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Abstract

Normative models are a class of emerging statistical techniques useful for understanding the heterogeneous biology

underlying psychiatric disorders at the level of the individual participant. Analogous to normative growth charts used in

paediatric medicine for plotting child development in terms of height or weight as a function of age, normative models chart

variation in clinical cohorts in terms of mappings between quantitative biological measures and clinically relevant variables.

An emerging body of literature has demonstrated that such techniques are excellent tools for parsing the heterogeneity in

clinical cohorts by providing statistical inferences at the level of the individual participant with respect to the normative

range. Here, we provide a unifying review of the theory and application of normative modelling for understanding the

biological and clinical heterogeneity underlying mental disorders. We first provide a statistically grounded yet non-technical

overview of the conceptual underpinnings of normative modelling and propose a conceptual framework to link the many

different methodological approaches that have been proposed for this purpose. We survey the literature employing these

techniques, focusing principally on applications of normative modelling to quantitative neuroimaging-based biomarkers in

psychiatry and, finally, we provide methodological considerations and recommendations to guide future applications of these

techniques. We show that normative modelling provides a means by which the importance of modelling individual

differences can be brought from theory to concrete data analysis procedures for understanding heterogeneous mental

disorders and ultimately a promising route towards precision medicine in psychiatry.

In most areas of medicine, biomarkers that objectively

indicate disease state have revolutionized diagnosis and

treatment allocation. In contrast, psychiatric disorders are

still diagnosed exclusively on the basis of symptoms and

biological tests to assist diagnosis or treatment allocation

remain to be developed [1]. This yields clinical groups that

are highly heterogenous, both in terms of clinical pre-

sentation and underlying biology, which is a major barrier

to understanding underlying mechanisms and developing

better treatments [1–3]. This is widely recognized at a

theoretical level and over the years, many different theo-

retical models have been proposed to explain the hetero-

geneity of psychiatric disorders [4–9]. These emphasize the

myriad pathological mechanisms that may converge on

the same symptoms in different participants [4, 5] and that

the same underlying biological risk factors may result in a

different clinical phenotype in different individuals

depending on the context, genetic background and critical

time window [4, 9]. Heterogeneity remains the dominant

theme even in recent large-scale theoretical initiatives such
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as the Research Domain Criteria (RDoC) [6, 7] and the

European Roadmap for Mental Health Research (ROA-

MER) [8]. All these theoretical models are founded on an

implicit recognition of the importance of modelling indi-

vidual differences within and across clinical cohorts

[10, 11]. It is very important to recognize, however, that this

broad theoretical recognition is not reflected in the data

analysis strategies employed in practice. Instead, the over-

whelming majority of analysis approaches remain focussed

on group averages (e.g. the ‘average patient’) and regard

individual differences principally as noise.1

Normative modelling is an emerging approach that can

address this challenge by providing statistical inferences at

the level of the individual with respect to an expected pat-

tern [12]. This is analogous to the widespread use of nor-

mative growth charts in paediatric medicine to map child

height or weight as a function of age with respect to centiles

of variation in a reference population [13]. Normative

modelling generalizes this notion by substituting these

variables for clinically relevant variables then applying

automated statistical techniques to map centiles of variation

across the cohort. This is increasingly used to map variation

between cognitive, clinical or demographic variables and

quantitative biomarkers derived from neuroimaging

[12, 14–17]. The key feature of normative modelling that

makes it useful for stratifying cohorts is that it permits the

detection and mapping of distinct patterns of abnormality in

individuals without requiring a consistent neurobiological

signature across all individuals.

Whilst early applications focused on brain development

and ageing [16, 18], normative modelling has recently been

shown to be highly promising for psychiatry [12, 14, 17, 19–

21]. First, to map variation related to brain development and

ageing in psychiatric disorders, which is appealing given the

neurodevelopmental basis of mental disorders [22]. For

example, neurodevelopmental normative models have been

used in the context of schizophrenia [17, 19], attention

deficit/hyperactivity disorder (ADHD) [20, 23] and autism

[21, 24] to help understand the emergence of mental dis-

orders as deviations from an expected developmental tra-

jectory and identify individuals following an atypical

trajectory. Second, normative modelling can also be

abstracted beyond development to chart the spectrum of

functioning across any cognitive domain. It has been used,

for example, to chart variation in reward systems via map-

pings between trait measures of reward sensitivity and

reward-related brain activity [12]. Finally, normative models

can help to understand healthy variation and move beyond

simple dimensional theories of mental disorders [25].

Here, we provide a unifying review of normative mod-

elling for charting individual variation across different

behavioural, demographic and biological dimensions,

thereby helping to understand heterogeneity within clinical

cohorts. We first provide a statistically grounded, yet non-

technical overview of its conceptual underpinnings and

propose a framework to link the many different methodo-

logical approaches that have been proposed. Second, we

outline connections between normative modelling and

existing approaches for tackling heterogeneity including

clustering [26] and ‘brain age’ approaches that characterize

subjects in terms of a difference between a brain-derived

predicted age and true chronological age [27, 28]. Third, we

survey the literature employing normative modelling in

clinical conditions. Fourth, we discuss normative modelling

as a tool for finding structure in large cohorts, which is

important given the recent shifts towards ‘big data’ neu-

roscience and large population-based cohorts [29–31].

Finally, we provide recommendations for future studies and

critically evaluate the limitations of normative modelling.

Introduction to normative modelling for
understanding heterogeneity in clinical
cohorts

Normative modelling is a statistical framework for mapping

between behavioural, demographic or clinical character-

istics and a quantitative biological measure, providing

estimates of centiles of variation across the population

(Fig. 1a). Normative modelling provides a concrete method

for studying individual differences and parsing hetero-

geneity across cohorts because it provides statistical infer-

ences at the level of the individual participant as to the

degree to which each individual deviates from the norma-

tive pattern and allows these deviations to be mapped in

each individual. In other words, normative modelling pro-

vides a way to quantify and characterize the manner in

which different individuals deviate from the expected pat-

tern, and from one another. Importantly, this does not

require that atypicalities overlap across participants (e.g. in

the same brain regions) or even that a consistent pattern of

deviation exists. Therefore, this accommodates the con-

vergence of multiple pathological pathways on the same

symptoms in different individuals [4]. This is clearly dif-

ferent from case-control analyses, which all focus on first

order statistics (group means), thereby seeking a consistent

pattern of atypicality (i.e. the ‘average patient’). In a case-

control context, heterogeneity becomes apparent via infla-

tion of the model residuals and ultimately decreases

1 This includes classical analysis methods based on the general linear

model (e.g. t-tests and analysis of (co-) variance) plus classical and

supervised machine learning classification models (e.g. linear dis-

criminant analysis, logistic regression and support vector machines)

and unsupervised clustering methods (e.g. k-means), where—at best—

confound regressors are used to remove some of the cross-subject

variation.
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sensitivity for detecting disorder-related effects. In contrast,

normative modelling explicitly models heterogeneity

because it focuses on modelling individual variation around

the mean using second order statistics (variances). There-

fore, normative modelling explicitly characterizes and

quantifies the heterogeneity underlying clinical conditions

at a finer grained level than is afforded by group averages.

Normative modelling also does not require that the clinical

group can be cleanly partitioned into subtypes [26] although

it can be used to generate features for clustering. Normative

modelling can be used to estimate many different kinds of

mappings based on the variables chosen, but here we focus

on mappings between behavioural or demographic

measures and a quantitative biological readout, most com-

monly derived from neuroimaging.

Procedurally, normative modelling involves four steps

(Fig. 1b): First, a reference cohort and a set of variables are

chosen to define the mapping and population over which

variation is measured. Second, a statistical model is esti-

mated to model variance in a response variable (a.k.a. target

or dependent variable) from a set of clinically relevant

covariates (predictor or independent variables) across the

reference cohort. For example, one may estimate a norma-

tive model for cortical thickness as a function of age and

gender using a population-based reference cohort. Third, it is

necessary to assess the accuracy of the normative model for

Fig. 1 Conceptual overview of normative modelling. a Normative

modelling is similar to the use of growth charts in paediatric medicine,

except the conventional response variable (e.g. height or weight) is

substituted for a quantitative biological readout (e.g. regional brain

activity). The classical covariates (age and sex) can also be substituted

for clinically relevant variables. Normative modelling provides sta-

tistical inference at the level of each subject with respect to the nor-

mative model (red figure). b Procedural overview of normative

modelling. After the choice of reference cohort and variables, the

normative model is estimated, before being validated out of sample on

new response variables and covariates (y* and x*, respectively).

Finally, the estimated model can be applied to a target cohort (e.g.

clinical cohort). c A common configuration for normative modelling of

neuroimaging data, where a separate normative model is estimated for

each sampled brain location. This can be described by a set of func-

tions (y = f(x)) predicting neurobiological response variables (y) from

clinical covariates (x). d Normative models can also be estimated for

the opposite mapping, where brain measures are chosen as covariates

and age or other covariates are chosen as a response variable. See text

for further details
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predicting the response variable (e.g. mean-squared error,

explained variance). To ensure accurate estimates of gen-

eralizability, this must be performed on withheld data (e.g.

under cross-validation). Finally, this model can be applied to

quantifying the deviations of samples from a target cohort

(e.g. clinical cohort) with respect to this reference model.

Many regression models have been proposed for nor-

mative modelling, including hierarchical linear models,

polynomial regression, quantile regression, support vector

regression and Gaussian process regression (Table 1). The

estimation of normative models is conceptually similar to

classical growth charts, for which many approaches have

been proposed [13]. In both cases, the data make multiple

demands from the regression model including ensuring

precise estimation of outer centiles (where data are spar-

sest), ensuring centiles vary smoothly as a function of the

covariates (and do not cross) and the ability to estimate

deviations for individual samples via analytical formulae

(e.g. Z-scores) [32]. In order to provide a conceptual fra-

mework linking these approaches, we categorize different

approaches according to three criteria: (i) the choice of

covariates and response variables; (ii) the degree to which

the model separates different sources of variation and (iii)

the degree to which the model permits statistical inference

the individual level. However, other features are also

important, for instance ability to model non-linear

relationships.

Choice of covariates and response variables

A simple way to categorize different approaches is in terms

of the variables that define the mapping. One common

configuration (Fig. 1c) uses age as a covariate, often in

combination with other clinical or demographic variables to

predict a quantitative biological readout. However, there are

other possibilities: for example, the mapping can be inver-

ted such that age is the response variable which is predicted

from clincal or demographic variables (Fig. 1d). This is the

approach used by ‘brain age’ models [27, 28] which use

multivariate regression to predict age from a pattern of

brain-derived measures. For linear models, it is obvious that

an association can be detected in either direction simply by

inverting the linear model. However, the interpretation of

the centiles of variation and regression coefficients differs

and we consider that charting variation over the biological

readout is more appealing because it directly mirrors the use

of growth-charting in paediatric medicine.

As noted, normative models are also not restricted to

charting variation across development. By substituting age

for other variables, normative models can chart variation in

any kind of mapping, for example to link cognitive scores

with brain activity patterns [12].

Separating different sources of variation
across the cohort

Normative modelling principally aims to model variation

across the cohort over and above estimation of mean

effects. To achieve this effectively, it is important to

separate different sources of variation, most importantly

to differentiate actual variation within the data (i.e. across

participants) from variability due to parameter and model

uncertainty (i.e. induced variability due to a lack of data).

In normative modelling, we quantify these variabilities

using two types of uncertainty commonly defined in

machine learning [33]: (i) irreducible (or ‘aleatoric’)

uncertainty that reflects true underlying variability that

cannot be reduced with more data; (ii) reducible (or

‘epistemic’) variation that reflects parameter uncertainty

or ignorance about the true model and can be reduced by

more data. Aleatoric uncertainty is of primary interest for

stratification because it reflects variation across subjects

whereas epistemic uncertainty is nuisance variation that it

is desirable to minimize. The degree to which different

approaches account for these sources of variability can be

classified hierarchically (Fig. 2): the simplest approach

involves estimating the mean effect only and assessing

deviations from the expected pattern using the model

residuals (Fig. 2a, b) [19, 27]. Whilst this is appealing in

its simplicity, it provides no estimate of variation across

the cohort and cannot provide statistical inferences at the

individual level (see below). This has been addressed in

different ways, for example via estimating confidence

intervals via a post hoc regression between the residuals

of the model against the true response variable [14] or

using quantile regression to directly estimate centiles of

variation in the data [34]. These approaches provide sta-

tistical estimates of variation within the population and

can indicate if a particular participant deviates from the

expected pattern at a given confidence level, but they do

not fully account for different sources of uncertainty, e.g.

uncertainty in the estimation of the centiles (Fig. 2c).

Bayesian methods such as Gaussian process regression

[12, 16, 35] provide one solution to this problem (Fig. 2d)

by estimating distinct variance components and providing

predictions for each participant that account for all sour-

ces of uncertainty. This is important for two reasons: first,

it provides estimates of centiles of variation within the

reference cohort that are not influenced by data density;

second, it allows all sources of uncertainty to be taken into

account when making predictions. This provides the

desirable property that inferences become more con-

servative in regions of the input space where data are

sparse. With these complementary purposes in mind, it

may be desirable to report different variance components

separately.
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Degree of individual prediction

The ability of the model to perform single participant infer-

ence can be classified hierarchically. At the simplest level

(‘numerical inference’; Fig. 2a, b), the model only provides

numerical deviations (i.e. residuals of the target cohort from

the reference model). This is the approach taken by most brain

age approaches [27] and permits group-level inferences about

how deviations correlate—for example—with symptoms. In

contrast, some models provide estimates of centiles of varia-

tion within the population (‘statistical inference’; e.g. quantile

regression [34] and Bayesian techniques [12, 16]). This pro-

vides inferences as to whether each individual deviates from

the model at a given statistical significance level (Fig. 2c).

Some studies have derived variance estimates via post hoc

regression on the model residuals [14] and atypicality cutoffs

could also be defined post hoc, although this must be done on

unseen data to remain unbiased. However, as described

above, it is important to recognize whether predictions

account for all sources of variance. If they do not, they may

yield overly optimistic inferences. This can be addressed

using models that estimate separate variance components for

different types of variance and account for all uncertainty in

the predictions (Fig. 2d).

In addition to mapping deviations in individuals, it is

often desirable to estimate participant-level summary sta-

tistics for the overall deviation from the normative pattern.

Different methods have been proposed for this, e.g.: com-

bining deviations across all voxels [16] or modelling the

most extreme deviations in each subject using extreme

value statistics [12].

Relationships to other approaches for
parsing heterogeneity

Normative modelling is complementary to the predominant

approach for tackling heterogeneity in mental disorders, i.e.

Fig. 2 Separating different sources of uncertainty in normative mod-

elling. Panels a and b show the simplest approach for normative models

which do not quantify uncertainty at all (a: linear model, b: non-linear

model). Instead, deviations from the model (red figures) are assessed

via the residuals from a regression function (blue lines). In red, the

corresponding equation for assessing deviations from the model is

shown where deviation from the normative model are assessed simply

as the difference between the true (y) and predicted (by) normative

response variable for each subject. c Some models estimate centiles of

variation explicitly either via separate model fits or post hoc to the

initial regression fit (blue dotted lines). This captures ‘aleatoric’ or

irreducible variation in the cohort which shows how subjects vary

across the population (σ2a). However, there is also uncertainty

associated with each of these centiles of variation (shaded blue

regions), which is highest in regions of low data density and should be

accounted for. d Some models separate and take all sources of variation

into account (i.e. also including ‘epistemic’ uncertainty (σ2e ), which can

be reduced by the addition of more data). This allows the model to

automatically adjust predictions, becoming more conservative in

regions where data are sparse. This is shown by a widening of the

statistical intervals, although note that these intervals now have a dif-

ferent interpretation to those in (c). For example, the right-most figure

in (d) would not be judged as an outlier, whereas the same figure may

be judged as an outlier in models that do not account for all sources of

uncertainty (c). This is important to prevent a subject being declared as

‘atypical’ simply because of data sparsity. See text for further details
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subtyping using clustering algorithms. Clustering has been

widely applied [26] and is often useful. However, it also

suffers from limitations: first, clustering assumes that the

clinical group can be cleanly partitioned into subtypes.

However, this assumption is seldom evaluated, which is

problematic because clustering algorithms always yield a

result, regardless of whether clusters are ‘really there’

[26, 36]. Second, clustering focuses on group averages and

does not fully model individual variation within clusters. In

other words, most clustering algorithms regard piece-wise

constant clusters as atomic units. Whilst some algorithms

provide ‘soft’ cluster assignments that capture some varia-

tion within clusters, this cannot accurately model, for

example, a spectrum of functioning. In contrast, normative

modelling shifts the analytical focus: (i) away from group

means to understanding cohort variation (i.e. from first- to

second-order statistics); (ii) towards understanding variation

across individuals and (iii) towards mapping deviations at

the level of individual.

Normative modelling is complementary to alternative

techniques for individual prediction; for example, super-

vised discriminative models [3] can assess the degree of

group separation in a case-control sense and therefore

provide predictions that are specific for certain disorders.

On the other hand, normative modelling can be used to

understand the variation across the cohort independently of

the clinical labels.

Brain age models are related and complementary to

normative modelling. They can be considered as a type of

normative model which estimate the opposite mapping (i.e.

brain readouts as covariates and age as the response vari-

able; Fig. 1d). As noted, choosing age as a covariate mirrors

growth-charting in paediatric medicine and allows the

regional deviations in each subject to be mapped, which is

desirable for interpretation. In contrast, brain age models

condense a complex multivariate pattern into a single

number (a deviation between true and predicted age). This

is often useful because it summarizes a complex pattern by

an interpretable score. On the other hand, it provides limited

ability to stratify individuals or identify which brain regions

underlie any observed deviation. This is important

because different subjects may have the same predicted

brain age because of distinct underlying abnormality pat-

terns [27].

Applications of normative modelling in
psychiatry

Normative modelling has been applied to many clinical

phenotypes: unsurprisingly, many applications have

focused on studying changes in brain organization across

the lifespan. More recently, studies have emerged applying

normative modelling to map the biological heterogeneity

underlying mental disorders (Table 1).2 Taken together, the

applications reviewed here show the flexibility of normative

modelling for many different clinical phenotypes, on the

basis of different clinical and biological measures. More-

over, they highlight the value of normative modelling for

studying individual differences in that they show that: (i) a

potentially small number of patients have alterations in the

same brain regions and (ii) that the pattern of individualized

regional differences detected by normative models can be

very different to case-control differences. For example,

normative deviations may be partially consistent with case

control-effects [17], very different [21] or evident in the

absence of case-control effects [24].

Normative modelling for big data

Normative modelling is useful for understanding variation in

‘big data’ cohorts. This parallels an increasing focus in

clinical neuroimaging towards acquiring large population-

based cohorts that capture a wide range of clinically relevant

variation [29–31]. The conventional motivation is to increase

statistical power for the detection of subtle effects [37]. While

this is undoubtedly important, such cohorts also provide an

excellent opportunity to understand structure in hetero-

geneous clinical populations. Normative modelling is ideal

for this due to its focus on understanding variation rather than

detecting mean effects and can be used to find distinct and

potentially non-overlapping patterns of abnormality.

On the other hand, big data cohorts introduce challenges,

including computational scaling of analytical methods to

many data points, requiring availability of modelled vari-

ables across all subjects and dealing with nuisance varia-

tion. For example, most large datasets include data from

multiple study sites, which increases the risk of missing data

and introduces the possibility that observed deviations

could be related to site variance. To address these concerns,

careful stratification procedures during model fitting and

cross-validation and explicitly modelling different sources

of variance are important (e.g. using hierarchical models).

Alternatively, for predictions on new sites, normative

models may be recalibrated on held-out normative control

data to ensure that the normative model remains appropriate

for the new data sample. There are many ways to achieve

this [38], but a simple approach involves adjusting the

mean, slope and variance after fitting a post hoc regression

to withheld subjects.

2 Note that we include some studies that can also be considered brain

age studies but that share salient features with normative models (e.g.,

ref. [14]), we refer the reader elsewhere for more detailed reviews of

brain age studies [27, 28].
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Another use for normative models is for calibrating

measures on different scales to a common normative

reference. In other words, separate normative models can be

estimated for different cognitive and biological mappings.

This has the effect of rescaling different variables to a

common reference range (for example, Z-statistics reflecting

the number of standard deviations each subject is from the

population norm). This forms an ideal set of features for the

application of clustering algorithms, in the spirit of preci-

sion medicine. Relative to application to the raw data, this

increases interpretability by scaling diverse data to popu-

lation norms and also can tease apart correlated symptom

domains more clearly than using clinical or biological

data alone.

Ultimately, estimating normative models to link multiple

phenotypic measurements with their multifaceted biological

underpinnings is likely to be very important to: (i) under-

stand disorders across multiple domains in the spirit of

RDoC and ROAMER; (ii) identify different groups of

patients with different atypical mechanisms; (iii) to better

understand healthy variation and how this relates to the

mechanisms of mental disorders and (iv) to move beyond

simple dimensional theories of mental disorders [25].

Study design considerations

The applications above show that normative modelling is

very flexible given the choice of covariates, response vari-

ables, target cohort and reference cohort. The choice of

reference cohort is particularly crucial; it is important that it

captures a wide range of variation in the reference popula-

tion. In paediatric medicine, the typical choice is a

population-based cohort containing thousands of partici-

pants. In psychiatry, it is also common to estimate norma-

tive models using population-based cohorts that include

participants across the full range of functioning (i.e. both

healthy and with disorders) [19, 20], although this is not the

only option and may not always be the optimal choice. For

neuroimaging, several large population-based cohorts are

being acquired [29, 31, 39], however these often focus on

specific lifespan periods [29] and are frequently enriched for

individuals ‘at-risk’ for mental disorders [31, 39]. More-

over, since these cohorts aim to address multiple questions,

they may lack rich clinical phenotyping measures that are

valuable for characterizing deviations (see below). Another

option is to apply normative models to existing cohorts (e.g.

based on case-control designs) [17, 23, 24]. In such cases,

either the whole cohort or only the healthy participants can

be used for the reference cohort. If the whole cohort is used,

it is important to remember that under a case-control para-

digm the frequency of the clinical phenotype is usually

much higher than the population prevalence (e.g. equal

numbers of cases and controls). If only the healthy subjects

are used as the reference, this can be considered an

approximation to a population-based cohort, which is rea-

sonable if the prevalence of the clinical phenotype in the

wider population is relatively low. In both cases, the

deviations should be interpreted with respect to the cohort

chosen. Regarding the choice of the target cohort, this can

be the same as the reference cohort, provided the predic-

tions are derived in an unbiased manner, for example, under

cross-validation.

Limitations

Normative modelling is a bottom-up approach to map var-

iation and should not be considered a substitute for

hypothesis testing or top-down theory driven approaches.

Rather, it is desirable to combine the benefits of both. For

example, combining top-down theory driven approaches

with supervised discriminative models [3] and normative

models. These can be used, respectively, to assess the

degree of group separation in a case-control sense and to

map the variation across individuals with respect to the

theory-driven model.

Another important consideration is that normative mod-

els do not directly indicate whether the deviations obtained

are clinically relevant. For example, deviations may be

biologically meaningful yet unrelated to psychopathology,

or they may be a result of artefactual variation (e.g. site

variation). Therefore, external validation of derived devia-

tions on external measures such as symptoms, genotype and

environmental factors is crucial, as are careful data pre-

processing and checking procedures.

Future developments: towards precision
psychiatry

Normative modelling provides a method to map deviations

from an expected pattern at the individual level. This has

been helpful to understand individual variation in the con-

text of brain development or ageing and also for mapping

variation across multiple cognitive domains and measures

of brain organization. This provides the potential to

understand individual variation across a multi-dimensional

cognitive space, consistent with initiatives such as RDoC

[6–8]. However, work remains to be done as to how these

can be integrated and to determine the clinical relevance of

individual variability. In other words, how, when and why

individual variability turns into vulnerability or resilience.

Indeed, a high priority is to develop methods that can

convert deviations from normative models to a stratification

of individuals. As noted, training clustering algorithms on
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the deviations from multiple normative models is one

option [12, 26]. However, conventional ‘hard’ clustering

algorithms allocate each subject to a single cluster and do

not accommodate the possibility of multiple overlapping

mechanisms operating in different individuals. Therefore, a

more promising route may be using ‘soft’ clustering algo-

rithms or other latent variable models that allow subjects to

be allocated to multiple potentially overlapping clusters or

risk profiles [40]. Another area of future work involves

explicitly modelling spatial information, which may

increase sensitivity for detection of spatially distributed

patterns of abnormality [41–43].

Conclusions and outlook

We have surveyed the emerging literature employing nor-

mative modelling to mental disorders. We have shown that

these methods are highly flexible: they can naturally

applied to estimating centiles of variation in brain growth

and to mappings between many aspects of behaviour,

cognition and biology. The most important feature of

normative models is their ability to make predictions at the

level of individual with respect to a normative pattern and

that they shift emphasis from studying mean effects to

understanding individual variation. They provide a means

by which modelling individual differences can be brought

from theory to concrete data analysis procedures and

therefore a promising route towards precision medicine in

psychiatry.
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