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Abstract: Several methods to determine the color gamut of
any digital camera are shown. Since an input device is
additive, its color triangle was obtained from their spectral
sensitivities and it was compared with the theoretical sen-
sors of Ives-Abney-Yule and MacAdam. On the other hand,
the RGB digital data of the optimal or MacAdam colors
were simulated to transform them into XYZ data according
to the colorimetric profile of the digital camera. From this,
the MacAdam limits associated to the digital camera are
compared with the corresponding ones of the CIE-1931
XYZ standard observer, resulting that our color device has
much smaller MacAdam loci than those of the colorimetric
standard observer. Taking this into account, we have esti-
mated the reduction of discernible colors by the digital
camera applying a chromatic discrimination model and a
packing algorithm to obtain color discrimination ellipses.
Calculating the relative decrement of distinguishable colors
by the digital camera in comparison with the colorimetric
standard observer at different luminance factors of the
optimal colors, we have found that the camera distinguishes
considerably fewer very dark than very light ones, but
relatively much more colors with middle lightness (Y be-
tween 40 and 70, or L* between 69.5 and 87.0). This
behavior is due to the short dynamic range of the digital
camera response.© 2006 Wiley Periodicals, Inc. Col Res Appl, 31,
000-000, 2006; Published online in Wiley InterScience (www.interscience.
wiley.com). DOI 10.1002/c0l.00000
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INTRODUCTION

Color devices!-7 are basically divided into input or capture
devices (scanners and digital cameras) and output devices
(softcopy, such as displays, and hardcopy, such as printers).
Scanners, digital cameras, and displays (CRT, LCD/TFT,
plasma, etc.) are additive color devices. However, most
printing devices® (inkjet, electro-photography, offset, etc.)
perform by additive and subtractive color mixing. Success-
ful color management>-'! depends on knowing the color
gamut and the color profile of the device used. Determining
the gamut of output devices (displays, projectors, and print-
ers) is relatively easy, both when colors in display or in
paper are generated systematically!? and when color profiles
are applied.!3 However, the conceptual problems inherent to
determining the gamut of input devices (scanners and digital
cameras) are numerous. Displays, projectors, and printers
are electro-optical devices, that is, they generate color dig-
ital images by physical and electronic procedures that are
finally seen in a medium (display, screen, or paper), and so
each RGB or CMYK digital data triad corresponds to a
single color-stimulus. Scanners and digital cameras are op-
toelectronic devices,!#-1¢ that is, they encode and generate a
digital image from the light projecting over them from the
original image by means of physical and electronic proce-
dures. Then, this digital image is seen on display and saved
in some image file format.

The key factor in the performance of input devices is the
univariance principle: spectrally different color stimuli may
give rise to identical RGB digital data. Therefore, it is very
difficult to determine what color-stimulus corresponds to a
RGB triad if the captured scene is not previously known. If
we capture a reference scene of known colors (taken from,
for example, a color atlas such as Munsell’s or the NCS) and



determine the corresponding RGB values, the next step is to
transform the RGB digital data into XYZ data to determine
how the input device encodes these color-stimuli in com-
parison with the human eye. To do this, we must apply the
input-device’s color profile to the RGB values to derive the
corresponding XYZ values. Therefore, the color gamut of an
input device depends on a color transform (“input device
plus transform” gamut). So, it is not clear a priori if any type
of color transform might be associated with the “input
device alone” gamut, or if it can be calculated by means of
other alternative procedures. Note that the color gamut of
output devices can be obtained far more simply.

In principle, this work would not be necessary if all input
devices were completely linear in an optoelectronic manner
and satisfied the Luther condition,!”-!8 that is, if their color-
matching functions or scaled spectral sensitivities were ex-
act linear combinations of the color-matching functions of
the CIE standard observer. Let Ty, and Ty, be the
color-matching functions of an input device and the color-
imetric standard observer, respectively, with 41 rows (from
380 to 780 nm at 10 nm step) and 3 columns. The nonful-
fillment of Luther condition implies that there is a 3 X 41
nonzero matrix C that links both capture systems as follows:

Ty, =M-: TRGBt +C (D

where M is the basic color profile or connection matrix
relating both color spaces,!®~2! which is one of the basic
components of any characterization model for these color
devices. (AT is transpose matrix of matrix A).

If matrix C (or Luther bias) were zero, the XYZ tristimu-
lus values derived from the color profile would coincide
with the real values and the input device would work as a
colorimeter, and colors metameric for the eye would also be
so for the camera and vice versa. But, in fact, matrix C is not
zero, so this initial error is dragged down all of the complete
color profile (from capture to image editing) and finally it is
mixed with the reproduction errors caused by the optoelec-
tronic limitation of the dynamic response range, that is, the
nonlinear errors associated to response clipping due to noise
and saturation. Consequently, due to the nonideal optoelec-
tronic performance and the nonfulfillment of the Luther
condition, the input devices, in raw performance (without
color rendering to standard output-referred representations),
will always show a color gamut different from that of the
colorimetric standard observer.

The gamut of the camera can be determined directly by
measuring (or predicting) its optimal colors, that is, by
determining in each direction of color space the highest
colorfulness the stimulus can attain without saturating the
camera response. Alternatively, as we do in this article, the
camera may be characterized by the way it responds to a
given set of reference colors. While in the first case, one is
directly controlling the tristimulus values (or their transfor-
mations to any colorimetric space) of the stimulus; in the
second, one needs to represent in the same space the tri-
stimulus values of the reference stimulus and the camera
response. Therefore, the second method can be used only if
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the camera response can be translated to the same space as
the reference stimulus by means of a model. For these
reasons, the gamut obtained with the first procedure may be
called “input device alone gamut,” whilst the second is
rather an “input device plus transform gamut.”

Two different approaches will be carried out to under-
stand better this subject using a real digital camera. In the
first place, if an input device is additive, it is possible to plot
into a chromaticity diagram the color triangle associated to
this device and to compare it with the theoretical color
triangles of sensors that fulfill Luther’s condition (Ives-
Abney-Yule, (Ref. 1, p 128), MacAdam??). RGB triangles
are usually used to represent graphically the color gamut of
displays, but we can use them likewise with input devices
because they also are additive. Therefore, this approach, that
disregards the color profile of the digital camera as it will be
seen below, is the simplest calculation to understand ini-
tially the “camera alone” gamut of the input device.

The second approach to this subject, based on determin-
ing the “camera plus transform” gamut using a color profile,
is to select previously the color-stimuli in the scene, either
real (Munsell or NCS chips, IT8 or ColorCheckerDC charts,
etc.) or simulated (vector decomposition,!®-23-24 optimal or
MacAdam colors,?>-27 etc.). This implies in turn that the
illuminance level, the chromaticity of the light source and
the source/detector geometry, are initially fixed. To simulate
color capture in these initial conditions, we must use the
spectral power distributions of the color-stimuli of the scene
to estimate the RGB digital data of the input device. It is
assumed that the optoelectronic spectral functions of the
input device are known a priori, either by direct measure-
ment or by simulation under some assumptions about the
basic performance of the color device. Then, we should
finally have a set of colors encoded according to the color-
imetric standard observer in any CIE color space, linear
(XYZ, U'V'W', etc.) or nonlinear (L*a*b*, etc.) and the
same set of colors encoded by RGB digital data. In the
discussion, we address in detail the comparison between this
procedure, where the performance of the camera is “trans-
lated” in terms of the color space of the human observer,
and a previous method?® proposed by Morovi¢ and
Morovi¢, where the optimal colors of the camera are com-
puted directly.

Finally, the number of discernible colors of the camera
and that of the colorimetric standard observer can be com-
puted by assuming that both have the same color metric. A
priori, this is achieved by estimating the number of the
discrimination ellipsoids filling the color solid, which in the
human case is associated to the MacAdam limits or Résch-
MacAdam color solid.>>-28 Usually, the problem is simpli-
fied by fixating the luminance factor Y or the lightness L*,
so the computation of ellipsoids is replaced by the simpler
computation of the discrimination ellipses plus the interpo-
lation of the just-noticeable lightness differences between a
fixed value and the next one.?°—3! Experimental data about
discrimination ellipses around in the literature3>-38 are nu-
merous. We have chosen the Krauskopf and Gegenfurtner
data37-3% because they permit a homogeneous sampling of
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the color solid. This procedure could seem an unnecessary
complication of a simple problem, because once the Mac-
Adam loci are computed, we could assume that their areas
in a given color space are a measurement of the size of the
color gamut of the device (standard observer or camera).
However, we will show below that in this way the result
obtained would be dependent on the color space used,
whereas this would not happen with the new procedure we
propose.

Summarizing, the aim of this work is to provide more
information about the calculation of the color gamut of a
particular input device, a conventional digital camera. Once
the experimental data about the colorimetric and spectral
characterization are known, we will follow the three steps
described above: the color gamut calculation in a chroma-
ticity diagram based on the primaries of the color device
(“camera alone” gamut), the color gamut by predicting the
response of the camera for MacAdam limits (“camera plus
transform” gamut), and the size of the color gamut based on
Krauskopf and Gegenfurtner discrimination data.

Methodology, Results, and Discussion

This section is divided into three reports. As a first approach
to the calculation of the color gamut of an input device
(“camera alone” gamut), we show a method for obtaining
the primary spectra of a digital camera from its color-
matching functions, which we will use to plot its color
triangle and to compare it with the theoretical primary
spectra and color triangles of Ives-Abney-Yule and Mac-
Adam. In the second approach (“‘camera plus transform”
gamut), the capture of optimal colors is simulated to com-
pare the MacAdam limits as encoded by the digital camera
under analysis with those of the CIE standard observer. To
develop this approach, the camera should be characterized
using a model from measured colorimetric data.?0.21,39-43
Finally, to complete this second approach, we propose a
method to estimate and compare the number of colors
distinguishable by the digital camera and the CIE standard
observer.

The input device used in this work consists of a Sony
DXC-930P camera and a Matrox MVP-AT 850 frame grab-
ber, characterized according to a previously developed
model].#243

Determination of the Primary Spectra and the Color
Triangle of a Digital Camera

We propose in this section a simple methodology to deter-
mine the primary fundamental** spectra Py (according to
Cohen’s formalism) from the color-matching functions
Trss when the basic color profile M is unknown. The
mathematical background for this procedure is linear alge-
bra.7.19:20.44 According to this formalism, color-matching
functions T (41 rows by 3 columns, from 380 to 780 nm at
10 nm steps) and primary spectra P (41 rows by 3 columns)
of any color space associated to additive color reproduction
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systems (device or human eye) are linked into a dual rela-
tionship as follows:

T-P=1 2)

where I is the 3 X 3 identity matrix.

The basic spectral property of displays and projectors is
the set of spectra of their primaries. Their color-matching
functions can be inferred from these data so that the spectral
sensitivities of the input devices can be designed accord-
ingly (Ref. 1, p 478). However, the basic spectral property
known a priori (or measured) of the input devices is the set
of the spectral sensitivities, but not directly the associated
primary spectra. Therefore, if the primary spectra Pg ;5 of a
display or projector are known, we can calculate its color-
matching functions. In the same way, if the color-matching
functions Tg; of an input device are known, we can
determine the primary fundamental spectra P as follows:

Pros = Tres (TRGBI . TRGB)_] 3)

It is well established that the basic color profile of an input
device is a 3 X 3 matrix M (Eq. (1)) relating the color-
matching functions of the color device T and the color-
imetric standard observer Ty, . This means that the matrix
components arranged in each column are the XYZ tristimu-
lus values of the RGB primaries of the input device (Eq.
(4)). This matrix can be obtained by different regression
methods.2° For this work, we have selected the maximum
ignorance using least squares regression because it is the
simplest procedure. Therefore, from these matrix compo-
nents the color triangle of the input device can be plotted, as
for displays and projectors, as a first approximation to the
color gamut of this type of color device. That is, the max-
imum ignorance color transform is the projection of the
primary fundamental spectra of the input device:

X(Pp) X(Pp) X(Pp)
M= | Y(Pp) Y(P;) Y(Pg)
Z(Py) Z(Pg) Z(Py)
M =Ty, * Trop* (TRGB[ [ TRGB)71 “
1.5798
= 1.0086 1.6157 0.0742

0.4016 0.3643
—0.0107 0.1573 2.0189

where Pg, P, and P, are the primary spectra in column
format, which are not known a priori.

Since the matrix M obtained by the pseudo-inverse (or
maximum ignorance) method does not fulfill the Luther
condition, i.e., the CIE color matching functions estimated
by M-Tr;5" are not exactly equal to the original Tyy,, we
must actually talk of a family of metamers of the RGB
primaries for the camera, whose main representatives would
be the primary fundamental spectra calculated above. The
fact that they are RGB metamers guarantees only that there
will be a single RGB triangle in the (r, g) diagram of the
camera, but this does not necessarily happen in the CIE
chromaticity diagrams. Therefore, we may consider the
color triangle of fundamental primaries as a first approxi-
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mation to the “camera alone” gamut. However, it would be
very interesting to study how the possible families of RGB
primaries of the camera were encoded and plotted in the
CIE color spaces.

A simple way to assess the color reproduction quality of
an input device is to compare its colorimetric data—Tgp,
P and color triangle—with those of theoretical sensors
or cameras verifying the Luther condition (Eq. (1)). As
theoretical sensors, we might use either Ives-Abney-Yule’s
(Ref. 1, p 128) or MacAdam’s?2. In the first case, the color
triangle of the sensor set is the minimal area that includes
the spectral locus. In the second case, it is the exact linear
combination of Ty, with minimal spectral overlap. Obvi-
ously, none of these sensor sets exists in real input devices,
but we think that it can be illustrative to use these theoretical
data to analyze the color reproduction quality of current
input devices.

Figure 1 shows the color-matching functions and primary
fundamental spectra of our digital camera and the theoret-
ical options of Ives-Abney-Yule and MacAdam. In Figure 2
the color triangles are compared in the («', v') chromaticity
diagram. Since primaries might be nonreal, it must be born
in mind that, when they are represented in a chromaticity
diagram different from their own (7, g), their additive mix-
tures will plot inside the triangle defined by the chromatici-
ties of the primaries only if the sum of the tristimulus values
of each primary in that representation space is positive. That
is precisely the case of the primaries of our camera, even
though their spectra have negative components and the
tristimulus value Z of the fundamental red primary is neg-
ative (see M in Eq. (4)). On the other hand, comparing the
three color triangles, it can be seen that the red and purple
region, and in a lesser degree also the blue-green region, are
not well filled by our input device. We think that both the
scaling of Tgp relative to Ty, and the spectral overlap in
Trip are the cause of these differences. We have then a
simple methodology to compare the color reproduction
quality of cameras and scanners if their color-matching
functions are known previously.

Calculation of the Camera Responses to the Macadam
Limits. Comparison with the CIE Standard Observer

The camera responses of optimal colors can be obtained
from the color-matching functions or optoelectronic spectral
conversion functions of the camera. The input data are the
spectral reflectances of the 1734 optimal colors under equal-
energy illuminant E?7. We consider that the illuminance of
this hypothetic scene is 1000 X I, obtained with a constant
spectral radiance of 4.36 mW/sr m?, so the luminance of the
adapting white is L, = 1000/ cd/m* = 318.31 cd/m?. With
these lighting data, the camera exposure was set to N = 4
and 7 = 20 ms (offset value by manufacturer) and obtain the
digital data RGB of each optimal color using our previously
developed model*>+3.

From the camera responses, the XYZ tristimulus values of
the optimal colors can be obtained applying any model of
colorimetric characterization used. In our case, the digital
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data RGB of each optimal color are the input of the repro-
duction model with luminance adaptation. The final step of
our characterization model is to compare the estimated XYZ
data with the theoretical XYZ data associated to the optimal
colors. With this procedure we obtain the kind of color
correction that our input device needs. As it is shown in
Figure 3, a simple linear model (Eq. (5)), consisting of a
scaling factor B and a Luther bias term A, works very well.

ty,=A+B 'ixyz

X —19.02
Y |=| —2457
4 —21.44
0.4705 0 0 X
+ 0 0.4320 0 Y
0 0 05436 Z ] (5

Nevertheless, it is important to remember that with Eq.
(5) we compute a “camera plus transform” gamut, which
aims to modeling as closely as possible the “camera alone”
gamut. Of course, if the criteria ruling the projection over
the XYZ color space changes, and therefore other matrix M
is chosen, the color gamut would change. But, eventually, as
a color correction model must be applied in the camera-to-
colorimeter conversion, the choice of matrix M is not really
too relevant. This is so because the main differences be-
tween both color gamuts are caused by the nonlinearities in
the optoelectronic behavior of the digital camera and the
nonfulfillment of the Luther condition.

This second approach is different from the procedure
adopted by Morovi¢ and Morovi¢’s?®. We use a “camera
plus transform” to synthesize the camera’s RGB response to
a set of theoretical reflectances (optimal or MacAdam col-
ors) and then transform these RGB values to XYZ space
using a color transform. In this way a gamut is obtained in
XYZ or another space defined in terms of XYZ, e.g., L*a*b*.
Although such an approach is considered in Morovi¢ and
Morovic’s work, it is rejected for a number of reasons. First,
it is argued that to accurately determine the gamut of an
input device one needs to sample the space of all possible
surface reflectance functions. Thus, these authors aimed to
determine the optimal color locus of their device, thus
obtaining the “camera alone” gamut. A discussion of the
computational problems associated with determining cam-
era responses to all spectra in the object color solid (OCS)
is given in that work, although the way their camera was
modeled differs from ours. In addition, it is pointed out that
a given RGB response corresponds to a whole set of XYZ
values due to the fact of metamerism (nonfulfillment of the
Luther condition). This implies that the transformation from
RGB to XYZ is nontrivial, and in the case that a one-to-one
correspondence is assumed, the transformation is subject to
error. To avoid these problems they instead chose to define
first the gamut of the OCS in L*a*b* space. However, we
have simulated the RGB responses for the optimal or Mac-
Adam colors, which are on the boundary of the OCS, using
our own characterization model*?> for digital cameras,
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FIG. 2 Color triangles of our input device (DSC, solid line)
and the theoretical options of lves-Abney-Yule (IAY, dashed
line) and MacAdam (MA, dash-dot-dotted line). [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

mainly based on spectroradiometric measures.** They then
obtain an approximation of the camera gamut by sampling
this L*a*b* space and determining camera RGB values for
each L*a*b* value sampled with a different camera model
from that one of ours. In determining these camera RGB
values, the issue of metamerism is considered. That is, all
reflectances corresponding to a given L*a*b* value are first
determined. One of these reflectances is then selected and an
RGB value determined. In our case, we use an input device
plus color transform to compute the camera response to the
optimal colors of the human observer. But, as these colors,
which are the borders of the OCS, have not got physically
possible metamers (that is, with completely positive spec-
tra), the problem of metamerism is minimized, in the sense
that we need not be concerned by the possibility that a set of
metamers of the colors used as reference might be non-
metameric for the camera and give a larger gamut. The
remaining problem is that the algorithm used to predict the
XYZ tristimulus values is affected by the metamerism of the
camera. The two methods, therefore, are different approxi-
mations to the true solution.

Comparing the MacAdam limits in CIE-(a*, b*) profiles,
as shown in Figure 4, it is clear that the color gamut of the
MacAdam colors encoded by our digital camera is smaller
than that of the colorimetric standard observer. The same
happens in (¢*, L*) and (b*, L*) profiles in Figure 5, where
it is clearly seen that our input device systematically losses

more medium-light and dark colors than very light ones, and
more colors in the red-green than in the yellow-blue chro-
matic axis.

Focusing only in the MacAdam limits encoded by the
camera (Fig. 6), these seem much smaller when the lumi-
nance factor Y is near 0 and 100, that is, when very dark and
light colors are captured. Taking into account the optoelec-
tronic behavior of the camera, this seems logical because at
very low and very high Y values, the camera does not
perform linearly. The camera exposure selected in this sim-
ulation seems optimal because the dynamic response range
of the camera includes well the luminance ratio 100:1 of the
simulated scene. The same happens if the exposure is
slightly increased up to 5.6, without changing the lighting
conditions of the virtual scene. But in other exposure con-
figurations where the color profile was kept completely
linear, either by overexposure (N < 5.6, ¢ fixed) or under-
exposure (N > 5.6, t fixed), the color gamut of our input
device changes and decreases noticeably (Fig. 6). In this last
figure, it can be seen how with a smaller camera exposure
(N = 8), the gamut of dark colors is greatly decreased in
comparison with N = 5.6, at the expense of maintaining
approximately the gamut of the very light colors. On the
other hand, with a bigger camera exposure (N = 3.7),
although the camera saturates very light colors (Y > 80), the
gamut of light and dark colors does not change greatly.
Therefore, if one has to choose an incorrect camera expo-
sure, it is better to overexpose (saturating the white target of
the scene, as in conventional photographic practice) than to
underexpose.

Another topic that should be taken into account is the
possibility of having in the scene a luminance ratio larger
than 100:1, as for example 512:1 in other capture condi-
tions.*>4¢ In such case, we could vary the f-number N of the
zoom-lens to provide such luminance adaptation as our
color profile allows. Obviously, the optoelectronic (OECSF)
and photometric properties of our camera influence the
optimal capture for luminance ratios equal to 100:1, typical
of many scenes. But it is possible that in other input devices,
with a shorter dynamic response range, the darker or lighter
colors would be clipped independently of the selected ex-
posure configuration. Therefore, our methodology can be
used to compare the color reproduction capabilities of input
devices.

Concerning the Reduction of the Distinguishable
Colors by the Camera

A simple way of estimating the size of the color gamuts of
a device is to plot a reference color locus, transformed by
the device, in some color diagram, for instance CIE-
L*a*b*, and to assume that the area of this locus is a

FIG. 1

Color-matching functions (left side) and fundamental primary spectra (right side) of our digital camera (top) and the

theoretical cameras of Ives-Abney-Yule (center) and MacAdam (bottom). Solid line, R channel; dashed line, G channel;
dash-dot-dotted line, B channel. [Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com.]
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FIG. 4 MacAdam limits with different luminance factors in

the CIE-(a*,b*) diagram, for the CIE-XYZ standard observer

(outer line with hollow symbols) and for our digital camera

(inner lines with solid symbols).

measurement of the gamut size. With this technique, we are
choosing to ignore the fact that this space is not really
uniform. This could seem a reasonable simplification to
obtain a first order approximation, but as we show in Figure
7, the consequences of this fact can be serious: the conclu-
sions depend not only on the device under analysis but also,
and strongly, on the representation space used, even for
those with reasonable uniformity. The scaling changes, but
the more relevant features are the changes in the shapes of
the curves, resulting in the prediction of different relative
decrements in the gamut for different luminance factors in
the different color spaces used.

FIG. 3 Linear correction (solid line) of the tristimulus values
X (top), Y (center), and Z (bottom) of 1734 optimal colors
(crosshair symbol) using the color profile associated to our
input device. The correlation indexes are 0.9892, 0.9952,
and 0.9844, respectively.
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A possible solution would be to work with the most
uniform of the available color spaces. We have chosen,
however, a different approach consisting in counting the
number of distinguishable colors within the reference lo-
cus—in the occurrence, the optimal color loci. This has
been done by computing the discrimination ellipses with a
discrimination model derived from the experimental data of
Krauskopf and Gegenfurtner.37-38 This is done in a modified
MacLeod-Boynton color space,*” where the cromaticity co-
ordinates for the equal-energy, perceptual, or adapted white
stimulus were (0,0). The new cromaticity coordinates (', s")
are I’ =1 — Il and s" = 5 — s where [, = 0.66537 and s,
= 0.01608, after calculating the cone excitations LMS of
the white stimulus E (Xz = Yz = Z; = 100) using the
Smith-Pokorny fundamental matrix. These new chromatic-
ity coordinates are rescaled in such a way that the threshold
around the equal energy white along the cardinal directions
is one, that is, /' and s" are divided by, respectively 0.0011
and 0.0012, according to the Krauskopf and Gegenfurtner
data. At constant luminance (constant L + M) the response
of any red-green opponent mechanism, of the form 7= L —
aM, depends linearly on the scaled /' coordinate, and any
blue-yellow mechanism, of the form D = S — B(L+M),
would change linearly with the scaled s’ coordinate. For this
reason, although in the next figures we plot 5'/0.0012 versus
['/0.0011, we use the labels S — (L + M) (short for D = §
— B(L+M)) and L — M (which in the literature is often used
as short for T = L — aM) for the vertical and horizontal axes,
respectively. In this color space, colors in the same vertical
line in the chromatic diagram have constant L and M values,
while colors in the same horizontal line have constant
values for S and (L + M). Accordingly, a vertical line
contains colors that would give constant response in a
red-green mechanism, 7 = L — aM, no matter the value of
a. Analogously, a horizontal line contains colors yielding
constant response in a yellow-blue mechanism of the type
D = S - B(L + M), no matter the value of 3. In particular,
those colors in the D = 0 and T = 0 lines elicit responses
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only from the T or the D mechanism, respectively, and are
therefore the cardinal directions of T and D.

In this color space, the discrimination ellipses are com-
puted as follows. The discrimination ellipse around the
equal-energy white (7 = 0, D = 0) defines the unity
threshold in each cardinal direction. Thus, with this metric
the discrimination ellipse around (7' = 0, D = 0) is a circle
of unity radius. Let us consider a pedestal in the T cardinal
direction. Thresholds along this direction are proportional to
the T response to the pedestal, whereas thresholds along the
orthogonal D direction are constant. Analogously, if the
pedestal is on cardinal direction D, thresholds along the D
direction are proportional to the D response to the pedestal,
whereas they are constant along the orthogonal 7 direction

-100 -50 0 S0
a*
Y =60%

FIG. 6 Responses of the camera to the MacAdam loci
compared with the original stimuli, for different camera ex-
posures. From bottom to top: data for luminance factor Y =
{7, 10, 30, 60, 80}, that is, from darker to lighter colors. From
left to right side: camera exposures N = {8, 5.6, 3.7} with t =
20 ms, that is, from smaller to bigger exposure.
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FIG. 7 Influence of the choice of the color space on the
conclusions about the color gamut of device derived from its
area in a chromaticity diagram. To illustrate the problem, we
have considered a theoretical camera, whose only effect on
the colors of the scene is a reduction in colorimetric purity by
a constant factor (0.8). The responses to the MacAdam loci
at different luminance factor Ys (%) were computed. The
area of the resulting loci was then divided by the area of the
original MacAdam loci. Although all the spaces used are
reasonably uniform (the most uniform one being SVF), the
numerical values and the overall shape of the curves differ
widely. Results in CIELAB (dotted line), SVF (dashed line),
RLAB (dash-dotted line), and LLAB (with a zero luminance
background) (solid line).

100

(Fig. 8). In consequence, discrimination ellipses around
stimuli in one of the cardinal directions are oriented along
that direction. The rate at which the major axis of each
ellipse changes along each cardinal direction was taken
from the experimental data of Krauskopf and Gegenfurtner.
When the pedestal is not on one of the cardinal directions,
the laws governing thresholds are not so simple. Discrimi-
nation ellipses around a pedestal in the first or third quadrant
of the modified MacLeod-Boynton space seem to be ori-
ented along the cardinal directions. The sizes of the major
and minor axis of the ellipses are proportional to the T or D
response elicited by the pedestal. This result can be ex-
plained if we admit the existence of two independent dis-
crimination mechanisms, whose cardinal directions are the
T and D directions of MacLeod-Boynton’s diagram, and
that interact vectorially. However, discrimination ellipses
around pedestals in the second or fourth quadrant seem to be
oriented along the direction defined by the pedestal. This
result seems to imply the existence of a continuum of
mechanisms tuned along equally spaced directions in the
color space. The directions along which are tuned these
hypothetical mechanisms could be deduced approximately
from the experimental data, but the rate of increment of
threshold along each of these directions cannot. Although it
could reasonably be admitted that thresholds again would
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increase with increasing distance to the white stimulus, the
actual law of variation would still to be determined. Because
our aim is to compare the number of ellipses within the
MacAdan limits in the human observer and the camera, and
not to reach the best estimation of this number, the model of
two cardinal directions is enough. To avoid further compli-
cations, we will assume that the variation laws of thresholds
we have described for a constant luminance plane are inde-
pendent from luminance, which is reasonably true*® at least
down to 1 cd/m?.

The next problem to solve is which method to use to pack
the discrimination ellipses. We have followed two different
procedures. With what we call the fangent criterion, we
determine the position of the centers of the ellipses to verify
two conditions: (1) each ellipse is tangent to the other four
surrounding it and (2) the centers of two adjacent ellipses
have either the same T or the same D value. This criterion
does not yield optimal packing, because the gaps between
ellipses increase with the distance to the achromatic

-10 -5 0 5 10
L-M

FIG. 8 Example of tangent (top) and dense (bottom) ar-
rangement of discrimination ellipses in a constant luminance
plane when two independent mechanisms (T and D) deter-
mine threshold. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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FIG.9 Tangent packing of the discrimination ellipses inside
the MacAdam limits for the luminance factor Y = 60% for
the digital camera (top), with exposure configuration N = 4
and t = 20 ms, and for the human eye (bottom). The number
of discernible colors corresponding to each case is 131 and
150, respectively. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

point.#>>% The second strategy, that we call dense packing,
consists in placing the centers of the ellipses on the centers
of the tiles of an hexagonal mosaic covering optimally the
space to which we have applied a nonlinear transform
[x*f(x), y*f(y)]. The functions f{x) and f(y) have been found
empirically, and verify that the overlap between ellipses is
small. In this way, we come nearer to optimum ellipse
packing (Fig. 8). The results obtained for the human eye and
our camera for Y = 60% and the tangent criterion are shown
as an example in Figure 9. In Figure 10 we show the results
derived from the dense packing criterion.

The two packing criteria produce basically the same
results, as can be seen in Figure 11, where we have plotted
the number of distinguishable colors versus the luminance
factor, both for the human eye and our camera. In the range
of luminance factors explored, which goes as low as 5%,
both curves associated to our digital camera have the same
behavior relative to the human eye: as expected, the number
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of distinguishable colors for the camera is lower than for of
the human eye. Obviously, we would expect that the num-
ber of distinguishable colors for the standard observer (and
also the camera) would decrease as the luminance factor
approaches to zero (ideal black). With the discrimination
model used, the number of ellipses would increase indefi-
nitely as the luminance factor decreases. Let us remember,
however, that our model did not include the influence of the
adapting luminance on discrimination thresholds. There-
fore, the model should not be used for low luminances and
we must admit some uncertainty about the luminance factor
below which the number of discriminable colors decreases.

Figure 12 also shows some interesting features. Here we
show the change in the number of colors than can be
distinguished by the camera (with several exposure config-
urations) relative to the standard colorimetric observer, as a
function of lightness. In the middle range of L* values, the
relative reduction factor is approximately constant, particu-

60 ]
40/ ]
20}
e
g S s
—r UV —
20+ ]
-40}
-60;
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40/ ]
20}
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40}
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FIG. 10 Dense packing of the discrimination ellipses inside
the MacAdam limits for the luminance factor Y = 60% for
the digital camera (top), with exposure configuration N = 4
and t = 20 ms, and for the human eye (bottom). The number
of discernible colors corresponding to each case is 128 and
143, respectively. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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FIG. 11 Number of discernible colors according to the

luminance factor and ellipses packing method (dense, solid
symbol; tangent, hollow symbol) of the discrimination el-
lipses in the digital camera (triangle) and the human eye
(circle). The camera exposure is N = 4 and t = 20 ms.

larly for N = 4 and 5.6, with a slightly depression or
absolute minimum around L* = 80 (Y = 60%). That is, with
this exposure value, the camera distinguishes a lesser num-
ber of very dark than of very light colors and a relatively
larger number of colors with intermediate lightness (Y be-
tween 40 and 70, or L* between 69.5 and 87.0). Then, this
suggests that the linear range of the digital camera is similar
for these two N values when the overall illumination level of
the scene is kept constant. When the camera is overexposed
(i.e. N = 3.7), the relative decrement of distinguishable
colors is higher, but the trends in the curve are similar to
those obtained for N = 4 and 5.6. The same thing happens
when the camera is underexposed (i.e. N = 8), but partic-
ularly the relative decrement of distinguishable colors is
higher for dark than for very light colors. Therefore, as we
advanced above, it is better to overexpose than to underex-
pose. Both behaviors happen because the dynamic range of
the digital camera is shorter than that of the human eye: the
number of distinguishable dark and light colors decreases
compared with the human eye because the camera response
near the regions where, respectively, noise and saturation
impair performance. Nevertheless, both behaviors are not
symmetrical, above all in the relative decrement of the dark
colors.

CONCLUSIONS

The knowledge of the color gamut of an input device is
important in Color Imaging but its determination is com-
plex, because these color devices verify the univariance
principle but do not fulfill the Luther condition. Moreover,
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optoelectronic performance is not completely ideal for the
basic assumptions of colorimetry to hold. We have pre-
sented in this work some methods to reach an acceptable
solution of this problem, which can be applied to any digital
camera Or scanner.

The first procedure we have developed is based on the
determination of the color triangle of these color devices
from the fundamental primary spectra related to the “camera
alone” gamut. Although this algorithm is simple, it is very
useful because we use theoretical sensors (Ives-Abney-Yule
and MacAdam) as reference. In this way, we can determine
the effect of the scaling of the spectral sensitivities and its
spectral overlap on the shape of the color triangle.

The second procedure is based on the simulated capture
and encoding of the optimal or MacAdam colors under
equal-energy illuminant and its comparison relative to the
chromatic encoding by the human eye (CIE-1931 XYZ).
We have shown that, in its raw performance and using the
optimal exposure configurations (N = 4 or 5.6, t = 20 ms),
our digital camera has smaller MacAdam loci than the
human eye. If the camera exposure varies from this optimal
exposure value, either by overexposure (N < 4) or by
underexposure (N > 5.6), the color gamut is different,
above all in the darker colors, respectively. Therefore, this
algorithm can be useful to compare the color gamut areas of
digital cameras and scanners. With scanners, this analysis is
limited because it is not possible to change at hardware level
the manufacturer camera exposure (or the f-number N or the
exposure time 7). However, this approach is basically dif-
ferent to the Morovi¢ and Morovi¢’s work,?8 although both

100
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FIG. 12 Relative decrement of the discernible colors versus
lightness with several exposure configurations (solid line,
N = 4; dashed line, N = 8; dotted line, N = 3.7; dash-dot-dot
line, N = 5.6). The plotted symbols correspond to camera
exposure N = 4 and t = 20 ms (solid symbols, dense
packing; hollow symbols, tangent packing). The plotted lines
correspond to the fourth-order polynomial fitting curves for
each data group combining the dense and tangent packing
data.
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methods can give similar results using the same input device
and its color model, because they try to solve the problem of
the color gamut of an input device calculating the “camera
alone” gamut taking into account the device metamerism.
On other hand, we try to solve this problem from the
“camera plus transform” gamut approach taking into ac-
count the human optimal colors. Thus, one can choose one
or other method depending on the algorithmic complexity
and computational time to reach the solution, but always in
both methods an approximate solution. Therefore, we think
that the correct approach solving this problem should be for
a near future to calculate the optimal or MacAdam colors
associated to the input device and compare this color gamut
with those of the human eye in CIE (human) color spaces.

Supplementary to this second approach to define the
problem of the color gamut of input devices, the number of
discernible colors by our digital camera and human eye has
been estimated and compared. To do this we assume that
our input device has the same color metric as the human
eye, although this implies nothing about device metamer-
ism. Thresholds have been computed with the chromatic
discrimination model of Krauskopf and Gegenfurtner, in a
modified MacLeod-Boynton chromatic diagram, using two
packing methods, tangent and dense, reaching similar re-
sults with both cases. The central point of our analysis, in
relation with the nonideal optoelectronic and colorimetric
performance of the analyzed input device, is that depending
on the camera exposure there is a lightness range where the
relative decrement of the distinguishable colors by the cam-
era relative to the human eye is approximately constant.
Under optimal exposure conditions (N = 4 or 5.6 and r = 20
ms for £ = 1000 X 1), our digital camera distinguishes
considerably fewer very dark colors than very light ones,
but relatively much more colors with middle lightness (Y
between 40 and 70, or L* between 69.5 and 87.0). There-
fore, as before, this last procedure can also be used to
compare the color reproduction quality of digital cameras
and scanners.

ACKNOWLEDGMENTS

We wish to thank Prof. JL. Monterde Garcia-Pozuelo, mem-
ber of the Department of Geometry and Topology of the
University of Valencia, for valuable advice on packing
algorithms with ellipses. The authors would like to thank the
referees for their advices, helpful comments, and sugges-
tions.

1. Hunt RWG. The Reproduction of Colour, 5th edition. Kingston-upon-
Thames: Fountain Press; 1995.

2. Sharma G, Trussell HJ. Digital color imaging. IEEE Trans Image
Process 1997;7:901-932.

3. Kang HR. Color Technology for Electronic Devices. Bellingham:
SPIE Press; 1997.

4. Green P. Understanding Digital Color, 2nd edition. Pittsburgh: GATF
Press; 1999.

5. Green P, MacDonald LW. Colour Engineering: Achieving Device
Independent Colour. Chichester: Wiley; 2002.

6. MacDonald LW, Luo MR, Colour Image Science: Exploiting Digital
Media. Chichester: Wiley; 2002.

12

20.

21.

22.

238

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

. Wandell, BA, Silverstein DL. Digital color reproduction. In: Shevell

SK, editor. Science of Color, 2nd edition. New York: Elsevier; 2003.
pp 281-316.

. Kipphan H. Handbook of Print Media: Technologies and Production

Methods. Berlin: Springer; 2001.

. Giorgianni EJ, Madden TE. Digital Color Management: Encoding

Solutions. Reading: Addison-Wesley; 1998.

. Adams RM, Weisberg JB. The GATF Practical Guide to Color Man-

agement, 2nd edition. Pittsburgh: GATF Press; 2000.

. International Color Consortium. File Format for Color Profiles (Ver-

sion 4), Peston: International Color Consortium; 2001. Specification
ICC. 1:2001-12. Available at www.color.org.

. Morovi¢ J, Sun PL. How different are colour gamuts in cross-media

colour reproduction? In: MacDonald LW, Luo MR, editors. Colour
Image Science. Chichester: Wiley; 2002. pp 237-258.

. Mahy M. Colour gamut determination. In: Green P, MacDonald LW,

editors. Colour Engineering. Chichester: Wiley; 2002. pp 263-295.

. Joshi AM, Olsen GH. Photodetection. In: Bass M, editor. Handbook of

Optics, Vol. I, 2nd edition. New York: McGraw-Hill; 1995. pp 16.1-
16.21.

. Tredwell TJ. Visible array detectors. In: Bass M, editor. Handbook of

Optics, 2nd edition. New York: McGraw-Hill; 1995. Vol. 1, pp 22.1-
22.38.

. Holst GC. CCD Arrays, Cameras and Displays, 2nd edition. Belling-

ham: SPIE Press; 1998.

. Luther R. Aus dem gebiel der farbreizmetrik. Z Tech Phys 1927;8:

540-558.

. Horn BKP. Exact reproduction of colored images. Comput Vis Graph

Image Process 1984;26:135-167.

. Brainard DH. Colorimetry. In: Bass M, editor. Handbook of Optics,

2nd edition. New York: McGraw-Hill; 1995. Vol. 1, pp 26.1-26.54.
Finlayson GD, Drew MS. Constrained least-squares regression in
colour spaces. J Electron Imaging 1997;6:484—493.

Vrhel MIJ, Trussell HJ. Color device calibration: A mathematical
formulation. IEEE Trans Image Process 1999;8:1796-1806.

Pearson ML, Yule AC. Transformation of color mixture functions
without negative Portions. J Color Appearance 1973;2:30-35.
Kotera H. Generation of virtual spectral color target and application to
testing input devices. J Imaging Sci Technol 2001;45:373-383.
Rommey AK, Indow T. Munsell reflectance spectra represented in
three-dimensional euclidean space. Color Res Appl 2003;28:182-196.
MacAdam DL. Maximum visual efficiency of colored materials. In:
MacAdam DL, editor. Selected Papers on Colorimetry. Bellingham:
SPIE Press; 1993.pp 244-250.

Wyszecki G, Stiles WS. Color Science: Concepts and Methods, Quan-
titative Data and Formulae, 2nd edition. New York: Wiley; 1982; pp
179-183.

Perales E, Mora T, Viqueira V, de Fez D, Gilabert E, Martinez-Verdd
F. A new algorithm for calculating the MacAdam limits for any
luminance factor, hue angle and illuminant. In: Tenth Congress of the
International Colour Association, Granada, 2005. pp 737-740.
Morovi¢ J, Morovi¢ P. Determining colour gamuts of digital cameras
and scanners. Color Res Appl 2003;28:59-68.

Berns RS. Billmeyer and Saltzman’s Principles of Color Technology,
3rd edition. New York: Wiley; 2000; p 62, 143.

Pointer MR, Attridge GG. The number of discernible colours. Color
Res Appl 1998;23:52-54.

Kuehni, RG. Color Space and Its Divisions: Color Order from Antig-
uity to the Present. New York: Wiley; 2003. p 202.

MacAdam DL, Visual sensitivities to color differences in daylight. J
Opt Soc Am 1942;32:247-274.

Brown WRIJ, MacAdam DL. Visual sensitivities to combined chroma-
ticity and luminance differences. J Opt Soc Am 1949;39:808-834.
Wyszecki G, Fielder GH. New color-matching ellipses. J Opt Soc Am
1971;61:1135-1152.

Romero J, Garcia JA, Jiménez del Barco L, Hita E. Evaluation of
color-discrimination ellipsoids in two color spaces. J] Opt Soc Am A
1993;10:827-837.

COLOR research and application



36.

37.

38.

39.

40.

41.

42.

Carreio F, Zoido JM. The influence of luminance on color-difference
thresholds. Color Res Appl 2001;26:362-368.

Krauskopf J, Gegenfurtner KR. Color discrimination and adaptation.
Vis Res 1992;32:2165-2175.

Krauskopf J. Higher order color mechanisms. In: Gegenfurtner KR,
Sharpe LT, editors. Color Vision: From Genes to Perception. Cam-
bridge: Cambridge University Press; 1999. p 310.
Photography—Electronic Still Picture Cameras—Methods for Mea-
suring Opto-Electronic Conversion Functions (OECFs), ISO 14524,
Geneva: ISO; 1999. Available at www.iso.ch.

Graphic Technology and Photography—Colour Characterization of
Digital Still Cameras (DSCs), ISO 17321:2002, Geneva: 1SO; 2002.
Available at www.iso.ch.

Balasubramanian R. Device characterization. In: Sharma G, editor.
Digital Color Imaging Handbook. Boca Raton: CRC Press; 2003.
Chapter 5.

Martinez-Verdi F, Pujol J, Capilla P. Characterization of a digital
camera as an absolute tristimulus colorimeter. J Imaging Sci Technol
2003;47:279-295.

Volume 31, Number 5, October 2006

43.

44.

45.

46.

47.

48.

49.

50.

Martinez-Verdu F, Pujol J, Capilla P. Calculation of the color match-
ing functions of digital cameras from their complete spectral sensitiv-
ities. J Imaging Sci Technol 2002;46:15-25.

Cohen JB. Color and color mixture: Scalar and vector fundamentals.
Color Res Appl 1988;13:5-39.

Jacobson RE, Attridge GG, Ray SF, Axford NR. The Manual of
Photography. Photographic and digital imaging, 9th edition. Oxford:
Focal Press; 2000.

Stroebel L, Compton J, Current I, Zakia R. Basic Photographic Ma-
terials and Processes, 2nd edition. Boston: Focal Press; 2000.
MacLeod DI, Boynton RM. Chromaticity diagram showing cone ex-
citation by stimuli of equal luminance. J Opt Soc Am 1979;69:1183—
1186.

Brown WRIJ. The influence of luminance level on visual sensitivity to
color differences. J Opt Soc Am 1951;41:684—688.

Berns RS. Billmeyer and Saltzman’s Principles of Color Technology,
3rd edition. New York: Wiley; 2000. pp 115-121.

Luo MR, Cui G, Rigg B. The development of the CIE 2000 colour-
difference formula: CIEDE2000. Color Res Appl 2001;26:340-350.

13



