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Abstract 
The development of business and information systems 

requires a significant amount of modeling. The current 

modeling languages and tools have difficulties 

supporting the modeling of systems spanning through 

multiple organizational levels. The use of inadequate 

modeling abstractions is one of the important causes for 

these difficulties. This paper proposes an ontology that 

defines the concepts needed for object-oriented modeling 

and gives a graphical example. The ontology is based on 

RM-ODP and relies on Constructivism and System 

Theory. The proposed ontology allows the definition of 

development methods, modeling languages and tools 

that are applicable to complex systems. This can lead to 

significant productivity improvements in the business 

and software development communities. 

 

 

1. Introduction 
 

The e-economy (e.g. development of the business to 

customer or business to business applications) and the 

latest evolution in information technologies (e.g. business 

protocols, components,...) strongly affect the way 

enterprises are organized and how information systems 

are developed and used. To adapt themselves to these new 

requirements, the enterprises need to re-engineer their 

overall operations. This re-engineering effort can span 

through multiple organizational levels such as, for 

example: the market level (e.g. supply chain), the 

company level (e.g. business processes), the information 

system level (e.g. system integration), the software 

application level (e.g. component-based application), and 

the software component level (e.g. a Java developed 

component). We use the term “complex system” to 

designate the set of all interacting entities found in these 

various organizational levels [16, 7]. In most development 

projects, each organizational level is addressed by a 

different group of professionals each with their own 

discipline (working methods, terminology, etc). The 

challenge posed to these communities of professionals is 

to develop more competitive companies faster. Our 

overall research goals address the discovery and 

development of modeling abstractions, tools and methods 

that target this challenge. To improve the way 

professionals develop complex systems, it is important to 

be able to have an adequate representation of the subject 

of interest (i.e. the complex system). We call this 

representation the “model”.  It represents what the 

developer defines as the system of interest that she 

perceives in her reality. The developer manipulates the 

model through views that are abstractions of the model 

made for a specific purpose. These views correspond to 

the artifacts usually present in the development processes. 

Examples of these artifacts are UML diagrams [19].  

To be able to build our model, we need a precise 

ontology that defines the modeling constructs. As was 

noted in [15], there are multiple examples of domain 

specific or even application specific ontologies that are 

used for e-commerce and web-based applications. An 

ontology should define a vocabulary of basic terms, a 

precise specification of their meaning and relations 

between them [20]. In our approach, we define an 

ontology applicable for modeling any kind of system. We 

base our work on the ISO/ITU standard “Reference 

Model for Open Distributed Processing” (RM-ODP) [10].  

The vocabulary defined by RM-ODP is sufficient 

however incomplete: some terms are missing, some 

definitions, those defining relationships between concepts 

in particular, can be improved. This is what this paper 

presents. As our goal is to model complex systems, we 

also include in our approach the principles issued from 

“Constructivism” and “System Theory”. These two 

theories are an important corpus of knowledge describing 

the key principles needed for modeling systems. These 

theories were developed in the 1950s by multi-



disciplinary teams who were studying living and artificial 

systems.  

As a result, this paper presents an ontology that can be 

used for system modeling in the development of any kind 

of application (e. g. business, software, system science, 

etc). Comparing it to other work, an advantage of our 

solution is that it is based on the RM-ODP ISO/ITU 

standard. This standard has demonstrated its usefulness 

for the modeling of distributed systems.  

We can also compare our work with [21]. They base 

their ontological foundations on the works of Bunge [4, 

5]. Their approach is interesting and has many similarities 

with our results. But they omit several issues, such as the 

relation between what they call “entities” (“concrete 

things” in reality) and “conceptual things (i.e. 

mathematical concepts such as sets and functions)”. The 

fact they omit these relationships can be explained by the 

absence of their formal definitions (in the form of 

predicates that can be compared).   

By adopting our ontology, which is based on 

Constructivism and System Theory, the development 

community could (1) improve the definition of the 

existing modeling languages such as UML, (2) develop 

tools that truly supports the modeling of complex systems, 

and (3) can tightly link the methods to the tools and the 

notation. This can lead to significant productivity 

improvements for the software community.    

This paper is structured as following: Section 2 – 

development method and theoretical foundations, Section 

3 – interpretation and extension of RM-ODP, Section 4 – 

application of the ontology, Section 5 – impacts, Section 

6 - Conclusions.   

 

2. Theoretical Foundations 
 

The main “theory” that we use as foundation in our 

work comes from computer science. It is the “Reference 

Model - Open Distributed Processing” (RM-ODP) [10]. 

RM-ODP is an ISO/ITU standard approved in 1996. It 

provides the definitions and relations between concepts 

useful to describe object-oriented distributed systems. It 

positions itself as a “meta-standard” for object-oriented 

modeling standards. The Object Management Group 

community adopted in 1998 this standard as a base for 

describing CORBA systems.  

To be able to interpret RM-ODP in the context of 

complex system modeling, we base our work on 

Constructivism and on System Theory.   

Constructivism [12] is an epistemology (i.e. “the study 

of the nature of knowledge” [1]). It was developed in the 

20th century. Constructivism takes its roots in Kant's 

belief that intuition is an essential part of human 

understanding. By taking a constructivist approach, we 

acknowledge the fact that models are valid in the context 

of the people or systems that develop or use them. The 

consequence of this fact is the coexistence of multiple 

models of the same universe of discourse. In practice, for 

each system of interest, we define a sub-model that 

represents its corresponding view of the universe of 

discourse. The model that represents the complex system 

is actually an assembly of sub-models (one per system of 

interest). In summary, in line with Constructivism, we put 

an emphasis on making explicit the context of the views 

used by the developer. In addition, we allow the 

developer to capture relationships between the sub-

models. 

Systems theory was initially developed in the middle 

of the 20th century [2]. It is a “trans-disciplinary study of 

the abstract organization of phenomena, independent of 

their substance, type, or spatial/temporal scale of 

existence. It investigates both the principles common to 

all complex entities and the models that can be used to 

describe them” [1]. System Theory is a constructivist 

theory. By including the System Theory in our approach, 

we recognize the commonalities between the various 

organizational levels and the fact that each organizational 

level depends on each other. In addition, we leverage on 

the principles identified in living systems to understand 

how to structure software and business systems in a better 

way. One of the principles we found especially useful is 

the “teleological operation principle”. This principle 

states “all phenomena (which can be modeled) are 

perceived as teleologic actions (i.e. actions aimed at 

achieving a project or a goal)” [12]. An example of the 

application of this principle is the fact that the model is 

developed to achieve a specific goal (i.e. the project’s 

goal). If a different goal needs to be achieved, a different 

model might have to be developed. As a consequence, the 

tools should support these model variations.  

 RM-ODP was developed for modeling distributed 

systems. Even though RM-ODP does not refer to System 

Theory and Constructivism, the existing RM-ODP 

definitions are compatible with the principles defined in 

these two theories. By making explicit the relationships 

between System Theory, Constructivism and RM-ODP, 

we can better understand how to interpret and use the 

standard.  

 

3. RM-ODP as ontology for object-oriented 

modeling 
 

The RM-ODP standard [10] is composed of four parts. 

Part 1 is an overview of RM-ODP and is non-normative. 

Part 2 defines the fundamental concepts needed for 

modeling of ODP systems. Part 3 presents an application 

of part 2 for particular specification languages. Part 4 is 

an attempt for formalization of the previous parts done in 



Lotos [13], ACT ONE, SDL-92, Z and ESTELLE 

languages. We focus our research on part 2 and we will 

make few references to part 3. Parts 1 and 4 are not in the 

scope of this work.  

Part 2 of RM-ODP has 15 sections. The sections 1 to 4 

introduce the context, references and abbreviations. 

Section 5 introduces the categorization of ODP concepts. 

This section is needed to understand how all the following 

sections relate to each other. The sections 6 (“basic 

interpretation concepts”), 8 (“basic modeling concepts), 9 

(“specification concepts”) are central to our work and are 

discussed in this document. The sections 7 and 10 to 15 

define supplementary concepts that are beyond the scope 

of this work (with exception of few concepts found in 11 

(“contract”) and 13 (“client” and “server”)). 

 

3.1. Basic Interpretation Concepts 
 

The section 6 of part 2 “basic interpretation concepts” 

introduces the concepts needed for the interpretation of 

the concepts defined in the sections 8 (“basic modeling 

concepts”) and 9 (“specification concepts”). The section 6 

defines the concepts of: 

�� “universe of discourse” that corresponds to what is 

perceived as being reality by the developer.  

�� “entity: any concrete or abstract thing of interest” 

[clause 6.1].  

�� “proposition: an observable fact or state of affairs 

involving one or more entities, of which it is possible 

to assert or deny that it holds for those entities.” 

[clause 6.2].  

The section 6 defines also “system: something of 

interest as a whole or as comprised of parts” [clause 6.5]. 

The notion of system allows the developer to consider a 

group of entities either as one entity or as multiple related 

entities. If a component of a system is itself a system, it is 

called a “sub-system” of the system in which it is a 

component1. 

When modeling, the developer represents what she 

finds interesting in the universe of discourse. To explain 

this representation, we define the following terms: 

�� “model”: representation of the universe of discourse 

made for a specific purpose. 

�� “model element”: in the model the representation of 

an entity from the universe of discourse. 

�� “quality”: in the model the representation of a 

proposition from the universe of discourse. 

The Fig. 1 illustrates the relationships between the 

universe of discourse and the model. Fig. 1 also illustrates 

the model views (or artifacts) that represent what a 

development tool shows to the developer. The model 

                                                 
1 We call the system, in which a subsystem is a component, a  “supra-

system”. This term is not defined in RM-ODP and we take it from [16].  

views are abstractions of the model made using a 

modeling language. They represent the entities and their 

qualities in a given context. Note that a quality in the 

model is a predicate that characterizes a model element. 

Similarly a proposition in the universe of discourse is a 

predicate characterizing an entity. For example, a quality 

such as “object” or “environment” characterizes a model 

element as the predicate for its being a “model of an 

entity”; “action” characterizes a model element for its 

being “something that happens”.  
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Figure 1. Relationships among what is found in the 
universe of discourse, in the model and  

in the model views. 

 

3.2. Basic modeling concepts 
 

The section 8 of part 2 “basic modeling concepts” 

defines the concepts needed to describe in the model the 

propositions about the entities of interest found in the 

universe of discourse.  

An entity can be modeled either as an object, or as part 

of an object (if the object represents a system), or as part 

of an object’s environment. RM-ODP defines: 

�� “object: a model of an entity…” [clause 8.1].  

�� “environment (of an object): the part of the model 

which is not part of that object” [clause 8.2].   

It is important to understand these two definitions from a 

constructivist standpoint. An object always interacts with 

its environment (and never directly with another object). 

By stating this, we acknowledge the fact that each object 

has its own model of its environment and that the 

environment mediates the communication between the 

different objects. Note that, as explained in Section 2, we 

call “sub-model” the model describing an object. The  



“model”, representing the overall complex system, is 

composed of many “sub-models”.  

RM-ODP gives additional precisions on what is an 

object. It states that an object is “characterized by its 

behavior and, dually by its state” [clause 8.1]. Note that 

using our interpretation we can also state that the 

environment is characterized by its behavior and dually its 

state. To characterize an object or its environment, we 

have defined two kinds of information [18]: 

�� “behavioral information” describing the behavior  

�� “structural information” describing the state 

The behavioral information and the structural information 

are a partition of the information on the object. 

Information is defined in RM-ODP as “any kind of 

knowledge, that is exchangeable amongst users, about 

things, facts, concepts and so on, in a universe of 

discourse” [clause 3.2.5].  

RM-ODP defines the following behavioral information 

elements: 

�� “behavior: a collection of actions, with a set of 

constraints on when they may occur” [clause 8.6], 

��  “action: something which happens.” [clause 8.3].  

RM-ODP further defines the concept of action by stating 

“the set of actions associated with an object can be 

partitioned into internal actions and interactions. An 

internal action always takes place without the 

participation of the environment of the object. An 

interaction takes place with the participation of the 

environment of the object.” [clause 8.3] 

RM-ODP puts a great deal of emphasis on the 

behavioral information. However, they put fewer 

considerations on the structural information and they do 

not define how the structural information is structured. 

The only definition they have is: 

�� “state: at a given instant of time, the condition of an 

object that determines the set of all sequences of 

actions in which the object can take part”. [clause 

8.7] 

Our goal is to have the same level of details in the 

structural information as in the behavioral information. 

For this reason, it is necessary to add two concepts, 

belonging to the structural information, and which are 

dual to actions and behavioral constraints. These concepts 

are: 

�� “structural information element”: at a given instant 

in time something perceived by an object or its 

environment or exchanged between the object and its 

environment. The set of structural information 

elements associated with the object or the 

environment can be partitioned into attributes and 

parameters. Attributes are accessed by internal 

actions. Parameters are accessed or modified 

exclusively within interactions. 

�� “structural constraint”: relationship between two or 

more structural elements. Constraints might include, 

for example, reference between structural elements or 

existence within the life cycle of another structural 

element. 

The proposed definitions, by formulating that information 

elements can be within objects (as attributes) and the 

corresponding information can be exchanged between 

objects and their environment (through parameters in 

interactions), allow describing the information flow 

between objects.  

To be able to precisely model the exchanges between 

an object and its environment (and thus between objects), 

we need to explicitly add the concepts of: 

�� “client interaction: interaction initiated by an object 

towards its environment.” 

�� “server interaction: interaction initiated by the 

environment towards an object”. 

With the client interaction, the object externalizes 

information. At the beginning of the client interaction, the 

values of a given collection of attributes are copied in the 

corresponding parameters. With the server interaction, the 

object internalizes information. In that case, when the 

server interaction completes, the values of the parameters 

are copied in the corresponding attributes.  The concepts 

of  “client” and “server” are defined in the section 13 of 

part 2.  

The classification of the concept of role, initially 

defined as a Specification Concept, raises an issue. RM-

ODP defines role as an identifier of a behavior [clause 

9.14]. In our interpretation [9] roles and interfaces are two 

kinds of behavior abstractions (role is a subset of actions 

and behavioral constraints of an object participating to a 

collective behavior; interface is a subset of interactions 

and behavioral constraints of an object). For this reason, 

we believe that role and interface should be in the same 

category. We suggest putting both concepts in the basic 

modeling concepts (where interface is currently defined). 

This is justified by both concepts being the specializations 

of a behavior. Such classification has the advantage of 

allowing an application of the specification concepts to 

the role and to the interface (thus allowing, for example, 

the definition of role instance and role type). 

It is important to note the role of time in the definition 

of the basic modeling concept. Time is needed to define 

state (information at a specific time). Note the state for a 

moment in time will be different from the state in the 

previous moment in time even if no structural element has 

changed comparing with the state of the previous moment 

in time (this allows modeling of “null” actions – i.e. 

actions performing no changes). Time is also needed to 

define actions (difference of state at different moments of 

time), and interaction (information exchanged between an 



object and its environment between the beginning of the 

interaction and its completion). 

 

3.3. Specification concepts 
 

The section 9 of part 2 “specification concepts” 

defines the means to be used by a developer to describe in 

the model the propositions about the propositions 

describing the entities of interest from the universe of 

discourse. 

For our discussion, we classify the specification 

concepts in three categories to reflect their role in the 

modeling task. (1) The “generic specification concepts” 

used mainly to represent the creation/destruction and the 

classification of model elements. Such concepts include 

type, instance, and class. (2) The “abstraction/refinement 

specification concepts” used mainly to relate groups of 

model elements at different levels of detail. Such concepts 

include composition and decomposition. (3) The 

“schemas” that define the set of predicates needed to 

define a model element.  

 

3.3.1 Generic Specification Concepts 

 

The generic specification concepts include type, class, 

subtype / supertype, subclass / superclass, template, 

instantiation (of a template), introduction, creation, 

deletion, instance, template type, template class, derived 

class/base class) [clauses 9.7 - 9.21].  

The main specification concepts are: 

��  “type: a predicate characterizing a collection of 

<X>” [clause 9.7], 

�� “instance: an <X> that satisfies a type” [clause 9.18],  

��  “class: the set of all <X> satisfying a type” [clause 

9.8].  

�� “template”: the specification of the common features 

of a collection of <X>s in sufficient details that an 

<X> can be instantiated using it.” [clause 9.11] 

The use of these terms is illustrated in the following 

example: A behavior instance defines an actual 

occurrence of a behavior. A behavior class defines a set of 

behavior instances that share common characteristics. A 

behavior type defines the common characteristics of the 

behavior occurrences that belong to the behavior class. A 

behavior template defines the features of a behavior in a 

way that allows its instantiation. These concepts are 

presented in more details in [8]. 

Basic modeling concepts and generic specification 

concepts are defined by RM-ODP as two independent 

conceptual categories. Essentially, they are two qualitative 

dimensions that are necessary for defining model elements 

that correspond to entities from the universe of discourse 

with the prepositions defining them. This is why we 

consider them as orthogonal as illustrated in Fig. 2. 
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Figure 2. Illustration of use of the basic modeling 

concepts and the specification concepts for definition of 
model elements. 

 

The example on Fig. 2 shows several model elements 

that are defined either as different action types, classes 

and instances, or as different constraint instances. 

Applying the RM-ODP definition for behavior (“a 

collection of actions with a set of constraints on when 

they may occur” [clause 8.6]), we see, for example, that 

the action instances AI1, AI2, AI3 with the constraint 

instance CI3 represent an instance of a behavior type and 

the action instances A3, A4 with the constraint instances 

CI3, CI5, CI6 represent another instance of another 

behavior type. 

 

3.3.2 Abstraction/Refinement Specification Concepts 

 

With our interpretation of RM-ODP, we consider that 

model elements at various levels of details coexist in the 

model. In addition, we consider that the relationships 

between these levels of details are formally established 

only in the model (and not in the universe of discourse). 

This means that the developer ultimately has the 

responsibility to establish these relationships. For this 

reason, we consider it important for the specification 

concepts to include:  

�� “refinement: the process of transforming one 

specification into a more detailed specification.” 

[clause 9.5], and 

�� “abstraction: the process of suppressing irrelevant 

detail to establish a simplified model, or the result of 

that process”. [clause 6.3] 

Currently, “abstraction” is defined as a basic 

interpretation concept. As both concepts define 

complementary modifications that can be applied to a 

model: both concepts should be defined together and both 



definitions should have the same structure. This means 

that they should both refer to the process and the result of 

the process.  

“Abstraction” and “refinement” are very general 

concepts. They describe all modeling tasks that add or 

remove details (such as the creation/destruction of an 

object). A special kind of refinement/abstraction is the 

composition/ decomposition. These concepts are defined 

as: 

�� “composition:  

a) … a combination of two or more objects yielding a 

new object …, or  

b) … a combination of two or more behaviors 

yielding an new behavior…” [clause 9.1] 

�� “decomposition:  

a) … the specification of a given object as a 

composition. 

b) … the specification of a given behavior as a 

composition” [clause 9.3] 

We suggest modifying these two definitions to make 

them generic. Currently they are only defined for 

behaviors and objects but they can be applied to any basic 

modeling concepts such as roles, interfaces, state, activity, 

etc. Note, for consistency reasons, it would be useful to 

explicitly define in generic terms the concept of  

“component” [clause 9.1]) and “composite” [clause 9.2]. 

For a more details discussion on abstraction / refinement 

versus composition / decomposition, refer to [17,18]. 

As it is defined in the ODP standard [clause 9.1], 

“composition (of objects) is a combination of two or more 

objects yielding a new object”. If we are interested in the 

nature of this combination then we should specify the 

mechanisms that would allow it to yield a new object. We 

define this mechanism as the “composition constraints”. 

They are a set of structural and behavioral constraints that 

allow the resulting composite object to fulfill its 

mediation responsibilities with regard to the component 

objects participating in the composition. An example of 

composition constraint will be given in Section 4. In 

summary, a composite object is the result of the 

composition of two or more component objects with the 

corresponding composition constraints. A component 

object is defined by its structural and behavioral limits. 

These limits are necessary and sufficient for it to 

participate in a composition. The structural limits are 

defined by the object’s external state specification. The 

behavioral limits are determined by the object’s interfaces 

specification. 

 

3.3.3 Schemas 

 

The schemas2 are used to define concrete model 

elements. A schema is a mean to group predicates 

together.  

As indicated in Catalysis [6], in system development, 

first class modeling concepts are: objects and actions. It is 

thus important to determine what set of predicates (i.e. 

schemas) are needed for the definition of these two basic 

modeling concepts. For this reason, we consider that the 

schemas needed to define an object, as well as the ones 

needed to define an action, need to be present in RM-

ODP part 2.  

To specify the behavioral and structural information of 

an object, we can refer to the clause 6.1 in RM-ODP part 

3 [10]. It introduces the necessary schemas needed to 

define an object3. These schemas are: 

�� “invariant schema: a set of predicates on one or 

more information objects that must always be true. 

The predicates constraint the possible states and state 

changes of the objects to which they apply.” [10, part 

3, clause 6.1.1] 

�� “static schema: a specification of the state of one or 

more information object at some point in time, 

subject to the constraints of any applicable invariant 

schemata.” [10, part 3, clause 6.1.2] 

�� “dynamic schema: a specification of the allowable 

state changes of one or more information object, 

subject to the constraints of any applicable invariant 

schemata.” [10, part 3, clause 6.1.3] 
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Figure 3. Relationship between invariant, static and 
dynamic schema 

 

                                                 
2 “Schema” is a concept defined in part 3 of RM-ODP and takes its 

roots in “Z” [14] 
3  Note that objects are called “information objects” in part 3 of RM-

ODP, section 6. 



These schemas are illustrated in Fig. 3. The invariant 

schema can be interpreted as the mapping between the 

behavioral information and the structural information (i.e. 

state). This property is explained by the object nature, 

exhibiting dually its state and its behavior. By 

representing both structural and behavioral information in 

the invariant, the developer can make a more precise 

model. In particular, she can specify in what context 

things exist or are referenced. For example, in Fig. 3, 

“attribute 1” is referenced during “action1” execution. 

This will be further illustrated in Section 4. 

Note that concept of “being always true” (present in 

the definition of invariant) has an implicit reference to a 

context. An invariant is always true in the context in 

which it is defined. Such context is typically the lifetime 

of an information object (as said in [clause 9.22]). 

After having specified the object, we need to specify 

the actions. An action can be defined by the concepts of: 

��  “pre-condition: a predicate that a specification 

requires to be true for an action to occur.” [clause 

9.23] 

�� “post-condition: a predicate that a specification 

requires to be true immediately after the occurrence 

of an action.” [clause 9.24] 

�� “invariant: a predicate that a specification requires 

to be true for the entire lifetime of a set of objects.” 

[clause 9.22] 

Although correct, these definitions could be improved 

to make more explicit the context in which they are 

applied. The first fix could be to change the concept 

“specification” into “action specification” or “contract” in 

order to make explicit their applications on actions (only 

actions allow us to specify in a single construct something 

at two points in time - before the action and after the 

action). Note that RM-ODP defines “contract” as “an 

agreement governing part of the collective behavior of a 

set of objects” [clause 11.2.1]. The second change can be 

made on improving the definition of the relationship 

between the pre- and the post-conditions. We have 

discussed the fact that system modeling cannot be done 

independently from the developer’s goal. So when a 

developer defines an action specification, she defines 

what is the result of an action (post-condition) depending 

on the context in which it occurs (pre-condition). So the 

pre-condition should rather be considered as a condition 

for the post-condition to be true (and not necessarily as 

the condition for the action to occur). Note that the 

definition of invariant [clause 9.22] is redundant with the 

definition of invariant schema [part 3, clause 6.1.1]. One 

could be omitted.   

While modeling actions, we found that policies play a 

very important role in having a complete action 

specification. We define: 

�� “policy”: predicate that states conditions valid at 

specific moments of time during an action 

occurrence. 

This definition is in agreement with the RM-ODP 

definition  “Policy: A set of rules related to a particular 

purpose” [clause 11.2.7]. A policy for an action is 

essentially a constraint of any kind that is relevant with 

regard to the action. Policies can be used to make explicit 

the design goals and design choices for action 

refinements. For example, a policy for the operation of a 

software application might state that at some point in time 

its user will have to key-in sequentially several identifiers 

(i.e. the policy in the normal course of events for the 

application execution) or another policy might specify 

that if an identifier is incorrect, the application should ask 

the user to enter a new identifier (i.e. the policy on an 

alternative course of events). The composition constraints 

that were considered previously in this Section are 

another example of a policy. These new definitions of pre-

condition, policies and post-condition are very close to 

the ones recommended by Alan Wills in [22]. The only 

difference is that in the action contract we propose to use 

policies instead of exceptions (policy is a more general 

concept that encompasses the exception). 

It is interesting to describe how policies help in the 

definition of contracts for interactions, - a problem that is 

not yet solved [19]. A client interaction modifies the state 

of the environment during its execution. At the interaction 

completion, the values of the attributes of the object 

performing the client interaction are not changed. The 

post-conditions can only state that the action has occurred 

and that the object has not changed the values of its 

attributes. However, the policy states that during the 

interaction, information will be transferred to the 

environment. For a server interaction, the corresponding 

policy states that information comes from the environment 

and the post-condition states that the attribute values have 

changed. In summary, the introduction of policies allows 

us to have an elegant solution that keeps post-condition 

free from defining state changes in other objects than the 

one of interest.  

 

3.4 Contribution Overview 
 

Table 1 presents an overview of the concepts 

presented in this paper. All new and refined concept 

definitions are compatible with the current RM-ODP 

definitions. Our work mostly consisted in deriving useful 

details from RM-ODP definitions. This allows for its use 

as an ontology for definition of modeling languages 

applied in the context of system modeling.  

The proposed ontology has been tested in two large 

case studies including multiple organizational levels 

(market, company, application, programming language 



classes). It is now used extensively to define our 

development process and structure our development tools. 

In addition, we validated the ontology by making a formal 

model in Alloy [11] of the basic interpretation concepts 

and the basic modeling concepts [18]. 

 

Table 1. Concept Overview 

4. Application 

 

After having presented the RM-ODP concepts at a 

rather abstract level, we now illustrate these concepts by 

working through a more tangible example: a piece of Java 

code. Even if the example is quite pragmatic, all presented 

concepts are applicable at entities belonging to any 

organizational level. The same concepts can be used to 

model a supply chain, an IT system architecture or 

software components. 

The notation used is not UML but is inspired by UML. 

The notational elements are similar. The major difference 

consists in the fact that we put different kinds of UML 

diagrams into one view. This allows relating the 

notational elements between the “diagrams”. 

 

4.1. Example Introduction 

 
Let us consider a Java application that consists of a 

window (“Frame1”) with a button (“button1”). Exhibit 1 

illustrates the application code.  

  
public class Frame1 extends Form 
{ int i; 
 X   x; 

Button button1 = new Button; 
 
 public Frame1() // Constructor 
 { super(); 
  this.x = new X(); } 
 
 private void button1_click() 
 { this.i = this.x.getA(); } 
public class X 
   { int a; 
 X() // Constructor 

{ this.a = 1; } 
 public int getA()  
 {  return (this.a); } 
   } // X 
} // Frame1 

 

Exhibit 1. Java code example: window with button 

 

When a user clicks on the button, the method 

“button1_click()” is invoked. This method performs the 

assignment “this.i = this.x.getA()”. Let us consider what is 

happening while the assignment is executed. As we see in 

the code, an object of type “Frame1” (let’s assume that it 

is identified as “f”) is composed of several parts. It 

includes an object4 instance of type “int” that is 

referenced as “i” within “f”. The instance is identified as 

                                                 
4 We use the words “object” and “type” correspondingly to the RM-

ODP definitions. In java there is a slight difference, namely “an object 

is a class instance or an array” [3], which doesn’t include an instance of 

int that is defined as a primitive type. The int should be wrapped either 

in the Integer or in an array to be instantiated as a real java object. 

Basic interpretation concepts Section

universe of discourse 3.1

entity 3.1

proposition 3.1

system 3.1

sub-system 3.1

supra-system new concept 3.1

model refined definition 3.1

model element refined definition 3.1

quality new concept 3.1

3.1

sub-model new concept 3.1

Basic modeling concepts

object 3.2

environment 3.2

information 3.2

behavioral information new concept 3.2

structural information new concept 3.2

behavior 3.2

behavioral constraint 3.2

action 3.2

internal action 3.2

client interaction refined definition 3.2

server interaction refined definition 3.2

state

structural constraint new concept 3.2

structural information element new concept 3.2

attribute new concept 3.2

parameter new concept 3.2

role new classification 3.2

interface 3.2

Specification concepts

instance 3.3.1

type 3.3.1

class 3.3.1

template 3.3.1

refinement 3.3.2

abstraction new classification 3.3.2

composition refined definition 3.3.2

decomposition refined definition 3.3.2

component refined definition 3.3.2

composite refined definition 3.3.2

composition constraint new concept 3.3.2

invariant schema (object, environment) refined definition 3.3.3

static schema (object, environment) refined definition 3.3.3

dynamic schema (object, environment) refined definition 3.3.3

invariant removed 3.3.3

pre-condition (action) refined definition 3.3.3

post-condition (action) refined definition 3.3.3

policy (action) new use 3.3.3



“i1” and is automatically created in the “Frame1” 

constructor. 

In addition, it includes an object instance of type “X” 

that is referenced as “x”. The instance is identified as “x1” 

and is explicitly created by the statement “this.x = new 

X()”. These parts are initialized during the construction of 

“f”, which means that within the method 

“button1_click()” we are referencing already existing 

objects “i1” and “x1”. 

We present the component object specification 

followed by the composite object specification of 

“Frame1”.  

 

4.2. Example of a Component Object 

Specification 
 

The Fig. 4 represents the component object “f” of the 

type “Frame1”. Note that “f” is supposed to be a 

component of a larger system that is not represented here. 

 

 this.b[@t1] = button1

 Frame1

 button1_click()

f
b

H

button1

 button1_click_ServerProcess
<<internal action>>

 button1_click_ServerAccept
<<server interaction>>

H

[@t2] begin of
button1_click_ServerProcess

[@t3] end of
button1_click_ServerProcess

[@t1] begin of
button1_click_ServerAccept

{ env.serverObj = f: Frame1;
  this.publicMethod =
  = call env.parFunction;
  env.parFunction =
  = button1_click}

 

Figure 4. Example of ODP-based UML compatible 
graphical notation: Frame1 external representation 

 

It is interesting to describe the way the object “f” is 

specified (illustration of Section 3.3.3): 

The upper pane represents the invariant schema of an 

object. The invariant shows that, within the object “f”, a 

button exists. Only the button is represented, as the other 

objects are not visible from outside the object “f”.  

The middle pane corresponds to the static schema of 

an object containing the structural part of the invariant 

information. It states that at time [@t1] (i.e. immediately 

before the “button1_click” action) “f” object refers to its 

“button1” object as “this.b”. Note that “this” is a keyword 

representing the object “f”.  The static schema can of 

course only be represented for specific moments in time 

that must exist within the corresponding object lifecycle.  

The lower pane represents the dynamic schema 

containing the behavioral part of the object information. 

The dynamic schema represents a certain part of the 

object behavior that it exhibits during its lifecycle. The 

behavioral part presents that “f” accepts the button click 

from the environment (by executing a server interaction) 

and then executes the corresponding server processing. 

Note the comment outside the object box “f”; it represents 

the parameter value coming from the environment.  

 

 

4.3. Example of a Composite Object Specification 

 
The Fig. 5 presents the same object “f” but as a 

composite object. As presented in Section 3.3, we not 

only consider the composite object as a refinement of the 

component object but also as a different representation of 

the same part of the universe of discourse.  

 

this.b[@t2] = button1

 Frame1

 this.i = this.x.getA

this[@t2] = i1
this[@t2].value = 0

int

assignValueInt
<<internal action>>

this[@t2] = x1;
this.a[@t2] = 1

X

this.i = this.x.getA
H

x1

getAavalueInt

i1

assignValueInt

valueInt

f

i

x

[@t2] begin of

this.i = this.x.getA

[@t3] end of

this.i = this.x.getA

provideA_ServerProcess
<<internal action>>

getA_ServerAccept
<<server interaction>>

assignValueInt
ServerAccept

<<server interaction>>

{ this.serverObj = i1: int;

  this.publicMethod =

  = call env.parFunction;

  this.parFunction =

  = assignValueInt;

  this.par1 = valueInt}

{ this.serverObj = x1: X ;

  this.publicMethod =

  = call env.parFunction;

  this.parFunction = getA}

H

this.i = this.x.getA

 {x1.obj = f ;

  x1.method = return x1.par1;

  x1.par1 = valueInt }

getA_ServerReturn
<<client interaction>>

button1

b

H

...

<<previous actions>>

int_assignValueInt
Call

<<internal action>>

X_getACall
<<internal action>>

X_getAAccept
<<internal action>>

value

 
Figure 5. Example of ODP-based UML compatible 
graphical notation: Frame1 internal representation 

 

It is interesting to compare the representation of the 

component object and the one of the corresponding 

composite object. We can see two object boxes 

corresponding to the “i1” and “x1” objects inside the 

object box representing the composite object “f”. Note 

that all model elements shown in “f” and not in “x1” or 



“i1” correspond to the composition constraints presented 

in Section 3.3.2.  

All the objects (including “f”) are defined with the 

three panes (invariant, static, dynamic). Note that the 

elements shown inside the “i1” (respectively “x1”) object 

box represent the sub-model of “i1” (respectively “x1”). 

Considering “i1” and “x1”, we see that as they are 

declared independently, the object “i1” exists inside the 

context of “f” and doesn’t have any relation with the 

object “x1”. Analogously, “x1” doesn’t have any relation 

with “i1”. So, because of this independence, “i1” is not 

able to have a direct communication with “x1”. 

Nevertheless both “i1” and “x1” exist within the same 

object “f”; so communicating with “f” they can transmit 

information to each other under the condition that “f” is 

fulfilling the corresponding composition constraints 

defined in Section 3.3.2.  

Within the method “button1_click()”, which belongs 

to object “f” (and not to the “button1”), “f” performs 

assignment “this.i = this.x.getA()”. Here it is intended to 

assign (“=”) a value to its “i1” object. The value that it 

will assign to “i1” should be further found within the “x1” 

object by calling its “getA()” method. This equation 

expresses the composition constraint for the assignment. 

Knowing this constraint (as part of the code of “f”), “f” 

performs an internal action to execute the “getA()” 

method of its object “x1”. From the point of view of “x1”, 

this internal action is perceived as a server interaction 

coming from “x1” environment (i.e. from “f”). This is an 

illustration of the Constructivist approach presented in 

Section 2: each object has a different perception of the 

same action occurrence. It also illustrates the concept of 

server interaction presented in Section 3.2. The comment 

attached to the server interaction illustrates the passing of 

the structural parameters (which are essentially values 

such as  “f.par1= valueInt”), and of the behavioral 

parameters (which are essentially actions to be made with 

values such as: “f.parFunction = assignValueInt”). 

The object “x1” executes the processing associated 

with the requested internal action and executes a client 

interaction returning the parameter “valueInt”. This value 

represents the integer value found in the “a” attribute of 

the “x1” object. The object “f” (i.e. the environment of 

“x1”) perceives this sever interaction as being another 

internal action. Now, having received the resulting 

parameter from its “x1” and having the “this.i = 

this.x.getA()” composition constraint as an instruction for 

what needs to be done with “valueInt”, “f” object executes 

yet another internal action to assign the value of the “i1” 

object to the received “valueInt”. This internal action is 

perceived by “i1” as a server interaction with “valueInt” 

as parameter.  And now it is “i1” who performs the local 

action assigning its “valueInt” to the received parameter 

value. 

5. Impact 

 

In this paper, we present an ontology that defines the 

concepts necessary for realizing object-oriented models 

and we illustrate the use of our ontology in a graphical 

model. In this Section, we detail the kind of effects that 

this ontology can have on the development environment. 

The development environment is defined as the methods, 

the tools and notations used in the context of a 

development project that requires the modeling of 

complex systems. 

The development environment should be able to 

manage multiple sub-models and the relationship between 

the model elements found in the different sub-models. We 

define a sub-model as being the part of the model 

describing one system of interest. An example of the 

application of this principle can be illustrated by the 

modeling of a sale transaction. Given a “seller” object and 

a “buyer” object being components of a “market” 

composite object. The “sale” action occurrence belongs to 

the “market” object model. The “sell” action occurrence 

belongs to the “seller” object sub-model. The “buy” 

action occurrence belongs to the “buyer” object sub-

model. Of course all three occurrences represent their 

parts of the same thing happening in reality. This example 

demonstrates the basic principle of multiple viewpoints on 

a same subject matter that can be found in Constructivism 

and is supported by RM-ODP.  

In modeling it is quite frequent to have dual 

information. The development environment should be 

able to deal with dualities. For example, as illustrated in 

Section 1 and 2, state and behavior are dual. Sometimes, 

developers consider dual information as being redundant 

and their goal in this case is to avoid this redundancy. 

Based on our experience, we claim that this is not a 

redundancy but essential information that is important to 

be able to understand the models. The tools used in 

system development should manage this duality 

automatically.  

Section 4 illustrates the duality between structural and 

behavioral information (visible in the invariant schema). 

Another example can be given in the context of the 

“market” object. The “seller” object can be considered as 

a component object when the developer wants to specify 

the market. The “seller object” can also be considered as a 

composite object if the developer is interested in 

documenting the business processes taking place within 

the “seller” object. The representations of an object as a 

component (of a larger system) or as a composite 

(showing the object parts) should be considered as two 

representations, which are dual to each other. The tools 

should allow the developer to toggle from one 

representation to the other. 

   



6. Conclusion 
 

This paper relates to the methods, tools and notations 

used for the development of business and software 

systems.  We use the Catalysis method, UML notation and 

existing commercial tools both for developing such 

systems (in collaboration with our industrial partners) and 

for teaching object-oriented developments. In both cases, 

we experience difficulties that can be related to the fact 

that the notation, the method, the tools, and the developers 

have a different understanding of what object-oriented 

modeling means. In this paper, we propose an ontology, 

based on an international standard, that defines the 

fundamental concepts needed for object-oriented 

modeling. This ontology is based on RM-ODP, a 

telecommunication standard. We also use Constructivism 

and System Theory to interpret this ontology. Our 

concrete contributions consists in (1) making explicit the 

relationships between the various sections of RM-ODP 

part 2, (2) in introducing the concepts of: structural 

information element, structural constraint, composition 

constraint, client interaction, server interaction, and (3) in 

defining what is found in an invariant (i.e. structural and 

behavioral elements), by explaining the role of policies in 

the action specification. By defining the above concepts, 

the mapping of RM-ODP to existing methods and 

notation is drastically simplified. By understanding this 

ontology, the developer can understand how to interpret 

the methods, and notations and can configure the tools to 

support the development of systems in a more integrated 

way. If method designers, modeling language designers, 

and tool designers adopt this ontology, then the 

development environment could become significantly 

more productive. Early indications of this can be seen in 

our experience. Teaching object-oriented methods to 

undergraduates has been considerably simplified since we 

based our method and our interpretation of UML on our 

ontology. Our tools have become significantly more 

usable since we captured the relationship between the 

UML artifacts using our ontology.  
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