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Concerning the Applicability of Geometric Models to Similarity
Data: The Interrelationship Between Similarity

and Spatial Density

Carol L. Krumhansl
Stanford University

In a recent article, Tversky questioned the application of geometric models to
similarity data and proposed an alternative set-theoretic approach. He suggested
that geometric models are inappropriate because the similarity data may violate
the metric assumptions underlying such models. In addition, he demonstrated
that the stimulus context and the nature of the experimental task can affect the
similarity relations. The present article suggests that a geometric approach may
be compatible with these effects if the traditional multidimensional scaling
model is augmented by the assumption that spatial density in the configuration
has an effect on the similarity measure. A distance-density model is outlined
that assumes that similarity is a function of both interpoint distance and the
spatial density of other stimulus points in the surrounding region of the metric
space. The proposed relationship between similarity and spatial density is sup-
ported by empirical evidence. The distance-density model is shown to be able
to account for violations of the metric axioms and certain context and task
effects. A number of other issues are discussed with respect to geometric and
set-theoretic models of similarity.

The concept of similarity has played a
central ro'le in a number of diverse areas of
psychological investigation. One important
approach to the problem of analyzing similarity
has been multidimensional scaling (Shepard,
1962a, 1962b; Torgerson, 1958). This approach
represents the similarity relations between
objects in terms of a geometric model that
consists of a set of points embedded in a
dimensionally organized metric space, where
the points correspond to the objects under
consideration. The central assumption of this
type of model is that the similarity data can
be related by a linear or monotonic decreasing
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function to the interpoint distances in the
metric space, that is, the larger the measure
of similarity between two objects, the smaller
the distance between the corresponding points
in the metric space.

In a recent article, Tversky (1977) ques-
tioned both the metric and dimensional as-
sumptions underlying geometric representa-
tions of similarity data and proposed an
alternative set-theoretic approach, called the
feature matching model. In this model, the
similarity between two objects is expressed
as a linear combination of the measures of the
common and distinctive features of the two
objects. When additional assumptions are
made concerning the parameters of the model,
the feature matching model is shown to be able
to account for asymmetric similarity measures,
certain effects of stimulus context on similarity,
and discrepancies between similarity and dif-
ference judgments.

The present article suggests that some of the
objections to geometric models raised by
Tversky (1977) may be met if the traditional
geometric model is augmented by the as-
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sumption that the similarity between objects
is a function not only of interpoint distance
in a metric space but also the spatial density
of points in the surrounding configuration.
A distance-density model, incorporating this
assumption, is outlined and is shown to account
for a number of effects that pose difficulties
for the traditional multidimensional scaling
model. The purpose of this article is not to
argue that either the geometric or the set-
theoretic approach is better able to account
for similarity data in general. The choice
between models would undoubtedly be in-
fluenced by the kind of objects under con-
sideration, the investigator's reasons for
applying a theoretical model of similarity,
and possibly other factors. Rather, the dis-
cussion attempts to define more precisely
some of the issues raised by Tversky and to
clarify to what extent they pose real difficulties
for geometric models.

Distance-Density Model

In this section, a general model will be
proposed in which similarity is assumed to be
a function of both interpoint distance and the
density of stimulus points in a dimensionally
organized metric space. The notion that spatial
density may affect similarity measures is
suggested by the work of Parducci and others
(Birnbaum, 1974; Parducci, 1963, 1965, 1973;
Parducci & Marshall, 1961; Parducci &
Perrett, 1971) using categorical judgments on
unidimensional stimuli. These investigators
find that judges tend to employ the alternative
categories with equal frequency. This finding
implies that within dense subregions of the
stimulus range, finer discriminations are made
than within relatively less dense subregions.
If the same principle applies to similarity
data, two points in a relatively dense region
of a stimulus space would have a smaller
similarity measure than two points of equal
interpoint distance but located in a less dense
region of the space. This is the central assump-
tion of the distance-density model. Em-
pirical evidence in support of the proposed
relationship between similarity and spatial
density will be given in later sections of this
article.

The traditional multidimensional scaling
model (Shepard, 1962a, 1962b) assumes that

the observed measure of similarity can be
related by a monotonic decreasing function
to interpoint distance in a metric space, that is,
there exists a monotonic decreasing function,
/, so that

*(*, y) = /[<*(*, y)l CD
where s(x, y) denotes the observed similarity
between x and y, and d(x, y) denotes the
distance between the corresponding points
in the stimulus configuration. The basic rela-
tion between similarity and distance will be
modified in the distance-density model by
introducing a second distance function, d(x, y ) ,
which depends on both interpoint distance
in the configuration and some measure of
spatial density in the regions surrounding the
points x and y. One possible form that this
modified distance function, d(x, y), might
take is

d(x, y) = d(x, y) + ««(*) + (2)

where d(x, y) is the interpoint distance, 5(x)
and d(y) are measures of spatial density in
neighborhoods of x and y, and a and ft are
constants that reflect the relative weight given
the densities &(x) and 8(y). Finally, it is
assumed, as in traditional geometric models,
that the observed similarity measure s(x, y}
is related by a monotonic decreasing function,
/, to the modified distance function d(x, y),

that is,

s(x, y) = J[d(x, y)]. (3)

The density measure & (x) associates to each
point in the spatial configuration a non-
negative value that measures the density of
points within the surrounding region. This
density measure may be estimated in a variety
of ways. Certain similarity measures, such
as those derived from same-different dis-
criminations, stimulus-response confusions,
and under some conditions co-occurrence,
yield a value of the similarity between an
object and itself, s(x, x). Evidence that the
observed measure of self-similarity is related
to spatial density in a region surrounding the
corresponding point in the multidimensional
configuration is given in the next section.
This evidence suggests that it may be possible
to estimate the spatial density function from
the diagonal entries in the similarity matrix
when these entries are available, that is,
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d (x) may be given by

*(*) = * (*, *)], (4)

where s(x, x) is the observed diagonal entry,
and g is some nonnegative monotonic de-
creasing function. If, in addition, it is assumed
that the function that governs the relationship'
between the distance measure 3, and the ob-
served measure of self-similarity s(x, x) is
the same function / that relates interobject
distance to interobject similarity, then 5(x)
can be written as

«•> - (5)

An alternative approach to determining
the value of the density function S(x) that
does not depend on observed self -similarity
is the computation of a measure of spatial
density directly from the stimulus configura-
tion. For example, 8(x) might be given by

*(*) = Z *[<*(#, *)]

or

f

where S is the stimulus domain under con-
sideration, h is some monotonic decreasing
function, and the two expressions correspond
to discrete and continuous domains, respec-
tively.1 The stipulation that h be monotonic
decreasing has the consequence that points
near x add heavily to the measure of density
relative to points far from x. Possible forms of
the function h might be h(d) = d~

k or h(d)
= exp(— kd). Another possible expression for
density in discrete stimulus domains, based
on the number of points within a fixed radius,

*(*) = £ i(p, *),
ptS

where

Here, r is a fixed radius; for computational
simplicity, it is this measure of density that
will be used throughout this article.

The choice of the form of the function
d(x, y) as a linear combination of the interpoint
distance d(x, y) and the spatial densities S(x)
and d(y) was based on the description of the

range-frequency theory given by Birnbaum
(1974). In terms of the range-frequency
theory, the judgment function is assumed
to be a linear combination of the cumulative
density function on the stimulus dimension
and the psychophysical function. It follows
that the difference between responses to two
different objects, which can be taken as a
measure of interobject distance, takes the
form of a linear function of the distance
between the objects on the psychological
continuum and the density of stimuli lying
between the two objects on the continuum.
The distance-density model proposed here,
then, is closely related to the range-frequency
theory for unidimensional stimuli.

The modified distance function d(x, y)
need not satisfy the metric axioms. The
distance between a point and itself, d(x, x)
= (a +p)8(x), will in general be greater
than zero and will depend on the spatial
density of points surrounding the point x,
so the minimality axiom will not hold in
general. In addition, the symmetry axiom
need not hold. Explicitly, d(x, y) and d(y, x)
will be equal if and only if a = /3or8(x) — 5(y).
In a directional similarity task, greater em-
phasis may be placed on one member of the
object pair than on the other (Tversky, 1977).
In terms of the distance-density model, this
emphasis may be reflected in the weights
a and j3, with the spatial density surrounding
one point affecting the distance measure d
more than the density surrounding the second
point. If a > /9, then d(x, y) > d(y, x) if and
only if S (x) > S (y); some empirical results
supporting this relation will be given later.
However, the triangle inequality axiom must
hold for d. Since the modified distance function

1 For discrete unidimensional stimulus domains, the
measure of density given in Equation 6 is in some sense
inversely related to Murdock's (1960) measure of
distinctiveness, which expresses distinctiveness as the
sum of the distances between the stimulus and the
other stimuli along the psychological scale. Murdock's
measure, however, differs from the density measure
proposed in Equation 6 in one important respect. While
Murdock's measure implies that the stimuli at the
extremes of the range are necessarily more distinctive
than any other stimuli in the set, it need not be the case
that the densities of extreme points are less than the
densities of interior points; although, in general, this
will tend to be true for homogeneously distributed
stimulus domains.
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d is assumed to be a linear combination of
interpoint distance and spatial density,
d(x, y) + d(y,z) >d(x,z).

Metric Assumptions: Minimality

Prototypicality and Distinctiveness

In this section, the possibility that certain
objects within a stimulus set may be more
prototypical or central or more distinctive
or extreme than others will be discussed,
together with possible implications for simi-
larity models. A number of investigators have
noted the special status of certain elements or
objects, and the work in this area will only be
briefly reviewed here. The idea that particular
perceptual stimuli serve a special function
as "ideal types" was suggested by Wertheimer
(1938). Goldmeier (1936/1972) noted the
special role of certain properties (in particular,
symmetry, perpendicularity, and parallelism)
and suggested that objects possessing these
properties have special status within sets of
otherwise similar stimuli. Garner (1962, 1966)
investigated the notion that patterns vary in
terms of "goodness." Primarily using geometric
stimuli, he found that rated pattern goodness
correlated negatively with the number of
different patterns that could be generated
by rotating and reflecting the stimulus. Rosch
(1975a) showed that in such stimulus domains
as colors, lines differing in orientation, and
numbers, certain elements of these sets,
namely, focal colors, horizontal and vertical
lines, and multiples of 10, play the role of
"reference points." These reference points
are those objects to which other objects in
the domain are seen "in relation to." Typicality
of category members has been investigated
in numerous studies (Rips, Shoben, & Smith,
1973; Rosch, 1974, 1975b, 1975c; Smith,
Shoben, & Rips, 1974) and has variously been
related to similarity to a prototype (Garner,
1962; Posner, Goldsmith, & Welton, 1967;
Posner & Keele, 1968; Rosch, Simpson, &
Miller, 1976), closeness to the average values
of category attributes (Reed, 1972; Rips et al.,
1973; Rosch et al., 1976), and degree of family
resemblance (overlap of features) among
category members (Rosch et al., 1976; Rosch
& Mervis, 1975). These structural descriptions
of typicality suggest that special status is

associated with objects that are in some sense
central to the stimulus domain or have the
greatest number of features in common with
the other objects in the domain. On the other
hand, it may be that certain objects in the
domain have special status in that they are
particularly salient or distinctive. Objects
that are unusual or extreme in terms of their
features or values along underlying dimensions
may be distinctive in this way. For example,
Durlach and Braida (1969) and Weber,
Green, and Luce (1977) have found higher
accuracy for absolute identification of tone
intensity for tones near the extremes of the
intensity range. The distinction suggested
here between prototypicality or centrality
on the one hand and distinctiveness or ex-
tremality on the other hand may be reflected
in similarity judgments about these objects,
as will be discussed later.

Given the wide variety of evidence that
within categories certain elements have special
status, a question of interest is whether such
structure affects measures of similarity. Simi-
larity data have been derived using a number
of different tasks, some of which yield a
measure of how similar an object is to itself.
If this measure of self-similarity is found to
vary from object to object within a stimulus
domain, the variation may be related to the
prototypicality or the distinctiveness of the
objects. Although this hypothesis has not
been systematically investigated, there is
some supporting evidence from earlier studies.
Rothkopf (1957) used a same-different task
to investigate similarities between Morse code
signals. In this study, more correct same
judgments were found for particularly simple
signals, such as those consisting of a single
dash or dot or two dashes or two dots, than
for more complex stimuli. Attneave (1950)
found in a learning paradigm that the correct
response was given more frequently to the
objects at the extremes of the ranges of
stimulus parameters employed (rectangle size
and reflectance and triangle size and angle)
than to objects with intermediate values

along these dimensions. A similar effect was
also found in a study of stimulus-response
errors by Shepard (1957) and in studies of
absolute identification of tones varying in
intensity (Durlach & Braida, 1969; Weber



SIMILARITY AND SPATIAL DENSITY 449

et al, 1977). Recently, Balzano (1977, Ex-
periments 1, 2, and 3) found shorter correct
same latencies for musical intervals that play
a central or important role in musical com-
position, such as perfect fourths, fifths, octaves,
and major thirds, than for other intervals.

Although the evidence for the hypothesis
that the observed measure of similarity be-
tween an object and itself is related to the
status of the object within the domain is
sketchy, at least there is some support from
a variety of different tasks and stimulus
domains. How, then, might models of simi-
larity account for variation in self-similarity?
This issue will be discussed in the next two
subsections with respect to Tversky's feature
matching model and geometric models of
similarity.

Feature Matching Model

The feature matching model proposed by
Tversky (1977) assumes that the similarity
between two objects is a linear combination
of the measures of the features shared by the
two objects and the features associated with
one of the objects but not the other. Shared
features are assumed to add to, and distinctive
features are assumed to subtract from, the
overall similarity between two objects. When
applied to the special case of a single object,
this model reduces to the statement that the
similarity of an object to itself is related to the
measure of the features possessed by the object.
The model predicts that the similarity be-
tween an object and itself should be an
increasing function of the number of known
features or of the salience of the features.
It seems possible, for example, that certain
countries, such as the United States, would
have a greater number of features or more
salient features than other countries, such as
Belgium. Similarly, some block letters, for
example, E> have more features than other
letters, for example, Q. For geometric forms,
the measure of the features of "good" figures
may be relatively large since these figures
have the additional salient feature of sym-
metry, parallelism, or perpendicularity. Al-
though variation in measured self-similarity
is consistent with the feature matching model,
Tversky does not investigate the relationship

between self-similarity and the measure of the
stimulus features.

Geometric Models of Similarity

Traditional geometric similarity models
assume that the similarity between objects
can be represented by interpoint distance in
some dimensionally organized metric space.
By definition, a metric space must satisfy
the minimality axiom, namely, that the
distance between a point and itself must be
zero and less than the distance between any
two distinct points. In terms of similarities,
this means that the similarity between an
object and itself must be larger than the
similarity between any two different objects.
However, this constraint does not always
hold in similarity data, that is, it may happen
that some off-diagonal entries in the matrix
exceed some diagonal entries. Although cases
like this do violate the minimality axiom and
may raise questions about the applicability
of a simple geometric model to the similarity
data, the minimality axiom does not neces-
sarily imply that the measure of self-similarity
needs to be the same for all objects. For non-
metric multidimensional scaling models, the
relation between similarity and distance is
assumed to be a monotonic decreasing func-
tion. Since the function does not need to be
strictly monotonic decreasing, the model is
compatible with similarity data in which the
similarity between an object and itself varies
from object to object as long as the off-
diagonal entries do not exceed the diagonal
entries.

Even though it might be argued that varia-
tions in diagonal entries in a similarity matrix
merely represent noise in the data and that
all objects are really equally similar to them-
selves, it is interesting to consider the possi-
bility that self-similarity is related to spatial
density in the configuration. For example,
large self-similarity values may be associated
with particularly distinctive objects, that
is, those objects that lie at the extremes of
the stimulus range or are otherwise unusual
in the object domain. This suggests the hy-
pothesis that those objects that are most
similar to themselves lie at the boundary of
the stimulus configuration or occupy otherwise
less dense regions of the space.
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The proposed relationship between the
similarity of an object to itself and the density
of points in a neighborhood of the correspond-
ing point in the geometric representation can
be tested when the measure of similarity is
derived from stimulus-response errors, or
same-different latencies or error rates. By
necessity, when the similarity measure is
based on stimulus-response errors, a stimulus
that is frequently associated with the correct
response will infrequently be associated with
incorrect responses. Stated in terms of simi-
larity, an object that is very similar to itself
cannot also be very similar to other objects
(Shepard, 1957). However, as a consequence of
other constraints in the similarity data, it
need not be the case that a multidimensional
solution would be able to locate high self-
similarity stimuli in less dense regions of the
object space. In addition, similarity data based
on same-different responses would not be
subject to the trade-off between self-similarity
and similarity to other objects.

The correspondence suggested here between
the observed measure of self-similarity and
the spatial density in the region surrounding
the stimulus point is reminiscent of the cor-
respondence between how well an object can be
identified and how discriminable it is from
other objects in the domain. A number of
studies reviewed by Smith (1968) have shown
that discriminative reaction times increase
as the similarity between objects in the domain
increases (Bindra, Donderi, & Nishisato, 1968;
Grossman, 1955; Chase & Posner, Note 1).
It might be argued that the same relationship
would hold for same-different error data, since
an object with few similar alternatives may
be correctly identified even when information
about its features or properties is incomplete
or somewhat inaccurate. The result would be
few errors on same trials for these stimuli.
What is being suggested here is that this factor
of discriminability may operate locally within
a stimulus domain, that is, if an object has
few close neighbors, then it will have a rela-
tively large measure of self-similarity.

Those available studies having both on-
diagonal similarity measures and multidimen-
sional scaling solutions were considered in
order to test the proposed relationship.
Unfortunately, only a few studies have met

these requirements, but the results seem
promising. The same-different error data for
Morse code signals collected by Rothkopf
(1957) were analyzed by Shepard (1963)
using the nonmetric multidimensional scaling
technique. For these data, a significant nega-
tive correlation was found between the per-
centage of correct responses on same trials
and the number of objects within a certain
fixed radius of the corresponding point in the
scaling solution. Two different radii were
somewhat arbitrarily chosen, roughly cor-
responding to the distance between the letters
R and U and the distance between R and G
in the published solution; the correlations
were significant in both cases (r = — .54,
r = -.66; p < .01 for both). The stimuli
with few close neighbors tended to be signals
consisting of a few dots and dashes or longer
signals that consisted of a homogeneous string
of either dots or dashes. In addition, Rothkopf
(1958) collected learning data for a subset of
12 Morse code signals, which were also scaled
by Shepard (1963). For these data, there was a
negative relationship found between the num-
ber of correct responses and the number of
points within a fixed radius in the stimulus
configuration (r = —.95, p < .01). Here, the
radius corresponded approximately to the
distance between the letters S and H in the
solution.

As mentioned earlier, in the learning data
collected by Attneave (1950), the stimuli
with the fewest errors were those stimuli that
lay at the extremes of the ranges of the dimen-
sions used to generate the stimulus set. Al-
though multidimensional scaling was not
applied to these data, the stimuli that were
extreme in terms of the physical parameters
would probably also fall at the extremes of the
multidimensional solution were such an analy-
sis performed. Since extreme points would in
general have fewer close neighbors than points
falling at interior positions, these data are
consistent with the proposed relationship.
The same argument would apply to the data
from other studies showing an advantage for
extreme stimuli (Durlach & Braida, 1969;
Shepard, 1957; Weber et al., 1977).

Finally, Balzano (1977) collected same-

different reaction times for musical intervals.
The latency data from Experiment 1 and
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Experiments 2 and 3 combined were correlated
with the number of objects within a radius
corresponding to the distance between the
tritone and the major sixth in the two-dimen-
sional solutions. In both cases, there was a
significant positive correlation between latency
and the number of other points within the
fixed radius (rs = .68 and .64; p < .05 for
both).

The data from these studies, then, support
the hypothesis that objects with large measures
of self-similarity are located in relatively less
dense regions of the multidimensional scaling
solutions. In this way, the distance-density
model may be able to account for variation
in the diagonal entries in a similarity matrix.
In addition, these findings also support the
idea that spatial density, like dimensional
organization and clustering patterns, is an
important feature of geometric representations.

Metric Axioms: Symmetry

Empirical Evidence for Asymmetry

Asymmetries in similarity data may arise
when the similarity task is in some way
directional, that is, places the two objects
to be compared in different roles. This is the
case when subjects judge how similar one
object, a, is to another object, b. Object a
takes the role of subject of the sentence, while
b takes the role of referent. Or, in a same-
different task, one stimulus may precede the
other stimulus temporally. Asymmetries might
also be found in confusion data. For example,
b might be given as the response to a more
frequently than a is given as the response to b.

Tversky (1977) systematically investigated
asymmetries in similarity judgments using
two different directional similarity tasks.
In one task, subjects judged for each object
pair (a, b) which of the following two simi-
larity statements was preferred: "a is similar
to b" or "b is similar to a." In a second task,
subjects gave numerical judgments of how
similar one object, a, was to a second object, b.
Using countries as stimuli, Tversky found
that the sentence in which the more prominent
stimulus took the role of the referent was
preferred to the sentence in which the more
prominent stimulus took the role of the subject.
In terms of similarity judgments, the less

prominent country was seen as more similar
to the more prominent country than the more
prominent country was seen to the less
prominent country. Similar results were found
for geometric forms, where good forms were
seen as more prominent. In another experi-
ment, Tversky used letters in a same-different
task in which one of the letters, called the
standard, was known to the subject in advance
of the trial and always appeared in a given
spatial position. He found that the proportion
of incorrect same responses was larger when
the features of the unknown letter were a
subset of the features of the standard letter
than when the opposite relation held. Tversky
also analyzed Rothkopf's (1957) same-dif-
ferent error data on Morse code signals and
found that on different trials, more incorrect
same responses occurred when the first signal
had fewer components than the second signal,
particularly when the first signal was a proper
subset of the second signal.

Rosch (1975a) found that subjects tend to
place reference point stimuli (focal colors,
horizontal and vertical line segments, and
multiples of 10) in the referent position of such
sentence frames as "— is essentially —" and
"— is virtually —" more often than stimuli
that were not reference point stimuli (non-
focal colors, oblique line segments, and
numbers not even multiples of 10). Also, Rosch
had subjects place a stimulus in physical
space to represent its psychological distance
from a stimulus in a fixed position. The
measured distances were smaller when the
fixed position contained a reference point
stimulus than when it contained a nonreference
stimulus. Garner (1966; Handel & Garner,
1965) found that good patterns were selected
as associates of less good patterns more
frequently than less good patterns were given
as associates of good patterns. Finally, Rips
(1975) conducted a study in which each sub-
ject was told that a hypothetical island was
populated by eight different species of animals
and that all of the animals in one of the species
had a contagious disease. The subject then
estimated the percentage of animals in each
of the remaining species that had also con-
tracted the disease. If the species with the

disease was more typical, subjects produced a
higher estimate for an atypical species than if
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the atypical species had the disease and they
were estimating the percentage for the typical
species.

Before considering how feature-based and
geometric models of similarity might account
for such asymmetries, the general notion that
asymmetries may be related to one of the two
processes, hypothesis confirmation and normal-
izing operations, will briefly be discussed.
Sjb'berg (1972) suggested that similarity
judgments involve an active search for ways
in which the two objects are similar, that is,
that subjects look for features or properties
shared by the objects. It may be that when the
similarity task is directional, as when the
subject is asked to judge how similar one
object, a, is to a second object, b, the features
of the first object are seen as given or fixed,
and the subject then actively searches for
features of the second object to confirm the
hypothesis that a is like b. Inasmuch as the
features of the first object are also associated
with the second object, the hypothesis is
confirmed. Owing to the bias for hypothesis
confirmation, those features of the second
object that are not possessed by the first
object are not weighted heavily and do not
detract much from the similarity measure.
Such a process could account for the finding
that when the features of the first object are
a subset of the features of the second object,
the perceived similarity is large relative to the
case when the first object has many features
not shared by the second object. This is
closely related to the way in which Tversky's
feature matching model accounts for asym-
metries, as will be discussed in the next sub-
section.

Concerning normalizing operations, asym-
metric similarity measures may result if
similarity judgments are based on the ease
with which one object can be transformed to
come into correspondence with the other. If
rounding off, normalizing, or regularizing
operations are easier cognitive transforma-
tions than their inverses, then this may account
for asymmetries found for numbers, lines
varying in orientation, and geometric figures
(Rosch, 1975a). A number of authors (Cooper
& Shepard, in press; Foster, 1972a, 1972b;
Hoffman, 1966; Julesz, 1971; Metzler &
Shepard, 1974) have stressed the transforma-

tional nature of perception. It seems plausible
that such transformations may also play a
role in determining similarity measures. This
notion is supported in a study by Imai (1977).
He found that the judged similarity between
two objects was directly related to the trans-
formations that bring one object into cor-
respondence with the other. Similarity judg-
ments were largest for configurations that
could be made identical by two or more dif-
ferent basic transformations, followed by
configurations that could be made identical
by only one basic transformation. The con-
figurations that could be made identical only
by successive application of more than one
transformation were even less similar, and the
configurations that could not be transformed
into one another were the least similar.

Feature Matching Model

The feature matching model (Tversky,
1977) assumes that the similarity between
objects a and b, s(a, b), is monotonically
related to the expression S (a, b) = df(A f] B)
- af(A - B) - 0f(B -A), where A and B
are the features of a and b, f is the measure or
weight assigned to the features, and 6, <x, and
j8 are nonnegative constants. In terms of this
formulation, differences between s (a, b) and
s(b, a) can be accounted for if it is assumed that
in a directional similarity task, the coefficients
a and j3 differ, reflecting a greater focus on one
of the objects than on the other. If the focusing
hypothesis holds (i.e., a > /3),2 then those
features of a not shared by b detract more from
the similarity of a to b, s(a, b), than those
features of b not shared by a. If a > ft, it
follows that s(a, b) will be greater than s(b, a)
if and only if/(-B) is larger than/04). That is,
if the features of the two objects are given
unequal weight, then asymmetries are ex-
pected when one object has more features
or more salient features than the other. In
this way, the feature matching model is able
to account for asymmetric similarity data.

2 It should be noted that the focusing hypothesis
can be tested directly from a full similarity matrix.
If in such a matrix the rows correspond to the first
stimulus and the columns to the second stimulus, then
more variance should be found in the row sums than
in the column sums if the focusing hypothesis is true.
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The way in which the feature matching
model accounts for asymmetries is closely
related to the idea suggested earlier that
subjects may consider the features of the first
object a as given or fixed and tend to ignore
those features of the second object b that
do not confirm the hypothesis that a is like b.

A bias for hypothesis confirmation would mean
that the effective size of the set B — A is
smaller when B is the second or referent
stimulus than when it is the first stimulus. It
may be difficult to empirically distinguish
between these closely related accounts of
asymmetry.

Geometric Models of Similarity

In simple geometric models, the similarity
between two objects is assumed to be related
to the distances between the corresponding
points in a metric space. By definition, dis-
tances in a metric space must satisfy the
symmetry axiom, namely, that the distance
from point a to point b in the space is the same
as the distance from b to a for all pairs of
points. Thus, this kind of simple geometric
model has difficulty accounting for asym-
metric similarity values.

However, the distance-density model, which
assumes that similarity is a function of inter-
point distance and the spatial densities in the
two regions surrounding the points, may be
able to account for asymmetric similarity
data in the following way. Suppose, as sug-
gested by Tversky (1977), that in a directional
similarity task, the subject focuses more on
one of the objects than on the other. This
differential focusing may have the effect
that the spatial density surrounding one point
affects the similarity measure more than the
spatial density surrounding the other point.
In terms of Equation 2, this would mean that
the parameters a and # are unequal. If a > /8,
thens(#, y) > s(y, x) if and only if 5 (#) < S(y),

that is, in directional similarity tasks, asym-
metries would be expected to be associated
with differences in the densities in the regions
surrounding the two points in the geometric
configuration.

In order to test the proposed relationship
between asymmetries and differences in spatial
densities, the data from Rothkopf (1957) were
again considered in conjunction with the multi-

dimensional scaling solution published by
Shepard (1963). Those parrs of Morse code
signals were selected for which large asym-
metries were found (larger than a somewhat
arbitrary criterion of 20% difference in the
confusion probabilities). Altogether, there
were 39 such pairs. For each pair, the distance
in the solution between the two points was
denned to be the critical distance. For each
point a, let »(a) denote the number of points
falling within a circle with radius equal to the
critical distance centered at a. For 26 of the
asymmetric pairs, it was found that s(a, b)

< s(b, a), when n(a) > n(b), where s(a, 6)
denotes the percentage of incorrect same

responses when the first stimulus was signal
a and the second stimulus was signal b. These
cases are consistent with the hypothesized
relation. There were five cases for which the
opposite relation held, and eight cases for
which n(a) and n(b) were equal. Considering
only those cases for which n(a) and n(b) were
unequal, the hypothesis was confirmed in 26

out of the 31 cases (p < .01).
The relationship between densities and

asymmetries may also be supported by the
finding that less prototypical objects are seen
as more similar to prototypical objects than
the reverse order (e.g., Rosch, 1975a). When
multidimensional scaling was applied to a
number of object domains, Rips et al. (1973)
found that more prototypical items were
generally scaled near the center of the resulting
spatial configuration. This finding is consistent
with the idea (Rosch & Mervis, 1975) that
prototypical objects have the greatest overlap
of features with the other objects in the
domain. Thus, prototypical objects would be
similar to a relatively large number of objects
and would tend to be located at interior posi-
tions in a spatial configuration. Since, in
general, central items occupy more dense
regions of the space than peripheral items, the
hypothesized relation between differential spa-
tial densities and asymmetry would predict
that less prototypical objects would be more

similar to prototypical items than the pro-

totypical items would be to the less pro-

totypical items. Rosch's (1975a) results are

consistent with this prediction.

The results of Tversky's (1977) experiments

using countries and letters may also be con-
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sistent with the proposed relationship. He
found that less prominent objects are more
similar to more prominent objects than the
reverse order. If prominent countries and
letters are those stimuli having relatively
many features, then these objects have fea-
tures in common with a larger number of
different objects than objects with fewer
features. Objects that share features with
relatively many objects would tend to occupy
relatively dense regions of the stimulus con-
figuration, and thus, the data are consistent
with the hypothesis that asymmetric simi-
larities are related to differences in spatial
densities.

In the study of musical intervals by Bal-
zano (1977), subjects were first presented with
a name of an interval followed by a sounded
interval, and same-different reaction times
were measured. As mentioned earlier, those
intervals that play an important or distinctive
role in musical contexts were associated with
faster same reaction times and also occupied
less dense regions of the stimulus configuration.
The proposed relationship between asym-
metry and spatial density would predict
that the time required to decide that a less
distinctive interval is not a more distinctive
interval would be shorter than the time
required to decide that a more distinctive
interval is not a less distinctive interval.
Some of the largest asymmetries in discrimina-
tive reaction times found in his study could
be accounted for in this way.

The proposed relationship, however, may
not be supported by similarity data based
on the number of stimulus-response errors.
In this case, those items that are frequently
correctly identified would, according to the
distance-density model, tend to fall in less
spatially dense regions of the configuration
than objects with many stimulus-response
errors. Due to constraints in the data, those
objects that are frequently identified correctly
are infrequently confused with other objects,
so it is unlikely that the predicted pattern of
asymmetries would be found in such data.
Clearly, the relationship between asymmetries
and differences in spatial densities needs to be
tested further but should be tested using tasks
that are clearly directional. While this require-
ment was met in the studies of Rosch (1975a)

and Tversky (1977), the roles of the two
stimuli in the studies of Rothkopf (1957)
and Balzano (1977) were not clearly differen-
tiated.

Metric Axioms: Triangle Inequality

Features, Dimensions, and Context

When an object is similar to another object,
it must be similar with respect to certain
features or properties. However, which fea-
tures or properties are to be considered relevant
to a similarity task are rarely explictly speci-
fied and may depend on the stimulus context
and possibly even the particular pair of
objects under consideration. Although the
concept of similarity is "clear enough when
closely confined by context and circumstance
in ordinary discourse, it is hopelessly am-
biguous when torn loose" (Goodman, 1972,
p. 444).

Torgerson (1965) made a distinction be-
tween similarity as a basic, possibly perceptual,
relation between instances of a multidimen-
sional attribute and similarity as a derivative,
cognitive relation between stimuli varying on
several dimensions. In the latter case, simi-
larity judgments may be based on complex
cognitive processes and may be subject to
changes in strategy depending on the context.
He suggests that as the contribution of cogni-
tion goes up, the appropriateness of the multi-
dimensional representation goes down. Using
stimuli that varied in terms of two physical
parameters only, Shepard (1964) showed that
subjects do shift emphasis from one dimension
to the other. Variability in similarity criteria
may occur because, when subjects are faced
with a large or heterogeneous universe of
objects, they try to simplify the task by
focusing on a subset of the relevant object
characteristics at any one time. Gregson (1975)
has also considered the variable nature of
similarity, suggesting that subjects may change
from one level of analysis to another at dif-
ferent points in time or may exploit char-
acteristics of the stimulus set, such as the
extent to which physical stimulus dimensions
are intercorrelated over the set of stimuli.

Tversky (1977) suggested that features may
vary in terms of salience and that the salience
of a particular feature is determined by two
types of factors: intensive and diagnostic.
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The former refers to attributes that may be
inherently obvious or striking, such as tone
loudness, color saturation, and figure size.
The weight given such properties would be,
he argues, independent of context. However,
Gravetter and Lockhead (1973), Parducci
(1965), and others have demonstrated context
effects in such stimulus domains as tones
varying in loudness and squares varying in
size, suggesting that the salience of these
intensive properties may in fact vary as a
function of stimulus context. The second
factor, diagnosticity, refers to the classificatory
significance of the features and is assumed by
Tversky to depend on stimulus context.
Those features that can be used as a con-
venient basis for classifying objects in the
domain would be relatively heavily weighted
in the similarity judgment. Tversky suggests
that the diagnosticity principle reflects the
tendency of subjects to sort the collection of
objects into subgroups in order to reduce the
information load and facilitate further proc-
essing. Sjoberg (1972) has made a similar
proposal.

According to Fillenbaum and Rapoport
(1974), the similarity criterion employed may
even depend on the particular object pair
under consideration. Two words may be
judged similar if they are synonyms, but two
other words may be similar if they are anto-
nyms. This is closely related to the idea dis-
cussed earlier that given a pair of objects,
subjects actively search for features or proper-
ties to justify high similarity ratings (Sjoberg,
1972), and thus, different features will be
considered important depending on the par-
ticular stimulus pair under consideration.
This kind of criterion shift may lead to
examples like the one given by James (1890)
in which the moon is similar to a gas jet
(with respect to luminosity) and also similar
to a football (with respect to roundness),
but a gas jet and a football are not at all
similar. The implication of such criterion
shifts for feature-based and geometric models
of similarity will be discussed in the next two
subsections.

Feature Matching Model

The feature matching model (Tversky,
1977) can account for context effects on

similarity judgments by assuming that the
measure or weight given the various features
is different in different contexts. That is, in one
stimulus context, a given feature may be
weighted heavily; in another context, the
same feature may be weighted less heavily
or possibly given no weight at all. The extreme
flexibility of the feature matching model in
this way would make it well suited for situa-
tions in which criterion shifts are expected to
occur. The model itself does not specify what
factors influence how the weights are assigned.
Additional assumptions need to be made about
how context affects the assigned weights.
One such assumption, the diagnosticity
principle, was suggested by Tversky (1977)
and will be discussed again in the next section
on context effects.

It should be noted, however, that this kind
of set-theoretic model can account for examples
such as the one given above without assuming
criterion shifts. In the example, one object
was seen as similar to each of two others,
but the two objects were not at all similar
to each other. In terms of feature sets, even
if the first object has features in common with
both the second and the third objects, it
need not be the case that the second and the
third objects share any features.

Geometric Models of Similarity

Geometric models assume that similarities
are monotonically related to distances in a
metric space. Distances in a metric space
must satisfy the triangle inequality axiom,
which says that the distance between any two
points must be smaller than the sum of the
distances between each of the two points and
any third point. In terms of similarities, this
means that if an object is similar to each of
two other objects, the two objects must be at
least fairly similar to each other. The type
of example posed by James (1890) above would
seem to violate this constraint and would thus
present problems for geometric models.

It is possible, however, that similarity judg-
ments may reflect an emphasis on features or
dimensions in terms of which the objects are
similar. In geometric terms, the similarity
between two objects would be large if there
is some lower dimensional projection of the
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higher dimensional psychological space in
which the corresponding points are close.
This would happen if the lower dimensional
projection were just that space denned by the
dimensions in terms of which the objects were
similar. Projections onto certain subspaces
may make more conceptual sense than pro-
jections onto other subspaces. Subspaces
defined by obvious stimulus dimensions would
seem to be likelier projections than subspaces
not corresponding to such dimensions. This
kind of approach may be able to account for
violations of the triangle inequality axiom.
One object might be quite close to a second
object in one projection and to a third object
in some other projection, yet this need not
imply that there exists a projection that is
conceptually reasonable in which the second
and third objects are close. Indeed, the
example given by James (1890) suggests this
kind of explanation.

It might be interesting to consider the
possibility of constructing higher dimensional
representations from the configurations found
in lower dimensional spaces, subject to the
constraint that the lower dimensional con-
figurations correspond to projections from the
higher dimensional space. The different lower
dimensional representations would presumably
be generated in different stimulus contexts
or when subjects are explicitly instructed as
to which dimensions should be considered
relevant for the similarity judgment. Fillen-
baum and Rapoport (1974) suggested that
if similarity structures found using a variety
of distinct criteria were compounded into a
single overall arrangement, the resulting
structure might correspond to the structure
yielded by the use of an unspecified or global
similarity criterion. In an unpublished study,
Shoben (cited in Smith, Rips, & Shoben,
1974) successfully applied this approach to at
least one stimulus domain. He had subjects
rate the similarity of pairs of objects with
respect to single dimensions. The resulting
similarity matrices were then scaled. Two of

these solutions were found to correlate well
with the two-dimensional solution arrived at
when subjects were uninstructed as to the

relevant dimensions. Compounding lower di-
mensional solutions into higher dimensional

configurations may result in configurations

of rather high dimensionality; thus, one of the
advantages of low dimensionality, namely,
visualizability, is lost. However, such higher
dimensional representations would be able
to account for a wider range of similarity data,
particularly if stimulus context is found to
have a large and lawful effect on the dimensions
considered relevant to the similarity task.

The idea that similarity judgments are based
on lower dimensional projections of a higher
dimensional configuration is a special case of
the model underlying the individual differences
scaling technique, INDSCAL, developed by
Carroll and Chang (1970). The technique
uses multiple similarity matrices generated
by different subjects or in different experi-
mental conditions. The technique accounts
for differences between the matrices by as-
suming that the stimulus dimensions are
differentially weighted by the individual
subjects or in the different conditions. That is,
differences between the similarity matrices
are assumed to reflect shifts in the emphasis
given the various dimensions. The method has
been shown to yield interpretable shifts in the
weighting of the dimensions when applied to a
variety of stimulus domains (Wish & Carroll,
1974). Owing to the additional information
contained in the multiple matrices, the
INDSCAL method is typically able to support
higher dimensional solutions than standard
multidimensional scaling methods.

Other Context Effects

Diagnosticity and Density

In the previous section, the idea was dis-
cussed that a feature or dimension may be
given different weights in different stimulus
contexts. Tversky (1977) suggested that these
weights are determined in part by how diag-
nostic the feature is for the particular set of
objects under consideration, that is, how
significant the feature is for classifying the
objects into subclasses. In order to test the
diagnosticity principle, Tversky used pairs
of four object sets of the form (a, b, c, p}
and {a, b, c, q). For each set of objects, sub-
jects were to decide which of the last three
members was most like the first. The sets
were constructed so that in the first set, the
object p was similar to one of the common



SIMILARITY AND SPATIAL DENSITY 457

alternatives, say, the object b. In the second
set, the object q was similar to the other
common alternative, c. In the first set, subjects
tended to choose object c over object b as
being most similar to object a, but in the second
set, they tended to choose b over c. It is
interesting to note that the effect found by
Tversky in the similarity task is somewhat
analogous to an effect found in choice behavior
by him also (Tversky, 1972). In terms of the
probability that an object is chosen from a set,
the effect of adding an alternative to an
offered set "hurts" alternatives that are
similar to the added alternative more than
those that are dissimilar to it.

The feature matching model (Tversky,
1977) is able to account for this result in the
following way. In the first context, it is as-
sumed that some feature becomes diagnostic
that classifies objects p and b together, and in
the second context, some other feature be-
comes diagnostic that classifies objects q and c
together. Since diagnostic features are as-
sumed to be given relatively heavy weight,
the model can account for shifts in the rank
order of similarities.

This kind of result poses problems for
traditional geometric models. Such models
would be unable to account for shifts in the
rank order of similarity judgments as a func-
tion of the rest of the stimulus context in
which the objects appeared. However, the
hypothesized relationship between similarity
and the density of the object configuration
may be useful in explaining Tversky's results.
According to the hypothesis, as the density
of the configuration increases, interobject
similarity decreases. In the first context, the
item p is added to be similar to the object b;
according to the hypothesis, this would tend
to decrease the similarity between b and a.
In the second context, the item q is added to
be similar to c, and this would tend to decrease
the similarity between c and a. In this way,
the context effects demonstrated by Tversky
(1977) can be accounted for by the distance-
density model.

Range and Frequency

In order to account for effects on categorical
judgments of the distribution of the stimulus
set along a single dimension, Parducci (1965)

proposed the range-frequency theory. The
theory is based on two principles. The first
principle is that the judge tends to divide
his psychological range into a fixed number of
subranges of equal size. This implies that if the
context is enlarged by extending the range
over which the stimuli vary, the judge will
adjust his category responses to accommodate
the enlarged range of stimuli within the fixed
range of responses. Support for this prediction
is found in the work of Gravetter and Lock-
head (1973). The second principle is that the
judge employs the alternative categories with
equal frequency. That is, if within a subrange
of the stimulus range there are relatively many
stimuli, then finer discriminations are made
within that subregion than in less dense sub-
regions. Parducci and others (Birnbaum,
1974; Parducci, 1965; Parducci & Perrett,
1971) have shown that this theory is able to
account for categorical judgments using a
variety of unidimensional stimuli.

Although this theory is stated in terms of
categorical judgments, analogous principles
can be stated for similarity judgments. In
terms of similarity judgments, the first prin-
ciple would be that if the range of stimuli is
increased by adding more extreme stimuli,
then the similarity judgments for stimuli
that are common to the original and extended
stimulus sets should increase. The second
principle would be that the similarity between
two objects in a relatively dense subregion
of the stimulus domain should be judged to
be smaller than the similarity between two
objects that differ an equivalent amount but
occupy a less dense subregion. This second
principle is identical to the density principle
proposed in this article, and the evidence for it
has already been discussed.

In addition, there is some evidence from
similarity tasks for the first principle. Tversky
(1977) and Sjoberg (1972) demonstrated using
countries, musical instruments, and animals
that broadening or extending the stimulus
domain resulted in greater average similarity
judgments among the objects from the original
set. Thus, subjects do tend to standardize
or normalize the response scale to fit the
stimulus range. Torgerson (1965) showed
using multidimensional objects that this
range effect can operate with respect to one
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of the dimensions independently of other
dimensions. He used kite-shaped objects
varying in size and bottom heaviness. In one
set, the range of variation of physical size to
bottom heaviness was twice that of the other
set. The multidimensional scaling solutions
of the two sets of stimuli were, however, al-
most identical. Thus, the range and density
effects found in similarity tasks have close
correspondence to those found in categorical
judgments.

Spatial Inhomogeneity and Density

In this last subsection on context effects,
an effect predicted by the density hypothesis
will be discussed. Essentially, the density
hypothesis states that if two objects occupy
a relatively less spatially dense region of the
stimulus domain, they will be seen as more
similar than two other objects that differ an
equivalent amount but lie in a more spatially
dense region of the domain. Since points at
the edge of a configuration generally have
fewer neighbors than points interior to the
configuration, this hypothesis predicts that
interobject similarity for points at the edge
of the configuration should be larger than
points with equal interpoint distances but
lying at interior positions.

In order to test this hypothesis, the simi-
larity data on the Morse code signals (Roth-
kopf, 1957; Shepard, 1963) were again ana-
lyzed. The hypothesis was tested by first
finding points of approximately equal distance
in the scaling solution. Two different distances
were chosen. The first distance corresponded
approximately to the distance between the
letters A and M in the published solution,
the second to the distance between D and R.
For each of these fixed distances, all pairs of
points that were separated by the critical
distance were considered. There were 23 such
pairs for the first distance and 22 pairs for the
second distance. In addition, each pair of
points was classified according to whether both
points fell at the boundary of the solution
(these pairs will be called exterior pairs) or
whether at least one of the points fell at an
interior position in the configuration (these
pairs will be called interior pairs). For each
pair, the similarity score used was the average
number of incorrect same responses for the

two orders of presentation. As predicted, the
average similarity measure for exterior pairs
was larger than the average similarity measure
for interior pairs [the / values were t(2\)

= 3.687 and /(20) = 3.327, p < .001, for the
two distances, respectively].

This result suggests that context, that is,
the entire stimulus set under consideration,
may introduce inhomogeneities into the psy-
chological space so that a given change in one
part of the space carries a different meaning
in terms of similarity than an equivalent
change in another part of the space. Further
investigation is needed to determine whether
systematic effects are found in other stimulus
domains. The work of Rumelhart and Abra-
hamson (1973), however, suggests that the
effects may be small, since their subjects
were able to solve analogy problems with
some accuracy where the solution was deter-
mined by transposition of a vector distance
from one part of the multidimensional space
to another. In addition, Shepard (1963)
compared the spatial solution for similarity
data on a subset of the Morse code signals
with the solution for the full set of signals
and concluded that the structure was not
seriously distorted by the additional signals.

Similarity Versus Difference

Tversky (1977) demonstrated that simi-
larity judgments and difference judgments
may not be perfectly negatively correlated.
That is, for some objects, a, b, c, and e, the
judged similarity between a and 6 is larger
than the similarity between c and e, and the
judged difference between a and b is also
larger than the difference between c and e.
In order to account for this pattern, he sug-
gested that common features are given heavier
weight relative to distinctive features in
similarity judgments than in difference judg-
ments. The feature matching model predicts
that the observed pattern would be expected
to occur when a and b have both more common
and distinctive features than c and e. As
predicted, using countries as stimuli, Tversky
found that when a and b were prominent
countries with many features, they tended
to be judged both more similar and more
different than the pairs of less prominent
countries, c and e.
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This kind of result is also consistent with the
distance-density model if it is assumed that
the weights given the distance and density
components of Equation 2 vary as a function
of task. For example, more emphasis may be
given to distance in a similarity task and to
density in a difference task. This means that
in a difference task, subjects attend to other
similar objects more than in a similarity task.
In terms of the distance-density model,
similarity in a nondirectional task can be
written as a monotonic decreasing function of
Od(x, y) + S(x) + 8(y), and difference judg-
ments can be written as a monotonic increasing
function of \d(x, y) + d(x) + S(y). If 0 > A,
then a and b will be both more similar and more
different than c and e if and only if A[</(c, e)
- d(a, b^ < [«(a) + 5(6)] - [8(c) + «(«)]
< 0[d(c, e) — d(a, &)]. That is, this pattern
may occur when the interpoint distance
between a and b is less than the distance
between c and e, but the density in the regions
around a and b is greater than the density
near c and e. In this way, the distance-density
model is consistent with similarity and differ-
ence data that are not perfectly negatively
correlated.

Dimensions Versus Features:
Dimensional Assumptions

In geometric models of similarity, points
corresponding to the objects in the stimulus
domain are embedded in a dimensionally
organized metric space.3 One interpretation
of such a representation is that the stimuli
can be described as varying along a number
of underlying dimensions. Indeed, one of the
applications of multidimensional scaling tech-
niques has been to discover the dimensions
in terms of which the objects were seen as
varying. The technique has been applied to a
wide variety of stimulus domains with con-
siderable success, that is, the resulting geo-
metric configurations were organized within
a framework of interpretable dimensions.

Tversky (1977) argued, however, that

while the dimensional assumption may be

appropriate for certain kinds of perceptual

stimuli, that is, those that vary continuously

along one or more quantifiable dimensions,

it may be inappropriate for more semantic

stimuli, which vary in terms of discrete quali-
tative features. For such stimuli, the similarity
structure might better be described by set-
theoretic relations, where the similarity be-
tween objects is accounted for in terms of the
categories to which the objects belong or the
properties or features associated with the
objects. A number of authors have proposed
semantic theories based on set-theoretic rela-
tions. Basic to the work of Meyer (1970) is the
idea that semantic stimuli can be described in
terms of category membership, and the inter-
relationship between category membership
and similarity has been suggested by Wallach
(1958) and Handel and Garner (1965).
Feature-based descriptions of semantic ob-
jects have been proposed by Katz (1972),
and the similarity models of Sjoberg (1972)
and Tversky (1977) are based on the featural
properties of the objects.

However, theories of semantics based on
category membership may be unable to ac-
count for a number of effects. Boundaries
between categories may not be clearly denned
and category membership may be a matter of
degree. Evidence for the "fuzzy" character
of category boundaries (Zadeh, 1965) is found
in the work of Lakoff (1972, 1973), Labov
(1973), and Lehrer (1970). Smith, Shoben,
and Rips (1974) and Rosch et al. (1976)
have found large variation across individual
items in the time required to determine
whether the item is a member of a specified
category. Rosch and Mervis (1975) suggested
that category membership is best described
in terms of family resemblance. According to
this approach, category membership arises
through a network of overlapping attributes,
and it need not be the case that any feature
or set of features can adequately distinguish
between category members and nonmembers.
From this network of attributes, a measure
of family resemblance can be derived; in terms
of this measure, certain objects are "better"
category members than others. This measure
of family resemblance is able to predict per-
formance in categorization tasks. Thus, models

3 One exception is the method of maximum variance
nondimensional scaling developed by Cunningham and
Shepard (1974), which derives interpoint distances
from similarity data without specifying a particular
underlying dimensionally organized metric space.
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based solely on category membership are
unable to account for a variety of effects,
suggesting that similarity models based on
category membership will also be incomplete.

A number of difficulties are also associated
with feature-based models of similarity. In
such approaches, two objects are seen as similar
inasmuch as they have features in common.
It might be argued, however, that the extent
to which an object possesses or is associated
with a feature may be a matter of degree. For
example, Halff, Ortony, and Anderson (1976)
have illustrated the case in which some red
objects are "redder" than other red objects.
Even if some of these differences can be ac-
counted for in terms of the physical shade of
red typically associated with the object, it
may be true that objects of identical physical
color differ in terms of how salient or important
the color feature is for the description of the
object. Thus, a given property may be more
central or important to the meaning or ap-
pearance of one object than another. Another
problem with feature-based descriptions, sug-
gested by the work of Smith, Shoben, and Rips
(1974), is that it may be necessary to dis-
tinguish between defining and characteristic
features and to determine to what extent they
are involved in similarity judgments. It may
happen that a defining feature of an object,
while necessary, may be less salient than a
characteristic feature of the object. For
example, that penguins have feathers may be
less salient than the fact that they typically
are found in antarctic localities. Therefore,
the extent to which a given feature or property
is associated with an object may be a matter of
degree, and feature-based models of similarity
may have to take into account variations in
the associative strength between objects and
their features. A similar proposal was made by
Lehrer (1970).

Although geometric models of similarity
may not seem well suited for stimuli that vary
in terms of discrete properties, multidimen-
sional scaling methods have been applied to
such stimuli with considerable success
(Shepard, 1963, 1972, 1974; Torgerson, 1965).
In these solutions, objects were grouped
together in the spatial representation accord-
ing to the discrete features that they share.
It appears, then, that the discrete nature of

stimulus features is not a major difficulty for
geometric models. In this regard, it might be
useful to distinguish between the continuous
nature of the space underlying the geometric
representation and the continuous nature of
the stimulus domain itself. Although the under-
lying metric space is assumed to be continuous,
it need not be the case that for every point
in the underlying space there corresponds a
possible stimulus. It may be, for example, that
the full set of stimuli corresponds only to
disconnected subregions or a finite set of points
in the underlying space (Goldmeier, 1936/
1972; Torgerson, 1965). The geometric model
does not strictly imply that the stimulus
domain needs to be continuous, although
Rumelhart and Abrahamson (1973) have
shown that in one semantic domain, it may
be possible to create a new object to correspond
to an arbitrary point in the metric space in
which the object configuration is embedded.

A similar distinction may also be useful
concerning the dimensional nature of the
underlying space. While the space in which
the configuration is embedded is assumed
to be organized in terms of coordinate axes,
the coordinate axes need not have particular
meaning with respect to the objects them-
selves. Multidimensional scaling techniques
have yielded solutions in which the axes of
the underlying space bear no particular
relationship to the object configuration.
Rather, the structure underlying the similarity
relations could better be interpreted in terms
of clusters or placement around a circle or
some other subspace (Levelt, Van de Geer,
& Plomp, 1966; Shepard, 1962b, 1974). While
such applications do not aid the discovery of
underlying stimulus dimensions, it might be
argued that the discovery of clusters or other
nonlinear patterns is of comparable interest.
Finally, Goldmeier (1936/1972) has even
suggested that the dimensionality of a stimulus
domain may vary from one part of the stimu-
lus space to another. In terms of the geometric
representation, this may be true even though
the stimulus configuration is embedded in
some metric space of constant dimensionality.

Two final points concerning set-theoretic
and geometric similarity models will be
mentioned briefly. First, one advantage of
set-theoretic models is that hierarchical rela-
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tions among the objects can conveniently be
represented as subset relations within such a
framework. Although geometric models in-
corporate no mechanism for representing such
structure, Shepard (1974) has suggested
that a hierarchical clustering solution (John-
son, 1967) may be superimposed on the multi-
dimensional solution for this purpose. A second
advantage for set-theoretic models is that
such models appear well suited for describing
objects that vary in terms of a large number of
features or properties. While in theory, geo-
metric models impose no restriction on the
number of dimensions in the underlying space,
in practice, multidimensional scaling tech-
niques do tend to yield the most satisfactory
and interpretable solutions in spaces of rela-
tively low dimensionality. Thus, the number
of relevant features or properties may be a
factor to consider in choosing between the
two general types of models when applying a
similarity model to a particular stimulus
domain.

Conclusions

The article by Tversky (1977) raised a
number of extremely interesting issues con-
cerning the nature of similarity, some of which
directly call into question the applicability
of geometric models to similarity data. In the
present article, these issues have been con-
sidered in some depth within the context of
geometric models. The main proposal was that
the similarity between objects may be a func-
tion not only of interpoint distance in a metric
space but also the spatial density of points
in the configuration. A distance-density model
was proposed that modifies the traditional
multidimensional scaling model to take into
account the effect on similarity of spatial
density in the stimulus configuration. Such a
model may be able to account for variations
in how similar an object is to itself (violation
of the minimality axiom), asymmetric simi-
larity measures in directional similarity tasks
(violations of the symmetry axiom), certain
effects found when the explicit stimulus context
is manipulated, and the effect of task (simi-
larity vs. difference). In addition, the idea
was discussed that subjects may weight
dimensions differently depending on stimulus

context and possibly even the specific object
pair under consideration. In this connection,
it was suggested that similarity judgments
may involve an active search for dimensions
or features in terms of which the objects are
similar and that the judgments may be made
with respect to these dimensions. In this way,
geometric models may be consistent with
violations of the triangle inequality axiom.
Thus, geometric representations of similarity
relations may be able to account for a wide
range of effects if a number of assumptions
are made about the kind of geometrically
represented information that is relevant to a
particular experimental task and the way in
which this information interacts with the
stimulus context.
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