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Abstract: This paper presents a conceptual model for 
software project management and the power derived from 
using a conceptual model-based reasoning approach in 
building intelligent decision-support systems. The 
Software Project Manager (SPM) has been prototyped in 
Inference Corporation's Automated Reasoning Tool (ART) 
on Symbolics artificial intelligence (Al) workstations. This 
prototype conceptual model is an outgrowth of research 
con- ducted under the Knowledge-Based Software Project 
Management project at Lockheed Software Technology 
Center in Austin, Texas. In this paper, we present an 
overview of the management model underlying SPM and 
define the essential concepts and relationships needed to 
model the project management domain. We then describe 
the knowledge representation strategy used to implement 
this conceptual model. Finally, we illustrate the power of 
using conceptual model-based reasoning in building 
intelligent decision-support systems for the project 
management domain.

THE SOFTWARE PROJECT MANAGEMENT 
CONCEPTUAL MODEL

In a very real sense, SPM's model is generic: it does 
not reflect any particular methodology or standard, 
such as the Waterfall method or its descendent, 
Department of Defense Standard 2167 (DOD-STD- 
2167, or simply 2167). Rather, it allows such 
methodologies to be described in terms of project 
management domain primitives defined in the 
knowledge base. We consider most current 
software project management methodologies to be 
built from the same underlying primitive concepts, 
relations, and constraints. Among other things, the 
conceptual primitives include projects, organiza­ 
tions, schedules, phases, tasks, inputs, outputs, 
resources (people, hardware, etc.), deliverables, 
milestones, and budgets. The relational primitives 
include such notions as precedes, which describes 
the relationship between two tasks or projects; 
produces, which describes the relationship be­ 
tween a task and its output; or depends-on, which 
describes the dependency relationship between a

task's inputs and outputs. Constraints typically 
involve negative impacts on project plans, including 
reductions in planned schedule, budget, or re­ 
quired resources. These concepts, relations, and 
constraints are the conceptual realities with which 
project managers work on a day-to-day basis. 
Methodologies are the means by which those 
primitives are arranged to plan projects, solve 
problems, status tasks, or make projections.

We therefore define strategies like the Waterfall 
model—and standards such as 2167—as structural 
(or syntactic) overlays that arrange conceptual 
project management primitives in specific ways for 
specific purposes. DOD-STD-2167 requires a parti­ 
cular set of milestones, such as the Preliminary 
Design Review (PDR), that have a specif iced set of 
deliverables associated with each milestone, such 
as the Software User's Manual. Each deliverable 
likewise has a prescribed set of contents arranged in 
a specific sequence. Typically, each methodology 
emphasizes different attributes of the knowledge 
base. For example, Data Flow Diagrams emphasize 
the flow of data between processes, the Perfor­ 
mance Evaluation and Review Technique empha­ 
sizes precedence relations between tasks, and the 
Hierarchy-Input-Process-Output methodology em- 
phsizes task hierarchies, inputs, process descrip­ 
tions, outputs, and so forth. The project viewpoint 
taken by a particular methodology necessarily 
emphasizes a few important characteristics and 
deemphasizes others, since each methodology has 
been designed to provide visibility into a particular 
set of problems. The graphical charting or diagram­ 
ming techniques associated with each methodology 
are simply surface representations of the method­ 
ology's underlying viewpoint—a display of particular 
knowledge base attributes for a particular manage­ 
ment purpose. In principle, these graphical view­ 
points are all generable from the same underlying 
knowledge base by reasoning differently about the 
various task, project, and resource attributes and 
relations.
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The following paragraphs define some of the mofe 
important concepts used to build SPM's conceptual 
model, a model designed to be robust enough to 
support these various methodological viewpoints. 
The definition of concepts—and the network of 
relationships that hold between them—has been 
kept as simple and generic as possible. These 
definitions will grow as key attributes and relations 
become important to the reasoning in SPM.

Concept Definitions and Relationships

In this section we define some of the more important 
concepts in SPM's model, including the terms 
project, task, input, output, resource (especially 
money, time, and people), milestone, and deliver­ 
able. Because of space limitations, not all definitions 
are included here.

Project. A project is defined as a set of tasks 
arranged in time (a schedule) to accomplish a speci- 
ific objective, which typically is defined by a set of 
requirements. It also includes a set of resources 
(people, money, facilities, etc.) required to 
accomplish those tasks.

Task. A task is a sequence of steps needed to take 
an input / and change it into an output o, which 
fulfills, directly or indirectly, all or some part of a 
project requirement. The write-Software-User's- 
Manual-scope-section task in figure 1a, for example, 
requires the overview-tool-description document as 
input and produces the scope section as output, 
which in turn meets the requirement specified in 
section 10.4 of data item description DI-ECRS-8X21 
(fig. 1j). In order to perform this input-to-output 
transformation, a task requires the use of resources 
(in our example: Max, a PC, and a word processor),
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WRITE SUM SCOPE SECTION
Time-span: 1 week
Type: Documentation
Planned-start: March 8
Planned-finish: March 13-
Actual-start:
Actual-finish:
Part-of: Write Software User's Manual
Requires-input: Overview Tool Description
Produces-output: Scope Section ————————-*
Steps_____
Requires-resources: Techwriter.PC, Wordprocessor
Responstoility-of: Max
Planned Cost: $2,000
Actual Cost: nil
Status: Planned
Problems: nil
Difficulty: Level-1
Priority: 3
Phase: Design
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1.3 Introduction
2. Referenced Documents
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PRELIMINARY DESIGN REVIEW
Time span: 1 day
Planned-start: May 15
Planed-finish:May15
Deliverables: Software Users 

Manual, Operator's Manual, 
System Diagnostic Manual
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Fig. 1. Partial illustration of SPM's conceptual model
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the expenditure of time (one week), and the 
expenditure of money ($2,000). Some other self- 
explanatory task attributes include a set of sched­ 
uling attributes such as earliest and latest start 
dates, earliest and latest finish dates, actual start 
and finish dates, and so on; a set of attributes 
specifying task characteristics, such as task 
description, difficulty level, problems, priority level, 
phase (design, test, development, etc.), and task 
type (coding, documentation, briefing, etc.); and 
an attribute describing task status (planned, in 
progress, or completed).

Input and output. An input is anything that is 
transformed by the steps in the task; an output is 
what results from this transformation. In figure!, the 
overview-tool-description (fig. 1b) is transformed 
into the scope-section (fig.lc) by the task in 
question. This transformation is figurative in many 
cases, of course, since the overview-tool- 
description is not changed physically. Input and 
output are functionally defined concepts. An 
object is an input to a task only if that task 
transforms it into an output. For this reason, inputs 
and outputs have no life of their own; they have no 
lexical definition in the knowledge base. The scope- 
section is not generically an "output object" but is 
an output object with respect to this particular 
writing task because of its functional relationship to 
the task.

Resource. A resource is anything that is required 
by the task to facilitate the process of transforming 
input into required output, but which is not itself 
subject to the transformation. People, software, 
hardware, facilities, materials, and data bases are 
particular kinds of resources required to perform 
different transformations. In order to write the 
scope-section, for example, we would require a 
technical writer, a personal computer, and a word 
processor (fig. 1d-1f), yet none of these is trans­ 
formed by the performance of the task.

Each type of resource has particular characteristics 
and semantic relations to other domain concepts 
and objects. For example, people write code; code 
does not write people. Code runs on computers, 
computers are owned by organizations, organiza­ 
tions are made up of people, and so on. However, 
because the semantics can become arbitrarily 
complex, we have chosen to limit the semantics of 
software project management to what is useful in 
building an intelligent project management system. 
Because of space limitations, we do not define all 
of our resources in this paper, but a few require

some comment, including money, time, and people.

Money. In one sense, all other resources can be 
translated into monetary terms: people's time, com­ 
puters, and facilities. These costs are either time- 
dependent or time-independent. The planned costs 
for people on a task are a function of time: time units x 
pay rate per unit x overhead factor. The purchase of 
materials such as paper or acquired software is not a 
factor of time—the purchase price of a word proces­ 
sor remains the same whether the task takes two days 
or three months. However, even for these latter 
resources there may be hidden time-dependent 
costs not related to their purchase, such as 
maintenance, depreciation, or software support.

Time. Two kinds of time must be included in the 
model: linear time and calendar time. Linear time 
forms the basis for temporal comparisons such as 
during, while, before, after, until, and so forth (Alien 
1984). Calendar time in some sense overlaps linear 
time and forms the basis by which managers reason 
about management problems such as schedules. It is 
important to the project schedule that this task begin 
on March 8 and finish on March 13, not just that it will 
take one week to accomplish (fig. 1g).

People. People are unique resources in that they are 
responsible for controlling and coordinating the use 
of all other resources and for accomplishing project 
tasks. In a software environment, therefore, required 
attributes include task assignments, grade level, 
salary, specialties, experience (languages, systems, 
industry, previous tasks, education level), 
preferences, organization, manager, and so forth 
(Bimson and Burris 1986).

Milestone. A milestone is a scheduled event that 
serves to give management or the customer control 
over and insight into a project. A milestone has a set 
of deliverables or products and a set of tasks 
associated with producing those deliverables. In 
DOD-STD-2167, the Preliminary Design Review 
milestone requires the contractor to present the 
Software Top-Level Design Document and the 
Software Test Plan for each computer software 
configuration item. It also requires the contractor to 
present preliminary versions of the Computer System 
Operator's Manual, the Software User's Manual, 
summary reports of internal reviews, and several 
other documents. The presentation of these 
materials requires preparation of briefings, overhead 
viewfoils, and so forth. Therefore, the preparation 
and presentation of a milestone review usually is 
considered a task in itself, with its own requirements
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for input, output, resources, budget, and time.

Deliverable. A deliverable is any product required 
by the customer, such as a document, software, or 
hardware. Typically, deliverables are composite ob- 
ects that can be broken down into constituent parts 
or sections, each of which can be broken down 
further into smaller constituent parts, and so forth. In 
the 2167 example, a Software User's Manual can be 
decomposed into several major sections, including 
(1) Scope, (2) Referenced Documents, and (3) 
Instructions for Use. The Scope section breaks 
down into (1.1) Identification, (1.2) Purpose, and 
(1.3) Introduction (fig. 1h). All of these sections and 
subsections are the products of low-level tasks and 
form a composite deliverable (the Software User's 
Manual) required in the PDR.

Summary. These and other concept definitions 
form the basic model from which SPM has been 
built, as well as the relationships described, serve to 
connect concepts to one another in a complex 
network, as illustrated in figure 1 . Once a conceptual 
model is properly in place, small, distinct, mission- 
specific rule bases can be developed to perform 
management activities semiautonomously. In fact, a 
robust conceptual model reduces the work of the 
knowledge base's deductive component, making 
rule bases easierto modularize and easipr to write.

KNOWLEDGE REPRESENTATION 
IN SPM

The conceptual model discussed above has formed 
the basis for representing the software project 
management knowledge in SPM, which has been 
prototyped in ART on Symbolics Al workstations. In 
this section, we summarize the representational 
structure that was used in building SPM, and which 
is discussed more fully in Bimson and Burn's 1986.

SPM's knowledge representation uses semantic 
networks to build up the declarative project manage­ 
ment model and uses rules, functions, and 
procedures to reason deductively over the model. 
Semantic networks are discussed in detail 
throughout the Al literature (Quillian 1966; Minsky 
1975; Woods 1975; Brachman 1977, 1979; Fox 
1983; Brachman and Schmolze 1985; Sathi et al. 
1985, 1986; Bimson and Burris 1986). In summary, 
semantic nets in SPM are made up of nodes that 
represent concepts and arrows that represent 
relationships between concepts. In ART, the 
concepts are implemented as frame-based 
structures called schemata; relations are

represented by slot names within the schemata. 
Values within these slots provide the project data for 
individual instantiations of the model. These are the 
basics used to build SPM's conceptual model.

Brachman (1979), Fox (1983), and Brachman and 
Schmolze (1985) demonstrate the importance of 
representing knowledge in multiple, stratified layers 
in order to structure knowledge from primitive 
concepts and relations to more complex, domain- 
specific concepts and relations. Brachman and Fox 
define five layers of knowledge—from the most 
primitive and generic to the most domain- 
specific—as the implementation layer, the logical 
layer, the epistemological layer, the semantic (or 
conceptual) layer, and the domain layer. This 
representation has been altered in SPM in two ways 
since Bimson and Burris 1986. First, the domain and 
semantic layers defined by Brachman and Fox are 
collapsed into one layer (the semantic layer). 
Second, we add a new, optional layer, the syntactic 
layer, which is motivated by our conceptual model. 
This layer may be used to specify a particular 
arrangement of concepts used to implement a 
project standard of some type, such as DOD-STD- 
2167. The syntactic layer is discussed in more detail 
below.

Implementation Layer

As discussed in Bimson and Burris 1986, the 
implementation layer consists of machine-interpreta- 
ble concepts and relations (the declarative 
knowledge base) as well as rules and procedures 
that reason about those concepts and relations (the 
deductive knowledge base). In ART and LISP, the 
declarative knowledge base is made up of sche­ 
mata, slots, values, and facts as illustrated in figure 2. 
The deductive knowledge base is made up of the 
rules, functions, and procedures that manipulate 
those structures. All higher-level concepts and 
relations are implemented using these lower-level 
language constructs.

Logical Layer

The logical layer determines how implementation 
layer knowledge is logically structured and interpre­ 
ted, in ART, slot name + schema name + slot value is 
interpreted as a logical tuple meaning, for example, 
"the planned-start of the write-Software-User's- 
Manual-scope-section schema is 3/8." ART places 
this fact in the knowledge base as (planned-start 
write-Software-User's-Manual-scope-section (3 8)).
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(Schema write-Software-User's-Manual-scope-section

A. Epistemological layer 
relations replicated in 
the semantic layer

(element-of task-set) 
(instance-of task-prototype)

B. Semantic layer 
relations

(time-span week)
(planned-start (38))
(planned-finish (3 13))
(part-of write-Software User's Manual)
(requires-input overview-tool-description)
(produces-output scope-section)
(steps nil)
(status planned)
(problems nil)
(difficulty level-1)
(priority 3)
(phase design)
(requires-resources (writer pc wordprocessor))
(responsibility-of max)
(planned-cost 2000)
(actual-cost 1725))

Epistemological Layer

Epistemology is "the study of the nature of 
knowledge" (Webster 1984). The epistemological 
layer "is the first level at which we consider knowl­ 
edge to be structured in a meaningful way" (Bimson 
and Burris 1986, page 9). As defined in Sathi, Fox, 
and Greenberg 1985, epistemological concepts 
include prototype, set, and individual. The triadic 
relationship between these three elemental con­ 
cepts is illustrated in figure 3, adapted from Bimson 
and Burris 1986.

A prototype concept represents the common 
attributes and relations of each member of the set. 
The set concept contains all individuals having a 
particular prototypical definition and defines the 
attributes of the set as an aggregate (such as the 
number of elements, averages, etc.). An individual 
concept is an instantiation of a prototype, and a 
member of a set and has attributes and attribute 
values that uniquely identify it as an individual. All 
data are instantiated as instances of the individual 
concept for a given prototype.

The epistemological relations between these 
primitive knowledge structures are bidirectional. 
That is, each has an inverse:

• Prototype-of and has-prototype relate a prototype 
to a set and a set to a prototype, respectively.
• Element-of and has-elements relate an individual 
to a set and a set to an individual, respectively.
• Instance-of and has-instances relate an individual 
to a prototype and a prototype to an individual, 
respectively.

These three pairs of inverse relations link 
epistemological concepts to each other in the knowl­ 
edge base. They also serve other purposes, such 
as relating epistemological concepts to their seman­ 
tic layer counterparts (individual has-instance write- 
scope-section) and relating semantic layer concepts

INDIVIDUAL

/
Element-of Instance-of

SET
- Prototype-of

General facts 
about the set

PROTOTYPE 
(GENERIC)

General facts 
typical of each 
member of set

Fig. 3. Epistemological concepts and relations 
inSPM
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to each other (task-prototype prototype-of task-set) (fig. 4). Two other pairs of relations also serve these 
lattertwo purposes:

• Subset-of and has-subsets relate the epistemo- 
logical set concept to semantic layer sets (set has- 
subset task-set) and semantic layer sets to one 
another (resource-sethas-subset computer-set).
• Is-a and has-kinds relate the epistemological 
prototype concept to semantic layer prototypes 
(prototype has-kinds task-prototype) and semantic 
layer prototypes to one another (resource-proto­ 
type has-kinds computer-prototype) .

Inheritance flows across the instance-of link from 
prototypes to individuals when an individual is 
defined by a user. These three pairs of inverse rela­ 
tions link epistemological concepts to one another 
in the knowledge base. These relations also are 
used to link semantic layer concepts to one another. 
For example, write-Software-User's-Manual-scope- 
section is an instance-of a task-prototype, which is a 
prototype-of a task-set, and so forth. In this way, the 
structure and meaning built up in the triadic relation 
between epistemological layer concepts is repli­ 
cated in the semantic layer, as illustrated in figure 4. 
The replication of these epistemological relations in 
the semantic layer is illustrated in figure 2a, using an 
ART schema as the implementation structure. 
Figure 4 illustrates the completed network of rela­ 
tions. In this case, the epistemological layer con­ 
cepts (set, individual, and prototype) are related to 
semantic layer concepts (task-set and task-proto­ 
type) via interlayer relations.

Subse -of

Instance-of

INDIVIDUAL 

Element-of Instance-of

tea
SPM-DEFINED 
EPISTEMOLOGICAL LAYER 
CONCEPTS AND RELATIONS

Prototype-of

Intralayer relations: relations be tween concepts in the same layer 
Interlayer relations: relations be tween concepts In different layers

Fig. 4. Relationship of epistemological layer con­ cepts to semantic layer concepts in SPM

Semantic Layer

The semantic layer concepts and relations form the 
domain-specific knowledge for the knowledge base. 
It is in the semantic layer that we represent SPM's 
conceptual model, built from the primitives provided 
in the lower-level layers. Each semantic layer 
concept is defined by a triadic construct—as defined 
in the epistemological layer—composed of a proto­ 
type-concept, a set-concept, and an individual- 
concept. The semantic layer concept project, for 
example, is defined by the triadic construct: project- 
prototype + project-set + project-individual as 
illustrated in figure 5. These semantic layer concepts 
are related to one another through intralayer rela­ 
tions such as part-of or requires-input. Likewise, 
each semantic layer concept is related to the episte­ 
mological primitives which define its triadic structure 
through interlayer relations such as instance-of or is- 
a, as illustrated by the broken lines in figure 5. The 
same relations frequently are used as both interlayer 
and intralayer relations.

Most of the semantic layer concepts introduced in 
the conceptual modeling section of this paper have 
been implemented in the SPM prototype. Space 
does not permit a presentation of all of the concepts 
discussed for the model as they are implemented in 
ART, although detailed tables of these concepts 
and relations are provided in table 4 of Bimson and 
Burn's 1986. Figure 5 gives readers a feeling for the 
network of relationships in SPM's semantic layer 
conceptual model. Built into SPM's semantic layer 
knowledge representation are the notions of leaf 
and composite concepts.

Leaf and Composite Concepts. A concept 
may be either a leaf concept or a composite con­ 
cept. A leaf concept is one that is not decomposed 
into component parts. A composite concept is one 
that is decomposed into component parts that are 
fully defined concepts in their own right—that is, 
they have their own lexical definitions in the knowl­ 
edge base. Composite concepts form the basis for 
defining subnetworks associated with tasks, or sec­ 
tions associated with document deliverables. The 
write-Software-User's-Manual task, for example, is a 
composite task with four subtasks composing a 
subnetwork. Similarly, the Software User's Manual is 
a composite deliverable that is decomposed into 
various sections. We also distinguish between 
homogeneous and heterogeneous composite con­ 
cepts. Homogeneous composites are composed of 
parts that are, in essence, morphological clones of 
the parent concepts. A composite task, for example,
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Q — INDIVIDUAL CONCEPT

(|) —SET CONCEPT

0 —PROTOTYPE CONCEPT

@ — INDIVIDUAL CONCEPT PLACEHOLDERFOR DATA

---- SEMANTIC INTRALAYER RELATION
-'— SEMANTIC INTERLAYER RELATION

Fig. 5. Network of relations between semantic layer triadic-concepts in SPM

is composed of other tasks that are structurally 
identical to it. Hetergeneous composites, such as 
projects, are composed of nonidentical parts such 
as tasks, resources milestones, deliverables, 
budget, schedule, organizations, and so forth. In 
general, we reason about homogeneous compos­ 
ites as sums of their component concepts, whereas 
we reason about heterogeneous composites as an 
integrated network of distinctly different compon­ 
ents which make up the whole concept, much as we 
think about the drive train, engine, chassis, and 
electrical systems as different components making 
up a car. Using composite concepts to enhance 
reasoning is discussed in detail in the Reasoning 
section below.

The values of attributes in the composite concept 
govern and restrict the values of corresponding 
attributes in the constituent objects. For example, 
the planned-start-date of the write-Scope Section 
must not precede the planned-start-date of the

write Software-User's-Manual task, since the former 
is a component of the latter. In aggregate, all 
constituent tasks serve to accomplish the composite 
task's output objective within the aggregate time 
and resource restrictions imposed by the composite 
task. It is by means of these composite concepts 
that SPM addresses the granularity problem, 
allowing managers to have views of the project that 
reflect supervisory, middle, and upper management 
levels of abstraction.

Syntactic Layer

The syntactic layer has not yet been prototyped in 
SPM because it did not form part of the original SPM 
program requirements. We consider the syntactic 
layer to be an optional layer used to structure 
projects in prescribed ways. It is a layer imposed by 
some standard, such as DOD-STD-2167, which 
requires a particular configuration of project phases, 
milestones, deliverables, tasks, and so on, and a
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prearranged sequencing of those structures. The 
Preliminary Design Review, for example, has a 
particular set of generic deliverables associated with 
it, such as the Software User's Manual. It also has a 
prescribed sequence relative to other milestones, 
such as the fact that it must precede the Critical 
Design Review. The idea is to allow a user to define 
a syntactic template, which may serve as a project 
standard, and to describe particular projects in terms 
of that syntax. DOD-STD-2167 is just one config­ 
uration around which projects may be defined in 
SPM. Other configurations can be built for the new 
NASA Software Acquisition Life Cycle standard or 
for a rapid prototyping environment. Each of these 
configurations is simply a different way of structuring 
the generic software project management concepts. 
If no particular project configuration is required, a 
user may ignore the syntactic layer altogether.

REASONING ACTIVITIES ENHANCED BY 
KNOWLEDGE STRUCTURE ROBUSTNESS

Once the declarative component of a conceptual 
model is implemented, then small, mission-specific 
rule bases can be developed to perform various 
management activities semi-independently. In fact, a 
robust conceptual model reduces the work of the 
knowledge base's deductive component, making 
rule bases easier to modularize and easier to write. In 
implementing our conceptual model of software 
project management, each attribute, relation, or 
concept that was added to the knowledge base 
enhanced SPM's deductive capabilities in un­ 
expected ways.

Reasoning Over Attributes and Relations

When SPM was in its first stages of prototype 
development, we began by implementing simple 
time attributes (time-span, planned-start, planned- 
finish, actual-start, and actual-finish) and prece­ 
dence relations (precedes and succeeds) for each 
task. These pieces of information allowed us to build 
critical path rules, simple task statusing rules, and 
cycle detection algorithms (fig. 6, col. 1). For each 
attribute added to the knowledge base, we found 
that we were frequently able to add significantly to 
SPM's deductive capabilities with just a few rules, 
primarily due to the network of interrelationships 
built into the conceptual model. For example, once 
input and output (I/O) relations were added to the 
task concept definition, it was relatively simple to 
increase the deductive capabilities of SPM (fig. 6, 
col. 2) in the following four ways:

Declarative Knowledge Available
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Precedence Relations

Input/Output Relations

Composite Deliverables

Component Dependencies in Composit e Deliverables
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* Why is task N late?
** What must be done to finish Part B Spec? 
(•) Optional

Fig. 6. Declarative knowledge requirements 
for deductive power

1. Inferring precedence relations. We found that 
we coUld deduce precedence relations directly 
from the I/O dependencies themselves. Users 
may define tasks, task inputs, and task outputs 
without explicitly defining any precedence 
relations. One relatively simple rule, compute- 
precedence-from-l/O-relations (fig. 7) then 
asserts all of the precedence relations 
automatically into the task schemata.

2. Checking precedence consistency. The 
inherent redundancy between precedence 
relations and I/O relations allows managers to 
precede in one of two ways: (a) they may either 
concentrate initially on task definitions, inclu­ 
ding I/O specifications, without worrying about 
precedence relations, or (b) they may specify 
precedence relations without regard to com- 
plete> task definitions. If precedence relations 
are defined early in the project—case b—and 
I/O information is added later, then SPM uses a 
find-precedence-without-l/O-dependency rule 
to cross-check the manager-defined prece­ 
dence relations against those inferred by SPM's 
compute-precedence-from-l/O-relations
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(defrule compute-precedence-from-I/O-relations ""
(utterance ? ? (mouse-click left 1 ? ? compute-precedence)} 
(schema ?deliverable

(instance_of proto-deliverable)
(output_produced_by ?task-1-schema)
(input_required_by ?task-2-schema)) 

(schema ?task-l-schema
(job-name ?preceding-job)

(not (succeeding__tasks ?task-2-schema) ) ) 
(schema ?task-2-schema (job-name ?succeeding-job)) 
=>
(print"?preceding-job PRODUCES ?deliverable WHICH IS REQUIRED BY ?succeeding-job.") 
(if (YES-OR-NO-P "SHOULD I CREATE A PRECEDENCE BETWEEN THE TASKS"

then
(assert (add-link ?task-l-schema ?task-2-schema))))

Fig. 7. Compute-precedence-from-I/O-relations rule, which computes precedence relations from 
I/O relations

rule. SPM then advises managers of 
inconsistencies in their network by informing 
them, for example, that "Task 1 preceeds Task 
2. However, no deliverable dependency exists. 
Do you want to delete the precedence 
relation?" Similar rules have been written to 
check for an output produced by multiple tasks, 
to find outputs or deliverables with unknown 
origins, to find tasks producing undefined 
outputs, to find tasks requiring undefined input 
and so forth.

3. Tracing I/O dependencies. Three simple rules 
in SPM trace I/O dependencies through the 
network: one queries the user for the input or 
output to trace, another initiates the trace, and a 
third builds the path of dependencies.

4. Answering status questions. While some simple 
task statusing has been developed for SPM 
using only start and finish time attributes, the 
addition of I/O relations makes it possible to 
extend project status explanations in a meaning­ 
ful way. Questions such as "Why did the write- 
referenced-documants-section finish behind 
schedule?" can be answered in SPM by inter­ 
preting the project network in the following way:

• Because the WRDS task was planned to start on 
March 30 (planned-start (3/8))
• But it began on April 5 (actual-start (3/13))
• Because the Instruction Section was not com­ 
pleted until April 4 (actual-finish (4/4) for preceding- 
task-write-instruction-section)
• And the WRDS task needed the Instruction Sec­ 
tion as input to start (output-produced-by write-

instructlon-section and input-required-by write- 
referenced-documents- section)

This preliminary explanation capability, based on 
what we call "interpreted networks," will form the 
basis of more extensive explanation capabilities 
planned for SPM in the near future.

In conventional project management systems 
—those having no conceptual model—adding new 
attributes, relations, or concepts to the data base 
requires major modifications to the system. In SPM, 
the addition of each new attribute immediately 
enhances the system's capabilities, since the 
inheritance mechanism provided by ART ensures 
that all previously defined schemata inherit new attri­ 
butes or relations upon recompilation. This provides 
a natural environment for evolving a complex, con­ 
ceptual model overtime.

.v.v.&.-Pirt-ol to wmpcsits tftf 
i • 11111 Pwt-of to comports tas

Fig. 8. Relationship between composite tasks and 
composite deliverables in SPM
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Reasoning Over Composite Concepts

Figure 8 illustrates the significance of the inter­ 
relationships among composite deliverables and the 
composite tasks that produce them. Clearly, all 
sections of the Software User's Manual deliverable 
should be produced by subtasks of the write-User's- 
Manual task. This knowledge can be leveraged in 
many different ways, as shown in the scenario 
below. This scenario demonstrates the fundamental 
importance of composite concepts in providing an 
environment in which to reason intelligently about 
project management. It also helps to illustrate the 
current research directions in SPM, since these 
capabilities are not yet operational in the prototype.

In defining a project, SPM will support decision 
making by anticipating the needs of the manager in 
project, schedule, and task definition. After 
managers have defined the write-User's-Manual task 
and the Software User's Manual deliverable, and if 
they have decomposed the Software User's Manual 
into its component parts, then SPM will be able to 
anticipate the kinds of subtasks that might be 
needed to accomplish the write-Software-User's- 
Manual task. SPM also will be able to infer some of 
the attributes and relations of each subtask, as well 
as the time, resource, and cost parameters within 
which each subtask must be accomplished. For 
example, SPM will be able to infer the following:

•Each component of the Software User's Manual 
deliverable must be outputtrom some task.

•Each component of Software User's Manual is a 
section, which is of type document.

•Each component task is therefore a documentation 
task.

• Documentation requires resources of type people 
and word processors.

In this way, SPM not only will be able to infer what 
subtasks need to be defined to produce the com­ 
posite deliverable Software User's Manual but also

will be able to infer many of the attributes and rela­ 
tions for each task. Furthermore, if managers have 
specified a network of interdependencies among 
the various Software User's Manual sections in 
defining their deliverable—(instructionTsection 
depends-on scope-section) and (referenced- 
-documents-section depends-on instruction-sec­ 
tion), for example—then SPM also will be able to 
infer the precedence relations among the tasks it is 
itself automatically defining (fig. 6, col. 4). Once this 
is accomplished, SPM can infer when the first task 
must begin and when the last task must finish and 
can request verification of its assumptions from the 
user. Finally, SPM will prompt the user to fill in gaps 
in the knowledge base that cannot be filled in by its 
inferencing capabilities.

CONCLUSION

Considerable power can be gained by using 
conceptual models as a basis for embedding intelli­ 
gence in decision-support systems, as proved to be 
the case in building SPM. A robust conceptual 
model enhances the reasoning capabilities of 
knowledge-based systems in three important ways:

• It greatly facilitates the building of the reasoning 
portion of the system (the deductive component).

• It provides a foundation for extending the 
knowledge base through the addition of new attri­ 
butes, relations, and concepts and for integrating 
those additions into the existing network of 
relationships.

• Each minor extension to the knowledge base is 
multiplicative in its impact on the potential power of 
the deductive component.

We have found that using conceptual models is 
critically important in building a truly intelligent 
project management decision-support system. In 
mapping out our course for extending SPM in the 
near future, we have become increasingly aware of 
the power of the approach and are convinced that 
we have only begun to scratch its surface.
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