

Conceptual Modeling of Complex Systems Using an RM-ODP

Based Ontology

Alain Wegmann, Andrey Naumenko

Institute for computer Communications and Applications

Swiss Federal Institute of Technology – Lausanne

EPFL-DSC-ICA

CH-1015 Lausanne, Switzerland

{alain.wegmann, andrey.naumenko}@epfl.ch

Abstract
The development of business and information systems

requires a significant amount of modeling. The current

modeling languages and tools have difficulties

supporting the modeling of systems spanning through

multiple organizational levels. The use of inadequate

modeling abstractions is one of the important causes for

these difficulties. This paper proposes an ontology that

defines the concepts needed for object-oriented modeling

and gives a graphical example. The ontology is based on

RM-ODP and relies on Constructivism and System

Theory. The proposed ontology allows the definition of

development methods, modeling languages and tools

that are applicable to complex systems. This can lead to

significant productivity improvements in the business

and software development communities.

1. Introduction

The e-economy (e.g. development of the business to

customer or business to business applications) and the

latest evolution in information technologies (e.g. business

protocols, components,...) strongly affect the way

enterprises are organized and how information systems

are developed and used. To adapt themselves to these new

requirements, the enterprises need to re-engineer their

overall operations. This re-engineering effort can span

through multiple organizational levels such as, for

example: the market level (e.g. supply chain), the

company level (e.g. business processes), the information

system level (e.g. system integration), the software

application level (e.g. component-based application), and

the software component level (e.g. a Java developed

component). We use the term “complex system” to

designate the set of all interacting entities found in these

various organizational levels [16, 7]. In most development

projects, each organizational level is addressed by a

different group of professionals each with their own

discipline (working methods, terminology, etc). The

challenge posed to these communities of professionals is

to develop more competitive companies faster. Our

overall research goals address the discovery and

development of modeling abstractions, tools and methods

that target this challenge. To improve the way

professionals develop complex systems, it is important to

be able to have an adequate representation of the subject

of interest (i.e. the complex system). We call this

representation the “model”. It represents what the

developer defines as the system of interest that she

perceives in her reality. The developer manipulates the

model through views that are abstractions of the model

made for a specific purpose. These views correspond to

the artifacts usually present in the development processes.

Examples of these artifacts are UML diagrams [19].

To be able to build our model, we need a precise

ontology that defines the modeling constructs. As was

noted in [15], there are multiple examples of domain

specific or even application specific ontologies that are

used for e-commerce and web-based applications. An

ontology should define a vocabulary of basic terms, a

precise specification of their meaning and relations

between them [20]. In our approach, we define an

ontology applicable for modeling any kind of system. We

base our work on the ISO/ITU standard “Reference

Model for Open Distributed Processing” (RM-ODP) [10].

The vocabulary defined by RM-ODP is sufficient

however incomplete: some terms are missing, some

definitions, those defining relationships between concepts

in particular, can be improved. This is what this paper

presents. As our goal is to model complex systems, we

also include in our approach the principles issued from

“Constructivism” and “System Theory”. These two

theories are an important corpus of knowledge describing

the key principles needed for modeling systems. These

theories were developed in the 1950s by multi-

disciplinary teams who were studying living and artificial

systems.

As a result, this paper presents an ontology that can be

used for system modeling in the development of any kind

of application (e. g. business, software, system science,

etc). Comparing it to other work, an advantage of our

solution is that it is based on the RM-ODP ISO/ITU

standard. This standard has demonstrated its usefulness

for the modeling of distributed systems.

We can also compare our work with [21]. They base

their ontological foundations on the works of Bunge [4,

5]. Their approach is interesting and has many similarities

with our results. But they omit several issues, such as the

relation between what they call “entities” (“concrete

things” in reality) and “conceptual things (i.e.

mathematical concepts such as sets and functions)”. The

fact they omit these relationships can be explained by the

absence of their formal definitions (in the form of

predicates that can be compared).

By adopting our ontology, which is based on

Constructivism and System Theory, the development

community could (1) improve the definition of the

existing modeling languages such as UML, (2) develop

tools that truly supports the modeling of complex systems,

and (3) can tightly link the methods to the tools and the

notation. This can lead to significant productivity

improvements for the software community.

This paper is structured as following: Section 2 –

development method and theoretical foundations, Section

3 – interpretation and extension of RM-ODP, Section 4 –

application of the ontology, Section 5 – impacts, Section

6 - Conclusions.

2. Theoretical Foundations

The main “theory” that we use as foundation in our

work comes from computer science. It is the “Reference

Model - Open Distributed Processing” (RM-ODP) [10].

RM-ODP is an ISO/ITU standard approved in 1996. It

provides the definitions and relations between concepts

useful to describe object-oriented distributed systems. It

positions itself as a “meta-standard” for object-oriented

modeling standards. The Object Management Group

community adopted in 1998 this standard as a base for

describing CORBA systems.

To be able to interpret RM-ODP in the context of

complex system modeling, we base our work on

Constructivism and on System Theory.

Constructivism [12] is an epistemology (i.e. “the study

of the nature of knowledge” [1]). It was developed in the

20th century. Constructivism takes its roots in Kant's

belief that intuition is an essential part of human

understanding. By taking a constructivist approach, we

acknowledge the fact that models are valid in the context

of the people or systems that develop or use them. The

consequence of this fact is the coexistence of multiple

models of the same universe of discourse. In practice, for

each system of interest, we define a sub-model that

represents its corresponding view of the universe of

discourse. The model that represents the complex system

is actually an assembly of sub-models (one per system of

interest). In summary, in line with Constructivism, we put

an emphasis on making explicit the context of the views

used by the developer. In addition, we allow the

developer to capture relationships between the sub-

models.

Systems theory was initially developed in the middle

of the 20th century [2]. It is a “trans-disciplinary study of

the abstract organization of phenomena, independent of

their substance, type, or spatial/temporal scale of

existence. It investigates both the principles common to

all complex entities and the models that can be used to

describe them” [1]. System Theory is a constructivist

theory. By including the System Theory in our approach,

we recognize the commonalities between the various

organizational levels and the fact that each organizational

level depends on each other. In addition, we leverage on

the principles identified in living systems to understand

how to structure software and business systems in a better

way. One of the principles we found especially useful is

the “teleological operation principle”. This principle

states “all phenomena (which can be modeled) are

perceived as teleologic actions (i.e. actions aimed at

achieving a project or a goal)” [12]. An example of the

application of this principle is the fact that the model is

developed to achieve a specific goal (i.e. the project’s

goal). If a different goal needs to be achieved, a different

model might have to be developed. As a consequence, the

tools should support these model variations.

 RM-ODP was developed for modeling distributed

systems. Even though RM-ODP does not refer to System

Theory and Constructivism, the existing RM-ODP

definitions are compatible with the principles defined in

these two theories. By making explicit the relationships

between System Theory, Constructivism and RM-ODP,

we can better understand how to interpret and use the

standard.

3. RM-ODP as ontology for object-oriented

modeling

The RM-ODP standard [10] is composed of four parts.

Part 1 is an overview of RM-ODP and is non-normative.

Part 2 defines the fundamental concepts needed for

modeling of ODP systems. Part 3 presents an application

of part 2 for particular specification languages. Part 4 is

an attempt for formalization of the previous parts done in

Lotos [13], ACT ONE, SDL-92, Z and ESTELLE

languages. We focus our research on part 2 and we will

make few references to part 3. Parts 1 and 4 are not in the

scope of this work.

Part 2 of RM-ODP has 15 sections. The sections 1 to 4

introduce the context, references and abbreviations.

Section 5 introduces the categorization of ODP concepts.

This section is needed to understand how all the following

sections relate to each other. The sections 6 (“basic

interpretation concepts”), 8 (“basic modeling concepts), 9

(“specification concepts”) are central to our work and are

discussed in this document. The sections 7 and 10 to 15

define supplementary concepts that are beyond the scope

of this work (with exception of few concepts found in 11

(“contract”) and 13 (“client” and “server”)).

3.1. Basic Interpretation Concepts

The section 6 of part 2 “basic interpretation concepts”

introduces the concepts needed for the interpretation of

the concepts defined in the sections 8 (“basic modeling

concepts”) and 9 (“specification concepts”). The section 6

defines the concepts of:

�� “universe of discourse” that corresponds to what is

perceived as being reality by the developer.

�� “entity: any concrete or abstract thing of interest”

[clause 6.1].

�� “proposition: an observable fact or state of affairs

involving one or more entities, of which it is possible

to assert or deny that it holds for those entities.”

[clause 6.2].

The section 6 defines also “system: something of

interest as a whole or as comprised of parts” [clause 6.5].

The notion of system allows the developer to consider a

group of entities either as one entity or as multiple related

entities. If a component of a system is itself a system, it is

called a “sub-system” of the system in which it is a

component1.

When modeling, the developer represents what she

finds interesting in the universe of discourse. To explain

this representation, we define the following terms:

�� “model”: representation of the universe of discourse

made for a specific purpose.

�� “model element”: in the model the representation of

an entity from the universe of discourse.

�� “quality”: in the model the representation of a

proposition from the universe of discourse.

The Fig. 1 illustrates the relationships between the

universe of discourse and the model. Fig. 1 also illustrates

the model views (or artifacts) that represent what a

development tool shows to the developer. The model

1 We call the system, in which a subsystem is a component, a “supra-

system”. This term is not defined in RM-ODP and we take it from [16].

views are abstractions of the model made using a

modeling language. They represent the entities and their

qualities in a given context. Note that a quality in the

model is a predicate that characterizes a model element.

Similarly a proposition in the universe of discourse is a

predicate characterizing an entity. For example, a quality

such as “object” or “environment” characterizes a model

element as the predicate for its being a “model of an

entity”; “action” characterizes a model element for its

being “something that happens”.

Model

elements

Universe of discourse

Model

Entities

Model View 1 Model View 2

B

A

C

do X

H

H

Figure 1. Relationships among what is found in the
universe of discourse, in the model and

in the model views.

3.2. Basic modeling concepts

The section 8 of part 2 “basic modeling concepts”

defines the concepts needed to describe in the model the

propositions about the entities of interest found in the

universe of discourse.

An entity can be modeled either as an object, or as part

of an object (if the object represents a system), or as part

of an object’s environment. RM-ODP defines:

�� “object: a model of an entity…” [clause 8.1].

�� “environment (of an object): the part of the model

which is not part of that object” [clause 8.2].

It is important to understand these two definitions from a

constructivist standpoint. An object always interacts with

its environment (and never directly with another object).

By stating this, we acknowledge the fact that each object

has its own model of its environment and that the

environment mediates the communication between the

different objects. Note that, as explained in Section 2, we

call “sub-model” the model describing an object. The

“model”, representing the overall complex system, is

composed of many “sub-models”.

RM-ODP gives additional precisions on what is an

object. It states that an object is “characterized by its

behavior and, dually by its state” [clause 8.1]. Note that

using our interpretation we can also state that the

environment is characterized by its behavior and dually its

state. To characterize an object or its environment, we

have defined two kinds of information [18]:

�� “behavioral information” describing the behavior

�� “structural information” describing the state

The behavioral information and the structural information

are a partition of the information on the object.

Information is defined in RM-ODP as “any kind of

knowledge, that is exchangeable amongst users, about

things, facts, concepts and so on, in a universe of

discourse” [clause 3.2.5].

RM-ODP defines the following behavioral information

elements:

�� “behavior: a collection of actions, with a set of

constraints on when they may occur” [clause 8.6],

�� “action: something which happens.” [clause 8.3].

RM-ODP further defines the concept of action by stating

“the set of actions associated with an object can be

partitioned into internal actions and interactions. An

internal action always takes place without the

participation of the environment of the object. An

interaction takes place with the participation of the

environment of the object.” [clause 8.3]

RM-ODP puts a great deal of emphasis on the

behavioral information. However, they put fewer

considerations on the structural information and they do

not define how the structural information is structured.

The only definition they have is:

�� “state: at a given instant of time, the condition of an

object that determines the set of all sequences of

actions in which the object can take part”. [clause

8.7]

Our goal is to have the same level of details in the

structural information as in the behavioral information.

For this reason, it is necessary to add two concepts,

belonging to the structural information, and which are

dual to actions and behavioral constraints. These concepts

are:

�� “structural information element”: at a given instant

in time something perceived by an object or its

environment or exchanged between the object and its

environment. The set of structural information

elements associated with the object or the

environment can be partitioned into attributes and

parameters. Attributes are accessed by internal

actions. Parameters are accessed or modified

exclusively within interactions.

�� “structural constraint”: relationship between two or

more structural elements. Constraints might include,

for example, reference between structural elements or

existence within the life cycle of another structural

element.

The proposed definitions, by formulating that information

elements can be within objects (as attributes) and the

corresponding information can be exchanged between

objects and their environment (through parameters in

interactions), allow describing the information flow

between objects.

To be able to precisely model the exchanges between

an object and its environment (and thus between objects),

we need to explicitly add the concepts of:

�� “client interaction: interaction initiated by an object

towards its environment.”

�� “server interaction: interaction initiated by the

environment towards an object”.

With the client interaction, the object externalizes

information. At the beginning of the client interaction, the

values of a given collection of attributes are copied in the

corresponding parameters. With the server interaction, the

object internalizes information. In that case, when the

server interaction completes, the values of the parameters

are copied in the corresponding attributes. The concepts

of “client” and “server” are defined in the section 13 of

part 2.

The classification of the concept of role, initially

defined as a Specification Concept, raises an issue. RM-

ODP defines role as an identifier of a behavior [clause

9.14]. In our interpretation [9] roles and interfaces are two

kinds of behavior abstractions (role is a subset of actions

and behavioral constraints of an object participating to a

collective behavior; interface is a subset of interactions

and behavioral constraints of an object). For this reason,

we believe that role and interface should be in the same

category. We suggest putting both concepts in the basic

modeling concepts (where interface is currently defined).

This is justified by both concepts being the specializations

of a behavior. Such classification has the advantage of

allowing an application of the specification concepts to

the role and to the interface (thus allowing, for example,

the definition of role instance and role type).

It is important to note the role of time in the definition

of the basic modeling concept. Time is needed to define

state (information at a specific time). Note the state for a

moment in time will be different from the state in the

previous moment in time even if no structural element has

changed comparing with the state of the previous moment

in time (this allows modeling of “null” actions – i.e.

actions performing no changes). Time is also needed to

define actions (difference of state at different moments of

time), and interaction (information exchanged between an

object and its environment between the beginning of the

interaction and its completion).

3.3. Specification concepts

The section 9 of part 2 “specification concepts”

defines the means to be used by a developer to describe in

the model the propositions about the propositions

describing the entities of interest from the universe of

discourse.

For our discussion, we classify the specification

concepts in three categories to reflect their role in the

modeling task. (1) The “generic specification concepts”

used mainly to represent the creation/destruction and the

classification of model elements. Such concepts include

type, instance, and class. (2) The “abstraction/refinement

specification concepts” used mainly to relate groups of

model elements at different levels of detail. Such concepts

include composition and decomposition. (3) The

“schemas” that define the set of predicates needed to

define a model element.

3.3.1 Generic Specification Concepts

The generic specification concepts include type, class,

subtype / supertype, subclass / superclass, template,

instantiation (of a template), introduction, creation,

deletion, instance, template type, template class, derived

class/base class) [clauses 9.7 - 9.21].

The main specification concepts are:

�� “type: a predicate characterizing a collection of

<X>” [clause 9.7],

�� “instance: an <X> that satisfies a type” [clause 9.18],

�� “class: the set of all <X> satisfying a type” [clause

9.8].

�� “template”: the specification of the common features

of a collection of <X>s in sufficient details that an

<X> can be instantiated using it.” [clause 9.11]

The use of these terms is illustrated in the following

example: A behavior instance defines an actual

occurrence of a behavior. A behavior class defines a set of

behavior instances that share common characteristics. A

behavior type defines the common characteristics of the

behavior occurrences that belong to the behavior class. A

behavior template defines the features of a behavior in a

way that allows its instantiation. These concepts are

presented in more details in [8].

Basic modeling concepts and generic specification

concepts are defined by RM-ODP as two independent

conceptual categories. Essentially, they are two qualitative

dimensions that are necessary for defining model elements

that correspond to entities from the universe of discourse

with the prepositions defining them. This is why we

consider them as orthogonal as illustrated in Fig. 2.

instance

class

Specification

Concepts

Basic Modelling

Concepts

Action

Constraint

... Model

elements

action type 1 action type 2

action class 1

AI 1 AI 2 AI 3

action class 2

type

N

CI 1 CI 2 CI 3 CI 4 CI 5 CI 6

AI 4

Figure 2. Illustration of use of the basic modeling

concepts and the specification concepts for definition of
model elements.

The example on Fig. 2 shows several model elements

that are defined either as different action types, classes

and instances, or as different constraint instances.

Applying the RM-ODP definition for behavior (“a

collection of actions with a set of constraints on when

they may occur” [clause 8.6]), we see, for example, that

the action instances AI1, AI2, AI3 with the constraint

instance CI3 represent an instance of a behavior type and

the action instances A3, A4 with the constraint instances

CI3, CI5, CI6 represent another instance of another

behavior type.

3.3.2 Abstraction/Refinement Specification Concepts

With our interpretation of RM-ODP, we consider that

model elements at various levels of details coexist in the

model. In addition, we consider that the relationships

between these levels of details are formally established

only in the model (and not in the universe of discourse).

This means that the developer ultimately has the

responsibility to establish these relationships. For this

reason, we consider it important for the specification

concepts to include:

�� “refinement: the process of transforming one

specification into a more detailed specification.”

[clause 9.5], and

�� “abstraction: the process of suppressing irrelevant

detail to establish a simplified model, or the result of

that process”. [clause 6.3]

Currently, “abstraction” is defined as a basic

interpretation concept. As both concepts define

complementary modifications that can be applied to a

model: both concepts should be defined together and both

definitions should have the same structure. This means

that they should both refer to the process and the result of

the process.

“Abstraction” and “refinement” are very general

concepts. They describe all modeling tasks that add or

remove details (such as the creation/destruction of an

object). A special kind of refinement/abstraction is the

composition/ decomposition. These concepts are defined

as:

�� “composition:

a) … a combination of two or more objects yielding a

new object …, or

b) … a combination of two or more behaviors

yielding an new behavior…” [clause 9.1]

�� “decomposition:

a) … the specification of a given object as a

composition.

b) … the specification of a given behavior as a

composition” [clause 9.3]

We suggest modifying these two definitions to make

them generic. Currently they are only defined for

behaviors and objects but they can be applied to any basic

modeling concepts such as roles, interfaces, state, activity,

etc. Note, for consistency reasons, it would be useful to

explicitly define in generic terms the concept of

“component” [clause 9.1]) and “composite” [clause 9.2].

For a more details discussion on abstraction / refinement

versus composition / decomposition, refer to [17,18].

As it is defined in the ODP standard [clause 9.1],

“composition (of objects) is a combination of two or more

objects yielding a new object”. If we are interested in the

nature of this combination then we should specify the

mechanisms that would allow it to yield a new object. We

define this mechanism as the “composition constraints”.

They are a set of structural and behavioral constraints that

allow the resulting composite object to fulfill its

mediation responsibilities with regard to the component

objects participating in the composition. An example of

composition constraint will be given in Section 4. In

summary, a composite object is the result of the

composition of two or more component objects with the

corresponding composition constraints. A component

object is defined by its structural and behavioral limits.

These limits are necessary and sufficient for it to

participate in a composition. The structural limits are

defined by the object’s external state specification. The

behavioral limits are determined by the object’s interfaces

specification.

3.3.3 Schemas

The schemas2 are used to define concrete model

elements. A schema is a mean to group predicates

together.

As indicated in Catalysis [6], in system development,

first class modeling concepts are: objects and actions. It is

thus important to determine what set of predicates (i.e.

schemas) are needed for the definition of these two basic

modeling concepts. For this reason, we consider that the

schemas needed to define an object, as well as the ones

needed to define an action, need to be present in RM-

ODP part 2.

To specify the behavioral and structural information of

an object, we can refer to the clause 6.1 in RM-ODP part

3 [10]. It introduces the necessary schemas needed to

define an object3. These schemas are:

�� “invariant schema: a set of predicates on one or

more information objects that must always be true.

The predicates constraint the possible states and state

changes of the objects to which they apply.” [10, part

3, clause 6.1.1]

�� “static schema: a specification of the state of one or

more information object at some point in time,

subject to the constraints of any applicable invariant

schemata.” [10, part 3, clause 6.1.2]

�� “dynamic schema: a specification of the allowable

state changes of one or more information object,

subject to the constraints of any applicable invariant

schemata.” [10, part 3, clause 6.1.3]

conceptInvariant

Static

schema

Dynamic schema

action 1

action 1

attribute 1

structural information

behavioral information

attribute 1

Figure 3. Relationship between invariant, static and
dynamic schema

2 “Schema” is a concept defined in part 3 of RM-ODP and takes its

roots in “Z” [14]
3 Note that objects are called “information objects” in part 3 of RM-

ODP, section 6.

These schemas are illustrated in Fig. 3. The invariant

schema can be interpreted as the mapping between the

behavioral information and the structural information (i.e.

state). This property is explained by the object nature,

exhibiting dually its state and its behavior. By

representing both structural and behavioral information in

the invariant, the developer can make a more precise

model. In particular, she can specify in what context

things exist or are referenced. For example, in Fig. 3,

“attribute 1” is referenced during “action1” execution.

This will be further illustrated in Section 4.

Note that concept of “being always true” (present in

the definition of invariant) has an implicit reference to a

context. An invariant is always true in the context in

which it is defined. Such context is typically the lifetime

of an information object (as said in [clause 9.22]).

After having specified the object, we need to specify

the actions. An action can be defined by the concepts of:

�� “pre-condition: a predicate that a specification

requires to be true for an action to occur.” [clause

9.23]

�� “post-condition: a predicate that a specification

requires to be true immediately after the occurrence

of an action.” [clause 9.24]

�� “invariant: a predicate that a specification requires

to be true for the entire lifetime of a set of objects.”

[clause 9.22]

Although correct, these definitions could be improved

to make more explicit the context in which they are

applied. The first fix could be to change the concept

“specification” into “action specification” or “contract” in

order to make explicit their applications on actions (only

actions allow us to specify in a single construct something

at two points in time - before the action and after the

action). Note that RM-ODP defines “contract” as “an

agreement governing part of the collective behavior of a

set of objects” [clause 11.2.1]. The second change can be

made on improving the definition of the relationship

between the pre- and the post-conditions. We have

discussed the fact that system modeling cannot be done

independently from the developer’s goal. So when a

developer defines an action specification, she defines

what is the result of an action (post-condition) depending

on the context in which it occurs (pre-condition). So the

pre-condition should rather be considered as a condition

for the post-condition to be true (and not necessarily as

the condition for the action to occur). Note that the

definition of invariant [clause 9.22] is redundant with the

definition of invariant schema [part 3, clause 6.1.1]. One

could be omitted.

While modeling actions, we found that policies play a

very important role in having a complete action

specification. We define:

�� “policy”: predicate that states conditions valid at

specific moments of time during an action

occurrence.

This definition is in agreement with the RM-ODP

definition “Policy: A set of rules related to a particular

purpose” [clause 11.2.7]. A policy for an action is

essentially a constraint of any kind that is relevant with

regard to the action. Policies can be used to make explicit

the design goals and design choices for action

refinements. For example, a policy for the operation of a

software application might state that at some point in time

its user will have to key-in sequentially several identifiers

(i.e. the policy in the normal course of events for the

application execution) or another policy might specify

that if an identifier is incorrect, the application should ask

the user to enter a new identifier (i.e. the policy on an

alternative course of events). The composition constraints

that were considered previously in this Section are

another example of a policy. These new definitions of pre-

condition, policies and post-condition are very close to

the ones recommended by Alan Wills in [22]. The only

difference is that in the action contract we propose to use

policies instead of exceptions (policy is a more general

concept that encompasses the exception).

It is interesting to describe how policies help in the

definition of contracts for interactions, - a problem that is

not yet solved [19]. A client interaction modifies the state

of the environment during its execution. At the interaction

completion, the values of the attributes of the object

performing the client interaction are not changed. The

post-conditions can only state that the action has occurred

and that the object has not changed the values of its

attributes. However, the policy states that during the

interaction, information will be transferred to the

environment. For a server interaction, the corresponding

policy states that information comes from the environment

and the post-condition states that the attribute values have

changed. In summary, the introduction of policies allows

us to have an elegant solution that keeps post-condition

free from defining state changes in other objects than the

one of interest.

3.4 Contribution Overview

Table 1 presents an overview of the concepts

presented in this paper. All new and refined concept

definitions are compatible with the current RM-ODP

definitions. Our work mostly consisted in deriving useful

details from RM-ODP definitions. This allows for its use

as an ontology for definition of modeling languages

applied in the context of system modeling.

The proposed ontology has been tested in two large

case studies including multiple organizational levels

(market, company, application, programming language

classes). It is now used extensively to define our

development process and structure our development tools.

In addition, we validated the ontology by making a formal

model in Alloy [11] of the basic interpretation concepts

and the basic modeling concepts [18].

Table 1. Concept Overview

4. Application

After having presented the RM-ODP concepts at a

rather abstract level, we now illustrate these concepts by

working through a more tangible example: a piece of Java

code. Even if the example is quite pragmatic, all presented

concepts are applicable at entities belonging to any

organizational level. The same concepts can be used to

model a supply chain, an IT system architecture or

software components.

The notation used is not UML but is inspired by UML.

The notational elements are similar. The major difference

consists in the fact that we put different kinds of UML

diagrams into one view. This allows relating the

notational elements between the “diagrams”.

4.1. Example Introduction

Let us consider a Java application that consists of a

window (“Frame1”) with a button (“button1”). Exhibit 1

illustrates the application code.

public class Frame1 extends Form
{ int i;
 X x;

Button button1 = new Button;

 public Frame1() // Constructor
 { super();
 this.x = new X(); }

 private void button1_click()
 { this.i = this.x.getA(); }
public class X
 { int a;
 X() // Constructor

{ this.a = 1; }
 public int getA()
 { return (this.a); }
 } // X
} // Frame1

Exhibit 1. Java code example: window with button

When a user clicks on the button, the method

“button1_click()” is invoked. This method performs the

assignment “this.i = this.x.getA()”. Let us consider what is

happening while the assignment is executed. As we see in

the code, an object of type “Frame1” (let’s assume that it

is identified as “f”) is composed of several parts. It

includes an object4 instance of type “int” that is

referenced as “i” within “f”. The instance is identified as

4 We use the words “object” and “type” correspondingly to the RM-

ODP definitions. In java there is a slight difference, namely “an object

is a class instance or an array” [3], which doesn’t include an instance of

int that is defined as a primitive type. The int should be wrapped either

in the Integer or in an array to be instantiated as a real java object.

Basic interpretation concepts Section

universe of discourse 3.1

entity 3.1

proposition 3.1

system 3.1

sub-system 3.1

supra-system new concept 3.1

model refined definition 3.1

model element refined definition 3.1

quality new concept 3.1

3.1

sub-model new concept 3.1

Basic modeling concepts

object 3.2

environment 3.2

information 3.2

behavioral information new concept 3.2

structural information new concept 3.2

behavior 3.2

behavioral constraint 3.2

action 3.2

internal action 3.2

client interaction refined definition 3.2

server interaction refined definition 3.2

state

structural constraint new concept 3.2

structural information element new concept 3.2

attribute new concept 3.2

parameter new concept 3.2

role new classification 3.2

interface 3.2

Specification concepts

instance 3.3.1

type 3.3.1

class 3.3.1

template 3.3.1

refinement 3.3.2

abstraction new classification 3.3.2

composition refined definition 3.3.2

decomposition refined definition 3.3.2

component refined definition 3.3.2

composite refined definition 3.3.2

composition constraint new concept 3.3.2

invariant schema (object, environment) refined definition 3.3.3

static schema (object, environment) refined definition 3.3.3

dynamic schema (object, environment) refined definition 3.3.3

invariant removed 3.3.3

pre-condition (action) refined definition 3.3.3

post-condition (action) refined definition 3.3.3

policy (action) new use 3.3.3

“i1” and is automatically created in the “Frame1”

constructor.

In addition, it includes an object instance of type “X”

that is referenced as “x”. The instance is identified as “x1”

and is explicitly created by the statement “this.x = new

X()”. These parts are initialized during the construction of

“f”, which means that within the method

“button1_click()” we are referencing already existing

objects “i1” and “x1”.

We present the component object specification

followed by the composite object specification of

“Frame1”.

4.2. Example of a Component Object

Specification

The Fig. 4 represents the component object “f” of the

type “Frame1”. Note that “f” is supposed to be a

component of a larger system that is not represented here.

 this.b[@t1] = button1

 Frame1

 button1_click()

f
b

H

button1

 button1_click_ServerProcess
<<internal action>>

 button1_click_ServerAccept
<<server interaction>>

H

[@t2] begin of
button1_click_ServerProcess

[@t3] end of
button1_click_ServerProcess

[@t1] begin of
button1_click_ServerAccept

{ env.serverObj = f: Frame1;
 this.publicMethod =
 = call env.parFunction;
 env.parFunction =
 = button1_click}

Figure 4. Example of ODP-based UML compatible
graphical notation: Frame1 external representation

It is interesting to describe the way the object “f” is

specified (illustration of Section 3.3.3):

The upper pane represents the invariant schema of an

object. The invariant shows that, within the object “f”, a

button exists. Only the button is represented, as the other

objects are not visible from outside the object “f”.

The middle pane corresponds to the static schema of

an object containing the structural part of the invariant

information. It states that at time [@t1] (i.e. immediately

before the “button1_click” action) “f” object refers to its

“button1” object as “this.b”. Note that “this” is a keyword

representing the object “f”. The static schema can of

course only be represented for specific moments in time

that must exist within the corresponding object lifecycle.

The lower pane represents the dynamic schema

containing the behavioral part of the object information.

The dynamic schema represents a certain part of the

object behavior that it exhibits during its lifecycle. The

behavioral part presents that “f” accepts the button click

from the environment (by executing a server interaction)

and then executes the corresponding server processing.

Note the comment outside the object box “f”; it represents

the parameter value coming from the environment.

4.3. Example of a Composite Object Specification

The Fig. 5 presents the same object “f” but as a

composite object. As presented in Section 3.3, we not

only consider the composite object as a refinement of the

component object but also as a different representation of

the same part of the universe of discourse.

this.b[@t2] = button1

 Frame1

 this.i = this.x.getA

this[@t2] = i1
this[@t2].value = 0

int

assignValueInt
<<internal action>>

this[@t2] = x1;
this.a[@t2] = 1

X

this.i = this.x.getA
H

x1

getAavalueInt

i1

assignValueInt

valueInt

f

i

x

[@t2] begin of

this.i = this.x.getA

[@t3] end of

this.i = this.x.getA

provideA_ServerProcess
<<internal action>>

getA_ServerAccept
<<server interaction>>

assignValueInt
ServerAccept

<<server interaction>>

{ this.serverObj = i1: int;

 this.publicMethod =

 = call env.parFunction;

 this.parFunction =

 = assignValueInt;

 this.par1 = valueInt}

{ this.serverObj = x1: X ;

 this.publicMethod =

 = call env.parFunction;

 this.parFunction = getA}

H

this.i = this.x.getA

 {x1.obj = f ;

 x1.method = return x1.par1;

 x1.par1 = valueInt }

getA_ServerReturn
<<client interaction>>

button1

b

H

...

<<previous actions>>

int_assignValueInt
Call

<<internal action>>

X_getACall
<<internal action>>

X_getAAccept
<<internal action>>

value

Figure 5. Example of ODP-based UML compatible
graphical notation: Frame1 internal representation

It is interesting to compare the representation of the

component object and the one of the corresponding

composite object. We can see two object boxes

corresponding to the “i1” and “x1” objects inside the

object box representing the composite object “f”. Note

that all model elements shown in “f” and not in “x1” or

“i1” correspond to the composition constraints presented

in Section 3.3.2.

All the objects (including “f”) are defined with the

three panes (invariant, static, dynamic). Note that the

elements shown inside the “i1” (respectively “x1”) object

box represent the sub-model of “i1” (respectively “x1”).

Considering “i1” and “x1”, we see that as they are

declared independently, the object “i1” exists inside the

context of “f” and doesn’t have any relation with the

object “x1”. Analogously, “x1” doesn’t have any relation

with “i1”. So, because of this independence, “i1” is not

able to have a direct communication with “x1”.

Nevertheless both “i1” and “x1” exist within the same

object “f”; so communicating with “f” they can transmit

information to each other under the condition that “f” is

fulfilling the corresponding composition constraints

defined in Section 3.3.2.

Within the method “button1_click()”, which belongs

to object “f” (and not to the “button1”), “f” performs

assignment “this.i = this.x.getA()”. Here it is intended to

assign (“=”) a value to its “i1” object. The value that it

will assign to “i1” should be further found within the “x1”

object by calling its “getA()” method. This equation

expresses the composition constraint for the assignment.

Knowing this constraint (as part of the code of “f”), “f”

performs an internal action to execute the “getA()”

method of its object “x1”. From the point of view of “x1”,

this internal action is perceived as a server interaction

coming from “x1” environment (i.e. from “f”). This is an

illustration of the Constructivist approach presented in

Section 2: each object has a different perception of the

same action occurrence. It also illustrates the concept of

server interaction presented in Section 3.2. The comment

attached to the server interaction illustrates the passing of

the structural parameters (which are essentially values

such as “f.par1= valueInt”), and of the behavioral

parameters (which are essentially actions to be made with

values such as: “f.parFunction = assignValueInt”).

The object “x1” executes the processing associated

with the requested internal action and executes a client

interaction returning the parameter “valueInt”. This value

represents the integer value found in the “a” attribute of

the “x1” object. The object “f” (i.e. the environment of

“x1”) perceives this sever interaction as being another

internal action. Now, having received the resulting

parameter from its “x1” and having the “this.i =

this.x.getA()” composition constraint as an instruction for

what needs to be done with “valueInt”, “f” object executes

yet another internal action to assign the value of the “i1”

object to the received “valueInt”. This internal action is

perceived by “i1” as a server interaction with “valueInt”

as parameter. And now it is “i1” who performs the local

action assigning its “valueInt” to the received parameter

value.

5. Impact

In this paper, we present an ontology that defines the

concepts necessary for realizing object-oriented models

and we illustrate the use of our ontology in a graphical

model. In this Section, we detail the kind of effects that

this ontology can have on the development environment.

The development environment is defined as the methods,

the tools and notations used in the context of a

development project that requires the modeling of

complex systems.

The development environment should be able to

manage multiple sub-models and the relationship between

the model elements found in the different sub-models. We

define a sub-model as being the part of the model

describing one system of interest. An example of the

application of this principle can be illustrated by the

modeling of a sale transaction. Given a “seller” object and

a “buyer” object being components of a “market”

composite object. The “sale” action occurrence belongs to

the “market” object model. The “sell” action occurrence

belongs to the “seller” object sub-model. The “buy”

action occurrence belongs to the “buyer” object sub-

model. Of course all three occurrences represent their

parts of the same thing happening in reality. This example

demonstrates the basic principle of multiple viewpoints on

a same subject matter that can be found in Constructivism

and is supported by RM-ODP.

In modeling it is quite frequent to have dual

information. The development environment should be

able to deal with dualities. For example, as illustrated in

Section 1 and 2, state and behavior are dual. Sometimes,

developers consider dual information as being redundant

and their goal in this case is to avoid this redundancy.

Based on our experience, we claim that this is not a

redundancy but essential information that is important to

be able to understand the models. The tools used in

system development should manage this duality

automatically.

Section 4 illustrates the duality between structural and

behavioral information (visible in the invariant schema).

Another example can be given in the context of the

“market” object. The “seller” object can be considered as

a component object when the developer wants to specify

the market. The “seller object” can also be considered as a

composite object if the developer is interested in

documenting the business processes taking place within

the “seller” object. The representations of an object as a

component (of a larger system) or as a composite

(showing the object parts) should be considered as two

representations, which are dual to each other. The tools

should allow the developer to toggle from one

representation to the other.

6. Conclusion

This paper relates to the methods, tools and notations

used for the development of business and software

systems. We use the Catalysis method, UML notation and

existing commercial tools both for developing such

systems (in collaboration with our industrial partners) and

for teaching object-oriented developments. In both cases,

we experience difficulties that can be related to the fact

that the notation, the method, the tools, and the developers

have a different understanding of what object-oriented

modeling means. In this paper, we propose an ontology,

based on an international standard, that defines the

fundamental concepts needed for object-oriented

modeling. This ontology is based on RM-ODP, a

telecommunication standard. We also use Constructivism

and System Theory to interpret this ontology. Our

concrete contributions consists in (1) making explicit the

relationships between the various sections of RM-ODP

part 2, (2) in introducing the concepts of: structural

information element, structural constraint, composition

constraint, client interaction, server interaction, and (3) in

defining what is found in an invariant (i.e. structural and

behavioral elements), by explaining the role of policies in

the action specification. By defining the above concepts,

the mapping of RM-ODP to existing methods and

notation is drastically simplified. By understanding this

ontology, the developer can understand how to interpret

the methods, and notations and can configure the tools to

support the development of systems in a more integrated

way. If method designers, modeling language designers,

and tool designers adopt this ontology, then the

development environment could become significantly

more productive. Early indications of this can be seen in

our experience. Teaching object-oriented methods to

undergraduates has been considerably simplified since we

based our method and our interpretation of UML on our

ontology. Our tools have become significantly more

usable since we captured the relationship between the

UML artifacts using our ontology.

7. Acknowledgements

Guy Genilloud (FSArch, Neyruz, Switzerland)

introduced us to RM-ODP and Catalysis. John Donaldson

(Compaq Professional Services, Geneva, Switzerland) and

Fréderic Bouchet (Nortel Networks, Geneva, Switzerland)

contributed to the identification of the modeling issues in

business and information systems. William Frank

(FSArch, Jersey City, USA), Eric Schwarz, and René

Berger helped us to realize the importance of the

philosophical and fundamental aspects hidden behind

system design. Otto Preiss (ABB, Baden, Switzerland)

contributed with his valuable reviews and comments.

8. Bibliography

[1]. R. Audi (Editor). The Cambridge Dictionary of Philosophy,

2nd edition. Cambridge University Press, September 1999, isbn

0-521-63722-8.

[2]. L. v. Bertalanffy. General system theory: foundations,

development, applications. George Braziller, New York, 1969,

isbn 0-8076-0453-4.

[3]. G. Bracha, J. Gosling, B. Joy, G. Steele. The Java

Language Specification, Second Edition. Addison Wesley, June

2000, isbn 0-201-31008-2.

[4] M. Bunge, Treatise on Basic Philosophy: Vol. 3: Ontology

I: The Furniture of the World. D. Reidel Publishing Co., Inc.,

New York, NY,1977.

[5] M. Bunge, Treatise on Basic Philosophy: Vol. 4: Ontology

II: A World of Systems. D. Reidel Publishing Co., Inc., New

York, NY, 1979.

[6]. D.F. D'Souza, A.C. Wills. Objects, Components, and

Frameworks with UML: the Catalysis Approach. Addison-

Wesley, 1999, isbn 0-201-31012-0, www.catalysis.org.

[7] D. Durand, La systémique, Presse Universitaire de France,

1998, isbn 2-13-044622-1

[8]. G. Genilloud, A. Wegmann, On Types, Instances, and

Classes in UML, Proceedings of ECOOP`2000, Workshop on

Defining Precise Semantics for UML, Sophia Antipolis, Cannes,

France, June 2000.

[9]. G. Genilloud, A. Wegmann, A Foundation for the Concept

of Role in the RM-ODP, Proceedings of 4th International

Enterprise Distributed Object Computing Conference (EDOC

2000), Makuhari, Japan, September 2000.

[10]. ISO/IEC 10746-1, 2, 3, 4 | ITU-T Recommendation

X.901, X.902, X.903, X.904. Open Distributed Processing -

Reference Model. OMG, 1995-96,

http://isotc.iso.ch/livelink/livelink/fetch/2000/2489/Ittf_Home/

PubliclyAvailableStandards.htm.

[11] D. Jackson, Alloy: A Lightweight Object Modelling

Notation, Technical Report 797, MIT Laboratory for Computer

Science, Cambridge, MA, February 2000,

http://sdg.lcs.mit.edu/~dnj/

[12]. J. L. Le Moigne. Le Constructivisme, T. I ”Les

Fondements”. Ed. ESF, coll. Communication et Complexité,

1994, isbn 2-7101-1079-2.

[13] L. Lorippo, M. Faci, M. Haj-Hussein. An Introduction to

LOTOS : Learning by Examples. Computer Networks and ISDN

Systems, 23: 325-342, 1992

[14] J. McDermid, Software Engineer’s Reference Book,

Butterworth Heinemann, 1993, isbn 0-7506-0813-7.

[15] D. McGuinness. "Conceptual Modeling for Distributed

Ontology Environments." Proceedings of ICCS 2000.

Darmstadt, Germany, August 2000.

[16] J. G. Miller, Living Systems, University Press of Colorado,

1995, isbn 0-87081-363-3

[17] A. Naumenko, A. Wegmann. Abstraction in Relations

Between Artifacts Used in Software Development Processes.

EPFL-DSC Technical Report, April 2001.

[18] A. Naumenko, A. Wegmann, G. Genilloud, W. F. Frank.

Proposal for a formal foundation of RM-ODP concepts.

Proceedings of ICEIS WOODPECKER – 2001, Setubal,

Portugal, July 2001.

[19] OMG. Unified Modeling Language Specification. Version

1.3, June 1999, http://www.omg.org/uml.

[20] H. Smith. Frequently Asked Questions. Ontology.Org,

1998-2001, http://www.ontology.org/main/papers/faq.html

[21] Y. Wand, V. C. Storey, R. Weber. An ontological analysis

of the relationship construct in conceptual modeling. ACM

Transactions on Database Systems, Volume 24, Issue 4 (1999),

pp 494-528.

[22] A. Wills. Modeling Traits for e-Commerce, ACW tutorial,

OOPSLA 2000, Minneapolis, USA, October 2000.

