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Abstract. Simultaneous engineering processes involve multi- 

functional teams; team members simultaneously make decisions 

about many parts of the product-production system and 

aspects of the product life cycle. This paper argues that such 

simultaneous distributed decisions should be based on 

communications about sets of possibilities rather than single 

solutions. By extending Taguchi's parameter design concepts, 

we develop a robust and distributed decision-making procedure 

based on such communications. The procedure shows how a 

member of'a design team can make appropriate decisions based 

on incomplete information from the other members of the team. 

More specifically, it (1) treats variations among the designs 

considered by other members of the design team as conceptual 
noise; (2) shows how to incorporate such noises into decisions 

that are robust against these variations; (3) describes a method 

.for using the same data to provide preference information back 

to the other team members; and (4) provides a procedure for 

determining whether to release the conceptually robust design 

or to wait for further decisions by others. The method is 

demonstrated by part of a distributed design process for a 

rotary CNC milling machine. While Taguchi's approach is 

used as a starting point because it is widely known, these 

results can be generalized to use other robust decision 

techniques. 

Keywords. Engineering design; Simultaneous engin- 

eering; Concurrent engineering; Robust design; 

Distributed optimization 

I. Introduction 

1.1. Motivation 

Clark and Fujimoto (1991) observed that some 

Japanese motor companies designed new models in 
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much less time than their American counterparts. 

The Japanese motor companies overlapped the die 

design and the body design through frequent 

communications. For the American companies, the 

die design was not started until the body design was 

frozen. Despite the overlapping, Japanese motor 

companies experienced about 10% design changes, 

while the American companies experienced about 30% 

design changes. The Japanese approach saved about 

a year in the development cycle. The traditional 

sequential design approach used until recently by 

many American companies attempts to take one step 

at a time-feasibility study, preliminary design, detail 

design, manufacturing process design, production, 

distribution, etc. Information is not communicated 

until it is as specific as possible: for example, body 

drawings are no t  released to the die designers until 
they are complete. If conflicts occur in the later stages, 

time-consuming iterative changes are required. 

Conversely, the simultaneous decision process 

described by Clark and Fujimoto incorporates all 

aspects of the product life cycle simultaneously in the 

early design stages. Ward et al. (1994) demonstrate 
that engineers at Toyota, in particular, communicate 

about sets of possible designs long before final 

decisions are made, while concepts are still vague and 

uncertain. This simultaneous engineering process 

results in better products with less time, because 

fewer iterations are needed, more people work in 

parallel, and upstream decisions are based on better 

information from downstream. This is not a simple 

matter of critique from downstream: the critique is 

meaningful because the downstream decisions are 
being made at the same time. 

Formal simultaneous engineering may have been 

common in electrical/electronic engineering, because 
interfaces can be more rigorously defined (by 

authorized organizations such as the IEEE) than in 
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mechanical engineering. Examples are numerous: 

network developing, logic circuits, etc. In modern 

industry, concurrency between the design of products 

and manufacturing systems is only the most visible 

aspect of concurrency in design. It seems to us only 

rarely possible to identify an unambiguous sequence 

for making design decisions: most decisions involve 

interdependence. 

Despite the clear success of simultaneous engineer- 

ing, it lacks a theoretical basis. Multi-functional teams 

must communicate and make decisions that take into 

account other aspects of the system, but: 

1. Each communication abstracts from information 

possessed by the communication source; how 

should this abstraction be done? 

2. How should they make the decisions? 

3. How can these communications and decisions be 

given a mathematical expression? 

1.2. Concepts 

Because the teams must make interdependent de- 

cisions simultaneously, we argue that they should 

communicate about sets of possibilities and make 

conceptually robust decisions: that is, decisions that 

are robust against variations in the part of the designs 

done by other team members. If we treat variations 

as conceptual noises, then we can use any optimization 

technique for producing designs that are robust 

against physical variations. In this paper we use the 

statistical methods for approximating optima that 

have been popularized by Taguchi. We necessarily also 

introduce an economic criterion to guide the engineer 

in deciding when to decide, thereby eliminating the 

common tendency for all members of the team to wait 

for all the other members. 

Based on these concepts, this paper will define our 

approach based on the notion of conceptual noise in 
Section 3. Section 3.1 describes how a member of 

the design team, an agent, can use an extension of 

Taguchi's parameter design to make decisions that 

are conceptually robust. Section 3.2 describes how 

team members can use the same experiments (physical 
or computational) to identify the best values from 

their own perspective for parameters they share 

with others and to estimate the marginal cost 
of variation from those values. Section 3.3 outlines 

a procedure for deciding whether to release the 

conceptually robust design or to wait for further 

information from others. Section 3.4 lists the steps of 

the process in detail. 
In addition to the approach, this paper also contains 

generally related work, a brief introduction to the 

Taguchi method, the need for conceptually robust 

design, and an illustrative example. 

1.3. Related Work 

The Taguchi method was introduced to American 

academia by Kackar (1985). Several books on the 
Taguchi method were published later (Phadke 1989, 

Dehnad 1989, Logothetis and Wynn 1989), as well as 
English translations of Taguchi's Japanese books 

(Taguchi 1986, Taguchi 1987). Taguchi (1986) gives 

good introductory descriptions of quality loss and 

parameter design. For complete treatments of the 

Taguchi method including examples and experimental 

designs, see Taguchi (1987). Taguchi's work is based 

on statistical design of experiments (Khuri and Cornell 

t987, Box, Hunter and Hunter 1978). Taguchi uses 
orthogonal arrays to lay out the experiments and 

signal-to-noise ratios to design robust products 

against noise. Taguchi and Clausing (1990) give 

clear descriptions of quality loss, robustness, and 

orthogonal arrays. Their discussion assumes some 

background in Taguchi's methods. 

Wilde (1990, 1991), Otto and Antonsson (1993), and 

Michelena and Agogino (1991) have extended 

Taguchi's work within the standard optimization 

framework. It seems certain that their methods can 

(and should) also be applied to the extensions 

proposed here. 

Other related issues include set-based processes, 

quality loss, value of information, and timeliness. 

Ward (1992) expands the argument made here that 

set-based reasoning is essential for simultaneous 

engineering. The labelled interval calculus (LIC) is 

another mechanism for such reasoning, which can be 

used to narrow the set of possibilities by eliminating 

infeasible regions (Ward and Seering 1993a, 1993b). 

Ward et al. (1994) show that the first and best 

practitioner of concurrent engineering, the Toyota 

Motor Company, uses a highly set-based process. 

Krishnan et al. (1991) define a quality loss to capture 

the decrease in freedom of choice as a cooperative 

sequential design process progresses. Bradley and 
Agogino (1991), on the other hand, introduce 
the idea of the value of information to the 

catalog selection problems, and assert that the designer 
should make a selection when the expected value 

of perfect information is negligible. They do not 

define negligibility. Ulrich et aL (1993) argue that in 
addition to the design and manufacturing costs, the 
cost of time should be included in the decision- 

making process. 
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1.4. Taguchi Method 

Taguchi has introduced to the design community three 

important ideas that are used in this paper. First, he 

suggests that designers should minimize quality loss, 
a quadratic function of the deviation of performance 

parameters from desired values. 

Second, he advocates designing products to be 

robust against manufacturing and environment 

variations (physical noise). Products are subject to 

deterioration, different users and environments, and 

manufacturing errors. These variations are inevitable 

and beyond the control of product designers. 

Good-quality products should perform their intended 

functions regardless of these noises. Taguchi sets 

design decision variables to be robust against noise 

by experimenting with trial designs of various settings 

of decision variables under various noise settings. 

Third, he uses partial-factorial orthogonaI arrays 
to run experiments, a procedure borrowed from 

traditional experimental design, but previously little 

used by engineers. According to Taguchi and Clausing 

(1990), a group of automobile steering engineers 

identified 13 critical variables governing steering 

performance. If the engineers were to compare three 

levels of values for each critical variable, they would 

have 1,594,323 design options. Instead of a one-factor- 
at-a-time approach, Taguchi uses orthogonal arrays 
(similar to fractional factorial matrices) to lay out 

experiments, changing several factors simultaneously. 

A small number of experiments are enough to identify 

the average effects of the factors-for the steering 

problem, 27 experiments (L27 orthogonal array) 
instead of about 1 million. He then selects the value 

for each factor that maximizes performance averaged 

over all the tested combinations of values for the other 

design variables and noises. 

2. The Need for Conceptually Robust Design 

In the conventional sequential design approach and 

in many prescriptions for simultaneous engineering, 

decisions about variables that influence multiple 

components of a product (for example, the space 

available for an engine) or both the product and 

its manufacturing processes are made by a higher- 

ranking manager or by one of the several involved 

parties based on informal consultation. This approach 

often results in conflicts in the later stages of product 
development, because decisions are made with 

insufficient data. Iterations are required to resolve 
the conflicts. 

To remedy the defects of the sequential approach, 

there emerged the simultaneous engineering approach 

to incorporating all aspects of the product life 

cycle in early design stages. However, mathematical 

and computing tools to support simultaneous 

engineering are not yet fully developed, nor do 

we yet have mathematical models of the process. 

We believe that the tools enabling simultaneous 

engineering should support set-based communications 

and distributed decision-making, allowing the product 

development process to progressively narrow the 

design possibilities rather than making iterative 

changes. This is consistent with Clark and Fujimoto 

(1991), and with Ward et al. 1994, who show that at 

Toyota specifications are fixed very late in the design 

process, and as a result of communications about the 

set of possibilities rather than by executive fiat. 

Since every agent is allowed to make decisions 

simultaneously in the course of narrowing the set of 

design possibilities, the decisions should be robust 

against others' decisions. If we consider a complex 

product design problem as an example, several agents 

will design the components. Each component design 

agent needs to proceed with the design regardless of 

the design status of the neighboring components, so 

that no time is wasted waiting for others' decisions. 

Some decision variables may be dependent on several 

components. We need to develop a tool to help the 

component design members to proceed with their 

designs, despite indecision about the interdependent 

decision variables. The tool should also be able to help 

designers decide the best values for the interdependent 

decision variables in terms of the integrated system 

design. Component designs done using the tool should 

be robust against the variations of the neighboring 

component designs, or conceptually robust. 

3. Conceptually Robust Design Using the 

Extended Taguchi Method 

This section will address the issues raised in Section 

2, using the idea that variations of the neighboring 

component design concepts constitute conceptual 
noise. We will provide a procedure based on Taguchi's 

parameter design method for designing a component 

to be robust against not only physical noise but also 

conceptual noise; show a method for the agent to show 

his preference for a conceptual noise factor in 

designing a component; and develop a criterion for 

deciding whether to eliminate the designs that are 
sensitive to conceptual noise or keep them until there 

is a reduction in the conceptual noise (that is, a 
decision by others). 
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Taguchi uses signal-noise ratios as objective functions. 

In this paper, for the sake of simplicity, we minimize 

average quality loss. 

3.1. Conceptually Robust Design 

Taguchi argues that a high-quality product should 

successfully perform its intended functions under 

varying conditions (physical noise). He designs a 

high-quality product by finding values for design 

decision variables that are robust against noise. The 

steps are as follows: (1) Identify the product's 
performance characteristic, design decision factors, 

noise factors, and the range of factor variation. (Rather 

than performance characteristic, we have chosen to 

use quality loss, a quadratic function.) (2) Use 

orthogonal arrays for trial designs (inner array) and 

noise factors (outer array). (3) Perform experiments 

on the trial designs under the noise conditions specified 

in the outer array. (4) Identify values of the design 

decision variables giving the lowest average quality 

loss. He calls this design process parameter design. 
Let d be the vector of decision variables a n d / / b e  

the vector of noise variables, each of which may be 

assigned several different values. For each element of 

d, Taguchi attempts to find the value that minimizes 

the quadratic quality loss function. He normally 
assumes that engineering judgment has been used to 

pick parameters that are reasonably independent, so 

that the couplings among them can be ignored. The 

problem, if of the nominal-the-best type, can be 

formulated as follows: 

for each d i e d, find d~, 

such that 

1 
L~ = - -  F, k. [y(d, n) - y J  

N~ Experiments in 
which di=d] 

is minimized, 

where d~ is thejth level of d~, L~ is the average quality 

loss associated with di, N~ is the number of 

experiments involving d~, k is a proportionality 

constant relating monetary loss to the squared units 

of the physical parameter that reflects the quality loss 
caused by deviation, y(d, n) is the performance value 

of the experiment, and Yd is the desired performance 

value (here, we consider only constant Ye). For 

smaller-is-better and larger-is-better types, the quality 
loss will have the forms k.y(d, //)2 and k/[y(d, //)23, 
respectively. Also, we assume that every level is equally 
likely to be selected. Note that in Taguchi (1986), 

instead of fixing d all at once, Taguchi establishes the 

robust level for each element of d, namely, d~, 

separately. There are two possible arguments for this 

procedure. First, it may reduce search time. Second, 

it may increase the robustness of the solution 

against variations that have not been modeled. These 

arguments need to be analyzed in a greater detail. 

When a component designer designs a part without 

final decisions having been made about inter- 

dependent variables by the rest of the team, the 

variations of the interdependent decision variables are 

also uncontrollable to the component designer. For 

example, conceptual noise for a car body design may 
include the engine height. We propose that a 

component designer include conceptual noise factors 

in the noise orthogonal array and carry out Taguchi's 

parameter design process. The performance of the 

resulting design will be satisfactory regardless of the 

final design of neighboring components. We call the 

resulting design a conceptually robust design. In the 

above formulation, the interdependent decision 

variables are included in n rather than d. We will 

denote the average quality loss for each agent on the 

decision variable d~, d~ e d, as f f  and the loss d,i, 

associated with the conceptually robust level as L y d,i 

Lj 1 ~ k'[y(d, P, e) ya] 2 + L j 
d,i N]  Experiments i.n 

which di =d~ 

( la)  

L ~ min L{ (lb) . , i  = ( d , i ) ,  
levels of dl 

wherej is the level index, f is the (conceptually robust) 

level with the lowest average quality loss, N~ is the 

number of experiments that involve d~, the j th level 

of di, and p and c denote the physical and conceptual 

noise, respectively (p combines with c to form n, the 

total noise vector). L j which will be formalized in A,i ,  

next section, represents the quality loss to other agents 

if d~ is selected. 

3.2. Marginal Quality Loss 

In Section 3.1, the interdependent decision variables 

belonging to neighboring components are regarded as 
(conceptual) noise factors. However, component 

designers also need to provide feedback to the 
designers of neighboring components about their 

preferred values for the connecting variables and the 

cost of deviations from those values. This can be done 
by considering the conceptual noise factors as design 

decision variables and identifying the best values for 
conceptual noise factors in the component design. 

We use the same experimental data obtained in the 
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conceptually robust design of a component to identify 

the best values for conceptual noise factors. We 
regroup the experimental data according to the level 

of the conceptual noise factor. The level of a conceptual 

noise factor corresponding to the lowest average 

quality loss is identified as the best value for the 

conceptual noise factor. The increase in expected 

average quality loss for the levels of the conceptual 

noise factor, defined as marginal quality loss, provides 
a measure of the importance of this factor to the 

component designer (as in Fig. 1). The designer of 

neighboring components can then take this into 

account. 
Equation (2) expresses the marginal quality loss 

associated with thejth level of the ith conceptual noise 

(denoted as c¢): 

lj 1 
. . . .  ~ - - Lc, i, ( 2 )  a,i j ~ k" [y(d,p, e) ya] 2 7 

N i Experiments in 
w h i c h  ci = c~ 

where 

LcY~= min ~ k . [ y ( d , p , c ) - y d ]  2 
l eve l s  o f  ci g i  Exper"  nts  j n  

w h i c h  ci  =c~ 

(2a) 

represents the minimum average quality loss associated 

with c~ (at the j th level), and S ]  is the number of 

experiments that involve c~. 

Similarly, for each level of d~, every other agent has 

a corresponding marginal quality loss, ~l~,~. Once this 
has been communicated to the agent controlling di, 

L j A.~ can be computed using 
m - - 1  

L j ~l j ~,~= Y~ A,~, (3) 

where ~ denotes the agents and there are m agents 

in total. 

3.3. Decision on Whether to Eliminate the 

Conceptually Sensitive Design 

The conceptually robust design involves a tradeoff. It 
will allow designers to design a product sooner, but 

it may not produce the best possible design. That is, 

by waiting until the other members of the team have 
made their decisions, an agent may reduce the quality 

loss associated with the component below the 

conceptually robust design level. However, this can 

lead to paralysis, with everyone waiting for others' 

decisions. We therefore need an approximate cost 

computation method to enable each agent to decide 

whether to eliminate conceptually sensitive choices, in 

favor of the conceptually robust choice, or to wait for 

more information. We will estimate the cost of 

eliminating the conceptually sensitive choices on each 

element d i of d by comparing (1) the quality loss 

associated with the conceptually robust level of d i 

L y (d. i ) ,  (2) the lowest quality loss that might be 

achieved by waiting to decide di (LJwAIT, i,for every j), 

and (3) the cost of the time lost due to the failure to 

make a decision on d~ (LriraE, i)- If the cost of 
eliminating a specific conceptually sensitive choice is 

negative (we gain rather than lose), then we should 

drop that conceptually sensitive choice for dl. The cost 

of eliminating the conceptually sensitive choice j for 

d i is estimated as 

s¢ = L 5 J d, i - -  (L~vAIT,  i "[- LTIME,  i ) "  (4 )  

While L~,i, as well as the conceptually robust design 

(]), can be obtained using the average quality loss for 

every level of di using equation (1), LJWAIT, i can be 

approximated by the average quality loss associated 

with level j (L~.i) and the possible marginal gain 

(over the average value) under the condition that 

the best level for each cu is selected. (Results are still 

subject to physical noise p.) Equation (5) gives the 

formulation: 

L J w A I T ,  i LJ d , i - -  

cll L , min (/7~,d¢ 1 I #levels ~ -~ "-- u, di II 
II r =  1 v = 1 l eve l s  of  ca 

where 

= (Averaged quality loss over experiments 

/~, d~ kin which d i = d~ and c u = c~ J 

1 

N~, Experiments i~ 
w h i c h  di=d] 

a n d  Cu = C~ 

(5) 

k" [y(d, p, c) - Ya] 2, (5a) 
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N~, is the number of experiments that involve 

both e~ and d~, and ]loll is the dimension of 

the vector. 

Ulrich et al. (1993) embed the cost of time in a 
profit model in which the rate of sale, the unit 

price, the unit cost, etc., are time-dependent. The model 

is complex, and varies from case to case. In this paper, 

we estimate the cost of the time lost in waiting 

explicitly on the basis of the following criteria: 

1. Cost must increase with delay to guarantee 

convergence. For simplicity, a quadratic function 

is used here to approximate the cos t :  Ldelay = k t" t 2. 

2. One must consider the different completion times 

assigned to different agents by determining an 

appropriate coefficient for the quadratic function. 

3. The marginal cost of delay at an agent's time limit 

equals the cost of delaying the entire project (L, 

estimated by marketing). 

If the design team has weekly (t o = 1 week) meetings 

and for agent a the time limit is t~, the coefficient can 

be determined according to criterion (3): 

= 2ktt~= f~ ~ k t -  L .  
dLdelay 

dt t~ 2t~ 

Thus, let t be the time now (counting from the start 

of this component design) and LT~ME. ~ be the cost 

caused by delay (from now to the next meeting) in 

choosing d~. We have 

LTIME, i = Ldelay(t + to)  - -  Ldelay(t) 

£ 
- . [ ( t + t 0 )  

2t, 

i 
- (2t ' t  o + to2). (6) 

2t~ 

3.4. Procedure 

The procedure to follow in implementing a conceptually 

robust design using extended Taguchi's parameter 

design may be summarized as follows. For each design 

agent concurrently: 

1. Define the problem by establishing the objective, 

relations of variables, and time available. 

2. Determine the decision variable vector d = {d 1, d2, 

d3, . . . ,dl ldl l}  and possible levels of d i. Each d~ 

should be as independent as possible. 

3. Determine the physical and conceptual noise 

factors and their possible levels through com- 

munication: 

Physical: pi, i = 1, 2, 3 . . . . .  tlpI[; 

Conceptual: % i = 1,2, 3 , . . . ,  Ilell. 

4. Use the extended Taguchi parameter design 

method. 

(a) Set up an inner array (Li,) of d. 

(b) Set up an outer array (Lou0 of both p and c. 

(c) Run the experiments (in x out). 

5. F o r e / , i =  1,2,3,...,11eF[: 

(a) For each level of % compute the average 

quality loss. 

(b) Identify the best level for ci and estimate the 

corresponding marginal quality loss (1A, i's) for 

levels of c~ using equation (2). 

(c) Transmit IA, ~'s to the agent that controls % 

For d~, i = 1 , 2 , 3 , . . . ,  lid[I, 

(a) Obtain "l j A, i, e = 1, 2, 3 , . . . ,  m - 1, for every j 
through communication. 

(b) Compute L~, i for every j using equation (3). 

6. Compute L f d, i, LWAIT, i, and LTIME ' i 

(a) For 4 ,  i = 1,_2, 3 . . . . .  II dll, identify the robust 

level j and L~, i against both the physical and 
conceptual noise using equation (1). 

(b) For each level of d~, i = 1, 2, 3 . . . .  ,1] d]], find 

L(VAIT, i using equation (5). 

(c) Find LT~ME. i using equation (6). 

7. For each (except the ]th) level of dl, i -- 1, 2, 3 . . . . .  

Ildll, 

(a) Compute $~ using equation (4). 

(b) If $j ___ 0, eliminate the j th  level of di. 

8. Repeat steps (2) to (7) until each dl has only one 
level remaining. 

4. A Simple Illustrative Example  

The example will be shown by following the steps 

described in Section 3.4. 

4.1. Problem Description and Definition (Steps 1 and 2) 

The example partially designs a two-axis CNC milling 

machine using a rotary configuration (Rohlfs 1994). 

By assuming that its two moving axes are identical, 
the milling machine can be partitioned into the 

following subsystems: machine frame, actuators, 

transmissions, spindle assembly, working table, and 
the control system. As this machine is in a revolute 

configuration, a rotary transmission, the Roto-Lok 

cable drive (a product of Sagebrush Technology Inc., 

Albuquerque, New Mexico), replaces ball screws. 
Figure 2 shows schematically the feed-drive system, 
which includes an actuator and a cable drive, together 

with a spindle assembly. 
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Fig. 2, Schematic diagram of a rotary feed-drive (from an artist 's 

view). 

~ l ~ e n t  4 A g e n t  3 . 

Fig. 3. Schematic diagram of the distributed design network. 

We will illustrate the proposed robust design 

approach using a design network of six agents, human 

or computational (Fig. 3). Links are provided for 

bi-directional communications between any two 

agents. Each design agent will make decisions in the 

design or selection of a particular subsystem. She will 

have control of the design parameters of that 

subsystem and be interested in design parameters that 

affect her design objective, yet are controlled by other 

agents. The local objective will be to minimize the 

quality loss from her point of view. In addition to the 

design agents for the subsystems of the machine, a 

marketing agent is introduced to help the design 
agents build up their utility functions for design 
evaluation. 

In this example, for the sake of simplicity, we will 
demonstrate the design procedure by focusing on 
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i. 

For smaUct,~-bct~r type, 

For Largcr-ks-bc~ typ¢, such as I ~d Cost 

[ suchas K. L, • k-x 2 

v o I/o 

Variables 

Fig. 4. Quality loss functions. 

agent 2, who is responsible for the transmission design; 

namely, to decide the values for C and D, the diameters 

of the capstan and drum respectively, as well as the 

material used to make these parts. (The major concern 

here will be the density, p, of the material.) We have 

made other simplifying assumptions; this example 

should not be taken as evidence about the feasibility 

or appropriate design of revolute machine tools. 

Simplifying assumptions: 

1. Functions describing relations will be assigned their 

simplest forms. 

2. The design of the control system has been fixed. 

3. The transmission contributes to the over all 

machine performance in stiffness (K), inertia(I), 
size (L), torque capacity (~), and cost. 

4. The mechanism of the transmission is fixed to be 

a cable drive. Its power loss is negligible, as claimed 

by Sagebrush Technology Inc. 

5. The marketing agent provides the information as 

required to fix the constants (k's) in the quality loss 
functions. As in Fig. 4, 

k = Lu/u~ for smaller-is-better type, (7a) 
A 

k = L~" v~ for larger-is-better (7b) 

6. Agent 2 is interested in the following parameters 
(incoming interface variables): 

From agent 1 (designing the actuator): K1, its 
stiffness; I~, its inertia. 

From agent 3 (designing the spindle assembly): m3, 
its mass. 

From agent 5 (marketing): 

L, the loss for the entire project delay; t,, the time 
limits; and the constants (k's) for the quality loss 

function in equation (8), together with their 
estimation errors (6k's). We assume the market- 
ing information is a statistical result, with 

deviations. 
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Other agents are interested in C, D, p, as well as 

induced characteristics such as the stiffness, K2, the 

inertia, 12, etc. (outgoing interface variables). 

The problem for agent 2 can then be summarized as: 

Quality characteristic: 

Quality loss = kK' I /K 2 + kl" I 2 Jr kL" 1/L 2 

+ k~" 1/'c 2 + kcost-cost 2, (8) 

where k~:, ki, kL, k~ and k~o~t are provided by agent 5 

(marketing), and for K, L and z the loss is 

larger-is-better type; for I and cost, it is smaller-is- 

better type. 

Decision variables: C, D, and p (values shown in 

Table 1). 

Physical noise factors: C', D', p', 6k K, 6kx, ¢~k L, 6k ,  and 

bk,~,~ t (values shown in Table 2). (Note that although 

6kK, 6kt, bk L, bk~ and 8k~o~t are interface variables, no 

one can control these variations (6k's).) 

Conceptual noise factors: K 1, 11 and m3. 

Project loss:/~ = $10,000. 

Time limit: t 2 = 20 weeks (a = 2 for agent 2), time 

period: t o = 1 week. 

Internal governing equations (characteristics of a cable 

drive): 

R = D/C. 

K 2 = 3.105 x 109"D1"5"C 1"82 N.m/rad,  

= (7 + 3rc) p ' h ' t  3 
I2 \ ~ - j  --~-" D kg-m 2, 

where h is the height of the drive, 0.15 m, t is the 

thickness of the drive, 0.01 m (to produce an 

appropriately stiff drum). 

- -  • N/m. 
K = 2  1 1 

+ 
K 1 • R 2 K 2 

m 3 -D 2 
I = 11 + 12 + ~ 5 - k g ' m  z. 

L = D/2 m (assume the drum rotation = 60°). 

D3-16 
= 1 4 1 8 7 . ~  N . m .  

Cost = 2 (unit price" volume.p + casting and mach- 

ining costs). 

4.2. Communication on Interface Variables (Step 3) 

Communication provides the possible values for 

interface variables. These values then are used to 

construct the inner and outer arrays for Taguchi's 

parameter design. In this example, agent 2 has 

more than 20 interface variables, in and out. In 

addition to decision variables and noise factors, both 

physical and conceptual, agent 2 also has the 

constants, kK, k,, etc. obtained from agent 5: 

kK = 1.225 x 10 i s  k, = 25, k L = 0.36, 

k, = 2500, kcost = 2.5 x 10 . 7  

Estimating these constants is a crucial topic, which is 

not emphasized in this paper. We arbitrarily specify 

values by assuming they are from a marketing 

specialist. 

4.3. Applying Extended Taguchi's Parameter Design 

Method (Step 4) 

Three decision variables, (C, D and p) and their 

possible levels are set in Table 1. Assuming at the very 

beginning, other agents have no preference over the 

levels of the decision variables, the corresponding 

marginal quality loss is zero. 

Then, eight physical noise factors (C', D', p', 6kr,, 

6k,, ~kL, 6k~ and ~koo~t) and three conceptual 

noise factors (K 1, 11 and m3) a re  set out in Table 2. 

Values in Tables 1 and 2 are assigned on the basis 

of our intuition. 

Table 1. The levels of the decision variables. 

variable level I level 2 level 3 

D (m) 0.25 1 2.5 
C (m) 0.075 0.125 0.2 
p (kg/m 3) 2700 (aluminum) 7850 (steel) n/a 

Table 2. The levels of the noise factors (information on K 1 
and 11 are from Mectrol Co., Salem, New Hampshire; 

others are our estimates). 

factor level 1 level 2 level 3 

o'  (%) -0 .5  0 0.5 
c '  (%) -0 .5  0 0.5 
p' (%) - 5 0 5 
K 1 (N m/rad) 3,390 16,950 45,200 
11 (kgm 2) 6.554 × 10 -5 1.8532 × 10 -4 n/a 
m3 (kg) 30 50 80 
6kK (%) - 10 0 10 
bk I (%) -- 10 0 10 
akL (%) -- 10 0 10 
6k~ (%) - lO o to 
akron, (%) - 10 0 10 
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With these decision variables and noise factors, we 

use an L 9 orthogonal array as an inner array and 

assign C, D, and p to the columns 1, 2 and 3, 

respectively. The outer array, on the other hand, 

is an  L27 orthogonal array. Noise factors are 

assigned to the array columns in the order of Table 

2. Interactions between the factors are assumed to be 

zero for both inner and outer arrays. While 

experimenting, the levels in the inner array will be 

replaced by the corresponding actual values and then 

those in the outer array will be fitted with the values 

or induced values from Table 2 and the inner array. 

The quality loss for each experiment is computed 

using Eq. (8). The values of decision variables 

will be determined for 9 different combinations given 

in the row of the inner array. Corresponding to one 

row of the inner array, the values of the whole outer 

array will be determined. Since one row of the outer 

array means one experiment, there will be 243 (9 × 27) 

experiments. 

4.4. Experimental Data Analysis by Regrouping 

(Step 5) 

We want to analyze the effect of the conceptual noise 

factor by regrouping the data according to the levels 

of conceptual noises, This analysis will enable agent 

2 to show her preference over the conceptual noises 

in the next communication in the form of marginal 

quality losses. 

For example, by regrouping the data using equation 

(2), we have the results associated with the three levels 

of K 1, 11, and m 3 shown in Table 3. In this case, agent 

2 can notify agent 3 that she would prefer m3 to be 

fixed at level 1, and if level 2 or level 3 is selected then 

the associated quality loss, with respect to level 1, will 

be $576 or $1097, respectively. 

While sending out the preference to other agents, 

agent 2 can receive others' preferences over her 

decision variables D, C and p. Obtaining ~l~, i through 

communication and computing LJA,~ using Eq. 

(3). We have arbitrarily specified the results shown 

in Table 4. 

Table 3. Agent 2's preference (21A'S) over conceptual noise 
factors. 

variable K1 11 m3 

level 1 $16,605 $12 $00 
level 2 $578 $0 $576 
level 3 $_00 n/a $1,097 
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Table 4. Sum of marginal quality loss (L~. {s) for levels of 
the decision variables. 

variable D C p 

level 1 $1254 $412 $35 
level 2 $785 $t57 $706 
level 3 $906 $1051 n/a 

Table 5. [LSwArr, i, L~, i] of controllable factors (underlined 
values indicate the robust levels against noises). 

variable D C p 

level 1 [$5,013, $7,107] [$630, $_7_4_0_] [$3,784, $5,881] 
level 2 [$4,524, $~6 620_] [$1,635, $2,457] [$4,464, $6,561] 
level 3 [$4,66t, $6,761] [$10,609, $15,967] n/a 

4.5. Computation of LYa, i's, LJ~vAIT, 2S, and LTIME, i 
(Step 6) 

To identify the robust levels for the decision variables, 

we compute the mean of the average quality loss values 

for each decision variable level using Eq. (1). The 
j , 

right-hand side (RHS) numbers in Table 5 are Ld, is, 

the average quality loss associated with the j th  level 

of d~. The underlined numbers represent the robust 

level and L j d, i" 
j 

The LHS numbers in the brackets are LwAm~ S 

associated with levels of decision variables computed 

from Eq. (5). 

To compute the cost of time, we arbitrarily assign 

the following: /~ = $10,000, t 2 = 20 weeks, t = 0 ,  

and t o = 1 week. Then, LTI~E, i for every level of 
all the decision variables will be $250 according to 

Eq. (6). 

4.6. Cost of Eliminating the Conceptually Sensitive 
Design (Step 7) 

For D, as the second level is the robust design, we will 

examine levels 1 and 3 using equation (4). 

_ 1 

= L ,o (LWA,T,O + LT,ME, O) 

= $6620 - ($5013 + $250) = $1357; 

3 
$ ~  = Z~,  D - -  (LwAIT, D + LTIME, D) 

= $6620 - ($4661 + $250) = $1709. 

Shown above, both the costs of eliminating levels 1 and 

3 are positive, which implies that agent 2 should not 

abandon any level of D. 

On C, the sensitive levels are the second and third 
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which will be examined by 

L ,c 2 = - -  (LwAIT,  C + LTIME, C) 

= $740 - ($t635 + $250) = --$1145; 

S 3 = L 1 3 d, c - (LwAm c + LTIME C) 

= $740 -- ($10,609 + $250) = --$10,119. 

With the result above, agent 2 can abandon both levels 

2 and 3; that is, C is fixed to its first-level value: 0.075 m. 

We now check whether level 2 of p can be eliminated 

by computing: 

2 
$p2 = L~, p - -  ( L w A , T  ' o + LTIME, P) 

= $5881 - ($4464 + $250) = $1167. 

The result suggests that agent 2 should keep both 

levels for the next iteration. 

Failing to make a decision (by eliminating all 

the conceptually sensitive levels), agent 2 will redo 

the process starting from the step described in 

Section 4.2. 

4.7. Second  Iterat ion (Step 8) 

Assume that the levels of decision variables and 

noise factors, bo th  physical and conceptual, are 

changed to the values listed in Tables 6 and 7 on 

the second time period (t = 1). Running the experi- 

ments and communication gives the results in Tables 

8, 9 and 10. 

Table 6. The levels of the decision variables (2nd iteration). 

variable level 1 level 2 level 3 

D (m) 0.25 1 2.5 
C (m) 0.075 fixed (0.075) fixed (0.075) 
p (kg/m 3) 2700 (aluminum) 7850 (steel) n/a 

Table 7. The levels of the noise factors (2nd iteration). 

fac tor  level I level 2 level 3 

D' (%) -0.5 0 0.5 
C' (%) -0.5 0 0.5 
p' (%) - 5 0 5 
K 1 (N m/ rad )  3,390 16,950 45,200 
11 (kg m 2) 1.8532 x 10 -4  fixed fixed 

(1.8532 x 10 -4  ) (1.8532 x 10 -4  ) 

m 3 @g) 30 50 80 
6kK (%) -- 10 0 10 

6kl (70) - 10 0 10 
&~ (%) - lo o lo 
6k, (%) -- 10 0 10 

6k~o~, ( ~ )  - lO 0 10 
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Table 8. Agent 2's preference (Zla's) over conceptual noise 
factors (2nd iteration). 

variable K 1 I x m 3 

level 1 $16,605 no choices $0 
level 2 $578 n/a $30 
level 3 $00 n/a $57 

Table 9. Sum of marginal quality loss (L~, i's) for levels of 
the decision variables (2nd iteration). 

variable D C p 

level 1 $769 no choices $27 
level 2 $315 n/a $506 
level 3 $684 n/a n/a 

Table 10. J [LwAIT, i , LJa, i] of controllable factors (2nd 
iteration) (underlined values indicate the robust levels 

against noises). 

variable D C p 

level 1 [$1006, $11t4] no choices [$242, $352] 
level 2 [$520, $631j n/a [$724, $835] 
level 3 [$895, $1008] n/a n/a 

In this case (t = 1), LTIME, I = $750 according to 

Eq. (6). With Eq. (4), we have 

$~,= 2 1 
La. o - -  (LwAIT, D q- LTIMZ, D) 

= $631 -- ($1006 + $750) = --$1125; 

= L~, D -- (LwAm D + LnME, O) 

= $631 - ($895 + $750) = -$1014;  

$2  = 1 2 q_ LTIME, p~I./ Ld, o - -  (LwAm p 

= $352 -- ($724 + $750) = --$1122. 

Based on these results, all the conceptually sensitive 

levels will be dropped at this run and we can conclude 

that the conceptually robust design is the combination 

of D = l m ,  C = 0 . 0 7 5 m ,  and p = 2 7 0 0 K g / m  3 

(aluminum). 

4.8. S u m m a r y  

We have demonstrated the steps of the proposed 

design procedure. The example illustrates a problem 

setup, the operation on data, and the shrinking of 

design possibilities. By following the procedure 

described in Section 3.4, agent 2 finishes her design in 

two weeks, allowing other agents who rely on D, C 
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or p to continue their work. Also, the evaluation results 

show that most of the decision variables can be 

determined without much waiting. 

5. Conclusion and Future Work 

An approach to simultaneously designing components 

of both products and their manufacturing systems has 

been demonstrated using an extension of Taguchi's 

parameter design method. Each component designer 

identifies both physical and conceptual noises - those 

parameters that affect her component, but are not 

under her control. She performs experiments, which 

may be physical or computational, as organized 

using Taguchi's orthogonal arrays, and identifies 

the conceptually (and physically) robust levels for 

the parameters she controls. She then computes for 

other levels the relative costs of eliminating them 

immediately, or waiting until decisions have been 

made by other members of the team, taking into 

account the affect her decisions will have on 

others. The design processes converge because of a 

satisfactory result or time pressure to approximately 

minimize the overall cost. 

This work has several goals. First, the procedure 

we define appears reasonably practical for use in 

designing medium scale systems, at least if software is 

developed to make it easier for team members to 

manage. By medium scale, we mean systems 

comprising a number of well-defined components, 

each of which is independently of appropriate 

complexity for treatment using Taguchi's methods. 

Since Taguchi's methods are fairly well known in 

industry, we hope to achieve an industrial application 

fairly soon. Because these ideas are aimed at problems 

too large to solve in a centralized way, no small scale 

test can be very convincing. 

The work also raises a number of theoretical issues. 

For example, we believe (but have not argued here) 

that utility theory cannot be used effectively between 

different agents in the design process because it is 

essentially individual, and have substituted the 

somewhat vague notion of quality loss. We believe 

that the economic information exchanged between 

agents ultimately will need to use both cos t  and revenue  

categories, as in market economics. That is, we expect 

agents to t rade  on interface variables to maximize their 

internal profits. 

In the paper, we assumed that the communication 

contains limited (or discrete) levels of the possible 

values for interface variables and they have equal 

weighting. This should be extended by estimating the 

probability that each noise level will be selected (Otto 
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and Antonsson 1993). We also expect to address the 

case of continuous variables, using other optimization 

techniques. 

The significance of this paper does not lie in its 

details. Many details, such as the use of Taguchi 

methods, are somewhat arbitrary. Rather, this 

represents a first step toward a novel theory of 

distributed optimization, which does not assume 

the existence of an overall model which can be 

decomposed to form sub-problems, and which does 

not assume a single common starting point for the 

various agents. This step rests on two individually 

simple legs: 

1. Uncertainty about other people's decisions can be 

treated as a noise, exactly like physical noises, 

except that 

2. The cost of waiting for the elimination of the 

conceptual noise must be taken into account. 

We hope that these ideas will prove a fruitful source 

of interesting research and effective design tools. 
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