
The Space Congress® Proceedings 1988 (25th) Heritage - Dedication - Vision

Apr 1st, 8:00 AM

Conceptual Model-Based Reasoning for Knowledge-Based Conceptual Model-Based Reasoning for Knowledge-Based

Software Project Management Software Project Management

Kent D. Bimson
Lockheed Software Technology Center 2100 East St. Elmo, Austin, Texas 78744 512/448-9719

Linda B. Burris
Artificial Intelligence Center 21 00 East St. Elmo, Austin, Texas 78744 512/448-9712

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation

Bimson, Kent D. and Burris, Linda B., "Conceptual Model-Based Reasoning for Knowledge-Based Software

Project Management" (1988). The Space Congress® Proceedings. 12.

https://commons.erau.edu/space-congress-proceedings/proceedings-1988-25th/session-9/12

This Event is brought to you for free and open access by
the Conferences at Scholarly Commons. It has been
accepted for inclusion in The Space Congress®
Proceedings by an authorized administrator of Scholarly
Commons. For more information, please contact
commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/space-congress-proceedings
https://commons.erau.edu/space-congress-proceedings/proceedings-1988-25th
https://commons.erau.edu/space-congress-proceedings?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1988-25th%2Fsession-9%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/space-congress-proceedings/proceedings-1988-25th/session-9/12?utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1988-25th%2Fsession-9%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/

1988. In Proceedings of the twenty-first annual Hawaii International Conference on System Sciences. Vol. 3, Decision

support and systems track, 255-265. Washington: Computer Society Press of the IEEE.

Conceptual Model-Based Reasoning for
Knowledge-Based Software Project Management

Kent D. Bimson
Lockheed Software Technology Center

2100 East St. Elmo, Austin, Texas 78744
512/448-9719

Linda BoehmBurris
Artificial Intelligence Center

21 00 East St. Elmo, Austin, Texas 78744
512/448-9712

Abstract: This paper presents a conceptual model for
software project management and the power derived from
using a conceptual model-based reasoning approach in
building intelligent decision-support systems. The
Software Project Manager (SPM) has been prototyped in
Inference Corporation's Automated Reasoning Tool (ART)
on Symbolics artificial intelligence (Al) workstations. This
prototype conceptual model is an outgrowth of research
con- ducted under the Knowledge-Based Software Project
Management project at Lockheed Software Technology
Center in Austin, Texas. In this paper, we present an
overview of the management model underlying SPM and
define the essential concepts and relationships needed to
model the project management domain. We then describe
the knowledge representation strategy used to implement
this conceptual model. Finally, we illustrate the power of
using conceptual model-based reasoning in building
intelligent decision-support systems for the project
management domain.

THE SOFTWARE PROJECT MANAGEMENT
CONCEPTUAL MODEL

In a very real sense, SPM's model is generic: it does
not reflect any particular methodology or standard,
such as the Waterfall method or its descendent,
Department of Defense Standard 2167 (DOD-STD-
2167, or simply 2167). Rather, it allows such
methodologies to be described in terms of project
management domain primitives defined in the
knowledge base. We consider most current
software project management methodologies to be
built from the same underlying primitive concepts,
relations, and constraints. Among other things, the
conceptual primitives include projects, organiza­
tions, schedules, phases, tasks, inputs, outputs,
resources (people, hardware, etc.), deliverables,
milestones, and budgets. The relational primitives
include such notions as precedes, which describes
the relationship between two tasks or projects;
produces, which describes the relationship be­
tween a task and its output; or depends-on, which
describes the dependency relationship between a

task's inputs and outputs. Constraints typically
involve negative impacts on project plans, including
reductions in planned schedule, budget, or re­
quired resources. These concepts, relations, and
constraints are the conceptual realities with which
project managers work on a day-to-day basis.
Methodologies are the means by which those
primitives are arranged to plan projects, solve
problems, status tasks, or make projections.

We therefore define strategies like the Waterfall
model—and standards such as 2167—as structural
(or syntactic) overlays that arrange conceptual
project management primitives in specific ways for
specific purposes. DOD-STD-2167 requires a parti­
cular set of milestones, such as the Preliminary
Design Review (PDR), that have a specif iced set of
deliverables associated with each milestone, such
as the Software User's Manual. Each deliverable
likewise has a prescribed set of contents arranged in
a specific sequence. Typically, each methodology
emphasizes different attributes of the knowledge
base. For example, Data Flow Diagrams emphasize
the flow of data between processes, the Perfor­
mance Evaluation and Review Technique empha­
sizes precedence relations between tasks, and the
Hierarchy-Input-Process-Output methodology em-
phsizes task hierarchies, inputs, process descrip­
tions, outputs, and so forth. The project viewpoint
taken by a particular methodology necessarily
emphasizes a few important characteristics and
deemphasizes others, since each methodology has
been designed to provide visibility into a particular
set of problems. The graphical charting or diagram­
ming techniques associated with each methodology
are simply surface representations of the method­
ology's underlying viewpoint—a display of particular
knowledge base attributes for a particular manage­
ment purpose. In principle, these graphical view­
points are all generable from the same underlying
knowledge base by reasoning differently about the
various task, project, and resource attributes and
relations.

9-1

The following paragraphs define some of the mofe
important concepts used to build SPM's conceptual
model, a model designed to be robust enough to
support these various methodological viewpoints.
The definition of concepts—and the network of
relationships that hold between them—has been
kept as simple and generic as possible. These
definitions will grow as key attributes and relations
become important to the reasoning in SPM.

Concept Definitions and Relationships

In this section we define some of the more important
concepts in SPM's model, including the terms
project, task, input, output, resource (especially
money, time, and people), milestone, and deliver­
able. Because of space limitations, not all definitions
are included here.

Project. A project is defined as a set of tasks
arranged in time (a schedule) to accomplish a speci-
ific objective, which typically is defined by a set of
requirements. It also includes a set of resources
(people, money, facilities, etc.) required to
accomplish those tasks.

Task. A task is a sequence of steps needed to take
an input / and change it into an output o, which
fulfills, directly or indirectly, all or some part of a
project requirement. The write-Software-User's-
Manual-scope-section task in figure 1a, for example,
requires the overview-tool-description document as
input and produces the scope section as output,
which in turn meets the requirement specified in
section 10.4 of data item description DI-ECRS-8X21
(fig. 1j). In order to perform this input-to-output
transformation, a task requires the use of resources
(in our example: Max, a PC, and a word processor),

DELIVERABLE

Needed-by:1. Scope
Produced-by: Wrrte-Overview ITTIMESTARTTIME

.- —— ̂
IV

1
8

15
22
2^

2
q

16
23
30

3
10
17
2i
31

AH
4
11
18
25

Z\\
5
1?
19
26

6 7
13 14
2j 21
|J 28
j[

SOFTWARE

FINISH TIME

WRITE SUM SCOPE SECTION
Time-span: 1 week
Type: Documentation
Planned-start: March 8
Planned-finish: March 13-
Actual-start:
Actual-finish:
Part-of: Write Software User's Manual
Requires-input: Overview Tool Description
Produces-output: Scope Section ————————-*
Steps_____
Requires-resources: Techwriter.PC, Wordprocessor
Responstoility-of: Max
Planned Cost: $2,000
Actual Cost: nil
Status: Planned
Problems: nil
Difficulty: Level-1
Priority: 3
Phase: Design

USE I
"MilesPart-of: PDR Milestone —

Mas-parts:
1. Scope
1.1 Identification
1.2 Purpose
1.3 Introduction
2. Referenced Documents
3. Instruction for usi

:

MILESTONE\
DELIVERABLE

OUTPUT

/

Needs: Overview Tool Description
Prod-by: Write-Overview
Part-of: Software Users Manual
Meets-req.: Sec 10.4, DI-ECRS-
:

MILESTONE
PRELIMINARY DESIGN REVIEW
Time span: 1 day
Planned-start: May 15
Planed-finish:May15
Deliverables: Software Users

Manual, Operator's Manual,
System Diagnostic Manual

Requires-input: Completed
deliverables, Viewfoils

Produces-output: • • •
Requires-resources: • • •
Cost: $2300

WORD PROCESSING
SOFTWARE

Fig. 1. Partial illustration of SPM's conceptual model

9-2

the expenditure of time (one week), and the
expenditure of money ($2,000). Some other self-
explanatory task attributes include a set of sched­
uling attributes such as earliest and latest start
dates, earliest and latest finish dates, actual start
and finish dates, and so on; a set of attributes
specifying task characteristics, such as task
description, difficulty level, problems, priority level,
phase (design, test, development, etc.), and task
type (coding, documentation, briefing, etc.); and
an attribute describing task status (planned, in
progress, or completed).

Input and output. An input is anything that is
transformed by the steps in the task; an output is
what results from this transformation. In figure!, the
overview-tool-description (fig. 1b) is transformed
into the scope-section (fig.lc) by the task in
question. This transformation is figurative in many
cases, of course, since the overview-tool-
description is not changed physically. Input and
output are functionally defined concepts. An
object is an input to a task only if that task
transforms it into an output. For this reason, inputs
and outputs have no life of their own; they have no
lexical definition in the knowledge base. The scope-
section is not generically an "output object" but is
an output object with respect to this particular
writing task because of its functional relationship to
the task.

Resource. A resource is anything that is required
by the task to facilitate the process of transforming
input into required output, but which is not itself
subject to the transformation. People, software,
hardware, facilities, materials, and data bases are
particular kinds of resources required to perform
different transformations. In order to write the
scope-section, for example, we would require a
technical writer, a personal computer, and a word
processor (fig. 1d-1f), yet none of these is trans­
formed by the performance of the task.

Each type of resource has particular characteristics
and semantic relations to other domain concepts
and objects. For example, people write code; code
does not write people. Code runs on computers,
computers are owned by organizations, organiza­
tions are made up of people, and so on. However,
because the semantics can become arbitrarily
complex, we have chosen to limit the semantics of
software project management to what is useful in
building an intelligent project management system.
Because of space limitations, we do not define all
of our resources in this paper, but a few require

some comment, including money, time, and people.

Money. In one sense, all other resources can be
translated into monetary terms: people's time, com­
puters, and facilities. These costs are either time-
dependent or time-independent. The planned costs
for people on a task are a function of time: time units x
pay rate per unit x overhead factor. The purchase of
materials such as paper or acquired software is not a
factor of time—the purchase price of a word proces­
sor remains the same whether the task takes two days
or three months. However, even for these latter
resources there may be hidden time-dependent
costs not related to their purchase, such as
maintenance, depreciation, or software support.

Time. Two kinds of time must be included in the
model: linear time and calendar time. Linear time
forms the basis for temporal comparisons such as
during, while, before, after, until, and so forth (Alien
1984). Calendar time in some sense overlaps linear
time and forms the basis by which managers reason
about management problems such as schedules. It is
important to the project schedule that this task begin
on March 8 and finish on March 13, not just that it will
take one week to accomplish (fig. 1g).

People. People are unique resources in that they are
responsible for controlling and coordinating the use
of all other resources and for accomplishing project
tasks. In a software environment, therefore, required
attributes include task assignments, grade level,
salary, specialties, experience (languages, systems,
industry, previous tasks, education level),
preferences, organization, manager, and so forth
(Bimson and Burris 1986).

Milestone. A milestone is a scheduled event that
serves to give management or the customer control
over and insight into a project. A milestone has a set
of deliverables or products and a set of tasks
associated with producing those deliverables. In
DOD-STD-2167, the Preliminary Design Review
milestone requires the contractor to present the
Software Top-Level Design Document and the
Software Test Plan for each computer software
configuration item. It also requires the contractor to
present preliminary versions of the Computer System
Operator's Manual, the Software User's Manual,
summary reports of internal reviews, and several
other documents. The presentation of these
materials requires preparation of briefings, overhead
viewfoils, and so forth. Therefore, the preparation
and presentation of a milestone review usually is
considered a task in itself, with its own requirements

9-3

for input, output, resources, budget, and time.

Deliverable. A deliverable is any product required
by the customer, such as a document, software, or
hardware. Typically, deliverables are composite ob-
ects that can be broken down into constituent parts
or sections, each of which can be broken down
further into smaller constituent parts, and so forth. In
the 2167 example, a Software User's Manual can be
decomposed into several major sections, including
(1) Scope, (2) Referenced Documents, and (3)
Instructions for Use. The Scope section breaks
down into (1.1) Identification, (1.2) Purpose, and
(1.3) Introduction (fig. 1h). All of these sections and
subsections are the products of low-level tasks and
form a composite deliverable (the Software User's
Manual) required in the PDR.

Summary. These and other concept definitions
form the basic model from which SPM has been
built, as well as the relationships described, serve to
connect concepts to one another in a complex
network, as illustrated in figure 1 . Once a conceptual
model is properly in place, small, distinct, mission-
specific rule bases can be developed to perform
management activities semiautonomously. In fact, a
robust conceptual model reduces the work of the
knowledge base's deductive component, making
rule bases easierto modularize and easipr to write.

KNOWLEDGE REPRESENTATION
IN SPM

The conceptual model discussed above has formed
the basis for representing the software project
management knowledge in SPM, which has been
prototyped in ART on Symbolics Al workstations. In
this section, we summarize the representational
structure that was used in building SPM, and which
is discussed more fully in Bimson and Burn's 1986.

SPM's knowledge representation uses semantic
networks to build up the declarative project manage­
ment model and uses rules, functions, and
procedures to reason deductively over the model.
Semantic networks are discussed in detail
throughout the Al literature (Quillian 1966; Minsky
1975; Woods 1975; Brachman 1977, 1979; Fox
1983; Brachman and Schmolze 1985; Sathi et al.
1985, 1986; Bimson and Burris 1986). In summary,
semantic nets in SPM are made up of nodes that
represent concepts and arrows that represent
relationships between concepts. In ART, the
concepts are implemented as frame-based
structures called schemata; relations are

represented by slot names within the schemata.
Values within these slots provide the project data for
individual instantiations of the model. These are the
basics used to build SPM's conceptual model.

Brachman (1979), Fox (1983), and Brachman and
Schmolze (1985) demonstrate the importance of
representing knowledge in multiple, stratified layers
in order to structure knowledge from primitive
concepts and relations to more complex, domain-
specific concepts and relations. Brachman and Fox
define five layers of knowledge—from the most
primitive and generic to the most domain-
specific—as the implementation layer, the logical
layer, the epistemological layer, the semantic (or
conceptual) layer, and the domain layer. This
representation has been altered in SPM in two ways
since Bimson and Burris 1986. First, the domain and
semantic layers defined by Brachman and Fox are
collapsed into one layer (the semantic layer).
Second, we add a new, optional layer, the syntactic
layer, which is motivated by our conceptual model.
This layer may be used to specify a particular
arrangement of concepts used to implement a
project standard of some type, such as DOD-STD-
2167. The syntactic layer is discussed in more detail
below.

Implementation Layer

As discussed in Bimson and Burris 1986, the
implementation layer consists of machine-interpreta-
ble concepts and relations (the declarative
knowledge base) as well as rules and procedures
that reason about those concepts and relations (the
deductive knowledge base). In ART and LISP, the
declarative knowledge base is made up of sche­
mata, slots, values, and facts as illustrated in figure 2.
The deductive knowledge base is made up of the
rules, functions, and procedures that manipulate
those structures. All higher-level concepts and
relations are implemented using these lower-level
language constructs.

Logical Layer

The logical layer determines how implementation
layer knowledge is logically structured and interpre­
ted, in ART, slot name + schema name + slot value is
interpreted as a logical tuple meaning, for example,
"the planned-start of the write-Software-User's-
Manual-scope-section schema is 3/8." ART places
this fact in the knowledge base as (planned-start
write-Software-User's-Manual-scope-section (3 8)).

9-4

(Schema write-Software-User's-Manual-scope-section

A. Epistemological layer
relations replicated in
the semantic layer

(element-of task-set)
(instance-of task-prototype)

B. Semantic layer
relations

(time-span week)
(planned-start (38))
(planned-finish (3 13))
(part-of write-Software User's Manual)
(requires-input overview-tool-description)
(produces-output scope-section)
(steps nil)
(status planned)
(problems nil)
(difficulty level-1)
(priority 3)
(phase design)
(requires-resources (writer pc wordprocessor))
(responsibility-of max)
(planned-cost 2000)
(actual-cost 1725))

Epistemological Layer

Epistemology is "the study of the nature of
knowledge" (Webster 1984). The epistemological
layer "is the first level at which we consider knowl­
edge to be structured in a meaningful way" (Bimson
and Burris 1986, page 9). As defined in Sathi, Fox,
and Greenberg 1985, epistemological concepts
include prototype, set, and individual. The triadic
relationship between these three elemental con­
cepts is illustrated in figure 3, adapted from Bimson
and Burris 1986.

A prototype concept represents the common
attributes and relations of each member of the set.
The set concept contains all individuals having a
particular prototypical definition and defines the
attributes of the set as an aggregate (such as the
number of elements, averages, etc.). An individual
concept is an instantiation of a prototype, and a
member of a set and has attributes and attribute
values that uniquely identify it as an individual. All
data are instantiated as instances of the individual
concept for a given prototype.

The epistemological relations between these
primitive knowledge structures are bidirectional.
That is, each has an inverse:

• Prototype-of and has-prototype relate a prototype
to a set and a set to a prototype, respectively.
• Element-of and has-elements relate an individual
to a set and a set to an individual, respectively.
• Instance-of and has-instances relate an individual
to a prototype and a prototype to an individual,
respectively.

These three pairs of inverse relations link
epistemological concepts to each other in the knowl­
edge base. They also serve other purposes, such
as relating epistemological concepts to their seman­
tic layer counterparts (individual has-instance write-
scope-section) and relating semantic layer concepts

INDIVIDUAL

/
Element-of Instance-of

SET
- Prototype-of

General facts
about the set

PROTOTYPE
(GENERIC)

General facts
typical of each
member of set

Fig. 3. Epistemological concepts and relations
inSPM

9-5

to each other (task-prototype prototype-of task-set) (fig. 4). Two other pairs of relations also serve these
lattertwo purposes:

• Subset-of and has-subsets relate the epistemo-
logical set concept to semantic layer sets (set has-
subset task-set) and semantic layer sets to one
another (resource-sethas-subset computer-set).
• Is-a and has-kinds relate the epistemological
prototype concept to semantic layer prototypes
(prototype has-kinds task-prototype) and semantic
layer prototypes to one another (resource-proto­
type has-kinds computer-prototype) .

Inheritance flows across the instance-of link from
prototypes to individuals when an individual is
defined by a user. These three pairs of inverse rela­
tions link epistemological concepts to one another
in the knowledge base. These relations also are
used to link semantic layer concepts to one another.
For example, write-Software-User's-Manual-scope-
section is an instance-of a task-prototype, which is a
prototype-of a task-set, and so forth. In this way, the
structure and meaning built up in the triadic relation
between epistemological layer concepts is repli­
cated in the semantic layer, as illustrated in figure 4.
The replication of these epistemological relations in
the semantic layer is illustrated in figure 2a, using an
ART schema as the implementation structure.
Figure 4 illustrates the completed network of rela­
tions. In this case, the epistemological layer con­
cepts (set, individual, and prototype) are related to
semantic layer concepts (task-set and task-proto­
type) via interlayer relations.

Subse -of

Instance-of

INDIVIDUAL

Element-of Instance-of

tea
SPM-DEFINED
EPISTEMOLOGICAL LAYER
CONCEPTS AND RELATIONS

Prototype-of

Intralayer relations: relations be tween concepts in the same layer
Interlayer relations: relations be tween concepts In different layers

Fig. 4. Relationship of epistemological layer con­ cepts to semantic layer concepts in SPM

Semantic Layer

The semantic layer concepts and relations form the
domain-specific knowledge for the knowledge base.
It is in the semantic layer that we represent SPM's
conceptual model, built from the primitives provided
in the lower-level layers. Each semantic layer
concept is defined by a triadic construct—as defined
in the epistemological layer—composed of a proto­
type-concept, a set-concept, and an individual-
concept. The semantic layer concept project, for
example, is defined by the triadic construct: project-
prototype + project-set + project-individual as
illustrated in figure 5. These semantic layer concepts
are related to one another through intralayer rela­
tions such as part-of or requires-input. Likewise,
each semantic layer concept is related to the episte­
mological primitives which define its triadic structure
through interlayer relations such as instance-of or is-
a, as illustrated by the broken lines in figure 5. The
same relations frequently are used as both interlayer
and intralayer relations.

Most of the semantic layer concepts introduced in
the conceptual modeling section of this paper have
been implemented in the SPM prototype. Space
does not permit a presentation of all of the concepts
discussed for the model as they are implemented in
ART, although detailed tables of these concepts
and relations are provided in table 4 of Bimson and
Burn's 1986. Figure 5 gives readers a feeling for the
network of relationships in SPM's semantic layer
conceptual model. Built into SPM's semantic layer
knowledge representation are the notions of leaf
and composite concepts.

Leaf and Composite Concepts. A concept
may be either a leaf concept or a composite con­
cept. A leaf concept is one that is not decomposed
into component parts. A composite concept is one
that is decomposed into component parts that are
fully defined concepts in their own right—that is,
they have their own lexical definitions in the knowl­
edge base. Composite concepts form the basis for
defining subnetworks associated with tasks, or sec­
tions associated with document deliverables. The
write-Software-User's-Manual task, for example, is a
composite task with four subtasks composing a
subnetwork. Similarly, the Software User's Manual is
a composite deliverable that is decomposed into
various sections. We also distinguish between
homogeneous and heterogeneous composite con­
cepts. Homogeneous composites are composed of
parts that are, in essence, morphological clones of
the parent concepts. A composite task, for example,

9-6

Q — INDIVIDUAL CONCEPT

(|) —SET CONCEPT

0 —PROTOTYPE CONCEPT

@ — INDIVIDUAL CONCEPT PLACEHOLDERFOR DATA

---- SEMANTIC INTRALAYER RELATION
-'— SEMANTIC INTERLAYER RELATION

Fig. 5. Network of relations between semantic layer triadic-concepts in SPM

is composed of other tasks that are structurally
identical to it. Hetergeneous composites, such as
projects, are composed of nonidentical parts such
as tasks, resources milestones, deliverables,
budget, schedule, organizations, and so forth. In
general, we reason about homogeneous compos­
ites as sums of their component concepts, whereas
we reason about heterogeneous composites as an
integrated network of distinctly different compon­
ents which make up the whole concept, much as we
think about the drive train, engine, chassis, and
electrical systems as different components making
up a car. Using composite concepts to enhance
reasoning is discussed in detail in the Reasoning
section below.

The values of attributes in the composite concept
govern and restrict the values of corresponding
attributes in the constituent objects. For example,
the planned-start-date of the write-Scope Section
must not precede the planned-start-date of the

write Software-User's-Manual task, since the former
is a component of the latter. In aggregate, all
constituent tasks serve to accomplish the composite
task's output objective within the aggregate time
and resource restrictions imposed by the composite
task. It is by means of these composite concepts
that SPM addresses the granularity problem,
allowing managers to have views of the project that
reflect supervisory, middle, and upper management
levels of abstraction.

Syntactic Layer

The syntactic layer has not yet been prototyped in
SPM because it did not form part of the original SPM
program requirements. We consider the syntactic
layer to be an optional layer used to structure
projects in prescribed ways. It is a layer imposed by
some standard, such as DOD-STD-2167, which
requires a particular configuration of project phases,
milestones, deliverables, tasks, and so on, and a

9-7

prearranged sequencing of those structures. The
Preliminary Design Review, for example, has a
particular set of generic deliverables associated with
it, such as the Software User's Manual. It also has a
prescribed sequence relative to other milestones,
such as the fact that it must precede the Critical
Design Review. The idea is to allow a user to define
a syntactic template, which may serve as a project
standard, and to describe particular projects in terms
of that syntax. DOD-STD-2167 is just one config­
uration around which projects may be defined in
SPM. Other configurations can be built for the new
NASA Software Acquisition Life Cycle standard or
for a rapid prototyping environment. Each of these
configurations is simply a different way of structuring
the generic software project management concepts.
If no particular project configuration is required, a
user may ignore the syntactic layer altogether.

REASONING ACTIVITIES ENHANCED BY
KNOWLEDGE STRUCTURE ROBUSTNESS

Once the declarative component of a conceptual
model is implemented, then small, mission-specific
rule bases can be developed to perform various
management activities semi-independently. In fact, a
robust conceptual model reduces the work of the
knowledge base's deductive component, making
rule bases easier to modularize and easier to write. In
implementing our conceptual model of software
project management, each attribute, relation, or
concept that was added to the knowledge base
enhanced SPM's deductive capabilities in un­
expected ways.

Reasoning Over Attributes and Relations

When SPM was in its first stages of prototype
development, we began by implementing simple
time attributes (time-span, planned-start, planned-
finish, actual-start, and actual-finish) and prece­
dence relations (precedes and succeeds) for each
task. These pieces of information allowed us to build
critical path rules, simple task statusing rules, and
cycle detection algorithms (fig. 6, col. 1). For each
attribute added to the knowledge base, we found
that we were frequently able to add significantly to
SPM's deductive capabilities with just a few rules,
primarily due to the network of interrelationships
built into the conceptual model. For example, once
input and output (I/O) relations were added to the
task concept definition, it was relatively simple to
increase the deductive capabilities of SPM (fig. 6,
col. 2) in the following four ways:

Declarative Knowledge Available

Time Intervals/Actual Start and Panned

Precedence Relations

Input/Output Relations

Composite Deliverables

Component Dependencies in Composit e Deliverables

Milestones with Composite Deliverables

Deductive Power Available

Determine Critical Path

Detect Cydes
Status Current Tasks

Trace Input/Output Dependencies

Infer Precedence Relations

Check Precedence Consistency

Ask Simple "Why" Questions*

Status Deliverables**

Check Completeness

Support Knowledge Aggregation

Infer Task Inputs with Only Outputs Defined

Infer Relations Between Subnetworks

Status Milestones

Make Meaningy Projections

CoL
1

•

•

: :

^

•

•

Col.
2

•

(•)

•

^

•

•

•

•

•

•

Col.
3

•

(•)

•

•

:

zr

•

•

•

•

•

•

•

•

•

Col.
4

•

(•)

•

•

•
:
:

S

•

•

•

•

•

•

•

•

•

•

•

Col.
5

•

•

•

•

•

•

f

•

•

•

•

•

•

•

•

•

•

•

•

•
* Why is task N late?
** What must be done to finish Part B Spec?
(•) Optional

Fig. 6. Declarative knowledge requirements
for deductive power

1. Inferring precedence relations. We found that
we coUld deduce precedence relations directly
from the I/O dependencies themselves. Users
may define tasks, task inputs, and task outputs
without explicitly defining any precedence
relations. One relatively simple rule, compute-
precedence-from-l/O-relations (fig. 7) then
asserts all of the precedence relations
automatically into the task schemata.

2. Checking precedence consistency. The
inherent redundancy between precedence
relations and I/O relations allows managers to
precede in one of two ways: (a) they may either
concentrate initially on task definitions, inclu­
ding I/O specifications, without worrying about
precedence relations, or (b) they may specify
precedence relations without regard to com-
plete> task definitions. If precedence relations
are defined early in the project—case b—and
I/O information is added later, then SPM uses a
find-precedence-without-l/O-dependency rule
to cross-check the manager-defined prece­
dence relations against those inferred by SPM's
compute-precedence-from-l/O-relations

9-8

(defrule compute-precedence-from-I/O-relations ""
(utterance ? ? (mouse-click left 1 ? ? compute-precedence)}
(schema ?deliverable

(instance_of proto-deliverable)
(output_produced_by ?task-1-schema)
(input_required_by ?task-2-schema))

(schema ?task-l-schema
(job-name ?preceding-job)

(not (succeeding__tasks ?task-2-schema)))
(schema ?task-2-schema (job-name ?succeeding-job))
=>
(print"?preceding-job PRODUCES ?deliverable WHICH IS REQUIRED BY ?succeeding-job.")
(if (YES-OR-NO-P "SHOULD I CREATE A PRECEDENCE BETWEEN THE TASKS"

then
(assert (add-link ?task-l-schema ?task-2-schema))))

Fig. 7. Compute-precedence-from-I/O-relations rule, which computes precedence relations from
I/O relations

rule. SPM then advises managers of
inconsistencies in their network by informing
them, for example, that "Task 1 preceeds Task
2. However, no deliverable dependency exists.
Do you want to delete the precedence
relation?" Similar rules have been written to
check for an output produced by multiple tasks,
to find outputs or deliverables with unknown
origins, to find tasks producing undefined
outputs, to find tasks requiring undefined input
and so forth.

3. Tracing I/O dependencies. Three simple rules
in SPM trace I/O dependencies through the
network: one queries the user for the input or
output to trace, another initiates the trace, and a
third builds the path of dependencies.

4. Answering status questions. While some simple
task statusing has been developed for SPM
using only start and finish time attributes, the
addition of I/O relations makes it possible to
extend project status explanations in a meaning­
ful way. Questions such as "Why did the write-
referenced-documants-section finish behind
schedule?" can be answered in SPM by inter­
preting the project network in the following way:

• Because the WRDS task was planned to start on
March 30 (planned-start (3/8))
• But it began on April 5 (actual-start (3/13))
• Because the Instruction Section was not com­
pleted until April 4 (actual-finish (4/4) for preceding-
task-write-instruction-section)
• And the WRDS task needed the Instruction Sec­
tion as input to start (output-produced-by write-

instructlon-section and input-required-by write-
referenced-documents- section)

This preliminary explanation capability, based on
what we call "interpreted networks," will form the
basis of more extensive explanation capabilities
planned for SPM in the near future.

In conventional project management systems
—those having no conceptual model—adding new
attributes, relations, or concepts to the data base
requires major modifications to the system. In SPM,
the addition of each new attribute immediately
enhances the system's capabilities, since the
inheritance mechanism provided by ART ensures
that all previously defined schemata inherit new attri­
butes or relations upon recompilation. This provides
a natural environment for evolving a complex, con­
ceptual model overtime.

.v.v.&.-Pirt-ol to wmpcsits tftf
i • 11111 Pwt-of to comports tas

Fig. 8. Relationship between composite tasks and
composite deliverables in SPM

9-9

Reasoning Over Composite Concepts

Figure 8 illustrates the significance of the inter­
relationships among composite deliverables and the
composite tasks that produce them. Clearly, all
sections of the Software User's Manual deliverable
should be produced by subtasks of the write-User's-
Manual task. This knowledge can be leveraged in
many different ways, as shown in the scenario
below. This scenario demonstrates the fundamental
importance of composite concepts in providing an
environment in which to reason intelligently about
project management. It also helps to illustrate the
current research directions in SPM, since these
capabilities are not yet operational in the prototype.

In defining a project, SPM will support decision
making by anticipating the needs of the manager in
project, schedule, and task definition. After
managers have defined the write-User's-Manual task
and the Software User's Manual deliverable, and if
they have decomposed the Software User's Manual
into its component parts, then SPM will be able to
anticipate the kinds of subtasks that might be
needed to accomplish the write-Software-User's-
Manual task. SPM also will be able to infer some of
the attributes and relations of each subtask, as well
as the time, resource, and cost parameters within
which each subtask must be accomplished. For
example, SPM will be able to infer the following:

•Each component of the Software User's Manual
deliverable must be outputtrom some task.

•Each component of Software User's Manual is a
section, which is of type document.

•Each component task is therefore a documentation
task.

• Documentation requires resources of type people
and word processors.

In this way, SPM not only will be able to infer what
subtasks need to be defined to produce the com­
posite deliverable Software User's Manual but also

will be able to infer many of the attributes and rela­
tions for each task. Furthermore, if managers have
specified a network of interdependencies among
the various Software User's Manual sections in
defining their deliverable—(instructionTsection
depends-on scope-section) and (referenced-
-documents-section depends-on instruction-sec­
tion), for example—then SPM also will be able to
infer the precedence relations among the tasks it is
itself automatically defining (fig. 6, col. 4). Once this
is accomplished, SPM can infer when the first task
must begin and when the last task must finish and
can request verification of its assumptions from the
user. Finally, SPM will prompt the user to fill in gaps
in the knowledge base that cannot be filled in by its
inferencing capabilities.

CONCLUSION

Considerable power can be gained by using
conceptual models as a basis for embedding intelli­
gence in decision-support systems, as proved to be
the case in building SPM. A robust conceptual
model enhances the reasoning capabilities of
knowledge-based systems in three important ways:

• It greatly facilitates the building of the reasoning
portion of the system (the deductive component).

• It provides a foundation for extending the
knowledge base through the addition of new attri­
butes, relations, and concepts and for integrating
those additions into the existing network of
relationships.

• Each minor extension to the knowledge base is
multiplicative in its impact on the potential power of
the deductive component.

We have found that using conceptual models is
critically important in building a truly intelligent
project management decision-support system. In
mapping out our course for extending SPM in the
near future, we have become increasingly aware of
the power of the approach and are convinced that
we have only begun to scratch its surface.

9-10

REFERENCES

Alien, J. F. 1984. General theory -of action and time.
Artificial Intelligence 23(2).

Bimson, K. D., and L Boehm Burris. 1986.
Knowledge representation in software project man­
agement: Theory and practice. Paper presented at
Forum on Artificial Intelligence in Management, 20
May, at Defense Systems Management College,
Richmond, Virginia.

Bimson, K. D., and L. Boehm Burris. 1987. The
craft of engineering knowledge. In Proceedings of
the twentieth annual Hawaii International Con­
ference on System Sciences. Vol. 1, Architecture,
decision-support systems and knowledge-based
systems, 460-469. North Hollywood: Western
Periodicals.

Brachman, R. J. 1977. A structural paradigm for
representing knowledge. Ph.D. diss., Harvard
University, Cambridge.

Brachman, R. J. .1979. On the epistemological
status of semantic networks. In Associative
networks: Representation and use of knowledge by
computers, ed. N.V. Findler, 3-50. New York:
Academic Press.

Brachman, R. J., and J. G. Schmolze. 1985. An
overview of the KL-ONE knowledge representation
system. Cognitive Science 9(2):272-216.

Fox, M. S. 1983. Constraint-directed search: A case
study of job-shop scheduling. Ph.D. diss.,
Department of Computer Science, Carnegie-Mellon
University, Pittsburgh.

Minsky, M. 1975. A framework for representing
knowledge. In The psychology of computer vision,
ed. P.H. Winston, 211 -277. New York: McGraw-Hill.

Quillian, M. R. 1966. Semantic memory. Ph.D. diss.,
Department of Computer Science, Carnegie- Mellon
University, Pittsburgh.

Sathi, A., M. S. Fox, and M. Greenberg. 1985.
Representation of activity knowledge for project
management. IEEE Transactions on Pattern
Analysis and Machine Intelligence. PAM 1-7(5):
531-552.

Sathi, A., T. E. Morton, and S. F. Roth. 1986.
Callisto: An intelligent project management system.
Al Magazine, Winter, 34-52.

Webster's ninth new college dictionary. 1984.
Springfield: Merriam-Webster.

Woods, W. A. 1975. What's in a link: Foundations for
semantic networks. In Representation and under­
standing: Studies in cognitive science, ed. D. G.
Bobrow and A. M. Collins, 35-82. New York:
Academic Press.

9-11

	Conceptual Model-Based Reasoning for Knowledge-Based Software Project Management
	Scholarly Commons Citation

	tmp.1396900167.pdf.Qcql_

