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Abstract

Le Jan and Watanabe showed that a non-degenerate stochastic flow
{ξt : t ≥ 0} on a manifold M determines a connection on M . This
connection is characterized here and shown to be the Levi-Civita con-
nection for gradient systems. This both explains why such systems have
useful properties and allows us to extend these properties to more gen-
eral systems. Topics described here include: moment estimates for Tξt,
a Weitzenböck formula for the generator of the semigroup on p-forms
induced by the flow, a Bismut type formula for d log pt in terms of an
arbitrary metric connection, and a generalized Bochner vanishing theo-
rem.

1 Introduction and Notations

A. Consider a Stratonovich stochastic differential equation

dxt = X(xt) ◦ dBt + A(xt)dt (1)

on an n-dimensional C∞ manifold M , e.g. M = Rn. Here A is a C∞ vector
field on M , so A(x) lies in the tangent space TxM to M at x for each x ∈ M ,
while X(x) ∈ L(Rm;TxM), the space of linear maps of Rm to TxM , for x ∈ M ,
and is C∞ in x. The noise B· is a Brownian motion on Rm defined on a
probability space {Ω,F , P}.

For each e ∈ Rm let Xe be the vector field given by Xe(x) = X(x)(e).
Recall that for each given x0 ∈ M equation (1) has a maximal solution {ξt(x0) :
0 ≤ t < ζ(x0)}, defined up to an explosion time ζ(x0), and unique up to
equivalence. The solutions form a Markov process on M . Let {P 0

t : t ≥ 0}
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be the associated (sub)-Markovian semigroup, and let A be the infinitesimal
generator. In this article we shall assume that (1) is non-degenerate, i.e. X(x) :
Rm → TxM is surjective for each x, or equivalently that A is elliptic. Then a
Riemannian metric is induced on M with inner product <,>x on TxM given
by < X(x)e1, X(x)e2 >x=< e1, e2 >Rm provided that e1, e2 are orthogonal to
N(x), the kernel of X(x) in Rm. The generator has the form

A(f)(x) =
1
2
∆0f(x) +

〈
1
2

m∑
1

∇Xei(Xei(x)) + A(x), grad f(x)

〉
x

, (2)

where e1, . . . , em is an orthonormal basis for Rm. Here ∇ denotes covariant
differentiation with respect to the Levi-Civita connection, so ∇Xei is a linear
map of tangent vectors to tangent vectors, ∇Xei(v) ≡ ∇vXei , and ∆0 is the
Laplace-Beltrami operator on functions: ∆0f = trace ∇(gradf).

B. Our motivating examples are the gradient Brownian systems. Here we have
an immersion: g : M → Rm, e.g. the inclusion of the space of Sn in Rn+1 (with
m = n + 1), and X(x) : Rm → TxM is the orthogonal projection using Txg to
identify TxM with a subspace of Rm. The Riemannian inner product <,>x is
just that which makes Txg an isometry. Set Y (x) = Txg : TxM → Rm. Let Z
be a vector field then Y (x)Z(x) ∈ Rm for each x, giving Y (·)Z(·) : M → Rm,
with differential d(Y (·)Z(·)) : TxM → Rm, x ∈ M . It is a fundamental result
that if we project this differential to TxM we obtain the Levi-Civita covariant
derivative of Z in the direction of v, i.e.

∇Z(v) = X(x) [d(Y (·)Z(·))x(v)] , v ∈ TxM, (3)

e.g. see [KN69a].

Consider the special case Z(x) = Xe(x) some e ∈ Rm. Then by (3), for
any v ∈ TxM ,

∇Xe(v) = X(x) [d (Y (·)X(·)e) (v)] .

But Y (x)X(x)e = e − PN (x) = PT (x) say, where PN (x) : Rm → Rm is the
orthogonal projection onto the normal space N(x) at x, and so, e.g. by differ-
entiating the identity PT (x)e = PT (x)PT (x)e, we see that if PT (x)e = e, i.e.
if e ∈ Image Y (x), then ∇Xe(v) = 0 all v ∈ TxM (for another proof see §2A
below). Alternatively this can be seen from the fact that ∇X ·(·) is essentially
the shape operator of the immersion. See e.g. [Elw82]. In particular from this
we can conclude that the term

∑m
1 ∇Xei(x)(Xei(x)) in (2) vanishes so that

Af(x) = 1
2∆0f(x) + 〈A(x), grad f(x)〉x. These identities are behind the fact
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that gradient systems have particularly nice properties from the point of view
of their solution flows, see e.g. [Kus88], [EL94], [ER96], [EY93], [Li94a], and
from the point of view of their Itô maps [AE95]. Here we shall show that many
of these constructions and properties are also true for general non-degenerate
systems provided that we use connections with torsion. Our starting point is:

Theorem 1.1 For an arbitrary non-degenerate SDE (1) there is a unique
affine connection ∇̃ on M such that(

∇̃Xe
)

(v) = 0, all v ∈ TxM, e ∈ [kerX(x)]⊥. (4)

It is given by ∇̃Z(v) = ∇̆Z(v) for

∇̆Z(v) = X(x)d[Y (·)Z(·)](v), v ∈ TxM (5)

for Y (x) : TxM → Rm the adjoint of X(x), and is metric.
This is in fact the connection defined by LeJan and Watanabe [LW82].

C. The scheme of the paper is as follows: Theorem 1 is proved in §2 together
with criteria for ∇̆ to be the Levi-Civita connection and to be torsion-skew
symmetric; in §3 we extend results of [EY93] on the conditional expectation
of the derivative flow Tx0ξt given {ξt(x0) : 0 ≤ t ≤ T}, i.e. filtering out the
extraneous noise; in §4 the ’spectral positivity’ estimates of [Li94a], see also
[ER96], for moment exponents are extended to S.D.E. with ∇̆ torsion skew
symmetric; and in §5 we give an expression for the generator of the semigroup
P q

t on q-forms given by P q
t (φ) = Eξ∗t (φ) of the form P q

t = −(δ̄d + dδ̄) and a
Weitzenböck formula. An expression for the curvature is derived in Appendix
I.

Remark:
For simplicity in this expository article we mainly treat equations like (1)

with finite dimensional noise whereas stochastic flows correspond canonically
to Gaussian measures on the space of vector fields of M , [Bax84], [Kun90],
[LW82], which may have support on an infinite dimensional space. Essentially
this means that Rm should be replaced by a Hilbert space of vector fields with
X(x) the evaluation map (the major role is then taken by the reproducing
kernel of the Gaussian measure) [Bax76]. See Appendix II. More generally
Gaussian measures on Hilbert spaces of sections of a vector bundle determines
a connection on that bundle (and all metric connections arise this way, see
§2H below). Finally we also restrict ourselves here to non-degenerate SDE,
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but a degenerate SDE induces in the same way a differential operator, a ’semi-
connection’. These aspects and other more detailed results will be treated in
a forthcoming article. See also [ELLb].

We are grateful to Profs. N. Ikeda and Z. Ma for helpful comments. For
somewhat related work see [AA96].

2 Existence and basic properties

Proof of Theorem 1.1
Let ∇̆ be defined by (5). It is easy to see that it has the linearity and

derivation properties, which ensures that it is a connection. Let ∇̃ be any
affine connection on M , Z a vector field, and let v ∈ Tx0M . Then

Z(x) = X(x)Y (x)Z(x), x ∈ M, (6)

whence ∇̃Z(v) = ∇̃X(v)Y (x0)Z(x0)+∇̆Z(v) using (5). Setting ẽ = Y (x0)Z(x0)
we see

∇̃Z(v) = ∇̃X ẽ(v) + ∇̆Z(v). (7)

Taking ∇̃ = ∇̆, since Z(x0) is arbitrary we see ∇̆ satisfies the defining criterion
(4), giving existence. Assuming ∇̃ satisfies (4) we see ∇̃Z(v) = ∇̆Z(v), giving
uniqueness. To check that ∇̆ is metric it is enough to show that

d (< Z(·), Z(·) >) (v) = 2 < ∇̆Z(v), Z(x0) >x0 .

In fact

< ∇̆Z(v), Z(x0) >x0 = 〈d[Y (·)Z(·)](v), Y (x0)Z(x0)〉Rm

=
1
2
d 〈Y (·)Z(·), Y (·)Z(·)〉Rm (v)

=
1
2
d 〈Z(·), Z(·)〉· (v).

//

Remark:
Note that Y (x)Z(x) =

∑m
1 < Xei(x), Z(x) > ei and by (6) and the

equation which follows:

∇̆Z(v) =
∑m

1 Xeid < Xei , Z > (v)
= ∇̃Z(v)− ∇̃vXei < Xei(x0), Z(x0) >

(8)

4



for any affine connection ∇̃ on M .

B. In a local chart about x0 ∈ M we can take ∇̃ in the above proof to be the
usual derivative so that (7) becomes

DZ(x0)(v) = DX ẽ(x0)(v) + ∇̆Z(v)

where ẽ = Y (x0)Z(x0), (using local representations for Z, X ẽ, and v). But for
Γ̆ the Christoffel symbol of ∇̆ in our chart

∇̆Z(v) = DZ(x0)(v) + Γ̆(x0)(v, Z(x0))

giving
Γ̆(x0)(v, w) = −DX(x0)(v) (Y (x0)w) , v, w ∈ Rn. (9)

Equivalently

Γ̆i
jk = −

m∑
r=1

n∑
l=1

∂X(x0)r,i

∂xj
X(x0)r,`gk`, (10)

where
{
X(x)r,i

}
, {1 ≤ i ≤ n}, {1 ≤ r ≤ m} is the matrix representing

X(x) : Rm → R, i.e. X(x)r,i =< X(er), fi > for {ei} and {fi} orthonormal
bases for Rm and TxM respectively, and {gk`} the metric tensor. This shows
that ∇̆ is the LeJan-Watanabe connection defined in [LW82].

C. Equivalent definitions and properties.
Lemma 2.1 For any orthonormal base {ei} of Rm and v ∈ Tx0M we have

(i) ∇̆Z(v) =
d

dt

m∑
1

Xei(x0) 〈Z(σ(t)), Xei(σ(t))〉σ(t)

∣∣∣
t=0

(11)

where σ : [−δ, δ] → M is a C1 curve with σ(0) = x0 and σ̇(0) = v.

(ii) ∇̆Z(v) =
m∑
1

[Xi, V ](x0) < Xi(x0), Z(x0) > +[V,Z](x0)

where V is any smooth vector field with V (x0) = v.
Proof. Since ∇̆ is metric the right hand side of (11) is just

m∑
1

Xei(x0)
{〈

∇̆Z(v), Xei(x0)
〉

x0

+
〈
Z(x0), ∇̆Xei(v)

〉
x0

}
.
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This is independent of the choice of basis. Choose {ei} so that e1 . . . , en span
[kerX(x0)]⊥, i.e. are in the image of Y (x0). Then Xei(x0) = 0 if i > n while
∇̆Xei(v) = 0 if 1 ≤ i ≤ n by definition of ∇̆. Since Xei(x0), 1 ≤ i ≤ n, form
an orthonormal base for Tx0M the result (i) follows.

For (ii) write

[V,Z] = [V,
m∑
1

< Xi, Z > Xi ]

and expand. The use of (8) yields (ii).
//

By a similar proof to that above, we obtain a necessary and sufficient
condition for a connection to be a metric connection: for simplicity write
Xi ≡ Xei ,
Lemma 2.2 A connection ∇̃ is a metric connection if and only if

m∑
1

Xei < Z, ∇̃vXei > +
m∑
1

∇̃vXei < Z, Xei >= 0, (12)

for all vector fields Z.
Proof. Take v ∈ TxM . If ∇̃ is metric then

d < Z(·), Z(·) > (v) =
m∑
1

d
(
< Z, Xi >< Z,Xi >

)
(v)

= 2 < ∇̃Z(v), Z > +2
m∑
1

< Z, ∇̃Xi(v) >< Z,Xi >

giving (12) by polarization. Now suppose (12) holds for a connection ∇̃, then

m∑
1

< Z, Xi >< Z, ∇̃Xi(v) >= 0. (13)

On the other hand, by (6)

∇̃Z(v) = ∇̃vY (x)Z(x) + X(x)d[Y (x)Z(x)](v)

=
m∑
1

∇̃vXi < Z, Xi > +
m∑
1

Xid < Z(−), Xi(−) > (v)
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giving

m∑
1

Xid < Z(−), Xi(−) > (v) = ∇̃Z(v)−
m∑
1

∇̃vXi < Z,Xi > .

consequently

d < Z(·), Z(·) > (v) =
m∑
1

d < Z(−), Xi(−) >2 (v)

= 2
m∑
1

< Z(x), Xi(x) > d < Z(−), Xi(−) > (v)

= 2 < Z, ∇̃Z(v) > −2
m∑
1

< Z, ∇̃vXi >< Z,Xi >

= 2 < Z, ∇̃vZ >,

using (13), and so ∇̃ is a metric connection. //

D. Recall that for any connection ∇̃ on M the torsion is a bilinear map from
tangent vectors to tangent vectors, T̃ : TM ⊕ TM → TM , given by

T̃ (U(x0), V (x0)) = ∇̃V (U(x0))− ∇̃U(V (x0))− [U, V ](x0) (14)

for vector fields U , V .
Let v1, v2 ∈ Tx0M . There are the vector fields Zv1 , Zv2 given by

Zvi = X(x)Y (x0)vi, i = 1, 2.

By definition
∇̆Zvi(v) = 0, any v ∈ Tx0M.

Thus
T̆ (v1, v2) = − [Zv1 , Zv2 ] (x0). (15)

Alternatively using the Levi-Civita connection in (5)

∇̆Z(v) = X(x0)∇Y (v)Z(x0) +∇Z(v) (16)

whence by (14)

T̆ (v1, v2) = X(x0) (∇Y (v1)(v2)−∇Y (v2)(v1))
+∇Zv2(v1)−∇Zv1(v2)− [Zv1 , Zv2 ].
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Thus by (14) and the standard formula for exterior differentiation:

T̆ (v1, v2) = X(x0)dY (v1, v2), v1, v2 ∈ Tx0M. (17)

E. For any connection ∇̃ on M , there is an adjoint connection ∇̃′ on M defined
by

∇̃′Z(v) = ∇̃Z(v)− T̃ (v, Z(x0))
= ∇̃V (Z(x0))− [Z, V ](x0).

Here V is a vector field such that V (x0) = v. In terms of Christoffel symbols
([Dri92]) this is equivalent to Γ̃′

i

jk = Γ̃i
kj . If ∇̂ denotes adjoint of ∇̆ we see

that ∇̂Z(v) = [Zv, Z](x0).
A connection ∇̃ on a Riemannian manifold M is torsion skew symmetric,

see [Dri92], if u → T̃ (u, v) is skew symmetric as a map Tx0M → Tx0M for all
v ∈ Tx0M , all x0 ∈ M . We have:

Lemma 2.3 A metric connection ∇̃ on a Riemannian manifold M is tor-
sion skew symmetric if and only if its adjoint connection is metric. If so
the geodesics for ∇̃ are those of the Levi-Civita connection and the (usual)
Laplace-Beltrami operator acting on a function f , ∆0f , is given by the trace
of ∇̃(gradf).
Proof. See [Dri92] and also [KN69b] (the last part also comes from the next
proposition).

Proposition 2.4 The connection ∇̆ is

1. the Levi-Civita connection if and only if ∇Zv vanishes at x0 for all v ∈
Tx0M .

2. torsion skew symmetric if and only if ∇Zv|Tx0M : Tx0M → Tx0M is
skew symmetric, all v ∈ Tx0M , or equivalently ∇vZw + ∇wZv = 0 for
any w, v ∈ TxM , or ∇̆UV + ∇̆V U = ∇UV +∇V U for all vector fields U
and V .

Also it is Levi-Civita if and only if X(x)dY (u, v) = 0 for all u, v ∈ TxM , all
x ∈ M .
Proof. The first part comes from the defining property of ∇̆ and the third
part comes from (17). For the second part, first observe by the definition of
torsion

T̆ (u, v) = ∇̆vZu −∇vZu −
[
∇̆uZv −∇uZv

]
.
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and so by (7):

T̆ (u, v) =
m∑
1

Xi < v,∇Xi(u) > −
m∑
1

Xi < u,∇Xi(v) > . (18)

We have:

< T̆ (u, v), w >

=
m∑
1

< Xi, w >< v,∇Xi(u) > −
m∑
1

< Xi, w >< u,∇Xi(v) > .

However the second term is anti-symmetric in u and w by (12). Thus

< T̆ (u, v), w > + < T̆ (w, v), u >

=
m∑
1

< Xi, w >< v,∇Xi(u) > +
m∑
1

< Xi, u >< v,∇Xi(w) >

= 〈∇uZw, v〉+ 〈∇wZu, v〉
= − < w,∇Zv(u) > − < u,∇Zv(w) >,

since d < Zw, Zv > (u) = 0 and d < Zu, Zv > (w) = 0.
Also if U and V are vector fields, by (8)

∇̆V U =
m∑
1

Xi < U,∇V Xi > +∇V U

and so
∇̆V U + ∇̆UV = ∇V U +∇UV + A

for

A =
m∑
1

Xi < U,∇V Xi > +
m∑
1

Xi < V,∇UXi > .

But T̆ is skew symmetric if and only if A ≡ 0. //

Corollary 2.5 If ∇̆ is torsion skew symmetric then

T̆ (u, v) = 2
m∑

i=1

Xi < u,∇Xi(v) >

9



and the Levi -Civita connection can be expressed in terms of the LeJan-Watanabe
connection by:

∇Z(v) = ∇̆Z(v)− 1
2
T̆ (Z(x0), v). (19)

In particular ∇Xi(Xi) = 0 for each i.

Remark: Most of the results for gradient Brownian systems carry over to the
case when ∇̆ is torsion free and, with some adaptation, to the torsion skew
symmetric case or even more generally.

F. Let f : M → R be C2. Then Itô’s formula gives

f(ξt(x)) = f(x0) +
∫ t

0

df (X(ξs(x0))dBs)

+
1
2

∫ t

0

trace∇̆(gradf)(ξs(x0))ds

+
∫ t

0

A(ξs(x0))ds, 0 ≤ t < ζ(x0)

since the Stratonovich term
∑m

1 ∇̆Xei(Xei(x)) vanishes. Thus as shown in
[LW82], the generator is given by

A0(f) =
1
2
trace∇̆(gradf)+ < A(·), gradf > . (20)

Note also that the vanishing of the Stratonovich term means that (1) can be
considered as an Itô equation w.r.t. ∇̆, e.g. see [Elw82], and the solutions
{ξt(x0) : t ≥ 0} will be ∇̆-martingales if A ≡ 0, [Eme89]. Furthermore by
Corollary 2.5 if ∇̆ is torsion skew symmetric (1) will be an Itô equation for the
Levi-Civita connection and the solution will be a Brownian motion with drift
A.

G. Example: Invariant SDE on Lie groups: c.f. [Dri92]. Let M be a Lie group
and suppose (1) is a left invariant SDE, with A = 0 for simplicity. For g ∈ G
let Rg : G → G and Lg : G → G be right and left translations by g. Then

LgX(x)(e) = X(gx)e, g, x ∈ G, e ∈ Rm.

We can suppose m = n since KerX(x) is independent of x. The metric induced
on G will be left invariant. We can treat X(id) : Rm → TidG as an identifi-
cation of Rm with the Lie algebra G = TidG of G, and then Y becomes the
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Maurer-Cartan form. For v ∈ Tx0G the vector field Zv = X(·)Y (x0)(v) of §1D
is just the left-invariant vector field through v. If ∇̃ is the flat left invariant
connection on G then ∇̃Zv ≡ 0, and so by definition ∇̆ = ∇̃. The torsion

T̆ (v1, v2) = − [Zv1 , Zv2 ] (x0)
= X(x)dY (v1, v2)

by (15) and (17).
Recall that for α ∈ G,

ad(α) : G → G

is given by
ad(α)β = [α, β].

Taking x0 = id ∈ G we see T̆ (v1, v2) = −ad(v1)(v2) and so ∇̆ is torsion skew
symmetric if and only if ad(v1) is skew symmetric for all v1 ∈ G. From Lemma
7.2 of [Mil76] we know this holds if and only if the metric on G is bi-invariant
(which is only possible if G is isomorphic to the product of compact group and
a commutative group). Indeed from the proof of Lemma 7.2 and 7.1 of [Mil76]
we see that the adjoint connection is the flat right invariant connection, which
is a metric connection for the right invariant metric

< v1, v2 >′
x0
≡
〈
TR−1

x0
(v1), TR−1

x0
(v2)

〉
id

.

H. There is a natural correspondence between S.D.E.’s (1) with A ≡ 0 and
smooth maps of M into the Grassmanian of n-planes in Rm classifying TM .
The connection ∇̆ is the pull back of the universal connection on the Stiefel
bundle over M , described in [NR61]. From there it follows that every metric
connection on M can be obtained as ∇̆ for some S.D.E. (1), see [ELLa].

For a diffusion on M , with n = dim M > 1, with generator 1
2∆ + LZ , for

some smooth vector field Z, Ikeda and Watanabe showed how to construct a
metric connection ∇̃ on M such that the diffusion process (from any point x0

of M), is a ∇̃-martingale (it is the stochastic development of an n-dimensional
Brownian motion). See [IW89]. This ∇̃ is not uniquely determined. By the
remark above ∇̃ = ∇̆ for some S.D.E. dxt = X(xt) ◦ dBt, again not uniquely
determined. For this S.D.E. the generator satisfies

∑m
i=1 LXiLXi = 1

2∆ + LZ .
As T. Lyons has pointed out to us such a construction is not in general possible
when dim M = 1.
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I. We summarize here some of the notation being used:

N(x) = KerX(x),
Y (x) = X(x)∗ : TxM → Rm,

Zv = X(·)Y (x0)v, v ∈ Tx0M

∇, Levi-Civita connection, R, Ric, its curvature and Ricci
curvature;

∇̃, any connection, R̃, R̃ic, its curvature and Ricci

curvature, R̃ic
#

(v) =
∑m

1 R̃ic(v,Xi(x))Xi(x),

and T̃ its torsion tensor
∇̆, LeJan-Watanabe connection, R̆, R̆ic, its curvature and

Ricci curvature, and T̆ its torsion tensor
∇̂, the adjoint connection of ∇̆, R̂, R̂ic, its curvature and,

Ricci curvature, and T̂ its torsion tensor.

3 The Derivative flow

A. Let N = ∪x∈MN(x). It forms a Riemannian vector bundle over M ,
(the normal bundle in the gradient case). Take any metric connection on
it, with parallel translation along a curve {σ(s) : 0 ≤ s ≤ t} denoted by
˜//s : N(σ(0)) → N(σ(s)). Let ˘//t be parallel translation for ∇̆. Using Y this

induces a parallel translation operator

//t = Y (σ(t)) ˘//tX(σ(0)) : N(σ(0))⊥ → N(σ(t))⊥,

which combines with /̃/t on N to give a parallel translation in M ×Rm, again
written /̃/t, as an isometry

/̃/t : Rm → Rm

depending on σ. Following [EY93], set

B̆t :=
∫ t

0

/̆/
−1

s X(xs)dBs (21)

and

βt :=
∫ t

0

˜//s

−1
K(xs)dBs (22)
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where K(x) : Rm → Rm is the orthogonal projection onto N(x) and xs =
ξs(x0). Finally set

B̃t = Y (x0)B̆t =
∫ t

0

˜//s

−1
Y (xs)X(xs)dBs,

and B̄t = B̃t + βt.
For any process {ys : 0 ≤ s < ζ} let Fy· = σ{ys : 0 ≤ s < ζ}, but write

Fξ·(x0) as Fx0 . The following decomposition theorem is a direct analogue of
the corresponding results in [EY93] with the same proof:

Theorem 3.1 1. F B̆· = Fx0 ,

2. {B̄t : 0 ≤ t < ζ} is a Brownian motion on Rm with Bt =
∫ t

0
˜//sdB̄s.

In particular {βt : 0 ≤ t < ζ}, when conditioned on {B̆t : 0 ≤ t < ζ} is a
Brownian motion killed at time ζ (so when ζ = ∞, β· and B̆· are independent
Brownian motions).

B. The derivative flow Tξt on TM is given by the covariant equation

D̃vt = ∇̃X(vt) ◦ dBt + ∇̃A(vt)dt− T̃ (vt, X(xt) ◦ dBt + A(xt)dt) (23)

for vt = Tξt(v0), along the paths of {ξt : 0 ≤ t < ζ}, since for a C1 map
σ : (−δ, δ)× (−δ, δ) → M

D̃

∂s

∂

∂t
σ(s, t) =

D̃

∂t

∂

∂s
σ(s, t) + T̃ (

∂σ

∂s
,
∂σ

∂t
)

(e.g. see [Mil63]). Such covariant equations are described in [Elw82].
Taking ∇̃ to be the adjoint connection ∇̂, since

∇̂UV = ∇̆UV − T̆ (U, V ), (24)

we see
D̂vt = ∇̆X(vt) ◦ dBt + ∇̆A(vt)dt. (25)

To rewrite this as an Itô equation (which means apply ˆ//t

−1
to both sides and

consider the resulting Itô equation in Tx0M), the correction term is

1
2

m∑
1

[
∇̆Xi

(
∇̆Xi(vt)

)
dt + ∇̂Xi

(
∇̆Xi

)
(vt) dt

]
=

1
2

m∑
1

[
∇̆Xi

(
∇̆Xi(vt)

)
dt + ∇̆2Xi

(
Xi, vt

)
dt + T̆

(
∇̆Xi(vt), Xi

)]
13



=
1
2

m∑
i=1

[
∇̆
(
∇̆Xi

(
Xi(·)

))
(vt) + ∇̆2Xi

(
Xi, vt

)
− ∇̆2Xi

(
vt, X

i
)]

dt

=
1
2

m∑
i=1

[
∇̆
(
∇̆Xi

(
Xi(·)

))
(vt)dt− 1

2
R̆ic

#
(vt)dt

]

as in [Elw88], [EY93], where R̆ic
#

(v) =
∑m

1 R̆
(
v,Xi(x)

)
Xi(x) so that <

R̆ic
#

(v1), v2 >x= R̆ic(v1, v2) for v1, v2 ∈ TxM . The first term vanishes as we
saw in §1E from the definition of ∇̆. Thus

D̂vt = ∇̆X(vt)dBt −
1
2
R̆ic

#
(vt)dt + ∇̆A(vt)dt. (26)

C. We can now extend one of the main results of [EY93]. If {ut : 0 ≤ t <
ζ} is any process along {ξt : 0 ≤ t < ζ} by E{ut χt<ζ(x0)|Fx0} we mean
˜//tE{ ˜//t

−1
ut χt<ζ(x0)|Fx0}. As pointed out by M. Emery this is independent

of the connection ∇̃ used to define ˜//t.
Theorem 3.2 Assume |vt| is integrable for each t ≥ 0. Set
vx0

t = E{Tξt(v0)χt<ζ(x0)|Fx0}. Then {vx0
t } satisfies the covariant equation

D̂vx0
t = −1

2
R̆ic

#
(vx0

t )dt + ∇̆A(vx0
t )dt. (27)

along {xt} on t < ζ.
Proof. First assume non-explosion. Using Theorem 3.1 and rewriting (26) as

D̂vt = ∇̆X(vt) ˜//tdB̄t −
1
2
R̆ic

#
(vt)dt + ∇̆A(vt)dt

= ∇̆X(vt) ˜//tdβt −
1
2
R̆ic

#
(vt)dt + ∇̆A(vt)dt.

The last step used the fact that

∇̆X(vt)
(

˜//tdB̃t

)
= ∇̆X(vt) (Y (xt)X(xt)dBt) = 0,

by definition of ∇̆. But by theorem 3.1

E
{∫ t

0

∇̆X(vs) ˜//sdβs | Fx0

}
= 0

14



and the result follows by the linearity and Fx0-measurability of Ric#
xt

and
∇̆Axt

. If ζ(x0) < ∞, let τD be the first exit time of ξ(x0) from a domain D
of M with D compact. The above argument show (27) holds on t < τD. Now
choose Di with τDi → ζ. //

Remark 2. The integrability of |vt| is needed in order for vx0
t to be defined.

It holds if M is compact or with conditions on the growth of |∇X|, |∇2X|, and
|∇A| [Li94b], and is close to implying non-explosion of {xt : t ≥ 0}, [Li94a].

As an illustrative application there is the following extension of Bochner’s
vanishing theorem (however see Proposition 4.3 below):
Corollary 3.3 Suppose M is compact. If M admits a vector field A and a
metric connection ∇̃ whose adjoint connection preserves a metric < −,− >′

such that 〈
R̃ic

#
(v), v)

〉′
> 2

〈
∇̃A(v), v

〉′
all v ∈ TM, v 6= 0,

then the cohomology group H1(M ; R) vanishes.
Proof. Let φ be a closed smooth 1-form and σ a singular 1-cycle in M . By
DeRham’s theorem it is enough to show

∫
σ

φ = 0. According to §2 H we
can find an SDE (1) with ∇̃ = ∇̆. Since M is compact (1) has a smooth
solution flow {ξt : t ≥ 0} of diffeomorphisms of M . Then, by the continuity in
(t, x) ∈ R(≥ 0)×M of ξ,∫

σ

φdx =
∫

ξtσ

φdx =
∫

σ

ξ∗t φdx

Treating the case when σ : [a, b] → M this gives∫
σ

φdx = E
∫ b

a

φξt(σ(θ)) (Tξt(σ̇(θ))) dθ

= E
∫ b

a

φξt(σ(θ))E
{

Tξt(σ̇(θ))|Fσ(θ)
t

}
dθ

=
∫ b

a

Eφξt(σ(θ))W̆
A
t (σ̇(θ))dθ

where {
D̂
∂tW̆

A
t (v0) = − 1

2 R̆ic
#

(W̆A
t (v0)) + ∇̆A(W̆A

t (v0))
W̆A

0 (v0) = v0 ∈ TM.

15



by Theorem 3.2. Thus

|
∫

σ

φ| ≤ sup
x
|φx|′

∫ b

a

|W̆A
t (σ̇(θ)|′dθ.

However, for v0 ∈ Tx0M ,

d

dt
|W̆A

t (v0)|′,2 = 2

〈
D̂

∂t
W̆A

t (v0), W̆A
t (v0)

〉′

.

So our assumptions imply that W̆A
t (v0) decays exponentially as t → ∞, uni-

formly in x0 ∈ M , v ∈ Tx0M with |v0|′ = 1. Thus, letting t → ∞, we see∫
σ

φ = 0. //

Next we give a version of Bismut’s formula in this context, c.f. [Dri92].
Corollary 3.4 Let ∇̃ be a metric connection for a compact Riemannian man-
ifold M . Let pt(x, y) be the fundamental solution to

∂ut

∂t
=

1
2
trace∇̃(grad ut) + LAut.

Then

d log pt(·, y)(v0) =
1
t
E
{∫ t

0

〈
W̃A

s (v0), ˜//sdB̃s

〉
x0

|xt = y

}
, v ∈ Tx0M,

where {xs} is a diffusion on M with generator 1
2 trace∇̃grad - + LA, and B̃

the martingale part of the stochastic anti-development of {xs : 0 ≤ s ≤ t}
using ∇̃, a Brownian motion on Tx0M , while ˜//s is parallel translation, and
vs = W̃A

s (v0) satisfies

D̃′

∂s
vs = −1

2
˜Ric #(vs) + ∇̃A(vs)

both along the paths of {xs : 0 ≤ s < t} where D̃′ refers to covariant differen-
tiation using the adjoint connection ∇̃′.
Proof. As described in §2H we can choose an SDE (1) with ∇̆ = ∇̃ and then
the generator is as required by (20). If ξ· is the flow then by [Elw92],

d log pt(·, y)(v0) =
1
t
E
{∫ t

0

〈Tξs(v0), X(xs)dBs〉| ξt(x0) = y

}
16



and the result follows from the theorem and the fact that B̆t given by dB̆t =
˘//t

−1
X(xt)dBt is the martingale part of the stochastic anti-development (de-

fined by the corresponding Stratonovich equation). //

Example 3. For the flat left invariant connection on a Lie group G the SDE
is as described in §2 G. Then Wt and Tx0ξt are equal (there is no extraneous
noise) and they are just right translation by ξt(x0) while ˜//t is left translation
by ξt(x0).

4 Moment Exponents

Let S(t, x)(e) be the flow for the vector field Xe, and set δS(t, v)(e) = TS(t, x)(e)(v).
Let <,>′ be a Riemannian metric on M , not necessarily the induced one from
the SDE. Denote by | − |′ the corresponding norm. Let ∇̃′ be a connection
compatible with <,>′. Then

d

dt
|δS(t, v)e|′ p = p |δS(t, v)e|′ p−2

〈
δS(t, v)e,

D̃′

dt
δS(t, v)e

〉′

. (28)

Also

D̃′

∂t
δS(t, v)(e) = ∇̃′Xe (δS(t, v)e) + T̃ ′ (Xe(S(t, x)e), δS(t, x)e)

= ∇̃Xe (δS(t, v)e) ,

as for (23) if ∇̃ is the adjoint of ∇̃′. Then

d

dt
|δS(t, v)e|′ p = p |δS(t, v)e|′ p−2

〈
δS(t, v)e, ∇̃Xe (δS(t, v)e)

〉′
. (29)

At t = 0,
d

dt
|δS(t, v)e|′ p = p|v|′ p−2 < v, ∇̃Xe(v) >′ . (30)

Furthermore

d2

dt2 |δS(t, v)|′ p
∣∣
t=0

= p(p− 2)|v|′ p−4 < v, ∇̃Xe(v) >′ 2 +p|v|′ p−2

[
|∇̃Xe(v)|′ 2 +

〈
T̃
(
∇̃vXe, Xe

)
, v
〉′]

+p|v|′ p−2
〈
v, ∇̃2Xe(Xe, v)

〉′
+ p|v|′ p−2

〈
v, ∇̃Xe(∇̃Xe(v))

〉′
.

17



Set

Hp(x)(v, v) = 2 < ∇̃A(v), v >′ +
∑m

1

〈
∇̃2Xi(Xi, v), v

〉′
+
∑m

1

〈
∇̃Xi(∇̃Xi(v)), v

〉′
+
∑m

1

∣∣∣∇̃Xi(v)
∣∣∣′ 2

+
∑m

1

[〈
T̃
(
∇̃vXi, Xi

)
, v
〉′

+ (p− 2) 1
|v|′ 2

〈
∇̃Xi(v), v

〉′ 2]
.

In terms of the Ricci curvature,

Hp(x)(v, v) = 2 < ∇̃
(
A +

∑m
1 ∇̃XiXi

)
(v), v >′ − < R̃ic

#
(v), v >′

+
∑m

1

[〈
T̃
(
∇̃vXi, Xi

)
, v
〉′

+
∣∣∣∇̃Xi(v)

∣∣∣′ 2 + (p− 2) 1
|v|′ 2

〈
∇̃Xi(v), v

〉′ 2]
.

From (30) and the equation after it we see that < v, ∇̃Xi(v) >′ and
Hp(x)(v, v) are independent of the choice of such connections for fixed <
−,− >′. In particular when <,>′ is the metric <,> induced by the S.D.E.
the Hp defined here agrees with the one used in [Li94a].

Taking ∇̃ = ∇̆, we see that if ∇̂ is compatible with < −,− >′,

Hp(x)(v, v) = 2 < ∇̆A(v), v >′ − < R̆ic
#

(v), v >′

+
m∑
1

∣∣∣∇̆Xi(v)
∣∣∣′ 2 + (p− 2)

m∑
1

1
|v|′ 2

〈
∇̆Xi(v), v

〉′ 2
.

By Itô’s formula (c.f. [Elw88]), we have
Lemma 4.1 Let ∇̃ be a connection whose dual connection is metric for some
metric < −,− >′. Then for v0 ∈ Tx0M ,

|Tξt(v0)|′ p = |v0|′ p +
∫ t

0

p|Tξs(v0)|′ p−2 < Tξs(v0), ∇̃X(Tξs(v0))dBs >′

+
p

2

∫ t

0

|Tξs(v0)|′ p−2Hp(ξs(x0))(Tξs(v0), T ξs(v0))ds,

Set

hp(x) = sup
|v|=1

Hp(x)(v, v),

hp(x) = inf
|v|=1

Hp(x)(v, v).

We can now extend the result proved in [Li94a] for gradient Brownian
systems:

18



Proposition 4.2 Suppose ∇̂ is metric for some Riemannian metric < −,− >′.
Then

Ee
1
2

R t
0 hp(ξs(x0))ds ≤ E|Tx0ξt|′ p ≤ nEe

1
2

R t
0 hp(ξs(x0))ds. (31)

Proof. Let PN (x) : Rm → N(x) be the orthogonal projection. Define

Ax : TxM ⊕N(x) → TxM, x ∈ M

by
A(u, e) = ∇̆X(e)(u).

Then A is the shape operator when (1) is a gradient system. For e ∈ Rm we
have

A(u, PN (x)(e)) = ∇̆X(e)(u).

Note that we can write

|Tξt(v0)|′ p = |v0|′ pε(Mp
t )eap

t

for ε(Mp
t ) the exponential martingale corresponding to Mp

t where

Mp
t =

m∑
1

∫ t

0

p
< ∇̆Xi(Tξs(v0)), T ξs(v0) >′

ξs(x0)

|Tξs(v0)|′ 2
dBi

s

and for

ap
t =

p

2

∫ t

0

Hp(ξs(x0))(Tξs(v0), T ξs(v0))
|Tξs(v0)|′ 2

ds.

Now we are in the situation of [Li94a] and the same proof, by the Girsanov
transformation as used there, leads to (31). //

It is worth mentioning that since (30) and the equation after it is invariant
under choice of connections we see that if ∇̆ is torsion skew symmetric then

R̆icx(v, v) = Ricx(v, v)−
m∑
1

|∇Xi(v)|2 +
m∑
1

|∇̆Xi(v)|2

= Ricx(v, v)−
n∑
1

|∇Xi(v)|2

because for such connections
∑m

i=1∇Xi(Xi) = 0 by Corollary 2.5 and∇Xi(v) =
∇̆Xi(v) for i > n since Xi(x0) = 0. In particular
Proposition 4.3 The Ricci curvature of any torsion skew symmetric con-
nection ∇̃ is majorized by that of the corresponding Levi-Civita connection.
Equality holds everywhere if and only if ∇̃ is Levi-Civita.
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5 The generator on differential q-forms

Let φ be a differential q-form and ξ∗t φ its pull back by our flow ξt(−). This
gives rise to a semigroup on bounded q-forms [Elw92]:

Ptφ = Eξ∗t φ,

i.e. if v = (v1, . . . , vq) is a q-vector in
⊕q

TxM , Ptφ(v) = Eφ(Tξt(v1), . . . , T ξt(vq)).
Its infinitesimal generator Aq is given by:

Aqφ =

(
1
2

m∑
1

LXiLXi + LA

)
φ,

where LA denotes Lie differentiation in the direction of A.

Let iAφ be the interior product of φ by A, which is a q-1 form defined by:
iAφ(v1, . . . , vq−1) = φ(A, v1, . . . , vq−1). Set

δ̄φ = −
m∑
1

iXi∇̂φ(Xi). (32)

Then it is easy to see that δ̄φ = −
∑m

1 iXiLXiφ and

m∑
1

LXiLXiφ = −δ̄dφ− dδ̄φ

for d the exterior differentiation.

There is also a Weitzenböck formula:

Aqφ =
1
2
trace∇̂2φ− 1

2
R̆q(φ) + LA(φ) (33)

where R̆q is the zero order operator on q-forms obtained algebraically (e.g. via
annihilation and creation operators as in [CFKS87] or see [Elw88]) from the
curvature tensor R̆ of ∇̆ just as the usual Weitzenböck terms are obtained from
the curvature of the Levi-Civita connection. In particular for a 1-form φ,

R̆1(φ)(v) = φ(R̆ic
#

(v)), v ∈ TxM.

The case of 1-form is straightforward, or can be seen from Theorem 3.2. For
details of the general case and further discussions see [ELLa].
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Appendix I The Curvature Tensor

To calculate the curvature tensor R̆ we will use the expression in Lemma 2.1
(ii) for ∇̆. Thus if U, V,W are vector fields

∇̆U ∇̆V W = [U, ∇̆V W ] +
m∑
1

[Xi, U ] < ∇̆V W,Xi >

= [U, [V,W ]] +
m∑
1

[U, [Xi, V ]] < W, Xi >

+
m∑
1

[Xi, V ] d < W, Xi > (U(·)) +
m∑
1

[Xi, U ] < ∇̆V W,Xi > .

Applying Jacobi’s identity twice we see

R̆(U, V )W : = ∇̆U ∇̆V W − ∇̆V ∇̆UW − ∇̆[U,V ]W

=
m∑
1

{
[Xi, V ] d < W, Xi > (U(·))

− [Xi, U ] d < W, Xi > (V (·))
}

+
m∑
1

{
[Xi, U ] < ∇̆V W,Xi > −[Xi, V ] < ∇̆UW,Xi >

}
.

Now take U = Zu, V = Zv, W = Zw for u, v, w ∈ Tx0M . Then

R̆(u, v)w =
m∑
1

{
[Xi, Zv] < ∇̆uXi, w > −[Xi, Zu] < ∇̆vXi, w >

}
=

m∑
1

{
−∇vXi < ∇̆uXi, w > +∇̆uXi < ∇̆vXi, w >

}
since the torsion terms vanishes when summed in conjection with the terms
which involve ∇̆Xi. Thus
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Proposition A1 If u, v, w ∈ Tx0M then

R̆(u, v)(w) =
m∑

i=1

∇̆uXi < ∇̆vXi, w > −
m∑

i=1

∇̆vXi < ∇̆uXi, w > .

Corollary A2

< R̆(u, v)w, z >= −
m∑
1

< ∇̆uXi ∧ ∇̆vXi, w ∧ z >Λ2TxM .

Remark: For A the ’shape operator’ defined in §4, the proposition gives

R̆(u, v)w = trace {A(u,−) 〈A(v,−), w〉 −A(v,−) 〈A(u,−), w〉}

which reduces in the gradient case to Gauss’s equation for the curvature of a
submanifold in Rm (e.g. p. 23 [KN69a]).

Appendix II

There is a direct correspondence between stochastic flows and Gaussian mea-
sures γ on the space Γ(TM) of vector fields on M , [Bax84], [LW82], [Kun90].
The latter is determined by its reproducing kernel Hilbert space (Cameron-
Martin space), a Hilbert space H of vector fields on M , together with its mean
γ̄, a vector field on M [Bax76]. For the flow corresponding to our S.D.E. (1),
the measure γ is the image measure of the standard Gaussian measure on Rm

by the map e 7→ Xe from Rm to vector fields on M shifted by γ̄, in this
case the vector field A. The space H is just {Xe : e ∈ Rm} with quotient inner
product. However in general H may be infinite dimensional e.g. for isotropic
stochastic flows [LeJ85].

Nevertheless given such H and vector fields γ̄, if γ0 is the corresponding
centered Gaussian measure and {Wt : t ≥ 0} the Wiener process on the space
of vector fields with W1 distributed as γ0, the corresponding stochastic flow is
obtained as the solution flow of

dxt = ρxt
◦ dWt + γ̄(xt)dt

where ρx : Γ(TM) → TxM is the evaluation map (assuming sufficient regu-
larity), see [Elw92]. This reduces the situation to that discussed above with
Rm replaced by the possibly infinite dimensional Hilbert space H. Assume
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non-degeneracy, so ρx is surjective for each x, and let M have the induced
Riemannian metric. It is worth noting that the adjoint Y (x) : TxM → Rm of
X(x) is now replaced by the adjoint of ρx : H → TxM which is essentially the
reproducing kernel of H, i.e. the covariance of γ:

ρ∗x(v) = k(x, ·)(v) ∈ H

where
< k(x, ·)v, h >H=< h(x), v >x, x ∈ M,v ∈ TxM. (34)

In particular
Zv = k(x0, ·)v, v ∈ Tx0M.

and for a vector field Z on M our basic definition (5) becomes

∇̆Z(v) = d[k(·, x0)Z(·)](v) (35)

treating y 7→ k(y, x0)Z(y) as a map from M to Tx0M . The defining condition
(4) for ∇̆ can be written ∇̆(k(x0, ·)v)w = 0 all v, w ∈ Tx0M all x0 ∈ M .

In terms of expectation with respect to our basic Gaussian measure γ0,
treating vector fields W as a random field, equation (11) for ∇̆Z becomes

∇̆Z(v) =
d

dt
EW (x0) < Z(σ(t),W (σ(t)) >σ(t)

∣∣
t=0

(36)

k(x, ·)v = E < W (x), v >x W (·)

and in terms of conditional expectations

k(x, y)W (x) = E {W (y)|W (x)} ∈ TyM

k(x, ·)v = E {W |W (x) = v} ,

giving

∇̆Z(v) =
d

dt
E {W (x0) |W (σ(t)) = Z(σ(t))}|t=0 .
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