

Concern-Oriented Analysis and Refactoring of Software
Architectures using Dependency Structure Matrices
Bedir Tekinerdoğan

Bilkent University
Department of Computer Engineering

06800 Bilkent, Ankara, Turkey
bedir@cs.bilkent.edu.tr

Frank Scholten, Christian Hofmann, Mehmet Aksit
Department of Computer Science,

University of Twente,
P.O. Box 217 7500 AE Enschede, The Netherlands

{f.scholten | c.hofmann | aksit}@cs.utwente.nl

ABSTRACT
Current scenario-based architecture analysis methods analyze the
architecture with respect to scenarios that relate to stakeholder
concerns. Albeit the primary motivation is to analyze the impact of
stakeholders� concerns, it appears that concerns are not explicitly
represented as first class abstractions. The lack of an explicit
notion of concern in scenario-based analysis approaches can result
in an incomplete analysis because scenarios are too specific and
can only partially represent the concerns. We propose the concern-
oriented architecture analysis method (COSAAM) that builds on
scenario-based approaches but includes an explicit notion of
concern in the analysis. COSAAM applies Dependency Structure
Matrices (DSMs) to represent and analyze the dependencies
among scenarios, concerns and architectural elements. Further,
COSAAM extends DSMs by introducing explicit DSM patterns
and heuristic rules for analyzing the impact of concerns on the
architecture and for supporting the refactoring of the architecture.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms: Design, Documentation, Languages.

Keywords: Concern-Oriented Modeling, Dependency
Structure Matrix, Software Architecture Analysis

1. INTRODUCTION
Software architecture forms one of the key artifacts in the entire
software development life cycle since it embodies the earliest
design decisions and includes the gross-level components that
directly impact the subsequent analysis, design and
implementation [1]. Accordingly, it is important that the
architecture design supports the software system qualities required
by the various stakeholders. For ensuring the quality factors the
common assumption is that identifying the fundamental concerns
for architecture design is necessary and various architecture design
methods have been introduced for this purpose. To verify that the
right concerns have been identified usually static analysis of
formal architectural models is applied or a set of architecture
analysis methods as described in [2] are adopted. Very often
scenario-based architecture analysis methods are applied [2]. In

general, these analysis methods take as input the architecture
design and measure the impact of predefined scenarios on it in
order to identify the potential risks and the sensitive points of the
architecture. This helps to predict the quality of the system before
it is built, thereby reducing unnecessary maintenance costs.

Although, the key motivation is to analyze the architecture with
respect to the concerns it appears that concerns are not explicitly
represented as first class abstractions in scenario-based analysis
approaches. This is somehow surprising since the primary
motivation for analyzing the architecture is in fact the analysis of
the stakeholder concerns. In general a concern is defined
implicitly in the scenarios and the evaluation of the architecture is
performed for scenarios. However, very often not the particular
scenario but the concern that is addressed by the scenario is of
importance. In this sense a concern might cover a broader set of
scenarios. A concern is generally defined as any matter of interest
that is relevant to a stakeholder. The lack of an explicit
representation of concerns in the architectural analysis reduces the
understandability and traceability of the impact of concerns. An
explicit insight in the concerns and their impact on the architecture
is not only necessary for the impact analysis but also for the
refactoring process that utilizes the results of the analysis process
to enhance the architecture.

We propose the concern-oriented architecture analysis method
(COSAAM) that builds on existing scenario-based architecture
analysis methods. For representing and analyzing concerns we use
dependency structure matrices (DSMs) [8][10][3]. DSMs can be
used to analyze the properties of complex applications. In DSM-
based architectural analysis in particular the coupling between the
architectural models are depicted and an optimal decomposition is
aimed by reducing the couplings using predefined matrix
operations. COSAAM consists of three basic processes. In the
preparation phase scenarios are elicited. Based on clustering
mechanisms in DSMs we derive a number of concerns. In the
analysis phase together with the architectural elements, the
extracted concerns are represented in a so-called Domain Mapping
Matrix (DMM). Together with DMM we have defined a set of
heuristic rules for analyzing the concerns. Finally, in the
transformation phase the result of the analysis is used to redefine
the architecture. One of the key contributions of COSAAM is that
it defines explicit heuristics for supporting the DM-based analysis.

The remainder of this paper is organized as follows. In section 2 a
running example, the design of a Window Management System
will be described. Section 3 describes the steps of COSAAM
using the case example. Section 4 presents the related work and
finally section 5 presents the conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EA�09, March 3, 2009, Charlottesville, VA, USA.
Copyright 2009 ACM 978-1-60558-456-0/09/03...$5.00.

13

2. COSAAM PROCESS
COSAAM is an iterative software architecture evaluation and
transformation method that enhances scenario-based architecture
analysis methods with DSM-based analysis. In particular
COSAAM builds on the earlier Software Architecture Analysis
Method (SAAM) [2] and Aspectual Software Architecture
Analysis Method (ASAAM) [9]. ASAAM was built on SAAM to
identify so-called aspectual scenarios and from these architectural
aspects. While both SAAM and ASAAM analyze the architecture
from a scenario perspective, COSAAM utilizes a concern-oriented
approach and includes an explicit and systematic transformation
step.

COSAAM consists of the three phases: preparation, analysis and
transformation. The preparation phase establishes the artifacts
used in the COSAAM evaluation: a candidate software
architecture design and a collection of concerns of stakeholders.
The analysis phase involves a characterization and measurement
of scattering and tangling of concerns and modules. The
information provided during this analysis is used in the
transformation phase, in which the candidate software architecture
is transformed. An iteration of COSAAM consists of all the
activities of the analysis and transformation phases. In the
following subsections we will elaborate on the three phases using
an example case study.

2.1 Preparation Phase
In the preparation the basic inputs for the analysis are defined: a
candidate software architecture design and a collection of
concerns from stakeholders. The phase consists of two parallel
activities: describe candidate architecture and concern
identification, which are explained below.

2.1.1 Describe Candidate Architecture
To describe the architecture conventional software architecture
modeling approaches are applied [1]. The architecture is then
mapped to a DSM. Figure 1a shows for example the DSM for an
example Window Management System architecture. The
acronyms EM, PM, WM and SM represent EventManager,
ProcessManager, WindowManager and ScreenManager,
respectively. The rows and columns represent subsystems and the
arrow represents dependencies between architectural components.
In the figure we can observe, for example, that EventManager
depends on WindowManager.

Figure 1. Sequencing DSM for WMS

Several predefined DSM operations can be used such as
partitioning, tearing, banding and clustering, to optimize the
decomposition [8]. This results in a so-called lower-triangular
form which helps to reason about dependencies between modules.
Figure 1 shows, for example the result of partitioning the DSM for
WMS architecture.

2.1.2 Concern Identification
In the concern identification step we derive the concerns that are
important for the stakeholders. For this two steps can be followed.
First, concerns can be reused from existing projects, requirements
specifications or domain models. Second, concerns can also be
derived from scenarios developed by stakeholders. For the latter
case we define a scenario-scenario DSM and derive concerns
based on clustering of scenarios. The DSM clustering process is
illustrated in Figure 2 in which we have derived 9 clusters of
scenarios, i.e. 9 concerns.

Figure 2. Scenario-Scenario DSM and

Module-Module DSM

2.2 Analysis Phase
In the analysis phase of COSAAM the existing architecture is
analyzed with respect to the given concerns. The analysis phase
consists of the sub-phases Initialize Concern-Module DMM,
Characterize Concerns and Modules and Measure Impact of
Concerns. We explain these steps in the following subsections.

2.2.1 Initialization of Concern-Module DMM
The first step in the analysis phase is the mapping of concerns to
modules. For this we apply the so-called Domain Mapping Matrix
(DMM). In contrast to DSM�s that represent the mapping of
elements in the same domain DMMs represent the mapping
between elements from different domains [10]. In COSAAM we
use a DMM to show the mapping from concerns to architectural
elements. Table 1 shows, for example, the mapping of concerns to
elements of an architecture for the WMS case. Every concern can
be directly or indirectly mapped to an architectural element. A
direct mapping, represented by D in the table, means that the
corresponding concern is implemented by the architectural
element. An indirect mapping, represented by I, means that the
architectural element needs to be changed to meet that concern.
This is similar to the distinction between direct and indirect
scenarios as it is defined in the SAAM. The difference here is that
our abstraction is at the concern level, which clusters a set of
scenarios. For example, in Table 1, concern monitoring concern
has been evaluated as being indirect for all the modules.

14

Table 1. DMM for mapping concerns to Modules

 Modules

 Event
Manager

(EM)

Window
Manager

(WM)

Process
Manager

(PM)

Screen
Manager

(SM)

Monitoring (MO) I I I I
Portability (OP) I I I I

Failure Management
(FM) I I I I

Process Term.(PT) D D D
Process Man. (PM) D D
Device Man. (DM) I

Window Man.(WM) D
Appearance Conf.

(WAC) D

Co
nc

er
ns

Screen Man. (SM) D

2.2.2 Characterize Concern and Modules
In the step Characterize Architectural Modules we analyze and
characterize the architectural modules and concerns. The
characterization follows the process as depicted in Figure 3. Here
the rounded rectangles represent the different characterizations of
selected concerns and the arrows the analysis or transformation
rules. The analysis rules are defined by labeled arrows starting
with CR, the transformation rules are defined by labeled arrows
starting with CT.

Figure 3. Transition diagram for characterization of

concerns

During the analysis each concern is eventually characterized in
one of the following type of concerns: New Concern, is a new
concern that has not been considered in the architecture. Direct
Local Concern, is a concern that can be directly addressed by one
module in the architecture. Indirect Local Concern is a concern
that is not yet realized in the architecture but can be realized in one
module. Direct Scattered Concern is a concern that is realized by
the architecture but is scattered over multiple modules. Indirect
Scattered Concern is a concern that is not realized by the
architecture yet but will be scattered over multiple modules if so.
Direct Crosscutting Concern is a scattered over several modules
of which at least one is tangled (see characterization modules).
Indirect Crosscutting Concern will be scattered over several
modules of which at least one is tangled (see characterization
modules).

The heuristic rules for characterizing concerns are given in Table
2. The left column defines the possible patterns in the DMM. Each
pattern is related with a corresponding heuristic rule. Each rule is
defined in the following format:

IF <condition> THEN <consequent>

Whenever the pattern is found in the DMM and the condition of
an analysis rule is met, the concern is categorized into a specific
category. Note that rules CR0, CR1 and CR2 represent the rules
for initializing the DMM as defined in Table 1. These rules
provide the characters �D� and �I� in the DMM to denote whether
the concern is direct or indirect. After the initialization each
concern is further automatically characterized by analyzing the
DMM.

Table 2. Patterns and heuristics for characterizing concerns
in the DMM

In addition to rules for characterizing concerns we have also
defined a set of rules for characterizing modules as defined in
Table 3. Modules are characterized as follows: Direct Cohesive
Module addresses only one concern directly. Indirect Cohesive
Module addresses only one concern indirectly. Direct Tangled
Module addresses multiple concerns directly. Indirect Tangled
Module addresses multiple concerns indirectly. The
characterizations are defined through applying a set of heuristic
rules. Here we also distinguish between analysis rules and
transformation rules. After the analysis of the concerns we
characterize the modules again by checking the related DMM
pattern and the conditions specified in the rules. Figure 4 depicts
the transition diagram for characterizing modules.

15

Table 3 Patterns and heuristic rules for characterizing
modules in the DMM

Figure 4.Transition diagram for characterization of

modules

2.2.3 Measure Impact of Concerns
In the previous activity we have characterized the mapping
between the concerns and modules of the window manager
software architecture. In this activity we measure the impact of
concerns and tangling of modules, based on the mappings in the
concern-module DMM. For this we use a set of metrics for
measuring the scattering degree of concerns and tangling degree in
modules.

2.3 Transformation Phase
The analysis depicts how concerns are mapped to architectural
modules and provides a clear insight in the scattering of concerns
and tangling of modules. In the transformation phase the output of
the analysis phase is used to enhance the modularity of the
architecture. For this the architecture is first modeled using DSM.
To enhance the modularity of the architecture, in COSAAM we
aim to increase the number of Direct Local Concerns and the
number of Direct Cohesive Modules in the Concerns-Modules
DMM. For this a set of transformation rules (not depicted here)
are applied to reduce scattering and tangling. The global process
for this is shown in Figure 5.

Figure 5. Refactoring DMM

The Concern-Module DMM is manipulated to refactor the
allocation of concerns to modules. In essence the following
primitive actions can be taken in the concern-module DMM: add
concern, remove concern, add module, remove module, change
mapping relation (direct or indirect). The manipulations on DMM
will have also an impact on DSM for the architecture. Here we can
in principle utilize the following actions: add module, remove
module, add relationship among modules, remove relationship
among modules, change relationship.

Figure 6. WMS Architecture after analysis and refactoring

Due to size restrictions it is not possible to demonstrate the set of
transformations. A detailed description of the evolution of the

16

window manager architecture is provided in [11]. The final
version of the transformed window manager architecture, after
nine iterations, is shown in Figure 6.

3. RELATED WORK
The development of complex software systems carries a large

initial investment and a considerable risk. Therefore have various
architecture analysis methods been proposed in the past years that
are used to analyze whether software architectures meet certain
quality requirements. An extensive survey of these methods can be
found, for example, in [2].

The application of design structure matrices to software
architecture design is a relatively new research area. Its
application to general product development processes is quite well
understood and discussed, for example, in [8][10]. Besides
managing dependencies in software architectures DSM has also
been applied for analyzing the modularity of aspect-oriented
designs [5][6]. Lopes and Bajracharya have demonstrated that
aspects can make software architecture designs more valuable.
However, in [7] they show that aspects can provide a negative
contribution to the value of a software architecture design. By
applying the Net Option Value and DSM techniques to a set of
conventional supports and aspect oriented software architecture
designs they conclude that aspects should avoid the introduction of
additional dependencies and hide design parameters from other
modules in order to be of value for the design. In this work, the
authors also introduce preliminary design guidelines for aspects
that aim at minimizing the dependencies between modules
independent of their aspectual or non-aspectual nature. The
application of the design guidelines is based on a DMM based
classification of modules according to their dependency
relationships. This differs from the net option value based
approach, because it considers purely structural properties, like
cohesiveness, crosscutting and tangling of modules in the software
architecture design. The application of the net option value
requires the estimation of direct and derived cost measures, as well
as an estimation of the return on investment that is to be expected
from the reuse of the module.

4. CONCLUSION
Current scenario-based software architecture analysis methods

aim to analyze the impact of stakeholder concerns on the
architecture. Unfortunately the notion of concern is not a first class
abstraction in these approaches and the analysis is primarily based
on the impact of scenarios. This leads to a partial understanding of
the impact of concerns and as such provides risks for the optimal
refactoring of the architecture.

We have introduced the Concern-Oriented Software
Architecture Analysis Method that explicitly uses the notion of
concern in the analysis. The key tools in the approach are
Dependency Matrices that depict the dependencies of module
elements. Our study shows that an explicit notion of concern in the
analysis facilitates the understanding on the impact and as such
provides better support for maintenance. For example, in our

analysis an important conclusion was that the introduction of
architectural aspects is a trade-off among cohesion and coupling.
On the one hand aspects support cohesion of the architectural
modules, on the other hand additional couplings with the modules.
This was obvious in the dependency matrices, the number of
mappings in the concern-architecture DMM are reduced while the
couplings in the architecture DSM increase. In our future work we
will develop a tool that implements the COSAAM process. This
will enable us to experiment and validate COSAAM for a broader
set of applications.

ACKNOWLEDGEMENTS
This work is supported by European Commission Grant IST-2-

004349: European Network of Excellence on AOSD
(AOSDEurope) and the Aspect-Oriented Software Architecture
Design project which is funded by the Dutch Scientific
Organisation in the Jacquard Software Engineering Program.

REFERENCES
[1] Bass, L., Clements,P., and Kazman, R. Software Architecture

in Practice, second edition, Addison-Wesley 1998.
[2] Dobrica, L. and Niemela, E. A survey on software

architecture analysis methods. IEEE Trans. on Software
Engineering, Vol. 28, No. 7, pp.638-654, July 2002.

[3] Lattix Inc. http://www.lattix.com.
[4] Sangal, N., Jordan, E., Sinha,V., and Jackson, D.. Using

Dependency Models to Manage Complex Software
Architecture. In OOPSLA �05:, pages 167�176, New York,
NY, USA, 2005.

[5] Sullivan, K. J., Griswold, W.G., Cai, Y. and Hallen, B. The
Structure and Value of Modularity in Software Design.
SIGSOFT Softw. Eng. Notes, 26(5):99�108, 2001.

[6] Videira Lopes, C. and Bajracharya, S. An Analysis of
Modularity in Aspect Oriented Design. In AOSD '05
Proceedings, pages 15-26, ACM Press, 2005.

[7] Videira Lopes, C. and Bajracharya, S. Assessing Aspect
Modularizations Using Design Structure Matrix and Net
Option Value. In Trans. Aspect-Oriented Software
Development I, pages 1�35, 2006.

[8] Yassine, A. An Introduction to Modeling and Analyzing
Complex Product Development Processes Using the Design
Structure Matrix (DSM) Method. 2002.

[9] Tekinerdogan, B. ASAAM: Aspectual Sofware Architecture
Analysis Method. In Working IEEE/IFIP Conference on
Software Architecture, pp. 5-14, 2004.

[10] Danilovic, M. and Sandkull, B. The use of dependency
structure matrix and domain mapping matrix in managing
uncertainty in multiple project situations. International
Journal on Project Management, 3:193-203, 2005

[11] Scholten, F. The Concern-Oriented Software Architecture
Analysis Method. MSc. Thesis. University of Twente, 2007.

17

