Trans(R) in �, {R} ⊆ clos(C, �),
– for every D in clos(C, �), we have

- if D = ¬D1, then {D1} ⊆ clos(C, �),
- if D = D1 � D2, then {D1, D2} ⊆ clos(C, �),
- if D = D1 
 D2, then {D1, D2} ⊆ clos(C, �),
- if D = ∃R.D1, then {R, D1} ∪ {∃S.D1 | S�∗ R, S �= R, Trans(S) ∈ �} ⊆ clos

(C, �),
- if D = ∀R.D1, then {∃R.¬D1} ⊆ clos(C, �),
- if D = (≤ n Q.D1), then {(≥ n + 1 Q.D1)} ⊆ clos(C, �),
- if D = (≥ n Q.D1), then {Q, D1} ⊆ clos(C, �).

Note that for a R− ∈ clos(C, �), we do not necessarily add R to the closure,
instead, we replace in the CoLP translation occurrences of inverted roles R− by
the inverted predicate Ri. Concerning the addition of the extra ∃S.D1 for ∃R.D1
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in the closure, note that x ∈ (∃R.D1)
I holds if there is some (x, y) ∈ RI with y ∈ DI

1
or if there is some S�∗ R with S transitive such that (x, u0) ∈ SI, . . . , (un, y) ∈ SI

with y ∈ DI
1 . The latter amounts to x ∈ (∃S.D1)

I . Thus, in the open answer set
setting, we have that ∃R.D1(x) is in the open answer set if R(x, y) and D1(y) hold
or ∃S.D1(x) holds for some transitive subrole S of R. The predicate ∃S.D1 will
be defined by adding recursive rules, as in the above example, hence the inclusion
of such predicates in the closure (which will be used to define the actual CoLP
translation). Furthermore, for a (≤ n Q.D1) in the closure, we add (≥ n + 1 Q.D1),
since we will base our definition of the former predicate on the DL equivalence
(≤ n Q.D1) ≡ ¬(≥ n + 1 Q.D1).

Formally, we define �(C, �) to be the following CoLP, obtained from the SHIQ
knowledge base � and the concept expression C:

– For each terminological axiom C � D ∈ �, add ← C(X ), not D(X ).
– For each role axiom R � S ∈ �, add ← r(X, Y ), not s(X, Y ) where r is Qi for

R = Q− or Q for R = Q, Q a role name. Similarly for s, i.e., replace (·)− by (·)i.
– Next, we distinguish between the types of concept expressions that appear in

clos(C, �). For each D ∈ clos(C, �):

- If D is a concept name, add D(X ) ∨ not D(X ) ← ,
- If D is a role name, add D(X, Y ) ∨ not D(X, Y ) ← ,
- If D is an inverted role name R− for a role name R, add the free rule

Ri(X, Y ) ∨ not Ri(X, Y ) ← ,
- If D = ¬E, add D(X ) ← not E(X ) ,
- If D = E 
 F, add D(X ) ← E(X ), F(X ) ,
- If D = E � F, add D(X ) ← E(X ) and D(X ) ← F(X ) ,
- If D = ∃Q.E, add D(X ) ← q(X, Y ), E(Y ) where q is defined from Q

similarly to the above definition for role axioms, and for all S�∗ Q, S �= R, with
Trans(S) ∈ �, add rules D(X ) ← (∃S.E)(X ). If Trans(Q) ∈ �, we further
add the rule D(X ) ← q(x, y), D(Y ) ,

- If D = ∀R.E, add D(X ) ← not (∃R.¬E)(X ) ,
- If D = (≤ n Q.E), add D(X ) ← not (≥ n + 1 Q.E)(X ) ,
- If D = (≥ n Q.E), add D(X ) ← q(X, Y1), . . . , q(X, Yn),

E(Y1), . . . , E(Yn),∪i�=j{Yi �= Yj}, where q is as above.

Rule D(X ) ← q(X, Y ), E(Y ) is what one would intuitively expect for the exists
restriction. However, in case Q is transitive this rule is not enough. Indeed, if q(x, y),
q(y, z), E(z) are in an open answer set, one expects (∃Q.E)(x) to be in it as well
if Q is transitive. However, we have no rules enforcing q(x, z) to be in the open
answer set (as remarked above, this leads to non-CoLP rules). We can solve this by
adding the rule D(X ) ← q(x, y), D(Y ) such that such a chain q(x, y), q(y, z), with
E(z) in the open answer set correctly deduces D(x). It may still be that there are
transitive subroles of Q that need the same recursive treatment as above. To this
end, we introduce rules D(X ) ← (∃S.E)(X ).

We do not need such a trick with the number restrictions since the roles Q in a
number restriction are required to be simple, i.e., without transitive subroles.

Finally, note how we treat inverted roles, we replace inverted roles R− by inverted
predicates Ri, which have, under the IWA, a similar semantics.
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Theorem 9 Let � be a SHIQ knowledge base and C a SHIQ concept expression.
Then, �(C, �) is a CoLP, with a size that is polynomial in the size of C and �.

Proof Observing the rules in �(C, �), it is clear that this program is a CoLP.
Moreover, if we assume, as is not uncommon in DLs (see, e.g., [39]), that the number
n in number restrictions is represented in unary notation, then the size of the CoLPs
is polynomial. 
�

Theorem 10 A SHIQ concept expression C is satisfiable w.r.t. a SHIQ knowledge
base � iff the predicate C is satisfiable under IWA w.r.t. �(C, �).

Proof For the ‘only if’ direction, assume the concept expression C is satisfiable w.r.t.
�, i.e., there exists a model I = (I, ·I) with CI �= ∅. Define (U, M) such that
U ≡ I and

M ≡ {C(x) | x ∈ CI , C ∈ clos(C, �), C a concept expression}
∪{Ri(x, y) | (x, y) ∈ (R−)I, R− or R in clos(C, �), R a role name}
∪{R(x, y) | (x, y) ∈ RI , R− or R in clos(C, �), R a role name} .

One can show that (U, M) is an open answer set under IWA of �(C, �) that satisfies
C.

1. (U, M) is an open interpretation under IWA of �(C, �). By the DL semantics
of inverted roles and the definition of M, we have that R(x, y) ∈ M ⇐⇒
Ri(y, x) ∈ M such that the IWA is satisfied.

2. Since CI �= ∅ there clearly is an x ∈ U such that C(x) ∈ M.
3. M is a model under IWA of �(C, �)M

U . One can check that every rule in
�(C, �)M

U is satisfiable.
4. M is a minimal model under IWA of �(C, �)M

U . Assume not, then there is a
model under IWA N of �(C, �)M

U , such that N ⊂ M. We prove that M ⊆ N,
which leads to a contradiction. Take l ∈ M. We distinguish between the following
cases for l:

(a) l = R(x, y) for a role name R. Then, by definition of M, (x, y) ∈ RI for R
or R− in clos(C, �).

- If R ∈ clos(C, �), then R is free and we have that R(x, y) ←∈
�(C, �)M

U such that R(x, y) ∈ N.
- If R−clos(C, �), then Ri is free. Since (x, y) ∈ RI , we have that (y, x) ∈

(R−)
I and thus Ri(y, x) ∈ M. Then, Ri(y, x) ←∈ �(C, �)M

U such that
Ri(y, x) ∈ N. Since N satisfies the IWA, we have that R(x, y) ∈ N.

(b) l = Ri(x, y) for a role name R. This can be done like the previous.
(c) l = E(x) for a concept expression E ∈ clos(C, �). One can prove this by

induction on the structure of E.
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For the ‘if’ direction. Assume (U, M) is an open answer set under IWA of �(C, �)

with C(u) ∈ M. Define an interpretation I ≡ (I, ·I), with I ≡ U , and AI ≡ {x |
A(x) ∈ M}, for concept names A,

RI ≡ {(x, y) | r(x, y) ∈ M} ∪
⋃

Trans(S)∈�,S�∗ R

({(x, y) | s(x, y) ∈ M})∗

for role names or inverted role names R, where ()∗ denotes transitive closure and r is
as before (equal to R if R is a role name, and Qi if R = Q− for a role name Q), and
similarly for s. Intuitively, we define R like M defines it, but since M does not ensure
transitivity of roles, we transitively close every subrole S of R that is declared to be
transitive in �. One can show that I is a model of � and, since C(u) ∈ M, we have
that u ∈ CI . 
�

By the exptime-hardness of SHIQ satisfiability checking, we have a similar lower
bound for satisfiability checking under IWA w.r.t. CoLPs.

Theorem 11 Satisfiability checking under IWA w.r.t. CoLPs is exptime-hard.

Proof Satisfiability checking of SHIQ concept expressions w.r.t. a SHIQ
knowledge base is exptime-complete (Corollary 6.29 in [39]). By Theorem 10
and Theorem 9, we can polynomially reduce such satisfiability checking to satisfia-
bility checking under IWA w.r.t. CoLPs. 
�

Theorem 12 Satisfiability checking under IWA w.r.t. CoLPs is exptime-complete.

Proof Membership follows from Theorem 8 and hardness from Theorem 11. 
�

3.3 Discussion: OASP vs. DLs

In this section, we discuss some of the advantages and disadvantages of open answer
set programming versus description logics in the context of knowledge representa-
tion and reasoning.

Using CoLPs instead of SHIQ has the advantage of nonmonotonicity by means
of negation as failure.

Example 9 Add a rule to the company example knowledge base, expressing
that if Persons are not married, they work late at the office: works_late(X ) ←
notmarried(X ). Adding such a rule to our knowledge will have the effect that every
open answer set includes the literal works_late(x), i.e., everybody always works late.
However, consecutively adding the newly acquired knowledge that everybody is
actually married with a rule married(X ) ← , will make sure that nobody ever works
late according to our current knowledge. This type of nonmonotonicity is one of the
main strengths of logic programming paradigms for knowledge representation; it was
identified in [10] as one of the requirements on a logic for reasoning on the Web.
DLs lack this feature and are monotonic, e.g., one could try to translate the above
rule as the DL axiom ¬Married � Works_late. However, interpretations satisfying
this axiom have a choice in making persons work later or not, such that adding that
everybody is married monotonically reduces the number of possible models.



132 Ann Math Artif Intell (2006) 47: 103–137

DLs have only a limited set of constructs while CoLPs have a flexible rule
presentation which often allows for a more compact representation of knowledge
than would be possible in DLs.

Example 10 One can represent the knowledge that a team must at least consist of a
technical expert, a secretary, and a team leader, where the leader and the technical
expert are not the same, by the rule

team(X ) ← has_member(X, Y1), tech(Y1), has_member(X, Y2),

secret(Y2), leader(X, Y3), Y1 �= Y3.

Compared with DL qualified number restrictions (≥ n R.C) where one indicates
that there are more than n R-successors that are of type C, CoLPs can constrain
different successor relationships (has_member and leader) instead of just one (R).
Moreover, they can be very specific about which successors should be different and
which ones may be equal (Y1 may be equal to Y2, but should be different from
Y3), or to which different types the successors belong (tech and secret) instead of
one type (C). Representing such generalized number restrictions using DLs would be
significantly harder while arguably less succinct.

Currently, a clear disadvantage of using OASP instead of DLs is the lack of
practical algorithms and associated reasoners in the former. Note that practical does
not necessarily mean optimal: although the theoretical complexity of SHIQ, is
exptime-complete, practical tableau algorithms run in 2-nexptime in the worst case
[39]. The reason is that the exptime-completeness of SHIQ satisfiability checking
results from a translation to checking non-emptiness of 2ATA (see, e.g., [11])
where the latter is in exptime w.r.t. to the number of states. However, although the
number of states of the translated automaton is polynomial in the size of the SHIQ
concept that one is checking (such that one has an exptime upper bound for SHIQ
satisfiability checking as well), the size of the whole automaton is much larger: one
defines transition functions for an exponential number of labels. Thus, the automata
approach is not practically implementable. As decidability of CoLPs is also shown
by a reduction to 2ATA, we expect a similar effect: good theoretical complexity, bad
worst-case reasoners.

4 Related work

In [19], the language L0 of a program P is expanded with an infinite sequence of new
constants c1, . . . , ck, . . . such that Lk is the expansion of L0 with c1, . . . , ck. A pair
〈k, B〉 for a nonnegative integer k and a set of ground literals B in Lk is a k-belief
set of P iff B is an answer set of Pk, where Pk is the grounding of P in the language
Lk. Our definition of open answer sets is more general in the sense that also infinite
universes are allowed, while k-belief sets are always finite. Nonetheless, the other
direction is valid: every k-belief set can be written as an open answer set.

Defining k-belief sets, or open answer sets for that matter, easily leads to un-
decidability as was argued for k-belief sets in [37]. Interestingly, [37] shows that
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reasoning becomes decidable again under the well-founded semantics. Since for
stratified programs this semantics coincides with the answer set semantics, one has
decidability of reasoning for k-belief sets of stratified programs. However, trying
to extend the language of stratified programs with an extra stratum below all
others, containing disjunctions of positive literals, leads to undecidability again [37].
Consider, in this light, �(C, �), which basically consists of a stratified part, defining
the DLs constructors, and a disjunctive part, the free rules. However, we still have
decidability, emphasizing the importance of the tree model property.

Another approach to infinite reasoning, besides infinite open domains, is pre-
sented in [8], where function symbols are included in the language. Finitary programs
are identified as a class of programs for which ground query answering is decidable,
and lead to elegant formulations of, e.g., plans with unbounded planning length.
Formally, they are defined as programs that are finitely recursive, i.e., every ground
atom may only depend on a finite number of other ground atoms, and such that only
a finite number of odd-cycles may occur in the grounded program. Neither conditions
are necessary for CoLPs: the CoLP containing rules a(X ) ← f (X, Y ), not b(Y ) and
b(X ) ← a(X ), when grounded with an infinite universe, is not finitely recursive and
contains infinitely many odd-cycles. Since not all finitary programs are CoLPs, both
classes of programs are not directly related, and the tree model property appears to
be an alternative indication of ‘finitary’ reasoning with possibly infinite knowledge.
While ground query answering with finitary programs is decidable, unground query
answering is only semi-decidable [8]. Since unground query answering (satisfiability
checking) is decidable for CoLPs, CoLPs are arguably more suited for conceptual
modeling. Moreover, checking whether a program is finitary is itself undecidable, in
contrast with CoLPs, which are a syntactic restriction.

There are basically two lines of research that try to reconcile description logics
with logic programming. The approaches in [1, 20, 26, 32, 38, 41] simulate DLs with
LP, possibly with a detour to FOL, while [13, 15, 34] attempt to unite the strengths
of DLs and LP by letting them coexist and interact.

In [41], the simulation of a DL with acyclic axioms in open logic programming is
shown. An open logic program is a program with possibly undefined predicates and
a FOL-theory; the semantics is the completion semantics, which is only complete for
a restrictive set of programs. The openness lies in the use of undefined predicates,
which are comparable to free predicates with the difference that free predicates can
be expressed within the CoLP framework. More specifically, open logic program-
ming simulates reasoning in the DL ALCN , N indicating the use of unqualified
number restrictions, where terminological axioms consist of non-recursive concept
definitions. Note that ALCN is a subclass of SHIQ, the DL that we simulated with
open answer set programming.

Grosof et al. [20] imposes restrictions on the occurrence of DL constructs in termi-
nological axioms to enable a simulation using Horn clauses. E.g., axioms containing
disjunction on the right hand side, as in D � C � D, universal restriction on the left
hand side, or existential restriction on the right hand side are prohibited since Horn
clauses cannot represent them. Moreover, neither negation of concept expressions
nor number restrictions can be represented, yielding that, so-called Description Logic
Programs are incapable of handling expressive DLs. However, the forte of [20] lies
in the identification of a subclass of DLs that make efficient reasoning through LPs
possible.
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In [1], the DL ALCQI is successfully translated into a disjunctive logic program.
However, to take into account infinite interpretations [1] presumes, for technical
reasons, the existence of function symbols, which leads, in general, to undecidability
of reasoning.

Hustadt et al. [26] and Swift [38] simulate reasoning in DLs with a LP formalism by
using an intermediate translation to first-order clauses. In [26], SHIQ− knowledge
bases, i.e., SHIQ knowledge bases with the requirement that roles S in (≤ nS.C)

have no subroles, are reduced to first-order formulas, on which basic superposition
calculus is then applied. The result is transformed into a function-free version which
is translated to a disjunctive Datalog program.

Swift [38] translates ALCQI concepts to first-order formulas, grounds them with
a finite number of constants, and transforms the result to a logic program. One
can use a finite number of constants by the finite model property for ALCQI-
concept expressions; in the presence of terminological axioms this is no longer
possible. The resulting program is, however, not declarative anymore such that its
main contribution is that it provides an alternative reasoner for DLs, whereas CoLPs
can be used both for reasoning with DLs and for a direct and elegant expression of
knowledge. Furthermore, CoLPs are also interesting from a pure LP viewpoint since
they constitute a decidable class of programs under the open answer set semantics.

Along the second line of research, an AL-log [13] system consists of two subsys-
tems: a DL knowledge base and a Datalog program, where in the latter variables
may range over DL concept instances, thus obtaining a flow of information from
the structural DL part to the relational Datalog part. This is extended in [34] for
disjunctive Datalog and the ALC DL. A further generalization is attained in [15]
where the particular DL can be the expressive SHIF , F stands for functional
restrictions, or SHOIN . The DL knowledge base is considered as a black box that
can be queried from the rules. Moreover, inferences made by rules can serve as input
to the DL knowledge base as well, leading to a bidirectional flow of information.

A notable approach, which cannot be categorized in one of the two lines of
research described above, although it tends towards the coexisting approach, is the
SWRL [25] initiative. SWRL is a Semantic Web Rule Language and extends the
syntax and semantics of the ontology language OWL DL with unary/binary Datalog
RuleML [36], i.e., Horn-like rules. This extension is undecidable [22] but lacks,
nevertheless, interesting knowledge representation mechanisms such as negation as
failure.

5 Conclusions and directions for further research

In order to solve the lack of modularity in answer set programming with a closed
world assumption, we defined open answer set programming. Although open answer
set programming solves the problem with closed-domain reasoning, it is undecidable
in general. We subsequently identified CoLPs for which reasoning under the open
answer set semantics is decidable and exptime-complete. Furthermore, CoLPs can
simulate reasoning in the expressive description logic SHIQ. CoLPs have native
support for nonmonotonicity by means of negation as failure, a feature that is missing
in standard DLs. Additionally, the rule-based syntax allows for a more succinct
expression of knowledge than the more rigid DL syntax.
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The DL SHOIQ has support for both nominals (O) and inverse roles (I). On the
other hand, CoLPs contain inverted predicates but no constants. It is interesting to
check whether one can allow for both inverted predicates and constants and still have
decidable reasoning. Note that a program with inverted predicates cannot be reduced
to finite answer set programming as inverted predicates may lead to programs that
have only infinite open answer sets. A program with constants cannot be reduced to a
tree automaton (like we did with CoLPs) as constants, induce, at best, forest models
instead of tree models. So, the combination of inverted predicates and constants
seems to be not trivial.

Similar to tableau algorithms for SHIQ, we want to look into practical algorithms
for CoLP satisfiability checking. However, due to minimality of open answer sets, this
is expected to be more intricate than the blocking techniques used in DLs.
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