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A B S T R A C T

The appropriate development of a model begins with understanding the
problem that is being represented. The aim of this article was to provide a
series of consensus-based best practices regarding the process of model con-
ceptualization. For the purpose of this series of articles, we consider the de-
velopment of models whose purpose is to inform medical decisions and
health-related resource allocation questions. We specifically divide the con-
ceptualization process into two distinct components: the conceptualization
of the problem, which converts knowledge of the health care process or de-
cision into a representation of the problem, followed by the conceptualiza-
tion of the model itself, which matches the attributes and characteristics of a
particular modeling type with the needs of the problem being represented.
Recommendations are made regarding the structure of the modeling team,

agreement on the statement of the problem, the structure, perspective, and
target population of the model, and the interventions and outcomes repre-
sented. Best practices relating to the specific characteristics of model struc-
ture and which characteristics of the problem might be most easily repre-
sented in a specific modeling method are presented. Each section contains a
number of recommendations that were iterated among the authors, as well
as among the wider modeling taskforce, jointly set up by the International
Society for Pharmacoeconomics and Outcomes Research and the Society for
Medical Decision Making.
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Background to the Task Force

A new Good Research Practices in Modeling Task Force was ap-
proved by the ISPOR Board of Directors in 2010, and the Society
for Medical Decision Making was invited to join the effort. The
Task Force cochairs and members are expert developers and ex-
perienced model users from academia, industry, and govern-
ment, with representation from many countries. Several tele-
conferences and hosted information sessions during scientific
meetings of the Societies culminated in an in-person meeting of
the Task Force as a whole, held in Boston in March 2011. Draft
recommendations were discussed and subsequently edited and
circulated to the Task Force members in the form of a survey
where each one was asked to agree or disagree with each recom-
mendation, and if the latter, to provide the reasons. Each group
received the results of the survey and endeavored to address all
issues. The final drafts of the seven articles were available on the
ISPOR and Society for Medical Decision Making Web sites for
general comment. A second group of experts was invited to for-

mally review the articles. The comments received were ad-
dressed, and the final version of each article was prepared. (A
copy of the original draft article, as well as the reviewer com-
ments and author responses, is available at the ISPOR Web site:
http://www.ispor.org/workpaper/Conceptualizing-A-Model.
asp.) A summary of these articles was presented at a plenary
session at the ISPOR 16th Annual International Meeting in Balti-
more, MD, in May 2011, and again at the 33rd Annual Meeting of
the Society for Medical Decision Making in Chicago, IL, in Octo-
ber 2011. These articles are jointly published in the Societies’
respective journals, Value in Health and Medical Decision Making.
Other articles in this series [1–6] describe best practices for build-
ing and applying particular types of models, addressing uncer-
tainty, and ensuring transparency and validity. This article ad-
dresses best practices for conceptualizing models. Examples are
cited throughout, without implying endorsement or preemi-
nence of the articles referenced, and an appendix in Supplemen-
tal Materials found at http://dx.doi.org/10.1016/j.jval.2012.06.016
provides a detailed example.
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Introduction

Perhaps no other word in the policy analyst’s lexicon inspires
greater confusion among lay observers than the word “model.”
Most would agree that a model is a simplified representation of
reality. Beyond that description, the term may lead in various
directions. The Task Force has agreed that for its context, a
model’s purpose is to inform medical decisions and health-re-
lated resource allocation questions. Thus, this article is re-
stricted to models as normative decision-making aids, and rec-
ommendations apply most directly to models that structure
evidence on clinical and economic outcomes in a form that
helps decision makers choose from among competing courses
of action and allocate limited resources. It excludes from con-
sideration several useful, scientifically sound modeling forms.
For example, regression models lie outside the scope of this
report. While regression is of critical importance in generating
inputs for models, it is a descriptive method that explains and
predicts the relationship between inputs and outputs. A regres-
sion model, however, cannot give normative direction regard-
ing policy options. An infectious disease transmission model is
beyond this report’s scope if it is about what epidemics do but is
within scope if it uses that information to evaluate what can be
done to affect epidemics.

This article describes two distinct components of the mod-
eling process (Fig. 1): the problem conceptualization, which
converts knowledge of the health care process or decision into a
representation of the problem, followed by model conceptual-
ization, in which the components of the problem are repre-
sented by using a particular analytic method (1 in figure).
The model’s conceptual representation will usually direct
the decision as to which modeling technique to use (2, 3, and 4
in figure). This article covers the process up to technique
selection.

Conceptualizing the Problem

Statement of problem and objectives

Before constructing a model, it is important to be clear about the
nature of the problem under consideration and the project objec-
tives, which will usually fall in one of several categories:

● Guide clinical practice

A study involving 6 models designed to support the recommenda-
tions of the US Preventive Health Services Task Force (USPSTF) on
mammography screening [7] will be used as an ongoing example
for how the objectives, scope, and policy context of a modeling
exercise are described (see Box).

● Inform a funding decision or reimbursement rate for a new
intervention

For example, the cost-effectiveness of multidisciplinary heart fail-
ure clinics was evaluated to guide the Ontario Health Technology
Advisory Committee’s decision regarding their widespread diffu-
sion [8].

● Optimize use of scarce resources

For example, a model of the US organ allocation system was devel-
oped to guide policy around the use of livers for transplantation [9].

● Guide public health practice

For example, a model was developed to assess the cost-effective-
ness of universal vaccination for epidemic influenza [10].

The problem’s nature will have important implications for
model structure, data requirements, analytic strategy, and report-
ing. Components of the problem, including factors such as disease
or condition, patient populations, diagnostic or therapeutic ac-
tions and interventions, and outcomes, will be addressed below.

Although the problem’s general nature may seem clear, there
is often some ambiguity leading to variation in understanding of
the problem by stakeholders. For example, while it seems clear
that a model of a genetic test aiding patient selection for adjuvant
breast cancer therapy [11] was developed to inform the decision
whether to cover it, it subsequently became apparent that the
problem could be understood in several ways. One was to ask what
the consequences of a positive decision were likely to be in prac-
tice regarding health outcomes and costs. A model answering this
question would represent practice regarding clinical risk stratifi-
cation, the new test’s use, and chemotherapy use conditional on
test results. The potential benefits of testing are then compared
with current practice. A second way is to ask about the optimal
circumstances of test use to maximize patient outcomes. A model
answering this question must explore benefits of testing in a wide
variety of risk groups and treatment options conditional on test
results, irrespective of how the test is currently used.

Early specification of the decision problem and modeling ob-
jectives will improve model building efficiency. Defining the mod-
eling objective is an iterative process, and specific objectives may
change as understanding of the problem deepens.

Best practices

II-1 The modeling team should consult widely with subject experts and
stakeholders to assure that the model represents disease processes
appropriately and adequately addresses the decision problem.

It is important to read and consult widely and refine the prob-
lem definition early in model development. Existing models ad-
dressing related problems should be reviewed. The clinical and
policy literature describing the problem should be understood by
the modeling team. Experts, including clinical, epidemiologic, pol-
icy, and methodological, should be consulted. Clinical experts are
central in developing a representation of clinical practice. Policy
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Fig. 1 – Development and construction of a model. The
numbers in the figure represent the methods papers in this
series: 1) the conceptualization paper, which describes the
conceptualization of both the problem and the model; 2), 3)
and 4) which describe the three main kinds of modeling
methods addressed, including state transition model,
discrete event and agent based models and dynamic
transmission models; 5) parameter estimation used to
calibrate the models, and 6) the transparency and
validation of a model. See text for details.
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experts should be consulted when the model addresses a health
policy decision. Consultations with patients may deepen under-
standing of the values and preferences relevant to the problem.

Best practices

II-2 A clear, written statement of the decision problem, modeling ob-
jective, and scope should be developed. This should include: disease
spectrum considered, analytic perspective, target population, alterna-
tive interventions, health and other outcomes, and time horizon.

It is very useful to state the problem in writing early in model
formulation. It “lets the problem stakeholders and decision mak-
ers provide direct input into the model. . . . Once complete, the
narrative . . . serves as a reference point for further discussion and
refining the problem description” [12]. The process of creating a
problem statement may uncover variations in stakeholders’ con-
ceptualization and aid the development of clear, shared, modeling
objectives, which should be included in the written statement.

To build a model, the analyst must choose a structure appro-
priate for the problem and identify data to populate it. Thus, the
next step is to make the problem more specific [13–15]. The appro-
priate perspective must be carefully defined, as must the target
population, the health outcomes of importance for that popula-
tion, the technologies (new or old) and settings to be considered
for addressing the disease, whether and how costs will be repre-
sented, and the time horizon over which all outcomes will be pro-
jected. The experts and stakeholders who helped frame the prob-
lem should be involved in defining the model specifications. The
development of statements characterizing model objectives and
specifications can be simultaneous.

Best practices

II-2a A model’s scope and structure should be consistent with, and
adequate to address, the decision problem and policy context.

The condition specified in the problem plays a critical part in
determining relevant interventions and health outcomes. Typi-

cally, a single disease (e.g., breast cancer) or a set of closely related
diseases (e.g., cardiac, cerebrovascular, and peripheral vascular
disease) is of interest. Other conditions may be included if they are
sequelae of the disease of interest or common comorbidities that
affect its course. The decision problem, and thus the model, can
encompass, however, a broad range of conditions (e.g., Statistics
Canada maintains a population health model that simulates the
effects of risk factors such as smoking and weight on the develop-
ment and course of a wide range of diseases including osteoarthri-
tis, cancer, diabetes, and heart disease [16]).

The availability of data may constrain model development, but
the initial discussion of the problem should range broadly and
encompass features of the disease and its outcomes for which
data may be poor or unavailable. It is important to have a complete
picture of the problem, regardless of data availability. It is also
often possible to conduct sensitivity analyses on model features
for which no data exist in order to investigate their influence on
the results [5] (e.g., the breast cancer screening models used in the
USPSTF modeling exercise [7] include a component that repre-
sents the unobserved preclinical stages of breast cancer). Various
methods are available for inferring possible values for unobserved
model parameters [17].

Best practices

II-2b The analytic perspective should be stated and defined. Outcomes
modeled should be consistent with the perspective. Analyses which
take a perspective narrower than societal should report which out-
comes are included and which excluded.

Perspectives commonly considered are those of the patient,
the health plan or insurer, and society. In some cases, the employ-
er’s perspective (responsible for health insurance premiums and
interested in workforce productivity) may be important. The Panel
on Cost-Effectiveness in Health and Medicine recommended the
societal, or public interest, perspective [18]. This includes all sig-
nificant health outcomes and costs, no matter who experiences
them or whether the costs are matched by budgetary outlays. Per-

Box – Defining the objectives, scope, and policy context of a model (here, six models): Effects of mammography
screening under different screening schedules [7].

Decision problem/decision
objective

To evaluate US breast cancer screening strategies.

Policy context This analysis was used to inform the 2009 US Preventive Services Task Force recommendations on breast
cancer screening.

Funding source AHRQ, NCI
Disease Breast cancer: Four models included ductal carcinoma in situ, two did not; cancer was characterized

by estrogen receptor status, tumor size, and stage in all models and by calendar year in
three.

Perspective Stated as societal. Health outcomes are breast cancer outcomes for patients. Limited modeling of
resources used (see below). The US Preventive Services Task Force does not consider costs in making
its recommendations.

Target population

Cohort of US women born in 1960.
Subgroups were defined by age and the disease characteristics noted above. Subgroups mentioned in the

report but not analyzed: BRCA1 and BRCA2, black, comorbidities, HRT, obese.
Health outcomes

Reduction in breast cancer deaths and life-years gained, false-positive results, overdiagnosis.
Explicitly not included: morbidity from unnecessary biopsies or from treatment.

Strategies/comparators

Screening: Twenty mammography screening strategies defined by frequency (annual or biennial), start-
ing age (40, 45, 50, 55, or 60 y), and stopping age (69, 74, 79, or 84 y); no screening. Assumed 100%
compliance.

Follow-up treatment: ideal and observed patterns.
Resources/costs Number of mammograms, unnecessary biopsies
Time horizon Remaining lifetime of women

AHRQ, Agency for Healthcare Research and Quality; HRT, hormone replacement therapy; NCI, National Cancer Institute.
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haps because of this recommendation, analysts sometimes assert
that they used the societal perspective, even when the outcomes
and costs included are those of a narrower (“health care payer”)
perspective [19].

When a model simulates disease without assigning costs, the
perspective is typically left unstated. Most models focus on health
outcomes accruing to patients who have, or are at risk of, the
disease of interest and receive the interventions modeled. Effects
on the health of others are not included. Although widely used,
this perspective has not been explicitly defined or named; we will
call it the medical sector perspective. This perspective is closest to
that of clinical decision making, where health outcomes associ-
ated with treatment options for the presenting patient are consid-
ered on the basis of evidence from cohorts of similar patients.

When costs are included, modelers usually state the perspec-
tive explicitly. As the perspective for health outcomes has com-
monly been unstated, it is not recognized that all outputs should
be analyzed from the same perspective. In practice, the great ma-
jority adopts the medical sector perspective for both health and
cost effects, a perspective conventionally, if inaccurately, de-
scribed as the health care payer perspective [19]. This perspective
includes only those health outcomes that are experienced by pa-
tients receiving the interventions modeled and costs are those for
medical services required to provide the intervention. These differ
from costs to a health plan or insurer if patients are responsible for
co-pays and co-insurance. Resources provided without payment,
such as the time of volunteers or family members, and of patients
themselves, as well as costs incurred outside the medical sector
are not included.

The USPSTF mammography evaluation stated that it ad-
opted the societal perspective (Box), but the outcomes modeled
suggest that it might be better described as the medical sector
perspective. The evaluation modeled breast cancer outcomes
and limited costs to those of mammograms and unnecessary
biopsies, in keeping with the charge to base recommendations
only on medical effectiveness.

Choice of perspective, and the care with which it is carried
through, is a source of variation within and across studies. Its
impact on a study’s results could be explored through sensitivity
analysis, but whether or not this is done, it is important to be
accurate in describing and correctly applying the chosen perspec-
tive.

Best practices

II-2c The target population should be defined in terms of features rel-
evant to the decision (e.g., geography, patient characteristics, including
comorbid conditions, disease prevalence and stage).

The target population consists of patients who have, or might
develop, the disease(s) and who will receive the interventions be-
ing modeled. The population is also defined by geography, as the
patients live in specific communities and countries. The disease
stage and timing, or route of access to the intervention, often af-
fects the definition. A vaccine for children necessarily implies that
the target population is children, but the options can be more
complex. An evaluation of rubella vaccine, for example, consid-
ered the vaccination of children or women of childbearing age, and
therefore had two rather different target populations [20].

In some cases, people who are not the interventions’ target will
be affected by it. An obvious example is vaccinations, which often
confer benefits (herd immunity) on unvaccinated people [21]. Folic
acid fortification of grains aims to prevent neural tube defects in
infants but may harm the elderly [22]. Health outcomes and con-
sequences of introducing interventions may confer (or reduce)
substantial responsibilities on families and friends, which can
generate costs and affect their health. In such cases, consideration
should be given to these additional effects.

The target population may need to be classified into subgroups
to reflect characteristics that differentially affect disease course or
the intervention’s impact, and thereby costs and other model out-
comes. These groups may be characterized by age (older than 65
years, younger than 65 years), prior disease course (presence of a
complication or not), health behaviors (smokers vs. nonsmokers),
comorbidities (patients with and without diabetes), and genetic
predisposition or family history. The variety and levels of these
characteristics can affect the choice of model [21]. When there are
relatively few, models based on group averages (“cohort models”)
might be used. A greater number of characteristics may require
several cohort models for different comorbidity and age strata. As
the number of characteristics (and the number of levels required
for each) increases, models based on individuals will become the
more practical choice. Such “microsimulations” can record indi-
viduals’ initial characteristics, how these change over time, and
historical factors such as prior health states or interventions.
There is no absolute limit to the number of states in a state-tran-
sition model (the Coronary Heart Policy Model contains many
thousands of states). Cohort models with more than 30 to 50 states
become unwieldy; few current cohort models include more than
100 health states.

The target population can be modeled as open (new members
can enter as time progresses) or closed (members enter only at the
beginning) [23]. The open approach can represent an ongoing in-
tervention program and is often the basis for budget impact cal-
culations. The closed approach corresponds more closely to the
medical sector perspective and is often used in health technology
assessments. The USPSTF modeled a closed cohort of women born
in 1960, with screening starting no sooner than the year they
turned 40. Modeling a series of cohorts can bridge the two ap-
proaches.

Best practices

II-2d Health outcomes, which may be events, cases of disease, deaths,
life-years gained, quality-adjusted life-years, disability-adjusted life-
years, or other measures important to stakeholders, should be directly
relevant to the question being asked.

Health outcomes can be represented in many ways. They may
be clinically defined states or events (e.g., myocardial infarction,
hepatitis B infection, and cancer death); changes in physiologic
parameters (e.g. glomerular filtration rate); or health indices (e.g.
quality-adjusted life-years, disability-adjusted life-years [21]) that
characterize health using a vector composed of separate measures
of quality and quantity of life, and possibly other factors (age or
equity adjustments). Outcomes may be subjective (e.g., anxiety
while waiting for biopsy results) or objective (biopsy results).
Broader metrics are popular with funding agencies as they facili-
tate budgetary allocations across disease areas.

Event outcomes are usually selected because they are associ-
ated with better health. They may be referred to as “intermediate
outcomes,” but this must be distinguished from “intermediate”
physiological or biologic measures (e.g., tumor response, blood
pressure) that may be used to project “final outcomes” in a model
using predictive equations. Some models (addressing issues of
process efficiency in health care delivery) may not explicitly rep-
resent health outcomes at all, but only processes (waiting times,
number of visits, length of stay) that are indirectly linked to health.
It is generally recommended that “models should include long-
term or final outcomes” [14].

Modeling relevant outcomes related to final end points usually
requires a series of intermediate disease states that track the con-
dition’s progress and effects of interventions. A realistic model
will include each disease aspect that may result in significantly
different outcomes. In the mammography evaluation [7], these
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intermediate states were the breast cancer stages detected clini-
cally or through screening.

In addition to beneficial effects, the adverse consequences of
interventions should be modeled to produce an accurate picture. If
adverse effects are not automatically captured, as in mortality
rates associated with treatment, they must be modeled sepa-
rately. The mammography evaluation included false-positive
screens, unnecessary biopsies, and overdiagnosis as adverse
screening effects but did not include morbidity from biopsies or
treatment.

Best practices

II-2e Interventions modeled in the analysis should be clearly defined in
terms of frequency, component services, dose or intensity, duration,
and any variations required for subgroups, and should include stan-
dard care and other strategies routinely considered and in use.

It is critically important to model all practical interventions
and their variations [14]. Nevertheless, the range of interventions
considered is bounded by the problem. Although there are many
breast cancer interventions, the USPSTF evaluation addressed
only mammography screening. The choice of comparators has a
major impact on estimated effectiveness and efficiency, and the
results are meaningful only in relation to the interventions con-
sidered. The mammography evaluation investigated 20 screening
strategies defined by mammogram frequency, age at screening
start, and age at end and considered two treatment patterns: ideal
and actually observed in the United States.

The form interventions take will differ across countries and
often across settings within countries. Thus, despite the same la-
bel (e.g., “breast cancer screening”), the effects may differ, depend-
ing on the practice patterns in the target population area. Al-
though the model should reflect the applicable practice patterns, it
is important to specify their components in detail so that users can
determine how well the analysis reflects their situations. When
evaluating results of a model from another setting, even if costs
are transformed to the appropriate local currency, practice pat-
terns and prices of drugs and services may be significantly differ-
ent and hinder generalizability of results.

Best practices

II-3 Although data are essential to a model, the conceptual structure
should be driven by the decision problem or research question and not
determined by data availability.

Nevertheless, the model’s credibility will be evaluated, at least
in part, by the quality of data it employs, particularly for key pa-
rameters such as treatment effectiveness or diagnostic test char-
acteristics. If what the field regards as key evidence is omitted, the
model’s credibility diminishes. Thus, data selection requires at-
tention to the sometimes competing criteria of fidelity to the prob-
lem, representativeness, and data quality.

Best practices

II-3a The choice of comparators crucially affects results and should be
determined by the problem, not by data availability or quality. All
feasible and practical strategies should be considered. Constraining the
range of strategies should be justified.

Comparisons should address all interventions relevant to the
problem. These may be specific alternatives, or a distribution that
reflects routine (or “standard”) practice, or even no intervention
(the “natural” disease course). When the latter is standard prac-
tice, it should be a comparator. If an intervention can take differ-
ent forms, these should be included and compared with each
other.

Best practices

II-3b The time horizon of the model should be long enough to capture
relevant differences in outcomes across strategies. A lifetime time ho-
rizon may be required.

The choice between closed and open population affects the time
horizon choice. A cohort simulation is implicitly constrained by the co-
hort’s lifetime. This is not the case for open models, where the modeler
needs to make separate decisions about program duration and how
long the model should be run to capture program effects.

Modeling over patients’ lifetimes usually requires extrapolat-
ing well beyond available data, since trials and observational stud-
ies rarely cover such long periods. Thus, short-term effects and
costs may be based on primary data, while longer-term ones must
be extrapolated. Discounting of future costs and health outcomes
limits the impact of using a lengthy time horizon [15]. Sensitivity
analyses should be performed examining upper and lower bound-
ary cases for assumptions used in the extrapolations.

There may also be secular trends in the disease over patients’ life-
times. For example, when vaccination is successful against covered se-
rotypes, those not covered may over time become more widespread
(“serotype replacement”). If these trends are likely to significantly affect
thediseaseor intervention, theyshouldbeincorporatedinthemodel,at
least for sensitivity analysis. It is, however, generally not useful (or fea-
sible) to project trends in treatment beyond the introduction of the in-
tervention of interest. Of note, the time horizon considered important
by the decision maker may not incorporate the entire time horizon of
the disease. The choice of time horizon and its justification should be
explicitly stated in model development.

Valuing outcomes

Models require a value structure—a way of valuing outcomes.
Quality-adjusted life-years [24–26], or in some developing coun-
tries, disability-adjusted life-years, are common ways of express-
ing value [18]. Resources used by the interventions modeled
should be described in detail so that decision makers can tell how
closely the model resembles the interventions they are considering.
Resource use is typically valued in monetary terms [27,28]. In the
short term, certain resources (e.g., number of hospital beds or mam-
mography technicians) are fixed, and it can be prohibitively expen-
sive or impossible to increase them. In the longer term, these re-
sources could be increased or decreased as necessary. Most clinical
guidelines are intended for long-term use, and thus the long-term
approach is appropriate for guidelines development.

Best practices

II-4 The problem conceptualization should be used to identify key un-
certainties in model structure where sensitivity analyses could inform
their impact.

Each decision made in problem conceptualization has the po-
tential to alter the results. During the conceptualization, experts
and modelers should identify assumptions that should be evalu-
ated through structural sensitivity analysis. This may impact the
choice of modeling type: some sensitivity analyses require a
change in structure in one type but reduce to a parameter sensi-
tivity analysis in another.

Best practices

II-5 The policy context of the model should be clearly stated. This in-
cludes the funder, developer, whether the model is for single or multiple
application, and the policy audience.

The development of models is often explicitly linked to policy
questions. Health technology assessment (HTA) agencies often
commission models to evaluate the cost-effectiveness of inter-
ventions. The close linkage between model development and pol-
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icy has implications for model construction, as modelers will work
within the context of specific methodological guidelines that re-
flect the decision makers’ views, priorities, and values [29,30].
Other models may be developed unrelated to a specific policy ap-
plication with objectives such as scientific discovery, evaluation of
broadly relevant clinical strategies, or a platform to address many
policy questions [31]. Models may facilitate policy development
[32], as well as implementation, by providing the architecture for
organizing evidence for a specific policy initiative, and helping
generate policy questions [33].

The policy context may also have an undesirable effect. Man-
ufacturers have strong financial incentives to gain access to spe-
cific markets and, thus, to reach a favorable conclusion in model-
based economic analyses. Evidence suggests that sponsorship
bias exists [34–36]. Whether these effects are mediated through
the selection of products with substantial effectiveness for eco-
nomic evaluation [37], of comparators, of parameters, or study
interpretation or publication bias is uncertain. Sponsorship bias
may also be present in analyses funded by health systems. Payers,
including governments, have large incentives to constrain costs.
New technologies with the potential for widespread diffusion and
high costs may be analyzed differently than technologies with a
lower potential system impact.

Conceptualizing the Model

The appropriate model type is determined by purpose, level of
detail, and complexity. To illustrate, consider a coin toss [38]. If
one sought to portray the coin’s real-world behavior faithfully, one
might construct a descriptive model taking into account such con-
siderations as gravity, angular momentum, air resistance, force
applied, and height from which the coin was dropped. But, if one’s
aim were to advise a team captain whether to call “heads” or
“tails” before kickoff, one might adopt a model that treats the coin
toss as a random event with a 50% likelihood of each outcome.

Best practices

II-6 An explicit process (expert consultations, influence diagrams, con-
cept mapping, or similar method) should be used to convert the prob-
lem conceptualization into an appropriate model structure, ensuring it
reflects current disease knowledge and the process modeled.

Although the formality of the process of moving from concep-
tualization to structuring may vary substantially with the problem
scope [39], there are substantial benefits to making it explicit. De-
cisions taken define the simplifications and assumptions used to
create the problem representation. There should be a written, ex-
plicit record of the process by which the conceptualization is in-
stantiated, using methods such as influence diagrams [40–42] and
concept mapping [43,44]. One advantage of adopting an explicit
process is that it supports focused discussions between content
experts, policymakers, and modelers on what should be included
and the simplifying assumptions made in representing the prob-
lem and the treatment/disease process.

Best practices

II-7 Several model types may be suitable. Some problems are more
naturally represented in some types than others.

Virtually any problem can be represented in any type of model,
and therefore, these recommendations are not prescriptive. Some
methods are designed for particular problem types, however.
There are several modeling techniques available [21,45]: individ-
ual or cohort, deterministic or stochastic. Common model types
include decision trees, state-transition models [2], discrete event
simulation (DES) [3], agent-based simulation, and dynamic trans-
mission models [4]. Decision trees are useful for problems with

short time horizons where the estimation of outcomes is straight-
forward. State-transition models are useful for problems with lon-
ger time frames or when probabilities vary over time. DES is useful
for representing what happens to individuals, particularly when
there are resource constraints or interactions among individuals.
Dynamic transmission models are useful when interactions oc-
curring between groups have an impact on the results.

Characteristics that affect model selection

Several problem characteristics should be considered to decide
which modeling method is most appropriate: will the model rep-
resent individuals or groups; are there interactions among individ-
uals; what time horizon is appropriate; should time be represented
as continuous or discrete; do events occur more than once; are
resource constraints to be considered.

● Unit of representation: individuals versus groups

Models can represent patients as individuals or as members of a
homogeneous cohort. Decision trees, Markov processes, and in-
fectious disease compartment models represent populations as
cohorts that are homogeneous within each state or component.
State-transition microsimulation, DES, and agent-based models
represent each patient individually and calculate outcomes by ag-
gregating across individuals. Modeling individuals does not auto-
matically imply greater accuracy. Cohort models can be detailed
regarding subgroup characteristics and very specific regarding the
impact of a decision on those cohorts. It is easier, however, to
represent the biology of a process using an individual technique.
The choice of unit is also important because it changes the way
that individuals or groups may interact in the model. Whether
individuals can be regarded as independent will in part determine
the most efficient modeling method [46].

Another reason for representing patients as individuals or
groups is the level of detail required for the variables that predict
outcomes: the more detailed, the more reason to select individual
representation. For example, consider a model in which blood cre-
atinine levels (a measure of kidney function) are important in pre-
dicting the occurrence of a particular event. When modeled as a
group (i.e., to define different health states), creatinine will need to
be a categorical variable (e.g., creatinine �2.0 mg/dL or �2.0 mg/
dL). For variables not used to define the group (health state), a
representative value will need to be obtained for each group. Al-
though there is no limit to the number of such groups that may be
created, valuable information may be lost by categorizing vari-
ables or using representative values for specific groups. Individual
modeling is not so constrained—patient characteristics may be
retained as continuous variables with specific values as required
over time. Representing these changes over time may add com-
plexity, but if risks of events are determined by such values, a
model that represents individuals should be used.

● Interactions between individuals and other components of the
model

A second aspect to consider is whether interactions among individ-
uals need to be represented. For example, if the problem is evaluating
the appropriate treatment for a patient with HIV, it is not necessary
to include the treatment effect on the epidemic itself [47]. The results
of such a model do not depend on and therefore do not require mod-
eling HIV transmission between individuals. When the problem re-
quires modeling the effect of an intervention on disease spread,
methods designed for patient interaction should be selected, such as
dynamic transmission models [48,49], DES [50,51], and agent-based
models [52]. Similarly, these methods are appropriate when individ-
uals interact with other components of the model, such as use lim-
ited resources [53,54].
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● Time horizon and time measurement

The time horizon—how far into the future outcomes are mod-
eled—is dictated by the problem scope. Decision trees may be appro-
priate for models with very short time horizons; longer horizons re-
quire more dynamic modeling methods such as state-transition,
DES, or dynamic transmission. Similarly, the modeler needs to as-
sess whether time should be modeled continuously or in discrete
cycles. As only a single transition may occur within a cycle in state-
transition models, very short cycle times are required if the likeli-
hood of events is high.

Best practices

II-7a For simple models, or problems with special characteristics (e.g.,
very short time horizons, very few outcomes), a decision tree may be
appropriate.

Although decision trees are less common now, they present sev-
eral advantages [39,55]. They can be simple to conceptualize, create,
and modify and can be useful tools to rapidly outline the components
of a particular problem. They are most suitable when the outcome
set is small and defined, the time horizon is short [56], or when the
consequences of a decision are known with some certainty [57].

Best practices

II-7b If the conceptualization involves representing the disease or treat-
ment process as a series of health states, state-transition models are
appropriate. Their primary disadvantage, the Markovian assumption
that transition probabilities do not depend on history, can be addressed by
increasing the number of states. Individual state-transition models,
which do not require this assumption, are an alternative when the num-
ber of states grows too large.

State transition models are ubiquitous as they may be simple to
develop, debug, communicate, analyze, and readily accommodate
the evaluation of parameter uncertainty. They make sense when the
problem has been conceptualized as a series of homogeneous states.
They are consistent with a categorical clinical view, where the dis-
ease is broken into distinct stages, as in cancer, or its presence/ab-
sence (e.g., diabetes), or on/off treatment. Transitions between states
define mode progression over time. After choosing a state-transition
framework, the decision regarding whether to model a series of co-
horts or individuals is primarily pragmatic: if the number of states
required to represent the problem becomes unmanageably large, use
individual simulation, which allows representation of substantial
heterogeneity in characteristics.

Best practices

II-7c When the disease or treatment process includes interactions be-
tween individuals, the methods should be able to represent those in-
teractions and evaluate their effects.

Dynamic-transmission, DES, or agent-based models, given
their ability to represent interactions between individuals (e.g.,
transmission of disease from infected to uninfected) or with other
aspects of the model (e.g., allocation of organs to individuals on a
waiting list), should be chosen when the problem conceptualiza-
tion involves interactions. Furthermore, these models are able to
represent time continuously, rather than in discrete cycles, and
therefore more accurately implement continuous risk functions
and incorporate time-to-event data.

Dynamic-transmission models, which require the definition of
“compartments” that classify people (e.g., susceptible, infectious, or
immune), become analytically complex with more detailed problem
characterization and are prone to state expansion. When models
become numerically intractable because of a very large numbers of
states, or when the conceptualization represents geography or spa-
tial proximity, DES or agent-based models are more appropriate.

Best practices

II-7d When the problem involves resource constraints, the modeling
method should be able to represent them and evaluate their effects.

Similar to interactions between individuals, some problem
conceptualizations require that individuals interact with other
model parts. Questions regarding scarce resource allocation (e.g.,
organ allocation for transplantation, distribution of antiretroviral
medications in resource-poor environments, appropriate schedul-
ing of operating room to minimize surgeon wait time, or the num-
ber and location of distribution sites for vaccination during a pan-
demic) require the ability to incorporate competition for resources
and the development of waiting lists or queues. DES and agent-
based simulation were designed for these types of problems.

Best practices

II-7e For some problems, combinations of model types, hybrid models,
and other modeling methodologies are appropriate.

The model types described in these articles are not exhaustive.
Some health care problems are not easily represented in these
commonly used platforms. There has been recent interest in de-
veloping physiologic models, and these “in-silico” simulations do
not fit precisely into the standard modeling types [58–60]. Hybrid
modes utilizing various techniques including multiple differential
equations have also appeared [61,62].

Best practices

II-8 Model simplicity is desirable for transparency, ease of analysis,
validation and description. However, the model must be complex
enough to ensure that differences in value (e.g. health or cost) across
the strategies considered are faithfully represented. Some degree of
model complexity may be desirable to preserve face validity to clinical
experts. Greater complexity may be necessary in policy models that are
intended to be used for many problems.

Selecting the correct level of detail is one of the most difficult
decisions a modeler faces. Models that are too simple may lose face
validity because they do not incorporate aspects that content experts
feel are required, but models that are too complex may be difficult to
build, debug, analyze, understand, and communicate. As Einstein
said, “everything should be made as simple as possible, but not sim-
pler” [63]. Scope, perspective, target population, outcomes, and the
interventions considered in the evaluation all contribute to the level
of detail required to appropriately model the particular problem.
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