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Abstract 

Engels, G., M. Gogolla, U. Hohenstein, K. Hiilsmann, P. L6hr-Richter, G. Saake, and H.-D. Ehrich, 
Conceptual modelling of database applications using an extended ER model, Data & Knowledge Engineer- 
ing 9 (1992/93) 157-204. 

In this paper, we motivate and present a data model for conceptual design of structural and behavioural 
aspects of databases. We follow an object centered design paradigm in the spirit of semantic data models. 
The specification of structural aspects is divided into modelling of object structures and modelling of data 
types used for describing object properties. The specification of object structures is based on an Extended 
__Entity-Relationship (EER) model. The specification of behavioural aspects is divided into the modelling of 
admissible database state evolutions by means of temporal integrity constraints and the formulation of 
database (trans)actions. The central link for integrating these design components is a descriptive logic-based 
query language for the EER model. The logic part of this language is the basis for static constraints and 
descriptive action specifications by means of pre- and postconditions. A temporal extension of this logic is the 
specification language for temporal integrity constraints. We emphasize that the various aspects of a database 
application are specified using several appropriate, but yet compatible formalisms, which are integrated by a 
unifying common semantic. 

Keywords. Conceptual data model; conceptual database design; Entity-Relationship model; database evolu- 
tion; integrity constraints; query language; transactions. 

1. Introduction 

Since the early t imes of da tabase  systems the scenario of da tabase  appl icat ions  has 
dramat ica l ly  changed.  New appl icat ions  like C A D ,  C A S E  [1-4] ,  office in fo rma t ion  systems 
[5] or geoscientific databases  [6, 7] need  more  sophist icated da tabase  funct ional i t ies .  These  
appl ica t ions  typically require  the admin is t ra t ion  of complex s t ruc tured  objects  and  need  a 
larger  var ie ty  of data  types such as geometr ic  and t empora l  data types or data  types for 
s tor ing visual  or acoustic data.  

A n o t h e r  po in t  is that  databases  are increasingly used for in tegra t ing  di f ferent  appl icat ions.  
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For example a common database for air traffic applications could be accessed by such 
different applications as flight scheduling, air traffic control, flight booking in travel agencies 
or the maintenance of airplanes. Since such a database has to reflect more facets of the 
whole application area than databases for the single applications, integration additionally not 
only increases the size complexity of the database but also the structural complexity of single 
entities in the database. 

There has been a change from application specific databases to domain specific ones. 
These changes have also caused a change in database design philosophy from a merely 
application program centered way to an object  centered manner of database modelling. The 
task of the database designer is not chiefly the modelling of databases specific for dedicated 
applications but to reflect the structures of some real world part by a database used by a 
variety of application programs. Consequently, the primary task of the database designer is 
to model the properties of the real world objects in the domain of discourse and not the 
functionality of the various application programs. 

This attitude to database modelling has been accepted long before so-called object- 
oriented data models became fashionable in the database research community. The main 
idea is that the relevant real world objects are represented by corresponding objects in the 
database. These objects are abstract entities with a fixed identification which can be inserted 
into or removed from a database and which are often composed of other objects (complex 
objects). They have properties (or attributes) which contain values of corresponding data 
types and which can be used for an external, observable representation of objects. Data 
types themselves may have simple or complex structures. For instance, a geographical object 
can be described by as simple structured properties as its name over the data type string or 
by as complex structured ones as its border represented by a polygon. Usually, such complex 
structures can also be expressed as complex objects. Nevertheless, we think the distinction 
between objects and data is essential, because not every complex structure also meets the 
intuitive concept of an object. 

The object centered way of designing the structure of databases had also consequences for 
the design of database application programs or, more generally, database dynamics. Many 
operations on a database are not specific for some particular program rather than for the 
modelled objects and data structures. Consequently, these operations should be designed 
together with the object and data types. Another aspect is that implicitly all possible 
evolutions of a database contents are fixed by the design of the static structure of a database. 
But, as some of these evolutions do not reflect possible evolutions of the real world, this set 
has to be restricted to the set of admissible database evolutions. This is done in form of 
so-called temporal integrity constraints. Indeed, this could also be done by integrating these 
restrictions directly into database operation specifications. But a separate specification of 
these two aspects of database behaviour allows operation design to concentrate on the pure 
functionality of operations and to avoid multiple considerations of the same constraints in 
different operations. 

Summarizing we can say that database design has to deal with increasingly complex 
structures and must take into account different aspects of databases. Apart from modelling 
the static structure, database dynamics has to be modelled, too. To reduce the complexity of 
this modelling task, there have been made a lot of efforts for developing appropriate design 
methodologies. Generally, several design steps can be distinguished similar to software life 
cycle models [8, 9]. 

(1) Requirements analysis, 
(2) Conceptual database design, 
(3) Logical database design, 
(4) Physical database design. 
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The most demanding phase in this process is conceptual design whereas the later phases 
are merely transformation steps. The conceptual schema is the first formalised description of 
the database application. On the one hand it serves for discussions with the customer about 
the system functionality. On the other hand it is the basis for further design steps realizing 
this functionality on an existing database system. Consequently a conceptual schema should 
be appropriate for both of these roles. For the customer, it is important that the conceptual 
schema is easy to understand and represented by using suggestive and natural modelling 
primitives. For subsequent design steps the specification should be highly descriptive for 
achieving a maximum independence of implementation issues but yet be sufficiently formal- 
ised. Therefore, conceptual schemas should have a formal semantics. A formal semantics is 
also indispensible for obtaining reliable results from schema analysis such as consistency 
checking but also for the verification of the logical database schema against the conceptual 
one and, finally, for providing the semantical basis for query languages operating on the data 
model. Such a query language plays a central role in conceptual design. It provides the 
necessary means to 'talk about' database states which is essential for formulating static and 
dynamic constraints as well as database manipulation actions. 

A variety of approaches have been proposed to develop such a conceptual data model. An 
overview can be found in [10-12]. Most of these approaches, however, neglect the dynamic 
aspects of databases. One of the first attempts was the Entity-Relationship (ER) model 
introduced by Chen [13]. The basic modelling primitives of this approach are entity types, 
relationship types and attributes. The ER model has gained a wide acceptance for database 
modelling but the generality of its relationship concept has often been criticized. This is 
because relationships subsume several, semantically different relationship types such as 
part-of-relationships, is-a-relationships, specialization/generalization as well as association to 
object sets. For modelling these aspects, so-called semantic data models were developed as 
for example SDM [14], IFO [15[, IRIS [16] or TAXIS [17, 18]. But there have also been 
approaches to enhance the ER model with additional abstraction principles [19-22]. 

As already mentioned, a powerful query language is essential to successful database 
modelling. A brief discussion of query languages for ER models leads us to the first 
proposals of [23] and ]24]. They used the relationship concept for relieving the user from 
specifying complicated joins. Later approaches for the ER model range from procedural 
languages [25, 26] over descriptive ones like GORDAS [27, 19] to graphical languages like 
H I Q U E L  [28] or G Q L / E R  [29]. 

Analogously, in the area of database (trans-)action specification descriptive and oper- 
ational approaches can be distinguished. Descriptive action specification languages are 
usually varieties of pre/post-conditions [30-32] where preconditions are either evaluated in 
the previous state or in the whole database history [33, 34]. Sometimes the notion of 
transition is included explicitly in the specification logic in form of a modal operator [35-38]. 
In the research community, descriptive, logic-based languages as the above have long been 
preferred rather than procedural ones. Nevertheless, most recently the latter ones enjoy a 
renaissance with the increasing interest in object oriented data models and specification 
techniques [39]. They are also still indispensible for the final implementation of transactions, 
although this has the unfavourable effect that a change of paradigm is necessary during the 
action design. Nevertheless specification languages (which deserve this name) based on a 
procedural paradigm seem not yet available. One research direction in this area is database 
programming languages, e.g. Pascal/R [40] or DBPL [41] providing traditional programming 
languages with easy database access facilities. Current research in this direction addresses 
persistence, typing and inheritance [42]. The major deficiency of these approaches with 
respect to conceptual modelling is that they are still in the spirit of modelling database access 
rather than the behaviour of database objects. The behaviour aspect, however, is stressed in 
Petri-net approaches [43, 5, 44] also proposed for action modelling. 
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Another area are so-called fourth generation languages (4GL) often combining descriptive 
and operational elements [45]. Also graph grammars have been proposed for database action 
modelling [46]. 

Only few approaches allow for a separate specification of dynamic integrity constraints to 
describe admissible evolutions of databases. In [47-49] transitional assertions are discussed, 
i.e. constraints restricting database state transitions. In [5] such constraints are integrated 
into Petri-net based action specifications by special constructs. There also have been 
proposed modal logic styles as [38, 36, 50] and temporal logic based languages as [35, 33, 51- 
541. 

The goal of this paper is to present a uniform framework for specifying all relevant aspects 
of a conceptual database schema, i.e. data types, object structures, (trans)actions and 
dynamic integrity constraints and to explain how these heterogeneous structures can be 
integrated. The presented conceptual data model can be provided with a formal semantics. 
In this paper, however, we rather aim to show the pragmatics of the approach and to 
demonstrate its appropriateness for database modelling. 

The rest of the paper is organized as follows: In Section 2 we discuss the requirements for 
conceptual design of database applications using a structured modelling approach. In Section 
3 the concepts for modelling the static structures are outlined. Additionally, we discuss the 
inherent integrity constraints and show how elementary database manipulation actions can 
be automatically derived from these structures. We also present a query language supporting 
the data model. Section 4 deals with modelling database dynamics. We present a language 
for specifying dynamic integrity constraints and discuss a descriptive and an operational way 
of specifying database actions. 

2. Conceptual modelling- A structured approach 

We did already mention that conceptual modelling of database applications consists of 
adequately describing the relevant features of the application domain. The role of conceptual 
design in the whole database design process makes high-level, descriptive, powerful, and 
highly expressive modelling concepts necessary to describe static and dynamic aspects of a 
database in a uniform way. This section is intended to point out which modelling concepts 
are actually needed. We summarize the discovered requirements for conceptual data models 
and give a first outline of the proposed modelling approach described in a more elaborate 
way in the rest of this paper. 

Conceptual specifications of database applications can easily reach a degree of complexity 
which makes it necessary to structure them in an appropriate manner. This complexity has 
several facets. On the one hand, it is a question of size complexity. This means that the size 
of conceptual database schemas can make it difficult to handle them without a design 
methodology which supports the development of large design documents. On the other 
hand, we have the structural complexity of the modelled structures and concepts needed to 
adequately model an application. This structural complexity results from the semantical 
richness of typical applications. It must be reflected by using adequate modelling concepts in 
the specification framework and languages. 

In the life cycle of a database application, the conceptual database schema is the contract 
between future users of the application and its developers. To be appropriate for this role, a 
language for conceptual modelling should have a formal semantics in an appropriate 
mathematical formalism. But because of the different groups of involved people, the 
language should also be easy to learn and easy to use and should provide features suitable for 
the relevant application scenarios. These language features should also be natural for the 
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application area. To avoid a complexity explosion of design documents, the language should 
have a high descriptive power. 

Apart from these general principles of language design, we have a special situation for 
database applications concerning the structural complexity of the system to be described. To 
describe complete database applications, we have to specify such different concepts like 
• attribute values and operations on them, 
• database objects and their attributes, 
• relationships between objects, among them part-of and is-a relationships, 
• allowed database states (static integrity constraints) 
• allowed evolutions of databases (temporal constraints) 
• application specific database transactions. 

Having these complexity problems in mind, we can identify two contrary approaches to 
handle the necessary modelling concepts in a conceptual modelling language: 
(1) The first approach is to use one broad-spectrum language for all aspects of database 

applications, for example an extension of usual first order logic. This choice immediately 
leads to a conflict between the language design principle of handiness and the complexity 
of the application area. Either there are only few language concepts with insufficient 
expressive power or there are too many different modelling concepts in one language. 
Specification documents tend to become unstructured and unreadable if no adequate 
specification methodology is additionally provided. 

(2) The second approach is to use a family of independent languages for different basic 
concepts of database applications (e.g. algebraic specification of data types, a semantic 
data model for database objects, temporal logic for evolutions, etc.) which can solve the 
problem of structuring documents as well as the availability of appropriate language 
features. The first problem with this choice is the existence of a unifying semantics for 
complete specification documents consisting of parts written in different languages. A 
maybe even harder problem is that the basic concepts of database applications are not 
independent from each other. Some concepts are usually needed by other concepts, for 
example data types for describing database states etc. 

We propose a compromise between these two approaches. A database application is 
structured into some components according to the semantical concepts. For each of these 
components, we choose a language appropriate for the real world concepts to be described. 
This combination of languages has the following properties: 
• All languages support a logic-based, descriptive style of conceptual modelling. On the 

other hand, for all components the support of executability is considered in the choice of 
the description formalisms. 

• All languages are based on one uniform, formal semantics framework allowing con- 
sistency checks across the components. 

• In cases where it makes sense, language primitives are shared by different languages. 
The main idea is that the languages use syntactically and semantically compatible formal- 

isms to support the desired properties of our specification languages. 
A central component for describing a database application is, of course, the description of 

the database structures itself called object component. The object component describes the 
structure of objects to be stored in the database, their attributes and the relationships 
between objects together with the restrictions on database states expressed by static integrity 
constraints. The description of the database structure is done in the framework of a semantic 
data model derived from the well-known Entity Relationship model. Our Extended Entity- 
Relationship model (for short EER model) adds to the classical ER model new features like 
complex objects, generalization hierarchies, etc. which are described in detail in Section 3.1. 
A well-defined data model has also to determine a query formalism (Section 3.3) as well as 
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the basic update primitives (Section 3.5). The query language presented in Section 3.3 is also 
used as a language to formulate static integrity constraints (Section 3.4). All these sub- 
languages together build the language for the object component  having as semantical domain 
the set of possible database states. 

The object component  describes the possible states of a database. For example, the 
interpretation of queries is changing from state to state. In contrast to this changing 
interpretation, the basic data structures used as values for attributes have fixed semantics 
independent  from the current state. These values and the operations on them are described 
by means of abstract data types in the data type component. Examples are the geometric data 
types point and lines together with operations on them. A data type itself can have a complex 
internal structure as, for example, the data type lines. A first hint whether a complex 
structure should be modelled in the object component  or as a data type is given by the 
following observation: objects can be updated (without changing the object identity) which is 
not possible for data values. From a semantical point of view, the data component  is the 
kernel of the object component because data types are used as attribute domains as well as 
for query results. 

Based on data type and object component,  we have two components describing the 
dynamic evolution of a database. These two components reflect two complementary view- 
points of describing such applications: the first one, the evolution component,  describes the 
temporal  evolutions without referring to the modifying actions (see Section 4.1). This 
description style can be characterized as descriptive and data-oriented. The specification 
formalism is a temporal logic extension of the constraint language from the object compo- 
nent; the used semantical domain is the set of possible database state sequences. 

The second component  to describe application dynamics is the action component.  In 
contrast to the evolution component,  the allowed application evolutions are described in 
terms of the allowed actions modifying the database contents. The semantical domain for the 
action component  is the same as for the evolution component;  in fact, the action component  
gives an independent description of the same topic, namely the desired database state 
sequences. In this paper, we present two languages to describe database actions, a 
descriptive one based on pre- and postconditions in Section 4.2 and a more operational one 
in Section 4.3 where complex actions are composed of the basic update primitives presented 
in Section 3.5. The language to describe pre- and postconditions is based on the query 
language (Section 3.3). 

From these considerations we can deduce a somehow natural structure of a database 
application's description as shown in Fig. 1. The three concentric circles depict different 
layers of the semantical structure and also an inclusion hierarchy for the specified compo- 
nents, for example the data type component is necessary for the description of all outer  
layers. 

In more detail, the three concentric circles of Fig. 1 stand for the different semantical 
domains 
• domain of values (printable data) - Data type component D 

Fig. 1. Components of a database application description. 
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• database states -Ob jec t  component O 
• sequences of database states -Evolution & Action Component E & A 

(database behaviour) 
This layered structure describes the syntactical and semantical hierarchy of the different 

specification parts. Object specifications refer to data type specifications whereas the 
database evolutions and actions are expressed by referring to object and data specifications. 
However, this does not mean that a specification document has to be built up strictly 
following these layers. In fact, database design is rather an iterative and incremental process. 
Following an object centered proceeding, designing (or augmenting) a database schema 
would begin with modelling (some of the) object structures. During this process the other 
features as data types and database behaviour are modelled around the object specifications. 

Layered approaches to structure conceptual modelling formalisms are proposed among 
others by [55, 56, 22, 34, 57, 58]. These approaches agree in structuring conceptual models 
according to the handled semantic domains and specification logics, but differ in the number 
and the separation of the used several layers. None of them captures completely the full 
spectrum of the specification formalisms as presented in this paper. 

Summarizing we can say that a complete specification of a database application comprises 
structural as well as behavioural aspects of a database. In the subsequent chapters we call 
such a complete specification a database schema. This is in contrast to most traditional 
approaches usually denoting by schema what is called the object component in our 
terminology. 

After having pointed out the main aspects of database design we will give a more detailed 
discussion of the various specification components in the subsequent chapters. In Section 3 
we will present the specification formalisms for the structural part of a database specification. 
Afterwards we will discuss the languages for specifying database behaviour in Section 4. 

3. Modelling the database- Its structure and access operations 

This section is devoted to the modelling of the structural part of a database application. 
This includes besides the description of the database structure, i.e. the object component of 
a database schema, also the presentation of languages for querying and modifying database 
states which are induced by the object and data type specifications. 

Section 3.1 describes the data model used for specifying the structure of database state~ 
We use an extended Entity-Relationship (EER) model basically offering as mo~delling 
concepts objects ('entities') having attributes and participating in relationships. In contrast to 
other data models, we clearly distinguish between persistent (abstract) objects on the one 
side and (printable) values used as object properties on the other side. The description of 
value domains using abstract data types is handled in Section 3~2. A given schema in the 
EER model induces languages for database queries, integrity constraints and basic database 
modifications as being presented in the following Sections 3.3 to 3.5. 

3.1. EER model 

The chosen example deals with world-wide air traffic, a typical database application area 
and often modelled to demonstrate certain modelling concepts. The ER diagram in the 
appendix gives an overview of our air traffic world (ATW). For modelling the air traffic 
world, we start with the identification and classification of the involved objects such as 
airplanes, passengers, etc. After having identified the relevant object types, we continue by 
investigating the object properties, their attributes and the relationships between objects. 
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In the literature, many semantic data models have been proposed for the conceptual 
modelling of complex databases. These data models provide rich concepts for expressing the 
various structures in the different applications to be modelled. Among them, Chen's 
Entity-Relationship (ER) model [13] has been successfully used for describing the require- 
ments of later database users because of its ease of understanding and its convenience in 
representation. It supports a style of conceptual modelling that does not depend on later 
implementation but can easily be mapped into implemented data models like the relational 
one. However, the generality of its relationship concept is often criticized. There are 
important relationships in the real world that have a special and fixed meaning. For example, 
subset relationships like specializations [59] cannot directly be modelled in the ER model. 
Since these concepts are very important in the real world, they should directly be supported 
by corresponding modelling concepts. 

On the other hand, data models with a semantic hierarchy (cf. [10]) provide a lot of 
modelling features, and thus possess a high expressiveness. TAXIS [17], SDM [14], SHM+ 
[60], IFO [15], and IRIS [16] are the most known ones. By summarizing their concepts, the 
following main concepts can be worked out [61]: 
• Aggregat ion,  for formulating part-of or property-of relationships. For example, the staff is 

a part of an airline company, while the name of the company or the head office are 
properties of it. 

• Assoc ia t ion ,  which is sometimes also called grouping or cover aggregation, is used to build 
sets of objects of an existing type. 

• Special izat ion~generalizat ion,  to express subset or ISA relationships, e.g., each passenger 
is a special person. 
A more detailed description of these concepts as well as an overview over semantic data 

models can be found in [10-12]. 
We follow [19-21] and combine both approaches, i.e. we extend the ER model by 

additional concepts. Our version of an ER extension, called EER model in the following, 
was originally defined in [62] and slightly modified in [22]. Its main characteristics are: 
• The EER model uses arbitrarily user-defined data types for attribute domains (see Section 

3.3). 
• It supports all the concepts mentioned above. Thus, it possesses a high expressiveness. On 

the other hand, the extensions are conform to the ER model. 
• In contrast to many so-called 'semantic' data models, the EER model possesses a formal 

semantics [63-65]. This is very important, because data models without formal semantics 
imply query languages and languages for specifying integrity constraints and transactions 
which do not possess precisely defined semantics. 
Our approach starts from Chen's ER model [13]. Thus, the basic concepts are entity types, 

relationships types, and (data-valued) attributes. We extend this model by 
• type  construct ions in order to support specialization/generalization [59], 
• object -valued attributes, which allow a general form of aggregation, 
• mul t i va lued  attributes for describing association types, and 
• several structural  restrictions like cardinality numbers, key specifications, etc. 

In the following, we want to explain these concepts in more detail by modelling an ATW 
(air traffic world). 

3.1.1 Ent i ty  types E 
Similar objects with common properties are summarized to entity types. As in the ER 

model, entity types are graphically represented by rectangles. Fig. 2 shows the entity type 
PERSON. 

We formally express the semantics of entity types by a database state o- yielding for each 
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PERSON c, 

~ ' D a t e O f B i r t h  : d a t e ~  

Fig. 2. Entity type PERSON. 
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entity type E a set of current instances. Thus, o-(PERSON) represents the set of currently 
existing instances of type PERSON. tr(PERSON) can change in time, persons can be inserted 
into or removed from the database. 

Entities are abstract items and thus not printable. Only the properties of entities are 
printable, and these are represented by the values of their attributes. 

3.1.2 Attributes a 
Attributes describe the properties of an entity. Every attribute belongs to an entity type E 

and possesses a domain d of values. We denote this fact by a:E---~d. Each attribute a is 
graphically represented by an oval that is connected with the type (rectangle) E and contains 
a:d. Due to the nature of the domain d, we can distinguish several cases: 
• Data-valued attributes, if the domain of an attribute is a data type. This is the usual case 

in the ER  model. We can use as domains standard types like int or real as well as 
non-standard data types like point or addr. The latter ones must be specified at the data 
type component  (see Section 3.2). In Fig. 2, the entity type PERSON has the attributes 
Name (with the data type string), Te l#  (data type string), Address (data type addr),  and 
DateOfBirth (data type date). 

• Object-valued attributes, i.e. the attribute domain is an entity type. Consequently,  the 
attribute value is an instance of this type. In the E E R  diagram, object-valued attributes 
are denoted by a 'EF--' symbol together with a connecting arc to the domain type. 

• Both data- or object-valued attributes can be multivalued: An attribute value may be a set 
or a list of values of the corresponding domain. Considering Fig. 3, Nationality of 
PASSENGER is list- and data-valued, while PlaneCrew of NON-STOP-FLIGHT is set- and 
object-valued. In contrast to sets, an element may occur more than once in a list. 
Moreover ,  lists have their elements enumerated so that we can reference them by their 
position number.  Multivalued, data-valued attributes can be modelled in other ER  
approaches like [19, 21], too. 
Attr ibutes may be optional, i.e. there need not exist values for the attribute. Optional 

attributes may take the value 'unknown'.  For example, the telephone number (Tel#)  of a 
person may be unknown. Optionality is indicated by a circle. 

In comparison with other semantic data models, our notion of attribute supports the 
general form of aggregation (like in S H M + ,  TAXIS,  or SDM) completely since we can use 
data- and object-valued attributes together. Furthermore,  the combination of object- and 
multivalued attributes allows us to model complex structured entity types [66, 6, 7, 67]. Many 
other  E R  approaches do not directly support associations. However,  we have resolved this 
problem by the use of multi- and object-valued attributes. For example, we could have 
modelled an association TOURIST-PARTY over PASSENGER by an entity type TOURIST- 
PARTY with a set- and object-valued attribute Participants. 
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~ i AIRPORT 

t e T o ~ . ' ~  

Destination 

Start 

CONNECTION 

@ 

Fig. 3. R e l a t i o n s h i p  connects-directly. 

Let us have a brief look at the semantics of attributes. Each attribute a:E--~d is 
interpreted by a function o-(a) that yields for each instance (entity) of tr(E) a value of the 
attribute domain, i.e. a data value, an entity, or a set resp. list of them. 

3.1.3 Relationship types r(E 1 . . . . .  E , ) :  
Relationship types are the usual form of aggregation in ER  approaches. Relationship types 

are aggregations of several entity types E 1, . . . ,  E ,  (n/> 2). Thus, concrete entities of these 
types form relationships in the world to be modelled. Figure 3 presents a ternary relationship 
type (n = 3) connects-directly between AIRPORT (twice) and CONNECTION. Please notice 
that the entity type AIRPORT participates in this relationship twice. We can distinguish the 
different roles an airport plays in connects-directly by means of rolenames. Thus, one airport 
is the Start point of a connection, and the other one is the Destination. 
by means of rolenames. Thus, one airport is the Start point of a connection, and the other  
one is the Destination. 

The semantics of a relationship type r can be understood as a relation o-(r) C_ o-(E~) × • • • 
× tr(E n). Each relationship (instance) is a tuple of entities of corresponding types. 

Relationship types can also have attributes, like BookingDay of booked-for. However,  we 
only allow data-valued attributes because object-valued attributes should be modelled by 
additionally participating entity types. The semantics tr(a) of relationship attributes is 
directly carried on from the one of entity type attributes. 

Up to now we have extended the basic concepts of the ER model. Using these concepts, 
aggregation and association can be modelled, but no subset or ISA relationships known as 
specialization/generalization [59]. We introduce the concept of type construction for this 
purpose. 

3.1.4 Type construction 
A type construction can be regarded as a new classification of the entities from certain 

types. Starting with already defined entity types I k, (k = 1 . . . . .  n, n/> 1), called input types, 
the new output types Oj ( j  = 1 . . . . .  m, m t> 1) are constructed by classifying the entities of 
the input types newly in output types. Consider Fig. 4 where we present the general form of 
type construction. 
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input type 1 1 output type O 

input type I n f ]output  type O 

/ t 
Fig. 4. General form of type construction. 

At  the base line of the triangle, there are the already defined input types 11 . . . . .  I n 
(n/> 1). The types O1 . . . . .  O m (m >i 1), connected with the opposite point of the triangle, 
are the constructed output types. The following conditions must hold between the entities of 
the input and the output types of one type construction and for nonconstructed entity types: 

n m 
(i) U  (Ik)_z U 

k=l  j = t  
(ii) a(Op) n cr(Oq) = 0 for p ~ q 

(iii) ~r( Ep) n o-( E q) = ~ f o r  p ~ q, Ee, E q non-constructed. 
Condition (i) means that all entities of output types O r are also instances of input types I k, 

but not all entities of input types have to be instances of output types due to the inclusion. 
Consequently, the entities from the output types are not new entities, they already exist (in 
the input types), but will now be seen in a new context (given by one of the output types). 
Secondly, (ii) requires that the output types are disjoint; no entity (from any input type) may 
occur in several output types. Finally, we demand by (iii) all non-constructed entity types, 
i.e. entity types that are not output type of any type construction, to be disjoint. In other 
words, type construction provides the only possibility to model subset relationships. 

Given the above description of semantics, we now show the modelling of specializations 
and generalizations. Let us therefore consider Fig. 5. 

At first, a simple specialization PASSENGER of PERSON is defined. This is the case of 
one input type PERSON (n = 1) and one output type PASSENGER (m = 1). Considering (i) 
of above, we obtain the following semantic condition: 

or(PERSON) _D o-(PASSENGER), 

i.e. each passenger is a person, too. But the inverted direction does not hold. 
In the same way, we have specified another specialization STAFF-MEMBER of PERSON 

that formally satisfies o'(PERSON)_D o'(STAFF-MEMBER). Both constructed types PAS- 
SENGER and STAFF-MEMBER are independent of each other. Especially, a person can be 
a passenger as well as a staff member, i.e. o-(PASSENGER)n o ' (STAFF-MEMBER)= 0 
need not hold in general. 

To achieve this disjointness, we use a type construction with several output types. In this 
way, the disjoint specializations GROUND-STAFF-MEMBER and FLIGHT-STAFF- 
MEMBER of STAFF-MEMBER are modelled. Due to (i) and (ii), we obtain the following 
semantics: 

o-(STAFF-MEMBER) D o-(FLIGHT-STAFF-MEMBER) 
U o-(GROUND-STAFF-MEMBER),  

o- (FLIGHT-STAFF-MEMBER) n o- (GROUND-STAFF-MEMBER) = 
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GROUND 
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FLIGHT 
STAFF 

MEMBER 
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\ /  
PERSON 

PASSENGE! 

Fig. 5. Type constructions. 

This corresponds to the disjointness condition of [ l l ,  15]. 
Finally we show how to express generalizations using type constructions with several input 

types (n > 1, m = 1). For example, we would obtain a different effect if we altered the two 
specializations (PERSON to PASSENGER and PERSON to STAFF-MEMBER) to a generali- 
zation with the input types STAFF-MEMBER and PASSENGER and an output type 
PERSON: 

~(STAFF-MEMBER) U o-(PASSENGER) _D tT(PERSON) 

Now, we would only store persons that are either staff members or passengers. There are 
no other persons of interest. 

We see that the general concept of type construction covers the known data abstractions 
generalization or superclasses (n > 1, m = 1) and (possibly disjoint) specialization or sub- 
classes (n = 1, m i> 1). 

The view of seeing specialization/generalization as a type construction suggests two 
syntactic restrictions: 
(i) Every constructed entity type has to be the result of exactly one type construction. 

(ii) Every constructed type must not, directly or indirectly, be an input type of its own 
construction, i.e. the directed graph consisting of all entity types as nodes and type 
constructions as edges must be acyclic. 

While the second condition is generally requested by all semantic data models, the first 
one is sometimes omitted, as for instance in IFO and SDM. 

Strictly related to specialization/generalization (or type constructions in our terms) is the 
notion of inheritance. In the literature, an agreement is reached in the case of specializa- 
tions. Subtypes then inherit all the attributes from the supertype. Related to our EER 
model, each staff member inherits the attributes of PERSON, and each flight staff member 
the attributes of STAFF-MEMBER. Thus, we can refer to Name of PASSENGER or to 
DateOfBirth of FLIGHT-STAFF-MEMBER. This is the usual way of inheritance in semantic 
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data models like IFO or SDM. Of course, naming conflicts can occur. In this case, we have 
to use the corresponding (input) type names as prefix. This understanding of inheritance can 
also be used for several output types. 

But how about the general form of type construction, especially type constructions with 
several input types, which attributes are now inherited? SDM proposes to inherit the 
attributes common to all input types. However, attributes could have the same name, 
although they have different meanings (homonyms). Otherwise, if all the attributes of all 
input types are inherited, naming conflicts appear quite often. Particularly, synonyms in 
different input types lead to several attributes in output types having the same meaning. 

Therefore,  we do not offer inheritance in the case of several input types. However, we can 
use derived attributes (see later in this section) in order to carry on the attributes explicitly. In 
our opinion it is more advantageous to leave the specification of inheritance to the user. 

There are some further concepts that do not provide any modelling primitives but rather 
structural restrictions on the possible database contents. Thus, they form a special case of 
general integrity constraints (see Section 3.4). Their frequent use just as their close relation 
to modelling primitives advise us to offer explicit concepts with an explicit notation. 
• We can give object-valued attributes more semantics than rather yielding an entity (or a 

set resp. list of entities) of another type. Object-valued attributes establish references 
which may be rather loose or very close (Fig. 6). An example for the second case is the 
entity type MAINTENANCE-SHED. A MAINTENANCE-SHED may only exist as one of 
the Sheds of one unique AIRPORT and remains with this airport during the whole time it 
exists. We say every entity of type MAINTENANCE-SHED is dependent on the entity of 
type AIRPORT it is associated with. This kind of entity is also known as the concept of 
weak entity already presented in [13]. Our graphical notation for dependency is a broad 
connecting arrow ('El --~') from the dominant entity type to the dependent one. Dependen- 
cy has also consequences on the way dependent objects are identified. In general, object 
identity is modelled by key attributes as discussed later on in this section. Since dependent 
objects only exist in the context of their parent object it is sufficient to have a local key for 
identifying the dependent objects in their context. For example the attribute Name of 
MAINTENANCE-SHED identifies each maintenance shed within the set of all sheds 
belonging to one airport. This means different maintenance sheds may have the same 
name unless they do not belong to the same airport. For a global identification of a 

SHED * 7 

TOWN 

I 
Fig. 6. Different kinds of object-valued attributes. 
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dependent object, the dominating object, i.e. the values of its key attributes, must be 
specified additionally to the local key. 

Another consequence of dependency is that sets of dependent objects dominated by 
different entities are always disjoint. Disjointness may also be a desired property of 
non-dependent object-valued attributes. For example, the sets of airplanes of different 
maintenance sheds are disjoint, i.e. no airplane can be maintained at several sheds. This is 
expressed by an arrow ('i-3 "-~') between the object-valued attribute Airplanes of MAINTE- 
NANCE-SHED and the entity type AIRPLANE. 

Possibly non-disjoint and non-dependent object-valued attributes are finally described 
by a line instead of an arrow, as can be seen for the attribute SatelliteTown of AIRPORT. 
Here, the same town may be one of the satellite towns of different, neighbouring airports. 

With respect to dependency we require pure hierarchies. Thus, cycles are not allowed 
just as sharing of dependent types is not possible. These requirements are not necessary 
for 'normal'  object-valued attributes, which specify non-dependent references. 

Please notice the effect of dependent attributes on update propagation. If we want to 
insert an entity of a dependent type, we also have to update the corresponding attribute of 
an entity of the 'parent' type. Similarly, the deletion of an entity from the 'parent' type 
requires the deletion of all dependent entities from the 'child' types (cf. Section 3.5). 

• Non-multivalued attributes can be specified as keys. Key attributes are mandatory. Key 
attribute values identify entities in their types. For example, Name and DateOfBirth are 
the key attributes of PERSON, graphically marked by a broad dot ( 'e ' ) .  This means that 
different people must not have the same name and the same date of birth. Similar to 
dependency, object-valued key attributes must not form a cycle. It is important that only 
non-constructed entity types (that are not output of any type construction) can have keys. 
The entities in constructed types inherit their identity from the corresponding entity in the 
input types. 

We have a special effect for dependent types: As mentioned before, dependent entities 
are identified by their own key attributes and the ones of their parent entity. For example, 
several maintenance sheds may have the same name, provided they belong to different 
airports. Consequently, the key attributes of MAINTENANCE-SHED are composed of 
those of AIRPORT and its own ones. However, dependent entity types need not have any 
own key attributes, as it is in case of the entity type TIME-TABLE. 

By summarizing, non-constructed and non dependent entity types must have key 
attributes, whereas dependent entity types can have some, but constructed types must not 
have them. 

• Type constructions can be constrained to the semantics 

G ~r(lk)= L~ o-(Oj), 
k - t  j - I  

graphically denoted by a '= '  symbol inside the triangle. This means that every entity of an 
input type must occur in one of the output types. This allows us the specification of 
covered specializations known from IFO, ECR [19], or SDM. For example, STAFF- 
MEMBER is partitioned into GROUND-STAFF-MEMBER and FLIGHT-STAFF- 
MEMBER. 

• Finally we can specify derived information that is not explicitly stored, but can be 
computed from other stored information [19]. 

Example 1. We can compute the pilot of a non stop flight nsf, assuming (s)he is the first 
one in the plane crew list, by 

nsf.Pilot <-- nsf.PlaneCrew[1] 
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Please note that the attribute Pilot would not be stored at all; if we refer to it, it will 
automatically be computed corresponding to the above rule. We can use the full power of 
our  query language, presented in Section 3.3, for the specification of rules. 

Example 2. A more complex example computes the occupation of a non stop flight nsf by 
counting bookings: 

nsf.Occupation <-- cnt(seleet bf 
from bf in booked-for 
where bf.NON-STOP-FLIGHT = nsf) 

Derived attributes like Occupation are graphically denoted by a dotted line. 

The concept of derivation generally provides an easier access to information. Instead of 
explicitly computing the desired information by a query, we can simply refer to Occupa- 
tion of NSF. However ,  the computation is still done but now implicitly during the 
execution of the rule. Thus, the effect of derivation is very similar to the views in 
relational database systems. Indeed, derived attributes provide a more powerful tool for 
specifying views. Entity types, relationship types, and type constructions can be specified 
as derived as well. There are a lot of useful applications. 

A quite often but not explicitly defined relationship is flies between AIRLINE- 
COMPANY and NON-STOP-FLIGHT: A concrete instance holds iff an airplane company 
has chartered an airplane (via chartered) and this airplane is assigned to the non stop 
flight. This flies could have been defined derived. 

Automatic  or predicate-defined partitions, known from SDM, can be modelled by 
derived type constructions. In our example, we could model the specializations of 
STAFF-MEMBER into GROUND-STAFF-MEMBER and FLIGHT-STAFF-MEMBER as 
derived using the JobTitle attribute of STAFF-MEMBER. Thus, the job title 'Pilot' 
implies the membership to FLIGHT-STAFF-MEMBER, while the title 'Mechanic'  indi- 
cates a ground staff member,  and so on. 

Note that rules do not generate new objects but only further properties of existing 
objects, e.g. the property of being a FLIGHT-STAFF-MEMBER. Finally, derived attri- 
butes play an important role for inheritance in case of type constructions with several 
input types. As mentioned above, inheritance must here be specified explicitly. The use of 
rules enables us to rename attributes, to unify attributes from different input types, etc. 

3.2. Data types 

Data types constitute the domain of printable data in a database application. For instance, 
data types are used for the definition of attribute domains of entity or relationship types. 
But,  in our approach a data type is not only a collection of values. A data type is 
characterized also by the way these values are used. Therefore,  a data type consists of a set 
of values together with functions and relations defined on them. Values are instances of a 
certain data sort and the functions and relations are named by data operations and data 
predicates. 

The most simple data types are data sorts like nat, int, real (for natural, integer and 
decimal numbers,  resp.) together with data operations like + ,  * ,  etc. and data predicates 
like = ,  < ,  ~<, etc. These numerical types are examples of standard data types which are 
frequently used and therefore supported by our framework. We also include boolean values 
(data sort booi), single characters (data sort char), strings of characters (data sort string) 
together  with appropriate operations and predicates. The names of these data types and their 
operations are determined by a data type signature: 
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sorts nat, int, r e a l , . . .  
operations + : int x int--> in t ; . . .  
predicates < : int x in t ; . . .  

The semantics o- associates sets, functions and relations with the given names. But unlike the 
interpretation of (e.g.) entity and relationship types the semantics of data types does not 
change in time, but is fixed once for all database states, for example ~r(int):= 7/. 

In addition to these predefined standard data types, also application-dependent data types 
can be defined. In our example, data types like data, point, or line occur as attribute domains 
for the attributes DepartureDay of NON-STOP-FLIGHTs, Location of AIRPORT, resp. 
Route of NON-STOP-FLIGHT. 

In the literature, various styles for the description of data types are proposed. Among 
them are: 

(i) descriptive approaches, for instance, by means of algebraic equations [68, 69] which are 
quite implementation independent, 

(ii) constructive approaches, for instance by use of predefined type constructors [70, 71], or 
even 

(iii) programming language-like type definitions with procedures being very close to im- 
plementation. 

As an example for (i), we sketch the definition of the data types point and line, which 
consist of a data type signature together with a set of equations to define the meaning of 
operations and predicates. 

Example 3. 
sorts point, line 
operations make-point: real x real---> point; 

x-coord, y-coord: point--, real; 
make-line: point--, line; 
add-point: point x line--> line; 
point-dist: point x point--* real; 
length: line--> rea l ; . . .  

variables x, y: real; pl ,  p2: point; l l ,  12: line 
equations x-coord(make-point(x,y)) = x 

y-coord(make-point(x,y)) = y 
point-dist(pl,p2) = sqrt(exp (x-coord(pl) - x-coord(p2), 2) + 

exp (y-coord(p l ) -  y-coord(p2), 2)) 
length(make-line(pl)) = 0 
length(add-point(p2, makeline(pl)))= point-dist(pl, p2) 
length(add-point(p2, add-point(pl, l l ) ))= point-dist(p2,pl)+ 

length (add-point( p 1 ,l 1)) 

The operation sqrt computes the square root, exp stands for exponentiation, and + and < 
for the usual addition and comparison of decimal numbers. All are imported from the data 
type real. 

Our constructive approach to data type definitions is based on four data type constructors. 
These are the data type constructor set(( type))  to define sets of a certain (type),  l ist((type)) 
for lists, record((type~ ) , . . . ,  (type n)) for cartesian products, and bag(( type))  for multisets 
(or bags for short). The difference between sets and multisets is, that multisets can contain 
multiple occurrences of the same value. There are numerous operations and predicates 
associated with these constructed types. 
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For example, for every data type constructed by set((type)) we have the following 
operations and predicates with the usual semantics: 

Operations for set( ( t ype ) ) :  
cnt: set((type))---~ int; / *  counts the number of elements */  
insert: (type) x set( (type))---> set( ( t ype ) ) ;  
delete: (type) x set((type))---, set((type)); 
union: set((type)) x set( (type))---, set( (type)); 

Predicates for set( ( type ) ): 
is - empty: set( ( t ype )  ); 
in: (type) x s e t ( ( t y p e ) ) ;  
=: set((type)) z set( (type)); 

Other operations and predicates for other data type constructors will appear later in this 
section and will be explained there• 
All type constructors can be used in a totally orthogonal way, e.g. we allow 
record(set( int),list(. . .)), set(record(. . .)) ,  etc. 

As an example for the use of these data type constructors, we sketch a very simplified 
definition of the data type date. As usual, this data type is constructed as cartesian product of 
day, month, and year. This is described by use of the record-constructor. Implicitly 
associated projections operations _.i to select the ith component of a value of this type can 
then be used to define the meaning of projection operations day, month, and year. Based on 
these, further operations can be defined like monthdiff to compute the number of months 
between two dates. 

Example 4. 
sorts date--  record(int, int, int) 
operations day, month, year: date---> int; 

daydiff: date x date--> int; 
monthdiff: date × date--> int; 

predicates before: date × date; 
variables d, d l ,  d2: date; 
equations day(d) = 2.1 

month(d) = d.2 
year(d) = d.3 
monthdiff(dl,d2) = abs(12 * (year(dl) - year(d2)) + 

abs(month(dl) - month(d2)) 

Another class of operations not mentioned above are so-called aggregation functions as for 
example sum,  max,  rain, avg. These aggregates are defined for types which are constructed 
by list, bag, or set and yield as a result a single value of the argument type of the 
construction• In contrast to the operations mentioned earlier, aggregation functions require 
appropriate functions and predicates defined for the argument type, e.g. sum and avg need a 
+-operator, max and min need comparison predicates < or >. 

In principle, data types could be specified in a pure algebraic way without using explicit 
data type constructors. But, data type constructors are indispensible for determining the type 
of a query result, because, in general the result type is not specified explicitly in the 
conceptual schema• For example, the result type of a query may be something like 
bag(record(string, int)). The type of a query result determines which operations are allowed 
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on it. These are the predefined operations associated with the corresponding type con- 
structors. 

To support optional attributes and incomplete information via null values, there is a special 
value in every (interpretation of) a single data sort representing 'undefined' [63]. The 
predicate is null defined for every data type allows to test on definedness. 

Finally, we shortly discuss the role of data types in the conceptual modelling process: We 
allow suitable data types for every application; thus we are close to 'real world' in the names 
for data sorts and their operations and predicates. Our approach supports abstraction: single 
items stand for complex structures (e.g. variables or terms of sort circle, lines). Queries use 
data types as result items; thus entities can be 'observed' only by means of data types and 
(later we will see in more detail that) the structure of query results depends on the data type 
constructors. 

3.3. Queries 

The EER model which is presented in Section 3.1, provides powerful constructs for 
modelling real world information structures. This ensures that the relevant information 
about real world states can be mapped to database states in a natural way. Besides this also a 
powerful query language is indispensible for database modelling. It provides the necessary 
means to 'talk' about database states when specifying (static) integrity constraints (cf. Section 
3.4), derived information (cf. Section 3.1) and allowed dynamic database behaviour (cf. 
Section 4). 

Up to now a lot of ER query languages have already been developed. Nevertheless, we 
defined a new language because almost all of them are based upon different, specific variants 
of the ER model. Furthermore, only few of these languages possess a formal mathematical 
semantics. 

First proposals are CABLE [23] and [24]. They showed how the relationship concept can 
be used for avoiding the formulation of joins, which seems to be imperative but tiresome in 
relational query languages. On the other hand, both languages are of restricted expressive- 
ness. In the meantime, a great variety of more powerful languages exist. Starting with 
procedural languages [25, 26], more and more descriptive ones like GORDAS [27, 19] have 
been developed. In order to support easy query formulation, some approaches like E R R O L  
[72] try to give their language the flavour of natural language sentences. For the same 
purpose, some graphical approaches like HIQUEE [28], G Q L / E R  [29], or a graphical 
variant of GORDAS [73] have been proposed. Certain database browsers [74] can also be 
seen as query languages for ER models. Being less powerful than other approaches they are 
rather aimed at the class of casual users than at sophisticated ones. Finally, more recent 
approaches take into account further concepts extending the ER model. LAMBDA [75] 
allows the retrieval of structured documents, whereas DESPATH [76] supports subtypes and 
hierarchy relationships. CER-MoQL [77] is based upon an object-oriented extension of the 
ER model, and [66, 6, 78] present a language for geoscientific applications. 

Among the various database languages, SQL is probably the best known approach. It is 
the standard language in relational database systems and has successfully been adapted for 
NF 2 data models (cf. HDBL [79-81] or SQL/NF [82]). Thereby the language has gained 
more orthogonality by taking into account Date's critique [83]. 

We follow these approaches and propose an SQL-like query language for our EER model. 
Due to the rich expressiveness, we obtain a powerful, high-level, and completely orthogonal 
language. However, by describing the language, we have attached great importance to 
rigorous formal semantics [63-65, 84]. 

Our language supports all concepts of the EER model, e.g. relationships, object-valued 
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attributes, attributes of relationships, and type construction. Furthermore,  we have incorpo- 
rated concepts that are established in contemporary languages like arithmetic and aggregate 
functions or explicit control over null values and duplicates. Especially the handling of 
set-valued terms allows nesting and unnesting, known from the NF 2 model [85, 86], and a 
clean and sound use of aggregate functions. 

Analogous to relational SQL [87], our language uses a select-from-where block: 
select ( te rm 1 ) . . . .  , ( term n) 
from (var iablel)  in ( r a n g e l ) , . . . ,  (variablek) in (rangek) 
where ( formula)  

We recognize the basic concepts of SQL, namely: 
• a list of target terms ( term 1 ) , . . . ,  ( term n), which compute the desired information, 
• a qualifying ( formula) ,  and 
• a list of declarations, each one of the form (variable) in ( range) ,  declaring variables for 

their use in the terms or in the formula. 
But in contrast to SQL, we do without a group.by or having clause. This does not cause 

any restriction w.r.t, the functionality of the language, however,  it is of benefit to the 
orthogonali ty of the language. 

The formal semantics and nearly all language features are based on an E E R  calculus 
[63-65]. The calculus will not be explained here. Nevertheless, we emphasize all constructs 
of the language are defined on mathematically precise foundations. 

[84] presents a formal mapping of query language to the calculus. Let  us illustrate the 
syntax and informally the semantics by means of a simple query: 

Example 5. 'Airplanes that are not airworthy' 
distinct select a.PlaneModel 

from a in AIRPLANE 
where not a.Airworthy 

The target list contains one term a.piane Model applying the attribute PlaneModel to the 
variable a. The variable a itself is declared in the from-clause: a in AIRPLANE means that a 
is bound to the set of currently (in the state or) existing airplanes; we say the range of a is 
AIRPLANE. The built-in function distinct is used to suppress duplicates. If we omitted 
distinct, the result would contain duplicate plane models. The formula a.Airworthy is a 
bool-valued term which only selects the airworthy airplanes. 

Since the attributes PianeModel and Airworthy can clearly be related to the range 
AIRPLANE, we can omit the variable a in both terms, thus resulting in simply PianeModel 
and Airworthy. Fur thermore,  there is no need for explicitly introducing the variable 'a' by a 
declaration so that we can omit the part 'a in', too. 

We now summarize the rules for building terms: 
• Variables like a (of type AIRPLANE) or bf (of type booked-for) are the elementary form 

of terms. Every variable must be declared in an appropriate declaration, denoting a finite 
range (for the details see [65]) e.g. a in AIRPLANE or bf in booked-for, in the from-part. 

• By using variables x, we can build terms x.a if a is an attribute of an entity or relationship 
type and x has exactly this type. For example, a.PlaneModel is a correct term, but a.Name 
is not a syntactically correct term because Name is not an attribute of AIRPLANE. Please 
note that we are able to refer to relationship attributes. For example, bf.BookingDay 
yields the booking day of an instance of type booked-for, i.e. the day a passenger books a 
flight. Any object- or multivalued attribute can be used. Thus, a.DateOfMaintenance is a 
term yielding the list of dates of the airplane a. Concatenations defining access paths are 
also possible. Assuming Pilot is an object-valued attribute Pilot: NON-STOP- 
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FLIGHT--> PERSON, nsLPilot.Name computes the name of the pilot of the given flight 
nsf. 

• Having data-valued terms, data operations can be applied. Since nsf.Route is a term of the 
sort line, the length of such a route can be computed by lengtb(nsf.Route). Similarly, 
arithmetical operations like ' + '  or 'exp' ( 'power of') are applicable. 

• There  are a lot of built-in functions, distinct eliminates duplicates as shown above in 
Example 5. Furthermore,  special functions are offered to handle lists: [i] selects the ith 
element of a list, where the variable T can be bound to the set of currently used indices 
computed by ind. For example, a.DateOfMaintenance[1] computes the first date of 
maintenance of the airplane a, while ind(a.DateOfMaintenance) yields the set 
{1, 2, 3 . . . . .  k} of list indices (where k is equal to cnt(a.DateOfMaintenance)). Finally, cat, 
sum, rain, max, and avg are the usual aggregate functions. 

• Any subquery of the form select-from-where is a special kind of multivalued term. 
• Special concepts are related to the E E R  model, especially type construction and relation- 

ships. Having a variable x related to a relationship type, we can select the participant E i of 
a concrete relationship by x.E i. In this way, bf .NON-STOP-FLIGHT computes the flight 
of an instance of type booked-for. If Ei participates more than once in a relationship 
rolenames must be used to select the participant. Futhermore,  we can trail subset 
hierarchies given by type constructions. For example, sm.PERSON converts the staff 
member  sm into the person she/he really is (in the sense of type construction). Now, we 
can formulate sm.PERSON.Name in order to compute the name of this person. Similarly, 
sm.GROUND-STAFF-MEMBER converts the staff member sm into a ground staff mem- 
ber. However,  if the staff member is rather a flight staff member than rendering service on 
the ground, the result will be the null value 'undefined' (we have null values for object 
types, too). Please note that the first form, i.e. sm.PERSON, makes an implicit inheri- 
tance (explained later) explicit. 
We now present some applications of terms. The next example uses a subquery as a target 

term as well as a range. Thus, we obtain a nested query as known from the NF 2 model [86]: 

Example 6. 'For each plane model the set of  planes' 
select model, (select a.Plane# 

from a in AIRPLANE 
where a.PlaneModel = model) 

from model in distinct (select al.PlaneModel 
from a l  in AIRPLANE) 

Let  us recall the intuitive semantics given above. Thus, this query binds the variable model to 
the finite set of current airplane models, and computes for each of the models the bag of 
plane numbers belonging to it. The missing where formulas are assumed to be true. The 
result then looks like 

{{(modell,  {{nol .1 ,  no l .  2 . . . .  , nol.kl}}), (model:,  {{no2,1, n o 2 . 2 , . . .  , n o 2 . k 2 } } ) , . . .  }} 

As mentioned in Section 3.2, the result type of a query is constructed from defined data 
types using data type constructor instantiations. The result type of query 6 is given by 

bag(record(string, bag( record( int ) ) ) ) 

Please note that the variable model declared in the outer part is still valid in the inner 
select-from-where-block. However,  the variable a l  cannot be used outside its block. 

In this query, we have used a select.from.where term as the range for the variable model. 
Indeed,  besides entity and relationship types, we can use any multivalued term as a range, 
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especially subqueries. Fur thermore ,  ranges can be united by using the form (range1) 
union. . ,  union (ranger). In any case, every variable is bound to a finite value set. 

Example 7. 'Airline companies together with the names of their staff members' 
select ac.Name, sin.Name 
from sm in ac.Staff, ac in AIRLINE-COMPANY 

Here ,  we use the set-valued term ac.Staff, yielding the set of staff members  of an airline 
company,  as a range for the variable sm. However ,  the evaluation of this term depends on 
the variable ac. Thus,  both declarations must be seen together: We first bind ac to an airline 
company,  and then sm to a staff member  of this company.  

In this query,  we are confronted with ' inheri tance'  for the first time. We see that we can 
refer  to a staff member ' s  Name although Name is not an attribute of STAFF-MEMBER. This 
is possible because STAFF-MEMBER inherits the Name attribute f rom PERSON. In order to 
make  inheritance explicit, we can also use the long form sm.PERSON.Name applying the 
conversion PERSON:STAFF-MEMBER--~PERSON.  Inheritance happens even in case of 
several type constructions. Thus, GROUND-STAFF-MEMBER inherits the attributes of 
PERSON and STAFF-MEMBER. Please note that no inheritance occurs in the other 
direction: We have to explicitly state p .STAFF-MEMBER.JobTi t le  to refer to the job title of 
a person.  In a similar way, the participation in relationships is inherited in the direction of 
the type construction. 

Since the use of aggregate functions is different f rom that in SQL [87], we present  an 
example  for aggregates: 

Example 8. 'For each plane model the number of planes' 
select al.PlaneModel, cnt(select a2.Plane# 

from a2 in AIRPLANE 
where a2.PlaneModel = al .PlaneModei)  

from a l  in AIRPLANE 

In principle, this query is very similar to Example  6. However ,  here we compute  for each 
airplane a l  the plane model  and the number  of planes of the same model.  Consequently,  the 
result contains duplicates. The argument  of an aggregate function can be any multivalued 
term. Beside subqueries,  we can therefore use multivalued attributes as well. For example,  
cnt(a.DateOfMaintenance) computes  the number  of maintenances existing for the airplane a, 
as DateOtMaintenance is a list-valued attribute. 

The  next example  demonstrates  the use of formulas: 

Example 9. 'Names of  airline companies which have chartered only "new" airplanes' 
select ac.Name 
from ac in AIRLINE-COMPANY 
where foraU a in AIRPLANE: 

ac chartered a implies a.YearOfConstruction > 1985 

We can see the use of the quantifier foraU, of the standard predicate ' > ' ,  and of the 
relationship predicate chartered,  the last one requiring that the airline company has 
char tered the airplane a. There  are further possibilities for the construction of formulas: 
• Any boolean-valued term is also a formula. In Example  5 we have already used the term 

a.Airworthy in this way. 
• Besides the standard data predicates like ' = '  or ' > ' ,  we can also apply predicates that are 
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defined for corresponding user-defined data types. For example, circle-cut(cl,c2) expres- 
ses that two circles have points in common. 

• Relationship types can be used as predicates to 'join' the participating entity types. 
However ,  this is done without join equations known from the relational model. 

• There  are some predefined predicates like is null and in. The first one tests for the null 
value 'undefined' whereas the second one represents the element-of relation for sets, bags 
and lists. 

• By using the logical connectives and, or, not, implies, new formulas can be built. 
• Similarly, there are the well-known quantifiers exists (3)  and foraU (V), however in the 

form {existslforaU) (variable) in ( range) :  ( formula) .  
We allow an infix notation for binary predicates, no matter  whether they are data 

predicates, relationships or predefined. This increases the readability of formulas. However ,  
their usual, long prefix form can also be used, e.g. chartered(ac,a) or 
> (YearOfConstruction, 1980). 

Let us now study some more complex examples describing queries that occur quite often 
in the air traffic's world. 

Example 10. 'Every direct connection from Hamburg to London' 
select c.Fl ightType#,  c.OceupationRate 
from c in CONNECTION 
where exists apl  in AIRPORT, ap2 in AIRPORT, t l  in TOWN, t2 in TOWN: 

( t l .Name = 'Hamburg '  and t2.Name = 'London'  and 
t l  in apl.SateiliteTown and t2 in ap2.SatelliteTown and 
connects-directly(c, Star t :apl ,  Destination:ap2)) 

connects-directly is again a relationship predicate. Since AIRPORT participates twice, we 
have to use the rolenames Start and Destination to make the corresponding role of an airport 
in the query explicit. 

We now present some examples which make full use of aggregate functions to compute the 
number  of occurrences, maxima, percentages, etc. 

Example 11. 'All non stop flights that are booked up' 
select nsf.Flight# 
from nsf in NON-STOP-FLIGHT 
where sum(select a.NoOfSeats 

from a in AIRPLANE 
where a assigned-to nsf) = cnt(select pa 

from pa in PASSENGER 
where pa booked-for nsf) 

Example 12. 'The airline companies with the maximal number of agencies' 
select ac.Name 
from ac in AIRLINE-COMPANY 
where cnt(select apfrom ap in AIRPORT where ac has-agency ap) = 

max(cnt(select ap from ap in AIRPORT 
where exists ac in AIRLINE-COMPANY: ac has-agency ap)) 

In contrast to relational SQL our query language allows functional compositions of aggregate 
functions. The possibility to use subqueries in the output list of a query allows a structured 
output  of query results. Subqueries are allowed on every level of nesting. This enables an 
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easy way of grouping data in an orthogonal way and to avoid the less powerful and 
complicated group-by construct known from SQL. 

The purpose of this language is not only limited to the formulation of queries. We can also 
make use of it for the formulation of static and dynamic integrity constraints. These 
constraints will be discussed in the following sections. 

3.4. Constraints on database states 

One important requirement for a database schema is to be capable of describing the 
relevant information about the real world by some database state. Our EER model provides 
powerful modelling constructs for capturing real world information structures so that 
relevant information about real world states can be mapped to the database states in a 
natural way. But since an EER schema merely describes the structure, it does not say 
everything about: 

(a) Which database states correspond to possible real world states. 
So, for instance, our sample schema admits values for the LengthOfService attribute of 
STAFF-MEMBER exceeding the age of that PERSON (which is derivable from the 
DateOfBirth). 

(b) Which possible information is actually relevant for the application. 
For example, it is not clear from the sample schema which NON-STOP-FLIGHTs are 
actually stored. So it is possible to require every flight ever taking place to be stored or 
only those ones remaining to be scheduled in the future. 

(c) The way data concerning real world is mapped to a database state and vice versa. 
For example, the BookingDay of the booked-for relationship may refer to the day the 
passenger made her/his request for some flight or to the day the request was 
acknowledged by the airline company. 

Particularly (b) and (c) are a great source of faults and misunderstandings because 
different persons might have different interpretations of a database schema. For this reason, 
it is particularly important for conceptual design that the specification of database structures 
not only consists of the definition of possible database states but also of assertions to 
emphasize desired states. Usually, these assertions are called (static) integrity constraints. 

With the appearance of database systems with more powerful, descriptive and logic 
oriented data models and query languages, like relational database systems, it became 
apparent that descriptive specification of the desired database states was necessary. It was 
recognised that integrity constraints can be specified within the same notational framework. 
Consequently, it is commonly agreed upon that database integrity should be managed and 
ensured by the database management system itself [88, 89]. However, up to now there seems 
to be no database system providing full support of arbitrary integrity constraints. So the 
burden of ensuring database integrity is still left to the application programmer or the 
accidental database user. Nevertheless, it is well accepted that specification of integrity 
constraints is an important task of conceptual database design [90-94]. 

Most results on integrity constraints concern relational [95-97] and, as an offspring 
thereof, deductive databases [98-102]. Some key words in this area are key constraints, 
referential integrity, cardinality requirements, type integrity, and redundancy. In our frame- 
work, most of these constraint classes can directly be expressed as schema inherent 
constraints. Our data model directly supports primary keys. Referential integrity is captured 
by the concept of relationship and object-valued attributes. Type integrity is covered by the 
possibility of using arbitrary user-defined data types as attribute domains. Redundancy can 
be avoided by the concept of derived information. 

But although a large class of constraints can be expressed by means of our data model we 
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still need some mechanism for specifying further constraints. We therefore propose a 
language for specifying constraints is based on the query language presented in the previous 
section. A static constraint may be any closed formula allowed in the query language, i.e. 
any formula whose variables are bound by one of the variable quantifiers (exists or forall). 
The above requirement that the LengthOfServiee attribute of STAFF-MEMBER must not 
exceed the age of the corresponding PERSON is formulated as follows: 

Example 13. 'A staff member's LengthOfService cannot exceed h& /her age' 
forall sm in STAFF-MEMBER: 

sm.LengthOfService < (year(today) - year(sm.PERSON.DateOfBirth)) 

Let  us remind you that there are built in operations like today:--~ date yielding the current 
date and data operations like year:date--~ int. Please note, the above is a purely descriptive 
characterization of the desired database states. In this case it restricts the value of two 
attributes, namely LengthOfServiee of entity type STAFF-MEMBER and DateOfBirth of 
PERSON. Nothing is said about the way to achieve this formula being true in all database 
states. 

The set of all integrity constraints determines the admissible database states. A database 
state is admissible if and only if all (static) integrity constraints evaluate to true in the 
database state. The set of  all admissible states is denoted by ~c  which is a subset of the set of  
all possible states ~ allowed by the pure E E R  schema. 

In our model every attribute is optional by default, i.e. there need not exist values for the 
attribute. If one wants to exclude this optionality, this is done by an explicit constraint like 
forall p in PERSON: p.Name is not null which requires that a person's name is not allowed to 
be undefined. This kind of constraint also has a graphical representation in the diagram: solid 
lines stand for non-optional attributes and lines broken by a circle represent optional ones. 
For  instance, the attribute Te l#  is an optional attribute of PERSON. 

Another  class of explicit integrity constraints denoted in the E E R  diagram are car- 
dinalities. Each entity type E participating in a relationship type r can be restricted by 
cardinality numbers (min, max), min E ~0, max E ~ U { * }. A concrete entity of type E can 
participate in at least 'min' and at mgst 'max' relationships of type r. The asterisk (*)  
denotes infinitely many times, i.e. not upper bound. Some important cases quite often occur: 
• (0, *) is the default case meaning no restriction. A passenger, i.e. an instance of type 

PASSENGER, has-booked-for none, one or several non stop flights. 
• (1, *) is used to express mandatory memberships in relationship types. In the example 

every airline company must offer at least one connection, i.e. it must participate in at least 
one entry in the relationship type offers. 

• (0, 1) requires that an entity participates in at most one concrete relationship. For 
instance, every non stop flight has at most one airplane assignod-to it. 

• Finally, a connection belongs-to exactly one non stop flight due to the specification (1, 1). 
Multivalued attributes can also have cardinalities restricting the number of elements in the 

set resp. list. For example, the PlaneCrew of a NON-STOP-FLIGHT must consist of at least 
one person. Please notice the special effect resulting from the optionality of this attribute: 
there may be currently no crew, i.e. the crew is 'unknown';  however, if there exists a crew, it 
must possess at least one member.  

As mentioned above, our data model involves schema inherent constraints. For instance, 
specifying Name and DateOfBirth as key attributes for PERSON is equivalent to demanding: 

forall p l ,  p2 in PERSON: 
(pl .Name = p2.Name and pl.DateOfBirtb = p2.DateOfBirth) 
implies pl  = p2 
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The following example demonstrates that not only simple attributes can be used in 
constraints but also complex expressions involving data operations as well as attributes. 

Example 14. 'A flight staff member is at most 50 years old' 
forall fsm in FLIGHT-STAFF-MEMBER: 

(year(today) - year(fsm.STAFF-MEMBER.PERSON.DateOfBirth)) < = 50 

3.5. Elementary operations 

Up to now, we have described how the static structure of a database can be modelled. 
Using the concepts of our EER model, an EER diagram fixes the possible structure of 
objects and their interrelations in a dataphase. But, the specification of the static structure of 
a database by an EER diagram is only a first step in modelling a database. A database is not 
a dead, unchangeable read-only memory of objects, but an alive, often changing storage, 
where objects can be inserted, deleted or updated. It is clear that all these modifications 
have to regard the restrictions of the object structure specified by the EER diagram. This 
means more formally that each modification has to be a transition of a possible database 
state tr of ~ into another possible database state o-'. Such transitions of ~ x ~ can further 
be subdivided into elementary transitions, which only modify one database object and its 
consistent embedding in the database structure, and into complex transitions, which may be 
considered as sequences of elementary transitions. 

All elementary transitions are implicitly fixed by the specification of the static structure of 
a database. They can automatically be derived from an EER diagram and described by 
so-called elementary operations. 

These elementary operations are in turn composed of basic operations. Such basic 
operations describe the modification of exactly one database object. In contrast to elemen- 
tary operations, this local modification may cause a (temporary) violation of the database 
structure demanded by the EER diagram. All basic operations are also implicitly given for 
each object or relationship type. 

To summarize the different classes of update operations, we show below the hierarchy of 
operations: 

complex iperations 

elementary operations 
I 

basic operations 

application specific (see Section 4.3) 
scope: database-state 
schema-dependent generated 
scope: database-object and its consistent embedding 
schema-dependent generated 
scope: database-object 

Example 15 shows the signature of some of the most basic insert resp. delete operations for 
our running example. 

Example 15. For our running example, the signature of some of these basic insert resp. 
delete operations have the following form: 
(bl) basic-insert-entity-PERSON (Name: string, DateOfBirth: date):PERSON 

basic-delete-entity-PERSON (p: PERSON) 
(b2) basic-insert-relship-booked-for (pa: PASSENGER, 

nsf:NON-STOP-FLIGHT): booked-for 
basic-delete-relship-booked-for (bf: booked-for) 
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All insert operations are functions which yield as result a modified database state, and, 
additionally, a reference to the inserted instance (or object) of an entity or relationship type. 
All key attributes of an entity type are mandatory, and, therefore,  occur as formal 
parameters.  The other  attributes are optional and could be set by subsequent update 
operations (see below). 

All delete operations as well as the insertion of a relationship instance only require 
references to objects as actual parameters to denote the database objects which are relevant 
for the execution of this operation. 

In case of type constructions, already existing objects are inserted into resp. removed from 
the set of instances of an output entity type. 

Example 16. Examples of such basic operations are: 
(b3) basic-insert-construct-PERSON-STAFF-MEMBER (p: PERSON): STAFF-MEMBER 

basic-delete-construct-STAFF-MEMBER (sm: STAFF-MEMBER) 

At last, update operations are needed for the modification of attributes resp. object-valued 
attributes: 
(b4) basic-update-attr-PERSON.Address (p: PERSON, Address: addr) 

basic-update-attr-booked-for.PriceReduction (bf." booked-for, pricereduction: real) 
basic-update-objattr-NON-STOP-FLIGItT.Schedule(nsf: NON-STOP-FLIGHT, tt: 

TIME-TABLE) 

After  the manipulation of a single database object by a basic operation, the new database 
state may not be a possible one, i.e not a member of ~ .  In this case, additional 
manipulations, known as update propagations in the literature [103], are necessary to result 
in a possible database state. Minimal sequences of basic operations leading to a possible 
database state are the elementary operations. It depends on the structure of the database, 
specified by the E E R  diagram, which basic operations have to be contained in an elementary 
operation. Let us illustrate this by some examples: 

In our running example, each instance of type PERSON is identified by the two key 
attributes Name and DateOfBirth. Therefore,  insertion of a person means to check whether 
the key attribute values are unique, and to create an object of type PERSON with these key 
values. 

This insert operation becomes more complex, if an instance of a constructed entity type or 
of a dependent  entity type has to be inserted. For example, in case of a staff member,  it has 
to be ensured that this staff member already exists as person in the database. Otherwise, this 
person has to be inserted in a previous step. As STAFF-MEMBER is input type of a 
partition, it also has to be decided whether (s)he is a GROUND-STAFF-MEMBER or 
FLIGHT-STAFF-MEMBER. 

All entity types affected by an insert operation form a subgraph of the given E E R  
diagram. This subgraph exactly describes the scope of interest for this operation. Therefore ,  
we call it the propagation subgraph. In the first example, it only consists of the entity type 
PERSON. For the insertion of a STAFF-MEMBER it has the shape depicted in Fig. 7. 

The parameter  list of the corresponding elementary operation contains the reference to 
the person, to be specialized to a staff member,  and the decision how to partition: 

elem-insert-construct-PERSON-STAFF-MEMBER(p: PERSON, part: (IS-GSM, IS-FSM)) 

Besides elementary operations, read operations are provided to access single instances of 
an entity or relationship type. These read operations have as parameters key attributes for 
the identification of an instance of an entity type and yield as result a reference to an object: 
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Fig. 7. Propagation subgraph for STAFF-MEMBER 

fetch-entity-PERSON (name: string, DateOfBirth: date): PERSON 

In case of dependent entity types, the insertion of an instance of a dependent type implies 
an update of the corresponding attribute of the 'parent' type. For instance, each object of 
type TIME-TABLE belongs to a certain non stop flight. Therefore, elementary insert 
operations for object-valued attributes need the reference to a corresponding 'parent' object 
as parameter: 

elem-insert-objattr-TIME-TABLE (nsf: NON-STOP-FLIGHT) 

The corresponding propagation subgraph, describing the scope of interest for this insertion 
is depicted in Fig. 8. 

The execution of this insert operations consists of the creation of a new object of type 
TIME-TABLE, and an update of the attribute Schedule of the corresponding NON-STOP- 
FLIGHT (cf. (b4)). 

The effort for the deletion of a database object is similar to the effort in case of the 
insertion of a database object, because the context of the instance has to be updated, too, to 
yield a possible database state. This means, for example, that, if this instance participates in 
a relationship or is the value of an object-valued attribute of another database object, these 
memberships or references also have to be removed. Let us illustrate elementary delete 
operations by two examples: 

Deletion of a NON-STOP-FLIGHT means the deletion of an instance of this entity type 
together with its dependent object of type TIME-TABLE, and the deletion of participations 
of this non stop flight in the relationships belongs-to, assigned-to, and booked-for. The 
propagation subgraph for this operation can be found in Fig. 9. 

F o:s:oP   METABLE I 
Fig. 8. Propagation subgraph for component insertion. 
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Fig. 9. Propagation subgraph for deletion of a NON-STOP-FLIGHT. 

While the deletion of a non stop flight doesn't affect a lot of other instances in the 
database, the deletion of a person may have great influence on the current database state. As 
in real life, it depends on how active this person was which parts of the current database 
state have to be updated. For instance, if this person also was a ground staff member,  (s)he 
has to be removed from the staff list of an airport, its maintenance sheds, and possibly of 
airline companies. The corresponding propagation subgraph in Fig. 10 contains all entity and 
relationship types which possibly are affected. 

As mentioned in Section 3.1, all data-valued non-key attributes as well as non-dependent  
object-valued attributes are optional. They are not part of the update propagation operations 
of an elementary insert operation. They have to be set by separate elementary update 
operations. In case of atomic entity types, these update operations have the same signature 
as basic update operations (cf. (b4)). All dependent objects are only accessible by their 
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Fig. 10. Propagation subgraph for deletion of a PERSON. 
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parent objects. For example, operations to update the attribute values of a time table need 
the reference to the corresponding non-stop flight: 

elem-update-objattr-TIME-TABLE.ArrivalDay(nsf: NON-STOP-FLIGHT,arrivday: date) 

None of the elementary operations regard any cardinality constraint, which might be 
contained in an EER diagram. Cardinality constraints as well as other explicit integrity 
constraints have to be enforced during the execution of complex operations (cf. Section 4.3). 
This procedure yields the advantage that elementary operations do not contain cycles of 
sequences of basic operations, which usually is the main reason for the update propagation 
problem discussed in the literature (cf. [103]). In our case, it is possible to determine all 
relevant information for the execution of an operation in advance and to deliver it as actual 
parameters to an elementary operation. 

4. Modelling the database- Its dynamic behaviour and applications 

In conceptual database design not only the information structures but also the desired 
database behaviour must be specified. The way a database evolves is determined by the 
sequence of database states ~r0cr~r2cr3... the database runs through, also called evolution. 
Specifying the desired database behaviour can be done in different ways. One way is to 
restrict the possible state sequences to admissible ones by means of so-called temporal 
integrity constraints. Temporal constraints allow to decide whether a given database sequence 
is admissible or not but do not say anything about how to obtain such a state sequence. 
Another way to specify database behaviour is to model the relevant activities changing the 
real world by database actions changing the database. 

For conceptual database design we propose a combination of these two approaches. The 
distinction between temporal integrity constraints and actions allows action design to 
concentrate on the pure functionality of actions without taking into account whether the 
resulting state sequences are admissible. On the other hand admissibility can then be 
achieved by providing the database management system with a central integrity monitoring 
facility or by integrating constraints in database actions during further design steps after 
conceptual design. 

This chapter deals with the specification of temporal integrity constraints and database 
manipulations. For specifying temporal constraints we follow a descriptive, logic oriented 
approach based on temporal logic (Section 4.1). Sections 4.2 and 4.3 deal with the 
specification of database actions. In a similar way an EER diagram should reflect the 
relevant information structures of the application area, the modelled database modifications 
should be a reflection of the relevant activity structures. This requires appropriate modelling 
primitives for the design of database actions. On the one hand, it should be possible to 
model atomic real world activities in a descriptive way merely concentrating on the results of 
the activities than on low level database manipulations. On the other hand complex real 
world activities are composed of several atomic ones and hence require operational concepts 
for action modelling. We believe both approaches are justified in conceptual database design 
and present both a language for descriptive action specification based on pre/post conditions 
(Section 4.2) and a language for operational specification (Section 4.3) based on elementary 
operations (compare Section 3.5). 

4.1. Constraints on database evolutions 

The most simple class of constraints on database evolutions are static constraints. Static 
constraints allow any sequence of database states which do not violate the constraints. 
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However, in general admissibility of some state within some sequence also depends on 
earlier states in database evolution. We can subdivide the constraints resulting from such 
dependencies into transitional constraints expressing dependencies between successive states 
and the more general class of arbitrary temporal constraints to express dependencies on the 
whole history. This section mainly addresses the more general kind of constraints and 
discusses some relations to the other ones. 

Similar to static constraints, temporal constraints have different roles in database specifica- 
tions. So, we have constraints reflecting restrictions in the application area itself such as 'a 
FLIGHT-STAFF-MEMBER must work for some period as a copilot before she/he can 
become a pilot'. Other constraints arise from the intended meaning of stored data. So, for 
example, it is not clear from our sample EER schema whether the DateOfMaintenanee 
attribute of an AIRPLANE refers to the previous maintenance dates or to the dates of the 
following maintenances. As already pointed out for static constraints, it is very important to 
resolve such ambiguities. In this case, we can do this, for example, by adding the temporal 
constraint 'after a maintenancel DateOfMaintenanee contains the date of that maintenance'.  
Another  role of temporal constraints is to assure that historical information stored in the 
database corresponds to the actual evolution of the database. So for example in our air 
traffic database the BookingDay of a booked-for relationship has to correspond to the date 
the booking actually took place, i.e. the date the relationship was inserted. 

Some typical temporal constraints are listed in the following example. 

Example 17. 
(1) The LengthOfService of a GROUND-STAFF-MEMBER may not decrease. 
(2) The Miles of an AIRPLANE may not decrease. 
(3) An AIRPLANE must sometime be assigned to a NON-STOP-FLIGHT. 
(4) A NON-STOP-FLIGHT must have an AIRPLANE assigned to it before it can take 

place. 
(5) An AIRPLANE must be maintained at least every 6 months, i.e. before the maximum 

date in the set DateOfMaintenanee is more than 6 months ago. 
(6) An AIRPLANE must be maintained at least every 500 000 miles, i.e. before its current 

Miles differ more than 500 000 from the Miles value at the last maintenance. 
(7) During the last two weeks before the departure of a flight, a deposit of 100 DM must 

exist for every booking. 
(8) During the last week before the departure of a flight, the full price must be paid for 

every booking. 
(9) A new PASSENGER, i.e. a passenger booking his/her first flight, must pay the full 

price at the booking day. 
(10) An AIRPLANE's DateOfMaintenance contains the dates of its p a s t  maintenances. 
(11) A NON-STOP-FLIGHT must not be deleted from the database. 

There have been proposed a variety of styles for the specification of admissible database 
behaviour. Important directions in this area are transitional assertions [47-49] and Petri net 
approaches [43,104, 5,105]. Another important direction is to specify long term behaviour 
in a descriptive, logic oriented way. The work in this direction was much inspired by the 
approaches in [106-108] proposing modal and temporal logic for program construction and 
verification. To this area belong action logic and modal logic proposed in [38, 36, 37, 50], 
obligations/permissions [109] and our approach which is along the lines of 
[35, 51,33, 52,110, 111,53, 54, 32, 58] using a temporal logic framework for specifying and 
monitoring temporal constraints. 

Our language for specifying temporal constraints is a temporal extension of the language 
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for static constraints presented in Section 3.4. In addition to usual constructs to build up 
formulas, we have so-called temporal connectives like the nexttime operator  next, the 
unbounded temporal  quantifications always and sometime as well as the bounded quantifica- 
tions always. . ,  before. . ,  and sometime..,  before . . . .  If such a formula contains free 
variables it must be preceded by a variable declaration part var ( (va r id ) :  
( t y p e ) )  . . . .  , ( ( v a r i d ) : ( t y p e ) )  for the free variables. Free variables are assumed to be 
implicitly universally quantified. We do not allow any explicit variable quantification in front 
of a formula containing temporal  connectives. 

Informally speaking, an always formula is valid for a state sequence if the subformula 
preceded by always is valid in every state. To be exact, the subformula must be valid in any 
suffix of the state sequence, i.e. in any subsequence beginning at any state. This is because 
the subformula in turn may be a temporal formula and hence must be evaluated on state 
sequences. Analogously, we can say a sometime formula is valid if the subformula preceded 
by sometime is valid in some suffix of the sequence. Similarly, validity of the other temporal  
connectives can be informally defined. 

We should waste some words about the meaning of (implicit) universal variable quantifica- 
tion in the context of temporal  logic. Universal quantification means the formula must 
become valid for all objects of the corresponding type during their lifetime, i.e. between their 
insertion and deletion. In this context, a formulation like ' . . . t h e  first s t a t e . . . '  reads as 
' . . .  the first state the referenced objects exist . . . '  and not ' . . .  the first state the database 
ex i s t s . . . ' .  

Our  language for temporal constraints contains the language for static constraints as a 
sublanguage. But note that formulations of static constraints in this sublanguage (static 
formulas) have another  meaning when interpreted as constraints on database evolutions. 
Such formulas are already valid for a state sequence iff they are valid for the first state. 
Formulas without any temporal  operator  are valid if they are valid in the first state (i.e. tr0) 
of the corresponding state sequence. Static constraints however must be valid in every state 
of a state sequence. In formulations of temporal constraints, this property must explicitly be 
expressed in the formula. Thus a temporal logic formulation of a static constraint has the 
form always (static formula) .  As an example, we formulate constraint (7) of Example 17 in 
our  language for temporal  constraints: 

Example 18. 'During the last two weeks before the departure of  the flight a deposit of  100 DM 
must exist for every booking' 

var  (bf: booked-for) 
always (daydiff(bf.NON-STOP-FLIGHT.Schedule.DepartureDay, today) < 14 

implies bf.Account I> 100.0) 

To illustrate further temporal  connectives we continue with an alternative formulation of this 
constraint. 

Example 19. 
var  (bf : booked-for) 
( s o m e t i m e  bf.Account ~> 100.0 
b e f o r e  daydiff(bf.NON-STOP-FLIGHT.Schedule.DepartureDay, today) < 14) 

o r  (bf.Account/> 100.0) 

Note,  that sometime.. ,  before. . ,  is one dyadic temporal connective. The constraint is 
satisfied if a deposit is paid before the deadline (14 days before the departure) or if it is paid 
when booking the flight (which is also possible after the deadline). 
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If it is sure that no passenger will ever get her/his  money back, which certainly is, this 
formula is equivalent to the formula in Example 18. 

Example 19 is a nice illustration of the fact that temporal logic formulations of static 
constraints can occasionally be monitored more efficiently than the formulations as static 
constraints. For the second formulation of the booking constraint, only those entries in 
booked-for must be monitored which still don't  have fulfilled the sometime condition whereas 
the formulation as static constraint requires all entries to be monitored. 

Also transitional constraints can be expressed in this temporal framework. This can be 
done using the temporal operator  next which relates successive database states. The temporal 
logic formulation of transitional constraints has the following form: 

always( ( static formula 1) implies next(static formula 2))  

We now illustrate the meaning of nested temporal formulas: We will do this by stepwise 
elaborating the temporal logic formulation of constraint (6) in Example 17 ( 'An AIRPLANE 
must be maintained at least every 500 000 miles'). We can reformulate this constraint as: 

'whenever  an airplane is released from maintenance in the next state, it must sometime have 
another  maintenance before it will have flown another 500 000 miles'. 

In ' temporal pseudo code' this can be formulated as follows: 

Example 20. 
var (a : AIRPLANE), (m : integer) 
always (Airplane a released from maintenance in the next state with a.Miles = m 

implies 
after release another maintenance of a before a.Miles > m + 500 000) 

One might wonder why a constraint only imposing restrictions on the behaviour of airplanes 
needs a second variable m of type integer. The reason is that the current value of the 
attribute a.Miles must be compared with the value at the last maintenance. The only way to 
do this in temporal logic is to 'bind' the old value to an additional variable and to compare in 
the subsequent the current value with that variable. 

Filling in the unspecified parts of our constraint leads to the complete temporal logic 
formulation in Example 21. We assume to have a predefined predicate in-maintenance for 
extracting from a database state whether an airplane is currently maintained. 

Example 21. 
var (a : AIRPLANE)(m : integer) 
always((in.maintenance(a) and m = a.Miles and not next in-maintenance(a)) 

implies 
next (sometime in-maintenance(a) before a.Miles > m + 500 000)) 

If we had designed AIRPLANE to contain an Attribute for string the mileage at the last 
maintenance this restriction could also be templated as a static constraint saying that the 
current value of Miles must not exceed this historical value by more than 500 000 miles. In 
this case, however, another dynamic constraint was necessary to ensure that the historical 
mileage corresponds to the mileage at the last maintenance. 

Another  interesting example is constraint (11) in Example 17. It says NON-STOP- 
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FLIGHTs  must not be deleted. A first idea to formulate this constraint could be the formula: 

var (nsf: NON-STOP-FLIGHT) 
always (exists nsf' in NON-STOP-FLIGHT: ns r  = nsf) 

But remember  that formulas are evaluated only during the lifetime of the referenced 
objects. Thus the above formula states, that an nsf' must exist as long as nsf exists. This is of 
course always true; we only need to define nsf' to be identical to nsf. However,  for detecting 
violations of the constraint we have to check whether nsf is deleted. This is not possible if the 
NON-STOP-FLIGHTs are referred to in the formula itself. For giving a correct formulation 
of the constraint we exploit the property that object keys provide a unique, state in- 
dependent  object identification. The key of the object class NON-STOP-FLIGHT consists of 
the single attribute Flight#. State independent object identification by keys has the effect 
that NON-STOP-FLIGHTs with the same Flight# in different states are all the same object. 
For  ensuring that no flight is ever deleted we only have to assure that after its insertion 
always a flight with the same Flight# exists. 

Example 22. 
'NON-STOP-FLIGHTs must not be deleted.' 
var (key : string) 
always ((exists nsf in NON-STOP-FLIGHT: 

nsf.Flight# = key) 
implies 
always (exists nsf in NON-STOP-FLIGHT: 

nsf.Flight# = key) 
) 

Tempora l  constraints can also be represented graphically by some kind of finite state 
automata.  Such automata are called transition graphs and can be automatically derived from 
the temporal  logic formulations of constraints. Let  us illustrate this by the constraint 'An 
airplane must sometime be maintained' which has the following temporal logic formulation: 
sometime in-maintenance(a). During database evolution we can distinguish two different 
situations for an AIRPLANE. Either the maintenance has already taken place or it has not. 
An AIRPLANE a switches in some database state from the latter situation to the former if 
the non-temporal  formula in-maintenance(a) is true. This can be generalized for arbitrary 
temporal  logic formulas. For every temporal  formula there can be distinguished a finite set of 
different situations each of which characterized by a temporal formula to become valid in the 
subsequent future and transitions between these situations characterized by non-temporal  
formulas. So, temporal  constraints can be represented equivalently by some kind of finite 
state machines, so-called transition graphs, with non-temporal formulas as transition condi- 
tions [54, 58]. In fact transition graphs are the basic tool for monitoring temporal  constraints 
at database runtime. 

4.2. Descriptive specification of  database transactions 

The dynamic evolution of a database is induced by a sequence of actions modifying the 
database contents. In the database area, such actions are called transactions. Database 
transactions are integrity preserving transitions between database states. This means, that for 
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a given transaction t the semantics I[t]] is a relation 

[ [ t l l c~  × ~  . 
c c 

There  are different paradigms to describe database state transitions in a data model. For 
early design steps, one can use a logic-oriented, descriptive style which describes the effects 
of a transaction in an abstract manner. Typically, descriptive specifications have as formal 
semantics the set of all functions satisfying the given abstract description. A descriptive 
formalisms using pre and postconditions will be presented in this section. If the database 
designer wants for fix one determined state transition function, s(he) can use an operational 
style of describing transactions as presented in the next Section 4.3. 

Several frameworks for descriptive transaction specification are proposed in the related 
literature. If we look at a database state as a value of a complex data type, we can use 
algebraic specification of abstract data types to specify database transactions, too. In this 
description framework a transaction is handled as a function on complex values [112-116]. 
Besides the problem of correctly specifying functions on complex structured domains as 
database states typically are, this approach neglects the logic-oriented view on database 
states evolved for the discussion of queries and constraints. 

The framework of pre- and postconditions [30, 31] states for each transaction a precondi- 
tion evaluated in the current state and a postcondition which must be valid in the state 
resulting from the transaction execution. As proposed by [30, 31], we allow several pre- and 
postconditions for one transaction to structure the specification while distinguishing several 
situations by different preconditions. Additionally, we can give an enabling condition to 
restrict the states where the execution of the transaction is allowed. 

A transaction specification has the general form: 

transaction (name)  ( (parameters)) :  
[var (variables);] 
[on (enabling condition);]  
( pre (precondit ion)  ; 
post (postcondit ion);} + 

where the last two syntactic categories can be repeated to have a list of (precondit ion)s  and 
(postcondit ion)s  for one transaction. All three conditions are formulas of the E E R  query 
language already used to describe static integrity constraints in Section 3.4. The introduced 
(variables) and formal (parameters)  can occur free in these conditions. The newly 
introduced variables are implicitly universally quantified for the pre- and postconditions. The 
var and on clauses are optional. 

To illustrate the use of pre- and postconditions, we look at a few examples for descriptive 
transaction specifications. The first modelled transaction is the transaction DeleteAirplane 
which removes an airplane from the database. 

Example 23. 
transaction DeleteAirplane (plane#: string): 
pre true; 
post not exists a in AIRPLANE: a.Airplane# = plane#; 

For the transaction DeleteAirplane we simply state that after the execution of the transaction 
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there does not exist an airplane with the key value plane# anymore. We have no enabling 
condition; and as a precondition the formula true. The parameter plane# is used inside the 
postcondition like a free variable of type string. 

Please note two features (or problems) of using pre- and postconditions for transaction 
specification: Firstly, additional changes necessary for maintaining database integrity are not 
specified explicitly. For example, we may have to update the object-valued attributes and 
relationships involving the type AIRPLANE to guarantee integrity. Secondly, the transaction 
specification describes the desired changes only. From a logical point of view, we do not 
specify what happens to database elements not mentioned explicitly in the conditions. 

Both effects arise due to the fact that we want to describe the desired database changes 
only without worrying on (desired or undesired) side effects. We have two implicit rules to 
handle this situation: 

The consistency rule is the implicit rule that each transaction has to obey the integrity 
constraints [31]. 
The frame rule is the implicit rule that a transaction effect should be somehow minimal in 
terms of changed information [31,117]. 

In the following, we assume that our descriptive specifications are used as verification 
conditions for implementing transactions only. A transaction is correct w.r.t, such a 
verification condition if it satisfies the given conditions - even if it additionally produces a lot 
of junk. Therefore, we do not worry about frame rules. For using such specifications for 
example also for rapid prototyping, we would have to find a mechanism to support the 
generation of suitable frame rules. 

As an example for the use of the enabling condition, we give a refinement of the 
transaction specification DeleteAirplane additionally forbidding the deletion of an airplane 
while there are still bookings for future flights with this airplane. 

Example 24. 
transaction DeleteAirplane(plane# : string): 
on not  exists nsf in NON-STOP-FLIGHT: 

(exists a in AIRPLANE: a.Airplane# = plane# and 
assigned-to(a,nsf) 

and  nsf.Occnpation > 0 
and  daydiff(nsf.Schedule.Arrivalday, today) > 0) 

pre  true; 

pos t  not  exists a in AIRPLANE:a.Airplane# = plane#; 

The introduction of explicit enabling conditions allows to distinguish two different 
situations appearing in transaction design. The first situation is that a transaction should have 
no effect in several cases, i.e. the database state remains unchanged after the transaction. 
This is modelled by the cases where no precondition is valid, or by a postcondition true 
(assuming a suitable frame rule!). The other case is that a transaction is undefined under 
certain circumstances which is expressed by the use of enabling conditions. Of course, that 
can be modelled by a postcondition false, too, but we prefer to make this important case 
explicitly modelled by special language features. 

The semantics of a transaction specification with fixed parameter values is a relation 
between admissible database states, i.e. it describes for a given current database state the set 
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of transitions not violating the transaction specification. A comprehensive discussion of the 
semantics of pre- and postconditions as transaction specification can be found in [32,118]. 
For a given state tr in ~c  and a given substitution of the formal parameters with values, the 
semantics of a transaction specification can be sketched as follows: 

A transaction is applicable in a state o- iff there exists a substitution of the free variables 
with current values or objects in tr such that the enabling conditions becomes valid in tr. 
For a given transaction t, the subset 2enableO(t ) C E C denotes the set of states where t is 
enabled. 

A transition from state tr to tr' is correct w.r.t, a transaction specification iff for all 
substitutions of the free variables with current values or objects in tr E E enableO(t ) the 
validity of the precondition in tr implies the validity of the postcondition in tr'. 

As mentioned before, the action specifications and the behaviour specifications by 
temporal integrity constraints are complementary specifications of the same structures, 
namely the desired database state sequences. To bring both specification techniques to- 
gether, we can interpret action specifications using pre- and postconditions as temporal logic 
specifications replacing the next operator by a set of action-specific next operators. This is 
similar to introducing action modalities like in [37, 38]. The semantics of the next operator is 
then equivalent to the disjunction of the action-specific next operators. These relations 
between the specification formalisms can be used to prove consistency and completeness of 
combined specifications (see [58] for first ideas in this direction). 

4.3. Operational description of database transactions 

The preceding section presented a language following a descriptive, logic-oriented style for 
the specification of database transactions. The main characteristics of descriptive specifica- 
tions is that they only determine the intended effect of a transaction without prescribing how 
this effect is achieved. Therefore, descriptive specifications are a suitable means for early 
design steps to describe the dynamic behaviour of a database in an abstract, application- 
oriented manner. But, at the end of the design process, an executable, system-oriented 
description of database transactions is required to yield an efficient realization of a database 
application system. In addition, an executable specification of database transactions facili- 
tates a rapid prototyping of the specification and supports a database designer to compare 
the specified dynamic behaviour with her/his intention. 

In this section, we present a language for an operational, executable style of describing 
database transactions t. This enables a database designer to fix a determined state transition 
function ~t~: ~c--* ~c  for each desired database transaction. This language forms a subset of 
a usual database programming language (cf. [40, 45]), as it focusses on database aspects, but 
neglects the support of the description of a sophisticated user dialogue. 

It is a procedural language, containing assignment statements, procedure calls and the 
usual control structures like if-then-else, while, for, repeat as main language constructs to 
describe the control flow. Data-valued variables can be declared to keep values of attributes 
or as auxiliary variables. Object-valued (single- or set-valued) variables can be introduced to 
store references to database objects. These (sets of) references can be retrieved from the 
current database by appropriate queries. 

The language is based on the framework of elementary operations which automatically 
guarantees all model inherent integrity constraints to be fulfilled. (cf. Section 3.5). They are 
the basic constituents of complex actions, i.e. procedures describing the effect of database 
transactions in a deterministic, executable style. As complex actions change the database 
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only by means of elementary operations, it is guaranteed that they describe transitions from 
into ~ .  But preservation of explicit integrity constraints is not ensured. 

In order to ensure that the execution of a complex action is also a transition of ~c into 
c, i.e. that all explicit integrity constraints are preserved, additional operations are needed. 

One possibility is to integrate appropriate code into the action specification during action 
design. The other possibility is to ensure integrity by means of an additional integrity 
monitor. Its task is to check after action execution whether explicit static or temporal 
integrity constraints have been violated. If the monitor detects a violation, the complex 
action is rejected and the database is rolled back to the previous state. In this case no further 
design activity is necessary for guaranteeing integrity. 

Let us illustrate now the language by an example. It is an operational description of the 
transaction specified by pre-/post-condition in the previous section (Example 24). 

The example describes the deletion of an airplane, which should be forbidden if there are 
still bookings for future flights with this airplane: 

Example 25. 
transaction DeleteAirplane (plane# :string) 

objects a : AIRPLANE 
flights : set of NON-STOP-FLIGHT; 

begin 
a := fetch-entity-AIRPLANE (plane #);  
if defined (a) then 

/* an airplane a with the number 'plane#' exists */ 
flights := (select nsf 

from NON-STOP-FLIGHT 
where assigned-to (a, nsf) and 

nsf.Occupation > 0 and 
daydiff (nsf.Schedule.ArrivalDay, today) > 0); 

if flights = { } then 
elem-delete-entity-AIRPLANE(a) 

else 
error-message ('still bookings for flights with this airplane') 

end 
else 

error-message ('airplane does not exist') 
end 

end 

The transaction contains two object variables. The variable a is used to keep a reference to 
the airplane. It is retrieved by the read operation fetch-entity-AIRPLANE with the values of 
all key attributes as parameters. The variable flights is an object- and set-valued variable to 
store the result of an object-valued query which yields all non-stop flights which are intended 
to use the current airplane. The elementary operation elem-delete-entity-AIRPLANE deletes 
the airplane and removes this instance from all participations within corresponding relation- 
ships or object-valued attributes. At the end of the execution of the whole complex action, it 
is checked whether any integrity constraint has been violated. For instance, if the airplane to 
be deleted is the last airplane in the FleetOfAircraft of an airplane company, the whole 
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complex action is rejected because of the cardinality constraint set(l, *) at the attribute 
FleetOfAircraft at AIRPLANE-COMPANY. 

5. Conclusions and future work 

The goal of this paper was to present a uniform framework for specifying all relevant 
aspects of a conceptual database schema, and to explain how these heterogeneous structures 
can be integrated. We presented a conceptual data model which is capable of tackling these 
tasks. We showed its pragmatics and demonstrated its appropriateness for database model- 
ling by discussing an extensive sample application. 

Database design has to deal with increasingly complex structures and must take into 
account different aspects of databases. Apart from modelling the static structure, database 
dynamics has to be modelled, too. To reduce the complexity of this modelling task, there 
have been made a lot of efforts for structuring the design process. In proposed database 
design life cycle models, conceptual design is the most demanding phase since its task is to 
yield the first formal description of the application. This description is formulated in some 
conceptual data model. In contrast to traditional approaches, our conceptual model incorpo- 
rates static as well as dynamic aspects in a uniform semantical framework. Its static parts 
comprise the specification of data types used as domains for attributes and the specification 
of object structures based on an extended Entity-Relationship model. 

Database dynamics is modelled by two complementary approaches. Temporal integrity 
constraints restrict possible database state sequences to admissible ones whereas the possible 
database manipulations are modelled by database (trans)actions. For the specification of 
temporal constraints we propose a temporal logic as specification language. For database 
(trans)actions we discuss two different approaches. The first one describes (trans)actions in a 
descriptive manner based on pre-/post-conditions. The second one allows a procedural 
action modelling by composing complex operations of so-called elementary ones. Elemen- 
tary operations are the minimal database changes which respect all schema inherent integrity 
constraints. They are implicitly specified with the specification of the static part of a database 
and, therefore, can automatically be generated from this description of the static part. 

The central link between these components is a powerful query language for the EER 
model. This language is the basis for specifying static and temporal integrity constraints as 
well as database transactions. 

The presented conceptual data model is provided with a formal mathematical semantics, 
which has been described elsewhere [65, 58]. Here, we concentrated on pragmatic aspects of 
our data model. 

Nevertheless, let us make some remarks on the syntactical and semantical integration of 
the various design components. Both the data type component and the object component 
define structures (types) on which certain functions and predicates are defined. For example, 
the data type component may contain a function sqrt yielding the square root of a real 
number or a predicate ~< on integers. Similarly, the object component may contain an 
object type NON-STOP-FLIGHT with a function Price yielding the price of a flight, a 
function Schedule yielding the TIME-TABLE for the argument NON-STOP-FLIGHT, and 
for instance a predicate belongs-to which is defined on NON-STOP-FLIGHTs and CON- 
NECTIONs. 

Usually, these functions and predicates are called the database s ignature.  In combination 
with a query language they are the only way to access the contents of a database. 

The syntactical difference between the two components is that functions and predicates in 
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the data type component may only involve data types whereas a function or predicate 
defined in the object component may refer to object types as well as to data types. In fact, 
functions yielding instances of a data type as for example Name are the only way for an 
external (e.g. printable) representation of the properties of an object. 

The main differences between the data type and object component are on the semantics 
level. The semantics of the data type component is fixed for the whole life time of the 
database, i.e. the sets of instances of the data types as well as the meaning of the functions 
and predicates is fixed for all the time. 

This is not the case for the object component. On the one hand the domain of an object 
type may change, i.e. objects get inserted or deleted. On the other hand the meaning of the 
functions and predicates may change in time, e.g. the Price of a NON-STOP-FLIGHT may 
change. In other words, a database usually has different states. The instances of an object 
type are abstract entities with a state independent identity (they change their properties but 
not their identity). 

The semantics of the remaining parts of a specification, i.e. static integrity constraints, the 
evolution component and the action component is defined in terms of the semantics of 
database states. Static integrity constraints are specified in form of first order formulas over 
the database signature. Based on the semantics of functions and predicates, the semantics of 
first order formulas can be defined as usual. The admissible database states are then those 
ones which satisfy all static integrity constraints. In the evolution component the allowed 
database behaviour is specified by temporal integrity constraints. Temporal constraints are 
formulated in a temporal logic extension of the language for static constraints. The 
semantical domain for our temporal logic is the set of all finite and infinite database state 
sequences. The semantics of temporal formulas is defined by interpreting the temporal logic 
operators by appropriate quantifications over the states in the state sequences. 

Similarly the pre- and post-conditions characterizing the descriptive specification of 
database transactions can be evaluated in successive database states. Pre- and post- 
conditions characterize all pairs of states whose first component fulfills the pre-condition and 
whose second component provides the post-condition. This relation determines the valid 
state transitions according to a specification. Note, this view point basically relies on the fact 
that a database signature consists of a couple of functions and predicates and on the strict 
distinction between data type and object component. 

More formally speaking we have the following hierarchies of logics and models: 
- The semantics of the datatype component is defined by an algebra [68]. 
- The semantics of the object component is defined by the set of all database states. A 

database state is an algebra containing a finite interpretation structure for the object 
component on the one hand and additionally the algebra for the datatype component 
[119, 63, 65]. The meaning of the query language S Q L / E E R  and the language for static 
constraints is then given in the usual way interpreting them as formulas of a predicate 
calculus. 

- The semantics of temporal logic is defined on sequences of finite and infinite database 
states as described formally in [32, 58]. 

- The semantics of descriptive action specifications can be found in [32]. It is defined on 
database state transitions, i.e., on pairs of successive database states. 
The semantics of the operational action specification cannot be completely formalized in 

terms of the semantics at the object and data type component. Therefore in [46] an 
operational semantics based on graph grammars is proposed. 

The conceptual data model presented in this paper was the basis for several research 
activities at Braunschweig Technical University. One of them is the database design 
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environment CADDY (Computer-Aided Design of Non-Traditional Databases) [120], where 
a set of integrated tools for conceptual database design has been realized. The current 
prototype of this environment provides editing, analysing and prototyping tools for all 
concepts of the described conceptual data model. In detail, there are graphical resp. textual 
syntax-directed editors for the design of EER diagrams, data type specifications, integrity 
constraints, queries and actions specifications. As a prerequisite for a rapid prototyping of 
the designed schema, the EER schema can automatically be transformed into a relational 
one. Afterwards, a prototyping database is installed on a relational database system and 
filled with test data. A query interpreter and a graphical database browser enable a 
descriptive or navigating access to the prototyping database. All these tools enable a 
database designer to test the designed database schema already in terms of the conceptual 
database schema, i.e. in early design steps. CADDY is implemented in a workstation 
environment under UNIX and the X window system in the programming language C. The 
running prototype was successfully demonstrated at several conferences and other places. 

Another implementation of our EER model has been described in [121]. There, the model 
and the complete, original calculus [63, 65] is translated into the logic programming language 
Prolog. In contrast to CADDY, no emphasis has been put on a user-friendly interface. The 
system basically consists of a set of compilers written in Prolog which translate data 
specifications, schema definitions, queries, and data-manipulation statements into Prolog 
programs. 

Further extensions of the presented approach are possible. One could think of taking over 
the idea of graphical design also to action or query specification. This is in fact subject to 
part of our current research activities. 

Up to now we have investigated techniques for describing real world properties in an 
appropriate way by means of a conceptual model. So far we concentrated on the language 
issues including their semantics. Future research will have to address design methodologies, 
t o o .  

Acknowledgements 

We like to thank our (former) colleagues Leonore Neugebauer, Karl Neumann and Udo 
Lipeck for their contributions to the presented modelling approach and the students 
currently or formerly working within our group. 

A. Data-valued attributes of entities and relationships 

N O N - S T O P - F L I G H T  Fl ight# string key 
(nsf) Charter? bool 

Price real + 
Occupation nat  derived 
(No. of extensions of "booked-for" in which the nsf object takes part) 

T I M E - T A B L E  Depar tureTime time 
(n )  ArrivalTime time 

Depar tu reDay  date 
Arr ivalDay date 
Route  line 
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CONNECTION Flighttype# string key 
(c) NoOfExtensions nat derived 

(No. of extensions of c in "belongs-to") 
Occupationrate real+ derived 

(~ occupation of a connection per year) 
(r NoOfSeats per assigned airplane) 

AIRPLANE Airplane# string key 
(a) AirplaneModel string 

CrewSize nat 
NoOfSeats nat 
YearOfConstruction year 
DateOfMaintenance list(date) 
Miles real + 
Airworthy bool 

AIRLINE-COMPANY Name string 
(ac) Trademark graphic 

HeadOffice string 

key 

AIRPORT Name string key 
(ap) Location point key 

Hotel set(string) optional 
NoOfPassengers nat 
NoOfArrivals nat 
Kind {domestic, continental, intercontinental} 

TOWN Name string key 
(t) Location circle 

Country string 
NoOflnhabitants nat 

PERSON Name string key 
(p) Address addr 

DateOfBirth date key 
Tel# string optional 

PASSENGER Passport# string 
(pa) Nationality list(string) 

STAFFMEMBER JobTitle string 
(sm) LengthOfService nat 

FLIGHT-STAFF-MEMBER RoutineExamination date 
(fsm) HealthCertificate bool 

AlternativeService string optional 

GROUND-STAFF-MEMBER Department string 
(gsm) WorkingHours nat 

MAINTENANCE-SHED Name string key 
(ms) MaxCapacity nat 

Cost real+ 
has-agency NoOfStaff nat 
shuttle-service Timetable table 
booked-for BookingDay date 

PriceReduction real+ 
Account real+ 
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B. Complete EER-Diagram 

G. Engels et al. 

(1.*) 

Fig. 11. 
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