Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 50 lssus 3 February 2011 |SSN O167-8238

ELSEVIER

Decision Support Systems

and Electronic Commeree

Special Issue:
On Quantitative Methods for Detection of
Financial Fraud

Guest Editors:
Indranil Bose, Selwyn Piramuthu and
Michael J. Shaw

www.elsevier.com/locate/dss

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Decision Support Systems 50 (2011) 636-647

journal homepage: www.elsevier.com/locate/dss

Contents lists available at ScienceDirect

Decision Support Systems

Conceptual model for online auditing

Wil van der Aalst **, Kees van Hee ?, Jan Martijn van der Werf?, Akhil Kumar ®, Marc Verdonk

C

2 Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b Smeal College of Business, Penn State University, University Park, State College, PA 16802, United States

¢ Deloitte, The Netherlands

ARTICLE INFO ABSTRACT

Available online 19 August 2010

Keywords:

Information assurance
Auditing

Architecture
Conceptual model
Constraints

Business rules
Conformance checking

The independent verification of the right applications of business rules in an information system is a task for
auditors. The increasing complexity of information systems, and the high risks associated with violations of
business rules, have created the need for Online Auditing Tools. In this paper we sketch a conceptual design
for such a tool. The components of the tool are described briefly. The focus is on the database and the
conformance checker, which are described in detail. The approach is illustrated with an example and some
preliminary case studies from industry.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Organizations are constantly executing business processes to
achieve their goals [9,25]. These business processes need to be
executed within certain boundaries. These boundaries are defined by
business rules coming from different sources. Some rules are enforced
by law and the authorities, and others by the shareholders. But
contracts with business partners like customers and suppliers also
create boundaries. Moreover, the board of an organization itself
defines boundaries, e.g. in a code of conduct. Note that “staying within
the boundaries” involves much more beyond avoiding fraud. So we
consider fraud as an example of rule violation and therefore we do not
treat it separately.

Information systems play a major role in executing the business
processes, either in cooperation with employees or autonomously.
This results in the need to implement business rules in both the
information system and through operating instructions carried out by
employees. As information systems become more and more complex,
in many situations it gets very hard to manage the whole system.
Since the management of an organization is responsible for the
execution of the business processes, and accountable for staying
within the boundaries, there is a need for checking whether the
business rules are being followed on a continuous basis. Management
has the prime responsibility to assess the operating effectiveness of
“their” business rules, and must monitor the execution of the business
processes closely. Independent verification is also needed. This is

* Corresponding author.
E-mail addresses: w.m.p.v.d.aalst@tue.nl (W. van der Aalst), k.m.v.hee@tue.nl
(K. van Hee), j.m.e.m.v.d.werf@tue.nl (J.M. van der Werf), AkhilKumar@psu.edu
(A. Kumar), mverdonk@deloitte.nl (M. Verdonk).

0167-9236/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.dss.2010.08.014

typically the job for auditors who provide assurance to stakeholders.
Auditors can be either internal or external. An internal audit verifies
adherence to both the internal and external boundaries (and can focus
on both effectiveness and efficiency of the processes and the business
rules), whereas an external audit typically only focusses on the
adherence to external boundaries and the effectiveness of processes
and business rules. Of course, all auditors should be independent in
their research approach and in their judgement.

For financial statements a financial audit is performed by the CPAs
(Certified Public Accountants). They verify if financial statements of
organizations are in accordance with external boundaries like the
Generally Accepted Accounting Principles (GAAP) and Sarbanes Oxley
(SOX) legislation. But business rules concern much more than the
financial reporting process and, therefore, there are numerous types
of audits, e.g. ISO audits, food safety audits, Basel2 audits, information
security audits, and operational audits. One aspect all audits have in
common is that they often are very laborious and expensive.
Moreover an audit always looks at a period in the past to determine
if the business rules were adhered to in the period under review,
while the management's main interest lies in the future.

In the ideal situation we would have a continuous auditing process
that gives us real time insights into violations of business rules [13].
Clearly this is not feasible if done manually. Therefore, there is an
urgent need for better techniques and software tools that make it
possible to check arbitrary business rules automatically and in near
real time. One of the approaches used today is to embed controls in
the information system. A control is an automated task in the
information system aimed at the prevention of violations of certain
business rules. These controls are strongly related to the functions of
the information system. Often business rules are generic, i.e. not
bound to a specific business context. An example is the “four-eyes”

W. van der Aalst et al. / Decision Support Systems 50 (2011) 636-647 637

principle that requires that “two tasks for the same case should be
handled by different agents”.

It may seem paradoxical that another information system is
needed to check the first one. However, that is what we propose since
the information systems themselves become too complex and thus
require oversight. Our solution is not a type of theorem prover that
verifies if the code of the information system correctly implements
the business rules. Since people and organizations cannot be formally
specified and may deviate at runtime, we envision a separate system
that monitors the relevant activities of the information system and
which independently checks if these activities conform to business
rules. We call such a system an Online Auditing Tool or OLAT for short.
Consequently, the information system should be equipped with a
logging mechanism and the OLAT should be connected to the
information system. The envisioned OLAT can work in two modes:
it can report violations of business rules in the form of a report to
the management of the organization, or it can send a message to the
information system that can be used to exercise a control. Thus, the
OLAT can also be considered as an external control mechanism for
the information system. In the latter mode we have to be careful
since it appears as if the OLAT becomes part of the information system,
and therefore it could loose its independent status. However, the
OLAT tool is only used to detect a (potential) violation and this
information can be used in the information system to prevent the
violation or to enact a compensation action. Although some
techniques already exist to automate small parts of the audit process,
a system integrating these techniques does not yet exist.

In this paper we sketch a “full blown” OLAT. This paper shows the
possibilities and capabilities of such a tool, and gives insights into the
architecture and functionality of such a system. Some components do
not yet exist, and are ill-defined, or even speculative. Although we call
the tool set “online”, we do not mean they are all active in a real time
mode. Only the conformance checking can be done in real time.
However, the structure of the OLAT allows for reporting on a regular
basis, thus providing near real time information.

At the outset it should be clarified that, rather than focussing on
modeling techniques for data and processes, instead we focus on the
architecture of a system that can handle any business process.
Considerable previous work has already looked at approaches for
modeling business processes. Therefore, we place more emphasis on
development of a meta model that encompasses process, business
data and organizational aspects along with the runtime issues. In
particular, we are interested in modeling those aspects of an
organization that are relevant for the business rules to be monitored.
However, we need certain techniques or approaches in order to
express and check the business rules. Therefore, we present in
Section 2 some basic techniques for data modeling, process modeling
and the language to express business rules. In Section 3 we define the
concepts that are related to auditing in an informal way. In Section 4
we give a high-level architecture of an OLAT, and also describe
software components for which we do not have a concrete solution
yet. In Section 5 we describe a conceptual data model for the OLAT. In
Section 6 we study the business rules in detail. We have chosen to be
as language independent as possible. Therefore we use standard
predicate calculus to express these rules. Section 7 gives a concrete
example to illustrate our approach. In Section 8 we describe practical
experience with the business rule evaluation in some real life cases.
Section 9 discusses related work and finally, the last section gives a
conclusion and our plan for future work.

2. Preliminaries

Here we explain techniques for data modeling, process modeling
and the predicate language to express rules. Although the focus of this
paper is on the architecture and meta modeling of our OLAT tool, we
need these techniques to illustrate the use of the tool. As we prefer to

be as independent as possible from industry languages, we use plain
predicate calculus for the business rules. Note that we do not intend to
present a new modeling approach, rather we need a consistent
combination of different modeling frameworks. For modeling
approaches a large body of literature exists already, cf. [9,2].

2.1. Petri nets

For modeling of business processes we use Petri nets [2]. A Petri
net consists of transitions (drawn as squares) which represent tasks
that can be performed in a process, and places (drawn as circles),
which define the conditions for a transition to be executed (or “fired”).
Places and transitions are connected by arcs. Places that have an arc to
(from) a transition t are called the input (output) places of t. The state
of a Petri net, also called a marking, is a distribution of objects, called
tokens, over the places. A transition is enabled if in each of its input
places there is at least one token. In that case it can fire which means
that it consumes a token from each of its input places and produces a
token in each of its output places. The behavior of a Petri net is
characterized by the set (in fact graph) of markings that are reachable
by transitions from an initial marking.

2.2. Data models

A database consists of entities, i.e., the elements or records stored
in tables. All entities together form an instance of the database. The
fields of a table are called the attributes of the entity, and are related by
associations. On the schema level, entities belong to an entity type,
associations belong to a relationship. The entity type also defines the
type of attributes of an entity. An Entity-Relationship diagram (ERD)
[14] describes the type of various entities and the relationships
between them. Entity types are drawn as rectangles. Inside the
rectangle, the entity type is given, together with its attributes.
Relationships between pairs of entities are drawn by arcs connecting
them, with a diamond in the middle. We consider only binary
relationships and most of them are functional relations.

A functional relationship can be represented as a function from one
entity type to another. For functional relationships we drop the
diamond, and represent them directly by an arc from the source entity
type to the target entity type. We also distinguish between a total
function and a partial function. A total function is one in which every
element of a domain has a mapping, while in a partial function some
elements are not mapped. For notation purposes, if at the arrow head
a vertical bar is drawn, the function is total, i.e. for all instances in the
entity, the function returns an instance of the associated entity.
Otherwise, it is a partial function. A non-functional relation is a many-
to-many relation, or a set-valued function. For non-functional
relationships we use the standard diamond notation where the
arrow indicates the direction of the relation. A relationship is uniquely
identified by the source entity type and the name of the relationship.
That is, names for the relationships are only unique for the source
entity; from the context it is always clear which relationship is
intended.

Consider the data model of Fig. 1. Here, there are three entity
types: ‘Task’ with attribute ‘name’, ‘Process’ and ‘Transition’; two

Task Process

tp

N h | Transition f_|.>
ame [€

Fig. 1. A simple data model.

638 W. van der Aalst et al. / Decision Support Systems 50 (2011) 636-647

functional relationships: ‘h’ and ‘f’; and a non-functional relationship
‘tp’. The arrow on relation ‘tp’ indicates that tp c Task x Process, i.e., ‘tp’
is a many-to-many relation between ‘Task’ and ‘Process’. The
functional relation ‘h’ is partial, and it points from ‘Transition’ to
‘Task’, indicating that each entity of ‘Transition’ is connected to at
most one entity of ‘Task’. The functional relation ‘f’ is total, i.e., every
‘Transition’ is connected to one ‘Process’.

If in a database instance two entities x,y are in a relationship r, we
write (x,y) €r. If r is a functional relationship from x to y, we write r
(x) =y for (x,y) €r. For example, we can formalize the constraint that
states that if two entities of type ‘Transition’ have an association to the
same entity of type ‘Task’ and to the same entity of type ‘Process’,
these entities are identical to the following formula:

Vt,, ,ETransition : (h(ty) = h(t)Af(t) = f(&))=t; = t,.

Note that h(t;) indicates the unique entity that is related to t; by
the functional relation h. So h(t;) is a term that can be used in a
comparison operation, as in h(t;) = h(t,) above.

Most predicates can be translated into standard SQL (cf. [29]), all
predicates can be checked using SQL augmented with stored
procedures. In this case, the query would be: SELECT * FROM
Transition tl, Transition t2 WHERE tl.Task = t2.Task AND
tl.Process =t2.Process AND t1.Id<>t2.Id.Ifthe result of this
query is empty, then the constraint holds. This provides a practical
approach to implement a conformance checker for business rules:
translate the rules into SQL queries and if they evaluate to the empty
set, the rule holds.

3. Concepts

An auditor will look for assurance that the business processes have
performed within the boundaries determined by the business rules,
by either auditing the design, i.e., the implementation and effective-
ness of controls, or by looking substantively at the data generated by
the system. The last approach is considered as very costly if done in
the traditional way. We propose a new and efficient way for
substantive data checking. Our proposal is to do it for specific
business rules only, in an automated way and in near real time.

Since the audit applies to a business process, we briefly review the
basic process terminology (cf. [2]). A business process is a collection of
tasks with (potentially complex) coordination requirements among
them. A task represents a set of activities in the real world that is
considered as one atomic action performed by an agent, or it is
automated. A task is uniquely associated to a business form which is a
collection of entities.' An instance of a business process is called a case.
A case has its own case data associated with it and is stored in a
database. When a task is executed for a specific case, its case data is
shown. In the business process a task can be any kind of activity,
however in the information system the execution of a task is limited to
reading, writing or updating these entities. As a task finishes, the
coordination requirements determine the set of tasks that can be
executed. Eventually, when no tasks are executable for a case, the case
is closed. The modeling of business processes as Petri nets is very well
understood and supported by tools (cf. [2]). Remember that we only
model those aspects of business processes that are relevant for the
business rules we are interested in.

Agents usually work in a certain role. A role is a generic identifier
for a category of agents in an organization, e.g., a manager, director,
vice-president, etc. are all generic roles. Thus, agents Joe and Mike
might be managers, Sue a vice-president, and so on. We further
assume that roles are organized in a hierarchy (i.e. a tree) in which the
CEO is the top node, and each link between nodes represents a boss-

1 Note that we only use the term “form” as a metaphor, we do not assume a
particular form-based implementation.

employee relation. In general, every organization has a different
hierarchy. There are different ways in which agents can be assigned to
roles, but for now we will assume that an initial assignment of agents
to roles is given. An agent a; can grant a permission to agent a, to
perform (a) a specific task, (b) all tasks belonging to a process, (c) all
tasks belong to a case, or (d) a specific task belonging to a specific case.
The agent is only allowed to grant a permission if it has the permission
itself, either by its role, or through a permission obtained from
another agent.

Certain tasks are used to detect or prevent violations of business
rules. These tasks are called controls. There are different types of
controls and many different ways of classifying them. For the purpose
of this research we will classify them in the way they are used to
respond to an exception that occurs on a business rule.

1. Detective: this type of control is only able to detect that a violation
to the business rule has occurred. An example: an employee has just
transferred $ 1 million to his account.

2. Corrective: this type of control is like the detective control, but has
the added functionality to (or attempt to) correct the violation to
the business rule directly. An example: an employee has just
transferred $ 1 million to his account and the control is preparing to
transfer it back.

3. Preventive: this type of control prevents business rules from being
violated. An example: In the current payment run an amount of $
1 million is going to be transferred to the bank account of an employee,
but the payment run will not be processed for this reason. A special
case of preventive controls is a prospective control, which gives a
warning if it is possible to break a business rule based on other
actions performed.

We consider only two kinds of events: a task event and a
permission event. The first is the execution of a task, the second is
the granting of a permission.

4. Top-level architecture

In Fig. 2 the top-level architecture of the OLAT is presented. We
distinguish data sets (displayed by drums) and program modules
(displayed by rectangles). Some of these modules already have an
implementation in tools like ProM [6]. However, to our knowledge, no
tool exists that integrates these techniques into a single information
system for auditing purposes. Note that we have more modules in the
architecture than we actually will describe in detail. In this paper we
only focus on the conformance checker and the risk interpreter. For
the other modules we only give a high-level specification.

The data sets form the database of the OLAT. The conceptual model
of the database is presented in the next section. The database consists
of three types of data: Run time data, de jure models, and de facto
models. The run time data is collected from the monitored
information system. The de jure models are the official models of
the desired organization. In fact, the run time data should conform to
the de jure models. Otherwise, it indicates a violation. The de facto
models are derived from the run time data by discovery techniques
and can differ from the de jure models.

4.1. Run time data

This data comes from the information system. All (relevant) events
of the information system are recorded in the system log. So the run
time data concerns the events in the business processes such as
activities or tasks, and events in the authorization processes such as
the granting of permissions. This data is needed to perform analysis by
the conformance checker, difference analyzer and potential risk
detector.

W. van der Aalst et al. / Decision Support Systems 50 (2011) 636-647 639

A

improve

Dejure - models

Risk Interrupter |«

‘4 interrupt

Business
Rules

Process ||Organizatior) | Business
Models Structure Data

—data: Runtime data

World

Potential Risk

Potential Risks
Detector g

\/\

Difference

Inconsistencies
Analyzer g

Information System

\/\
h 4
Cont Deviations /
ocr:lh(;r(r:ﬂgrce M» Exceptions
\//\

4

Business
Rules

Process ||Organization
Models Structure

Business
Data

Defacto - models

Rule Promoter

Fig. 2. A top-level architecture of an Online Auditing Tool.

4.2. De jure and de facto models

The de jure models describe the desired or official situation,
whereas the de facto models are derived from the run time data, and
thus describe the actually observed situation and behavior. The de
jure models are made for the design of the information system. Both
the de jure models and de facto models concern process models with
tasks and their ordering, business data together with the forms data
of the tasks, and the organizational data with the agents and their
roles. Last, but not least, business rules are also a part of de jure and
de facto models. Business rules are expressed in standard predicate
logic. Except for the business rules, these other data sets are collected
in one (relational) database as the de jure models describe the
desired or official behavior, business rules in the de jure models
should not be violated. On the other hand, business rules in the de
facto models are discovered as will be discussed later. The de jure
models are loaded from the information system, while the de facto
models are obtained by discovery techniques. Hence, they may be
less complete than the de jure models. The de facto and de jure
models share the same database schema as presented in the next
section (see Fig. 3).

4.3. Conformance checker

This module checks whether the run time data conforms to the de
jure models, in particular the de jure business rules. This does not only
include the control flow behavior, but also data flow, authorizations
and business rules. Since the business rules are expressed in predicate
logic, they can be translated into queries (cf. [29]). The queries run on
the database (i.e. the de jure models plus the run time data). If the
result of the query is the empty set, the rule is not violated. If a rule is
violated, an exception report is generated based on the returned
query containing the counter examples. This exception report needs
to be analyzed by management and auditors, and can lead to either a
remedial action, or to the conclusion that the situation should be

allowed. In the latter case, the Rule Promoter can be used to add the
newly discovered model to the de jure models. This conformance
check, i.e. by executing the translated queries, can be run at any time,
thus providing a way to continuously audit the system.

4.4. Discovery programs

In contrast to the conformance checker, discovery programs try to
derive models out of the run time data. Many kinds of existing data
mining and process mining techniques and tools can be used to
discover not only the control flow, but also the authorization rules,
business data models, organizational models and business rules
[3,30,31]. In general, mining techniques try to deduce patterns and
rules from facts. In our case the facts are stored as events in the run
time data set. To discover a process model we look at the actual
execution order of tasks for the cases, and from this we can infer a
process structure (for example a Petri net) (cf. [5]). For the structure
of business data we could look at data as business forms that are used
in the events to derive entities and relationships. For organizational
models, we can look at the permission events whereby an agent
grants a permission to another agent. As these rules are derived from
the run time data, the models obtained by discovery are de facto
models. While detailed discussion of these techniques is beyond the
scope of the current work, the kind of tools we have in mind is
included in the well-known process mining toolset ProM [6].

4.5. Rule Promoter

This module represents functionality to convert a discovered de
facto model into a de jure model, and in particular it concerns business
rules. For this, it needs to be able to abstract from the specific instance
information. In the first run, the module is used to tune the
configuration of the de jure models to the actual situation. Later on
it may be part of a continuous improvement process; e.g. when
exceptions are discovered, analyzed and accepted, they are added to

640

W. van der Aalst et al. / Decision Support Systems 50 (2011) 636-647

_ Definition AL

4 : 1 N
UpdateEntity Runtime Permission | r \
|
I'p t Ito P Agent
start (from
end I >
e execBy I
L 5 s
p
Entity Association Event Case
SIC, a
< @ e > —+=
value timestamp Assignment
Tt o T plr_et/ Tt To
r
N P) start
4 A\ 4 Y4 N end
EntityType o Ir
vV Vv
> el FormLink @’ Process |«¢
v
t Task
type -|_» tp Y Role
src tar
+ <
Relationship t|>—>
< rﬁ Aln
re
Place 2 Transition
| f
|
Business Data Organizational
post

Process Definitiow\ Definition Y,

Fig. 3. Conceptual model for OLAT.

the de jure models, thus eliminating ‘false positives’ in the
conformance checker.

To the best of our knowledge, there are no methods or software for
this task available today. Therefore, we assume this to be a human task.

4.6. Risk Interrupter

The Risk Interrupter takes input from the de jure models and the
run time data in a way similar to the conformance checker. The
difference is that this module interrupts the information system to
prevent further processing of the case under consideration until issues
are resolved and the risk is mitigated. Hence, it serves as an external
guard for tasks in an information system. In fact, it can be seen as an
external control based on the conformance checker.

4.7. Difference analyzer

The difference analyzer compares the de jure and de facto models.
It also checks whether business rules, process models and organiza-
tion structure are in conflict between the de jure and de facto models.
This can be seen as a quality check for the models, and therefore a
check for the functioning of the whole concept. Prototypes of such a
tool have been designed [17].

4.8. Potential risk detector

This module is able to detect potential risks by analyzing the run
time data, the de facto and the de jure models. For instance, if the de
jure and de facto models differ, we could use it to see if a violation of a
de jure business rule could occur. This information is considered as a

warning. In the ProM toolset [6] several tools are available that could
be used to realize this module.

4.9. Remarks on the implementation of the OLAT

We do not consider the implementation of the OLAT in detail in
this paper. However we note that the heart of the OLAT is the database
that contains all data. The conformance checker as well as the Risk
Interrupter, can be based on a standard SQL engine. So the part of the
system we focus on, can be realized using a standard database
management system. Of course, the OLAT needs coupling with the
information system to collect events from it, and also perhaps to send
interrupts to it. It also needs a reporting facility. Since we aim at a
generic OLAT we should be able to configure the OLAT for specific
information systems, but this involves the construction of a standard
data-intensive application. For the other modules, like the discovery
programs, we might use existing tools that can query the database.
Hence, the implementation is a serious engineering effort, but it does
not require new scientific insights.

5. Conceptual model

The heart of the OLAT is the database. This section describes a
conceptual model for all the data sets needed for the OLAT. The
conceptual model shown in Fig. 3 is actually a meta model in that it
integrates the high-level modeling elements of the organization
definition, business data definition and process definition, along with
a run time framework. These aspects are described at length next. In
addition, there are consistency constraints that should hold for any
organization. These constraints are explained in detail in Section 5.2.
Note that if these constraints are violated, the database becomes

W. van der Aalst et al. / Decision Support Systems 50 (2011) 636-647 641

inconsistent, which is not the same as a violation of a business rule.
Conformance of business rules is then treated in Section 6.

5.1. Data model

Fig. 3 depicts the conceptual model. It is arranged into four
components: the process definition, the business data definition, the
organizational definition and run time. We first explain the concep-
tual model, and then show how, using predicate logic, all kinds of
business rules can be formulated on this model. Remember that we do
not distinguish between the de jure and de facto models here: they
share the same data model. Also, note that we sometimes introduce
transitive closures of relations (i.e., h*, u™ and pred). These transitive
closures are assumed to be updated explicitly in the database, which is
easy to perform. We use them to avoid recursive definitions in
constraints (i.e. queries), thus allowing us to implement the
conformance checker with an SQL engine.

5.1.1. Business data definition

Processes involve business data, e.g., entities like invoices,
products and customers. To describe the type of business data and
the relationships between these data elements, we introduce the
business data definition. It stores the entity types of business data and
the binary relationship between them. In fact, this component stores
general data models as introduced in Section 2. However, we link
them via form links to tasks.

5.1.2. Process definition

The process definition component describes the processes
monitored in OLAT. Note that we store the process models in the
form of a data model. A process contains tasks that can be executed
for that process. Processes are often hierarchical. Parts of the process
are either reusable, or are refined using subprocesses. In our
conceptual model, this is modeled by relation u. If two processes x
and y are related via u, then process x uses process y, i.e. y is a
subprocess of x. To avoid recursion and to be able to use queries, we
also store the irreflexive transitive closure of u in a relation named
u™. Tasks can be shared by different processes. As stated earlier, a
task is identified with a form providing the necessary data to execute
that task.

A task typically reads and writes entities. The entity FormLink
models the relation of the entity types that are used in a form to
perform a task. Its attribute type defines whether the entity is read,
written or both. To express conditions on the order in which tasks
occur, we use labeled Petri nets. A transition is labeled with the
process (relation f) and the task (relation h) it represents. The
conceptual model allows that transitions which are connected via a
place, do not need to be in the same (sub) process. However, we
assume that all places connected to a transition belong to the same
process. In this way, places can be shared by two or more processes,
thus providing the possibility to define process composition, rather
than only flat processes. The initial tokens of a place are an attribute
of the place. It should also be noted that although we use labeled
Petri nets, any other process notation could be used to define the
order in which tasks can occur. Moreover, we have no direct run time
information of the firing of transitions or the marking of a place.
However it is possible to derive this information if h is a bijection
(see e.g. [30,31]).

5.1.3. Organizational definition

Tasks can be executed by different roles that are placed in a
hierarchy. If a role is higher in the hierarchy, it means that this role can
execute all the tasks of its subordinates. The hierarchy is expressed
using relation h: if a and b are related by h (i.e. (a,b)Eh in the
instance) then b is the supervisor of a. Again, we add the transitive and
reflexive closure of the hierarchy relation, h*.

Agents are assigned to roles via an Assignment. This assignment can
be for all processes or for a single process, which is depicted by the
optional relation p. The entity Assignment has start and end attributes
to indicate the interval in which this assignment holds.

5.1.4. Run time

The run time component stores all events and associated data from
the information system. There are two types of events: events that
indicate that something has been done for a specific task (the entity
Event in the model) and the granting of permissions by agents (the
entity Permission). The data associated with an event is business data,
i.e. the content of the forms filled in. The entities Entity and Association
store the business data definition. Each Entity belongs to an entity type.
An Association associates two entities and belongs to some
Relationship.

A Case is an instance of a process, and it proceeds through Events
that are raised whenever a task is executed. An event is always
executed by some agent for a task in a process. The event occurrences
form a partial order represented by the relation prev. The relation
pred is the transitive closure of relation prev, and is used for
formulating business rules. Typically, an event for a task in a case
also involves entities in the business data which are created or
updated. This information is stored in UpdateEntity. Entity contains the
latest version of the entity, UpdateEntity stores the changes.

If an agent A authorized another agent B to perform a part of its
work, then agent B acquires a Permission from agent A to perform
some work. A permission is always for a time interval and it can apply
to a role, a process, a case, a task, or any combination of thereof. By
obtaining a role permission, agent B can perform all tasks of that role,
given that A has that role in the first place. A permission can also apply
to a specific process or case, indicating that agent B can do anything A
can do for that process or case. If the permission is for a task, agent B
can execute that task as well. A permission is only allowed if agent A
has the proper permissions for the work it delegates. Note that one
cannot always detect in which role an agent executes a task, only
whether it has the right authorization.

5.2. Constraints on the data model

There are two types of constraints that can be defined on the
process model: logical consistency constraints which do not depend on
any business context, i.e. constraints to maintain the consistency of
the data model, and conformance constraints which ensure the
conformance of the data model within the business context. There
is a simple distinction between the two: Consistency constraints do
not use any specific attribute value, while business rules do. The latter
are described in the next section. For the business data, there are no
separate constraints, as it is a general schema for an ERD. In the
remainder of this section we explain some of the most important
consistency constraints. We classify the constraints according to the
component of the entity types they address.

5.2.1. Consistency constraints for the process definition

The conceptual model allows for subprocesses. Although a process
can be nested arbitrarily deep, cycles in the process hierarchy are not
allowed. This can be expressed using two constraints. First, the
relation u should be irreflexive, i.e. a process should not depend on
itself. Secondly, as u™ is the transitive closure of u, and we disallow
cyclic references, u™* needs to be irreflexive as well. For the purpose of
discovery algorithms, we require that the task and process uniquely
identifies a transition. This gives rise to the following constraints:

p1: Relation u” is the transitive closure of relation u.

p2: Relations u and u" are irreflexive.

p3: If a transition belongs to a certain process and represents a
task, the task should also belong to that process.

642 W. van der Aalst et al. / Decision Support Systems 50 (2011) 636-647

p4: The combination of a task and a process uniquely identifies a
transition.

For example, p4 is equivalent to stating: if, for two transitions t;
and t,, their related task and process are the same, the transitions are
the same. Formally:

Vt;, t,ETransition : (h(t;) = h(t)A f(t) = f(6))=t; = t,.

5.2.2. Consistency constraints for the organizational definition

Consistency constraints for the organizational definition are
related to the definition of the role hierarchy and the granting of
permissions. A permission may be granted to an agent to act in a
certain role, to perform a task, or to be involved in a process or case, or
any combination thereof. An agent is only allowed to give a
permission to another agent for a role if that agent has the proper
authorization. The agent has this authorization if either it is allowed to
assume that role, or it possesses the permission explicitly. This leads
to the following (non-exhaustive) set of constraints.

O1: Relation h” is the reflexive transitive closure of relation h.
02: The start time of an assignment is strictly smaller than its end
time.

03: The start time of a permission is strictly smaller than its end
time.

04: An agent can only grant a permission for a role, if it is assigned
to that role, or if it has a permission for that role itself.

05: An agent can only raise an event for a task in a case, if it has a
role assignment to execute that task, or it has a permission to
execute it.

5.2.3. Consistency constraints for the run time

The main consistency constraints for the run time are concerned
with the correctness of events: the events should happen in the right
order, i.e. the timestamp of events in the relation prev should conform
to the ordering. Also, the storage of business data should be according
to the schema. This leads to the following set of constraints.

r1: The relation pred is the transitive closure of relation prev.

r2: If event y occurs after event x, then the timestamp of x should

be at most the time stamp of y.

1r3: The source and target entities an association relates to, should

be of the correct type specified by the relationship the association

belongs to.

r4: If an event in a case occurs, the task related to the event should

be in the process of which the case is an instance.

r5: If an entity is updated by an event, it should be of an entity type

that is in the form of the task the event is of.

6: If a permission is both for a process and a case, the process of

the case should be the same process as the permission is for.

r7: If an agent performs a task, and it is authorized by an

assignment, this assignment is unique.

6. Business rules

In this section we present business rules. Since it is in principle
impossible to list all possible business rules, we only consider some
characteristic examples that occur frequently. Remember that a
business rule is a constraint on the data model involving business
data as parameters. Therefore, we are able to express business rules as
parameterized constraints. Further, note that we can check them by
query processing. So the implementation of the conformance checker
could be based on a standard database engine. It is not only possible to
express business rules for a single process or case, but it is also
possible to express business rules involving several processes or cases.

In general, business rules concern the following aspects:

« ordering based, i.e. about the execution order of tasks in cases;

* agent based, i.e. about the involvement of a role or agent in cases and
processes;

* value based, i.e. in forms belonging to a task.

In business rules these aspects may be combined. In this section,
we show examples for each of the aspects. In some examples we
need the set of attributes A and the set of values V. We use the
notation e.a =v to express that attribute a of entity e has value v.

6.1. Examples of ordering based rules

Ordering based rules express constraints concerning the ordering
of events and tasks in processes. Below we refer to the conceptual
model of Fig. 3 for the function names which denote the relationships
between various entities.

01: Task precedence. A task t, should always be performed before

task t; in any case of process u.

b1 : TaskAlwaysBeforeTask(u : Process, t;,t, : Task) : =
1 Vx,€Event : (p(c(xy)) = unt(xy) = t;)=
Ix,E Event : t(xy) = tyAC(Xy) = C(Xp)A(Xy,X;)E pred

02: Restrict update operation. After task u is performed in a case,
no entity of type x can be updated anymore in that case. For
example, an employee cannot change the travel expense form (or
entity) after it has been approved.

b2 : RestrictUpdate(u : Task,x : EntityType) : =
Ve,,e,EEvent : c(e;) = c(ey)At(e;) = un(e;,e;)
€ predA—(Jy € UpdateEntity : p(y) = e, At(e(y)) = X)

03: Maximum repetitions of a task in a case. In any case of process
P task u cannot be executed more than n times.

b3 : LimitNrOfTasks(u : Process,z : Task) : =
VYw € Case : p(w) = u= |{x € Event|c(x) = WAL(X) = z}|<n

6.2. Examples of agent based rules

Role or agent based business rules express constraints about the
involvement of roles and agents in processes.

A1l: 4-eyes principle. Two tasks t; and t, in the same case should
always be executed by different agents. Below execBy is a function
that returns who performed an event.

b4 : 4EyesPrinciple(t, . t, : Task) : =
Vx,y € Event : (c(x) = c(¥)At(x) = tAL(Y) = t)=
execBy(x)#execBy(y)

A2: Mutually exclusive agents. Two agents a; and a, should never
appear together in a case.

b5 : MutualExclusiveAgents(a,, a, : Agent) :=
3 uy, uyEEvent : uy Auy Ac(uy) = c(uy)AexecBy(uy) = agn
execBy(u,) = a,

A3: Maximum tasks by an agent. An agent a cannot do more than n
tasks in any case of process u.

b6 : TaskLimitOnAgent(u : Process,a : Agent,n : Nat) :=
Yw e Case : (p(w) = u)=
|{x € Event|c(x) = wAexecBy(x) = a}|<n

W. van der Aalst et al. / Decision Support Systems 50 (2011) 636-647 643

A4: Forbid agent to write. An agent a; is not allowed to update any
entity in a process u.

b7 : ForbiddenToWrite(a : Agent,u : Process) : =
Vx € Event : (execBy(x) = aAp(c(x)) = u)=
—1(3y € UpdateEntity : p(y) = X)

6.3. Examples of value based business rules

Value based business rules concern the values of business data.
Typically, these constraints can have the following form:

« two values should be equal,
« one value should be larger than another value, or
* a value should be within some given set (i.e. within some limits).

V1: Restrict entity-attribute-value for an agent. An agent a is not
allowed to write an entity of type b with value of attribute x larger
than n.

b8 : LimitEntAgent(a : Agent,b : EntityType,x : A,n: V) :=
Vz € Event,y € UpdateEntity
2 (p(y) = znt(e(y)) = baexecBy(z) = a)=e(y).Xx<n

V2: Restrict entity-attribute-value for a case. For each entity of
type b written in case w, the value of attribute x is lower than n.

b9 : LimitEntInCase(w : Case, b : EntityType,x : A,n: V) :=
Vy € Event, z € UpdateEntity
1c(y) = wAt(e(z)) = bap(z) = ynre(z).x<n

V3: Agent approval limit. An agent a can only perform task u for a
case, if for each entity of type b written in that cas, attribute x is less
than n. E.g., a bank vice-president can approve a loan up to a limit
of $500,000.

b 10 : ApprLim(a : Agent,u : Task, b : EntityType,x : A,n: V) :=
Vy € Event
: (execBy(y) = ant(y) = u)=LimitEntinCase(c(y),b,x,n)

Note that LimitEntinCase is defined above in rule b9.

V4: Three-way match. In each case of a process n, if task u is
executed, then entities of types a, b and c belonging to the case
should have the same value. E.g., the price of the invoice should
match the price on the quotation and on the delivery notice.

b11 : ThreeWayMatch(n : Process, u : Task,a, b, c : EntityType) : =
Vw € Case, v € Event, x,y, z € UpdateEntity
L (c(w) = nAL(v) = uac(p(x)) = c(p(y)) = c(p(2))
= c(v) = wAt(e(x)) = ant(e(y) = bat(e(2))
=)=e(x).value = e(y).value = e(z).value)

7. Example

Above we showed how parameterized business rules are expressed in
predicate logic, and checked by further transforming predicate logic into
queries and running them against a database. In this way, end users and
process owners are not confronted with details of predicate logic.

As an example to illustrate the framework, Fig. 4 shows the Petri net
for an Administer Account Transfer process. The process starts with a
customer representative receiving an account transfer instruction (task
t1) from a client, who records the transfer instruction (task t2). Next, a
financial clerk validates the instructions (task t3). If the validation reveals
a problem, communication details of the invalid instruction are extracted
(task t5). Otherwise, a financial accountant checks the transaction limit of
the transaction (task t4). If the transaction amount exceeds the limit for

the customer, the process starts the Authorization subprocess consisting
of tasks t7, t8a and t8b. If the limit is not reached, or the transaction is
authorized, the banking specialist checks the available funds. If this check
fails, communication details are derived from the account unit (task t9);
if it passes, the Accounting Entry sub process is started, which applies the
accounting entry and calculates a fee for it. In allcases, the results are
collected in a report (task t15), and after it is approved (task t16), the
customer is notified (task t18). If the report is not approved, it is
reworked (task t17), and tasks t15 and t16 are repeated.

This process also involves the role of the senior financial manager, who
supervises the financial manager, and heads a team also including a
financial accountant and a financial clerk. Table 1 shows the assignment of
roles to tasks. Note that based on the role hierarchy, the senior financial
manager inherits the permission to do everything her subordinate can do.

The organization has the following agents: agent-joe, agent-sue,
agent-eric and agent-beth. These agents fulfill the roles within the
organization. In this organization, we next define the business rules that
must hold for the process. First, it is not allowed to update the entity
cust-account after task t11 has been executed. Secondly, agent-joe and
agent-sue are not allowed to work together in any case. Agent-eric is not
allowed to execute more than 4 tasks. Last, tasks t7 and t8a in a case may
not be executed by the same agents, and this also applies to tasks t7 and
t8b, and for tasks t10a and t10b. To set up the conformance checker of
OLAT, we need to implement these business rules in the system. Given
the set of predefined business rules in the previous section, the process
owner only has to specify the following functions:

el: RestrictUpdate(t11,cust-account)

e2: MutualExclusiveAgents(agent-joe,agent-sue)
e3: TaskLimitOnAgent(agent-eric,4)

e4: 4EyesPrinciple(t7,t8a)

e5: 4EyesPrinciple(t7,t8b)

e3: 4EyesPrinciple(t10a,t10b).

Most of these rules apply to all processes in the system; however, it
is also possible to associate a process parameter with a rule in order to
apply it to a specific process or subprocess.

8. Practical experience with business rules

As computing prices fall and data analytics becomes more
affordable, there are more applications of it in auditing. The Big Four
audit firms are all venturing into this space and embedding their
principles into the audit approach. In recent years we have seen a shift
from introducing more controls in the information system towards
substantive data analytics and validation of business rules. The main
benefit of this type of audit is that there is a shift from identifying the
risk from violation of a business rule towards detection of the violation.
In practice we still see a combination of both: a control is tested; if it
fails, then the whole population of data has to be validated against the
business rules. While we have not yet developed a full blown OLAT,
Deloitte Netherlands used a preliminary version of it in off-line mode
for the validation of several business rules on large log files from real
information systems. We mention one example in each of the rule
classes we have identified. In all cases, we could feed the log to the
application and execute the queries to check the business rules in a
small amount of time, thus providing an efficient approach to audit a
complete business process. The outcome of these cases shows that it is
feasible to check compliance on a regular basis without much effort.

8.1. Ordering based rule

A utility company introduced the rule that invoices could only be
paid if there was a valid purchase order present in the system. This
rule was applicable for 3 months and was configured in their system
as an automated control, which we verified to work correctly.

644 W. van der Aalst et al. / Decision Support Systems 50 (2011) 636-647

Customer t1. Receive Transfer
Representative Instruction
Customer t2. Record Transfer
Representative Instruction
Financial t3. Validate Transfer
Clerk Instruction
Not L
Accepted Accepted t4. Check Transaction Financial
or Limit Accountant
y o -
t5. Derive Communication| .~ ., Limit Not A\ Limit
Details from Payment | © ~°0 Reached or }Aeached
Instruction U
P Authorization
W R R Sub- Process
| y |
Banking || t7. Request Transaction| Financial
Specialist t6. Test Funds Availability | Authorization Accountantl
t9. Derive Funds Not : I
Financial| Communication Available !
Clerk Details from | | . X Financiall
Account Unit Funds Accounting Entry | | | t8. Authorize Transaction Manager|
Available Sub- Process [——— .
r—-——"—=""~""~>""~>""~>""~>"""~>"""~>""~=¢ "~~~ ~——=—=—7— 1
| |
I \and)/ I
| Y |
| Financial |t10a. Apply Busi t10b. Apply Fee| |
. y Business| gystem 5
| Accountant| ~ Accounting Entry Accounting Entry| |
| |
| (o) |
| |
I Financial t11. Derive I
| Clerk Communication Details I
| from Accounting Entry |
e e e e e e e e e e e — — — — Jd

System t15. Generate
Communication Details
senior 6. A : Cust
Financial . Approve Custome
Manager Report
Customer ¢
Representative| t17. Notify Customer

Fig. 4. Example of an account transfer process.

However in the process an invoice was registered in the system just
before it was paid and the essence of the rule was that the company
wanted to prevent placing orders that were not approved through the
formal process. Therefore it was decided to run the task precedence
business rule O1 in Section 6.1 (“Task t1 always precedes task t2”),
with t1="PO approval” and t2 ="“Invoice registration”, against the
complete population of invoices of these 6 months. We found that in
the first 3 months, a significant number of invoices were paid without
a PO approval being present at all. In the last 3 months we noted that
for all invoices paid a PO had been approved, but that this approval in
a significant number of cases occurred after registration of the invoice.

8.2. Agent based rule

At a large consumer products company we found that authoriza-
tions in their SAP system allowed for booking and approval of
purchase orders across business units. This was against company
policy and also posed a risk for the reliability of their financial
statements. Using an extension of the business rule A4 in Section 6.2,
“Forbid agent to write”, to distinguish between processes in business
units, we found that in the total population of 1892 purchase orders
there were 140 agents involved in 5 business units. The business rule
held for all but one agent that was involved in a process across two

W. van der Aalst et al. / Decision Support Systems 50 (2011) 636-647 645

Table 1
Task-role matrix.

task Roles

Customer Banking Senior Financial Financial Financial
representative specialist financial manager accountant clerk
manager

Task t1
Task 2
Task 3 I
Task t4 I

Task t5 I
Task t6 g

Task t7 I

Task t8a
Task t8b
Task t9 g
Task t10a I

Task t10b

Task t11

Task t15 g
Task t16 I

Task t17

Task t18 g

S
4

AN

business units. Further inquiry about this exception with the agent
confirmed that our assessment was correct, but that there was a
plausible explanation for this fact.

8.3. Value based rule

At a chemical company we found that the invoice verification
option in SAP (which implements the 3-way match) was set to
optional. A quick sample drawn on the population showed that indeed
the option had been disabled for certain purchase orders that were in
the selected sample. Overruling this option poses the risk that invoice
amounts, goods received and goods ordered are not in accordance, but
the actual impact of this risk is hard to quantify. We used the business
rule “3-way match” to verify the whole population of purchase orders
based on the amount and monetary value. In this way, we were able to
assess the invoices that did not pass the 3-way match criteria. These
invoices were followed up, some corrections were made and credit
notes requested from suppliers.

9. Related literature

Most business process modeling tools do not provide adequate
support for information assurance and this is often added in a piecemeal
and rather ad hoc manner. To the best of our knowledge there are few
efforts to develop a comprehensive architecture and conceptual model for
online auditing, which is an important part of our contribution. A
promising Al-based approach for detecting procurement fraud is
presented in [13]. A workflow is described in terms of pre- and post-
conditions that must be satisfied, and a violation of post conditions raises a
flag for further investigation. While the basic objectives are similar, our
goals are more ambitious since the OLAT architecture also includes
organizational and data models, as well as a more extensive discovery and
corrective capability.

While there are few OLAT-like holistic architectures, there has been
significant research interest focussed on various vocabularies and logic-
based methods for expressing business rules in the modeling of processes.
Since the mid-nineties several groups have been working on techniques
for process mining, i.e., discovering process models based on observed
events. In [3] an overview is given of the early work in this domain. The
idea to apply process mining in the context of workflow management
systems was introduced in [7]. The Alpha algorithm was the first
technique able to discover concurrency [4]. Process mining is not limited
to discovery. For example, in the context of ProM [6] several approaches to
conformance checking were realized. The best developed technique is the

Petri net-based conformance checking technique by Rozinat et al. [31].
Here an event log and a process model are compared and deviations are
measured and highlighted in both the model and log. Metrics such as
fitness, appropriateness, etc. quantify conformance and the diagnostics
allow for drilling down the problem.

Conformance checking is related to checking fitness, and measuring
the quality of a process mining technique. In [20] negative events are
inserted to turn process mining into a classification problem, thus
addressing problems related to appropriateness [31]. Also related is the
work by Cook [16], where the event streams of a process model and a log
are compared based on string distance metrics. Recently, several process
mining techniques have been adapted to provide operational support,
i.e., process mining is not done off-line but online. Examples are the
recommendations provided in [34] and the predictions given in [1].
These papers illustrate that existing process mining techniques can be
used in a real time setting. However, it is impossible to give a complete
review of process mining techniques here, see http://www.processmin-
ing.org for more pointers to the literature.

Further related research is discussed in [18,19]. Here the authors
have developed a declarative approach for process modeling using the
SBVR (Structured Business Vocabulary and Rules) vocabulary and
created a new framework. The vocabulary is supported by a model
and allows process modeling and specification of access constraints in
an English-like language. They also support defeasible logic [28]
which is a non-monotonic logic and can work with a set of
inconsistent constraints. Another approach for handling compliance
inspired by defeasible logic and deontic logic [8] is discussed in [32].
These logics are more advanced than predicate logic, and are based on
notions of permissions, obligations and prohibitions. They are applied
in the context of the Business Contract Language (BCL) [21,26] where
the focus is on how to proceed when one party fails to meet its
obligations. In [5], the authors have used temporal logic expressions
to check whether a log corresponds to constraints.

Prior research has looked at the issue of information security from
various perspectives, e.g. at the network and operating system levels.
However, our focus is on security at the application level, and the stream of
security related research that is relevant here pertains to role based access
control (RBAC) [33]. The notion of separation of duties [24,35], although it
preexisted in accounting and control systems, also reemerged in the
context of RBAC as the idea that if task 1 is performed by role A, then task 2
must be performed by role B, and membership of these roles must not
intersect. This is a useful framework that has now been widely adopted in
popular database management systems from IBM and Oracle.

Some related work on specification and enforcing role-based
authorizations in workflow systems is discussed in [11]. The main focus
of this work is on enforcement of constraints at run time. A formal model
called W-RBAC for extending RBAC in the context of workflows using the
notions of case and organizational unit is described in [36]. The approach
in [12] is based on the notions of conflicting roles, permissions, users and
tasks. More sophisticated algorithms for enforcing separation of duties in
workflows are developed in [27]. Finally, another stream of prior work
that informs our research is the literature on basic financial control
principles, particularly as it relates to the recent Sarbanes-Oxley
legislation [10,15,22,23].

10. Conclusion

Currently, the work of an auditor is mostly manual, and thus very
laborious. Many existing tools that can be used for auditing only focus on
a small part of the actual work of an auditor. In this paper, we argued for
the need for online auditing of the business processes of an organization
and proposed an Online Auditing Tool (OLAT). Such an OLAT is connected
to the organization's information system but is not a part of it. The
assumption is made that all relevant events in the information system are
passed to the OLAT. In this way, the OLAT can build an independent
image of the state of the business processes and information systems

646 W. van der Aalst et al. / Decision Support Systems 50 (2011) 636-647

executing day to day operations. Based on this image auditing processes
can run continuously. Although some tools and techniques exist, these
techniques are not well integrated into a single information system.

We presented a high-level architecture of such an OLAT and studied
in more detail the database and the conformance checker. We also
designed a conceptual data model with a set of consistency constraints
in predicate logic. The business rules are designed to realize this part of
the OLAT by a standard database management system in such a way that
each business rule is translated in a straightforward way into a query
that can be executed against the database. For the other components
of the OLAT we have referred to process mining techniques and tools.
We have performed some real-life case studies with the approach
using a preliminary tool, although in an off-line mode. The studies
performed so far demonstrate the realizability of the approach.
Together with an auditor firm, we are building a prototype of such an
OLAT tool by integrating the currently available off-the-shelf
components.

There are several aspects of this work that need elaboration. First of all,
we would like to build a prototype and perform online experiments with
it. Secondly we should have the ability to insert business rules from a
library of predefined business rule like the ones given in Section 6. This
would make it feasible for controllers and other business experts to add
business rules for conformance checking without the help of computers
scientists, by just filling in the parameters. Thirdly, we plan to refine the
conceptual model in order to make the delegation of roles easier. We also
intend to extend the conceptual model to incorporate domain specific
knowledge, for, say, financial departments or health care systems. Finally
there are several unexplored components in the OLAT architecture, such
as the Risk Interrupter, potential risk detector and difference analyzer. We
have some rough ideas for them, but there are many open questions.
However, the most urgent activity is experimentation with a prototype,
because the proof of the pudding is in the eating.

Acknowledgements

Some part of the work on this paper was done while Akhil Kumar was
visiting the Information Systems Department at the Technical University
of Eindhoven. He appreciates the hospitality of the hosts. His research was
funded in part by the Smeal College of Business at Penn State.

References

[1] W.M.P. van der Aalst, Using process mining to generate accurate and interactive
business process maps, BIS 2009 Workshops, vol. 37 of LNBIP, Springer, 2009, pp. 1-14.
[2] W.M.P. van der Aalst, KM. van Hee, Workflow Management: Models, Methods
and Systems, The MIT press, Cambridge, Massachusetts, 2002.
[3] W.M.P. van der Aalst, B.F. van Dongen,]. Herbst, L. Maruster, G. Schimm, A.J.M.M.
Weijters, Workflow mining: a survey of issues and approaches, Data & Knowledge
Engineering 47 (2) (2003) 237-267.
[4] W.M.P. van der Aalst, A. Weijters, L. Maruster, Workflow mining: discovering
process models from event logs, IEEE Transactions on Knowledge and Data
Engineering 16 (9) (2004) 1128-1142.
[5] W.M.P. van der Aalst, H. Beer, B. Dongen, Process mining and verification of
properties: an approach based on temporal logic, CooplS 2005, No. 3760 in LNCS,
Springer, 2005, pp. 130-147.
[6] W.M.P. van der Aalst, B.F. van Dongen, et al., ProM 4.0: comprehensive support for
real process analysis, [CATPN 2007, vol. 4546 of LNCS, Springer, 2007, pp. 484-494.
R. Agrawal, D. Gunopulos, F. Leymann, Mining process models from workflow logs,
Sixth International Conference on Extending Database Technology, 1998, pp. 469-483.
[8] G. Antoniou, N. Dimaresis, G. Governatori, A system for modal and deontic
defeasible reasoning, Al 2007: Advances in Artificial Intelligence, No. 4830 in
LNCS, Springer, 2007, pp. 609-613.
[9] A. Basu, RW. Blanning, A formal approach to workflow analysis, Information
System Research 11 (1) (2000) 17-36.
[10] D. Berg, Turning Sarbanes-Oxley projects into strategic business processes,
Sarbanes-Oxley Compliance Journal (2004).

[11] E. Bertino, E. Ferrari, V. Atluri, The specification and enforcement of authorization
constraints in workflow management systems, ACM Transactions on Information
and System Security 2 (1) (1999) 65-104.

[12] R.A. Botha, J.H.P. Eloff, Separation of duties for access control enforcement in
workflow environments, IBM Systems Journal 40 (3) (2001) 666-682.

[13] K. Chari, J. Perols, An Al-based approach for procurement fraud detection,
Proceedings of the Workshop on Information Technologies and Systems, 2005.

[7

[14] P.P. Chen, The entity-relationship model: towards a unified view of data, ACM
Transactions on Database Systems 1 (1976) 9-36.

[15] Committee of Sponsoring Organizations, Internal Control-Integrated FrameworkURL,
http://www.coso.org/publications/executivesummaryintegratedframework.htm.

[16] J.E. Cook, A.L. Wolf, Software process validation: quantitatively measuring the
correspondence of a process to a model, ACM Transactions on Software
Engineering and Methodology 8 (2) (1999) 147-176.

[17] B.F. van Dongen, RM. Dijkman, J. Mendling, Measuring similarity between
business process models, CAISE, 2008, pp. 450-464.

[18] S.Goedertier, . Vanthienen, Declarative process modeling with business vocabulary and
business rules, OTM 2007 Workshops, No. 4805 in LNCS, Springer, 2007, pp. 603-612.

[19] S. Goedertier, C. Mues,]. Vanthienen, Specifying process-aware access control
rules in SBVR, Advances in Rule Interchange and Applications, No. 4824 in LNCS,
Springer, 2007, pp. 39-52.

[20] S. Goedertier, D. Martens, B. Baesens, R. Haesen,]. Vanthienen, Process mining as
first-order classification learning on logs with negative events, BPM 2007
Workshops, vol. 4928 of LNCS, Springer, 2008, pp. 42-53.

[21] G. Governatori, Z. Milosevic, A formal analysis of a business contract language,
International Journal of Cooperative Information Systems 15 (4) (2006) 659-685.

[22] S.Green, Manager's Guide to the Sarbanes-Oxley Act: Improving Internal Controls
to Prevent Fraud, Wiley, 2004.

[23] D.A. Haworth, LR. Pietron, Sarbanes-Oxley: achieving compliance by starting
with ISO 17799, Information Systems Management 23 (1) (2006) 73-87.

[24] D.R. Kuhn, Mutual exclusion of roles as a means of implementing separation of
duty in role-based access control systems, RBAC 97, ACM, New York, NY, USA,
1997, pp. 23-30.

[25] A. Kumar, J.L. Zhao, Dynamic routing and operational controls in workflow
management systems, Management Science 45 (2) (1999).

[26] P.F. Linington, Z. Milosevic,]. Cole, S. Gibson, S. Kulkarni, S. Neal, A unified
behavioural model and a contract language for extended enterprise, Data &
Knowledge Engineering 51 (1) (2004) 5-29.

[27] D.-R. Liu, M.-Y. Wu, S.-T. Lee, Role-based authorizations for workflow systems in
support of task-based separation of duty, The Journal of Systems and Software 73
(3) (2004) 375-387.

[28] D. Nute, Defeasible logic, handbook of logic in artificial intelligence and logic
programming, Nonmonotonic Reasoning and Uncertain Reasoning, vol. 3, 1994,
pp. 353-395.

[29]]. Paredaens, P. De Bra, M. Gyssens, D. van Gucht, The Structure of the Relational
Database Model, Springer-Verlag New York, Inc., New York, NY, USA, 1989.

[30] A. Rozinat, W.M.P. van der Aalst, Conformance testing: measuring the fit and
appropriateness of event logs and process models, BPM 2005 Workshops, vol.
3812 of LNCS, Springer, 2006, pp. 163-176.

[31] A. Rozinat, W.M.P. van der Aalst, Conformance checking of processes based on
monitoring real behavior, Information Systems 33 (1) (2008) 64-95.

[32] S. Sadiq, G. Governatori, K. Namiri, Modeling control objectives for business
process compliance, Business Process Management, No. 4714 in LNCS, Springer,
2007, pp. 149-164.

[33] R. Sandhu, E. Coyne, H. Feinstein, C. Youman, Role-based access control models,
IEEE Computer 29 (2) (1996) 38-47.

[34] H. Schonenberg, B. Weber, B.F. van Dongen, W.M.P. van der Aalst, Supporting
flexible processes through recommendations based on history, BPM 2008, vol.
5240 of LNCS, Springer, 2008, pp. 51-66.

[35] R.T.Simon, M.E. Zurko, Separation of duty in role-based environments, Computer
Security Foundations Workshop, 1997, Proceedings., 10th, 1997, pp. 183-194.

[36] J. Wainer, A. Kumar, P. Barthelmess, DW-RBAC: a formal security model of delegation
and revocation in workflow systems, Information Systems 32 (3) (2007) 365-384.

Wil van der Aalst is a full professor of Information Systems
at the Technische Universiteit Eindhoven (TU/e). Currently
he is also an adjunct professor at Queensland University of
Technology (QUT) working within the BPM group there.
His research interests include workflow management,
process mining, Petri nets, business process management,
process modeling, and process analysis. For more informa-
tion about his work visit: http://www.workflowpatterns.
com, http://www.workflowcourse.com, http://www.
processmining.org, http://www.yawl-system.com, or
http://www.wvdaalst.com.

Kees M. van Hee is a full professor of Information System
at the Technische Universiteit Eindhoven since 1984. He
was 16 years managing director of several consultancy
firms, including Deloitte. In 1999 he became partner at
Deloitte as national director of consultancy until 2004.
Since 2004 he is full professor again. He published over 120
articles on the following topics: Markov decision pro-
cesses, applications of queuing theory, decision support
systems, specification methods and tools, Petri nets,
database systems and workflow management systems.
He published five books and he is the originator of the
software tools ExSpect and Yasper. He conducted over 20
PhD-projects and over 130 master thesis projects. Five of
his PhD students became full professors. He presented over 150 lectures at conferences
for scientists, practitioners or managers.

W. van der Aalst et al. / Decision Support Systems 50 (2011) 636-647 647

Jan Martijn van der Werf is a PhD candidate in the
Architecture of Information Systems group at the Tech-
nische Universiteit Eindhoven. He obtained his M.Sc. in
Business Information Systems (2006) at the same uni-
versity. His research interests include modeling and
verification of information systems, their architectures,
and the use of process mining in the monitoring of such
systems.

Akhil Kumar is a professor of information systems at the
Smeal College of Business at the Pennsylvania State
University. He received his Ph.D. from the University of
California at Berkeley, and has previously been on the
faculties at Cornell University and University of Colorado.
He has done pioneering work in data replication and XML
based workflows. His research interests are in workflow
systems, e-services, distributed information systems and
intelligent systems. He has published more than 80
scientific papers in academic journals and international
conferences, and also held many editorial positions.

Marc Verdonk is a senior manager and IT auditor with
Enterprise Risk Services at Deloitte Nederland as well as a
PhD candidate in the AIS group at Technische Universiteit
Eindhoven. He obtained his M.Sc. in Computer Science at
Universiteit Utrecht and is both Certified Information
System Auditor (CISA) as Certified Information System
Security Professional (CISSP). His main interest is to make
the audit profession future-proof by designing and apply-
ing technology-based approaches that makes auditing
more efficient, effective, value added and maybe even
fun, for the auditee as well as the auditor.

