

Supporting Information

© Wiley-VCH 2007

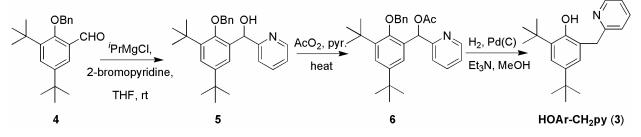
69451 Weinheim, Germany

Concerted Proton-Electron Transfer in Pyridyl-Phenols: The Importance of the Hydrogen Bond

Todd F. Markle and James M. Mayer*

University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195, mayer@chem.washington.edu

Table of Contents:


I. General experimental	2
II. Synthesis and physical data	2
III. X-ray crystal structure of HOAr-CH ₂ py	4
IV. Infrared spectroscopy	6
V. Electrochemistry	7
VI. Kinetics	8
A. Room temperature	8
B. Temperature dependence and isotope effects	13
VII. Calculations	16

I. General Experimental

Unless otherwise noted, reagents were purchased from Aldrich, solvents from Fischer, and deuterated solvents from Cambridge. MeCN was purchased from Burdick and Jackson (low-water brand) and stored in an argon-pressurized stainless steel drum plumbed directly into a glovebox. Tetrabutylammonium hexafluorophosphate was recrystallized three times from EtOH and dried *in vacuo* for two days at 110 °C prior to use. Isopropylmagnesium chloride (2.0 M in THF) was purchased from Acros. The iron-bipyridyl and phenanthroline complexes were synthesized according to literature procedures¹ and were used as PF_6^- salts. Triarylaminium salts were prepared from the corresponding amines as described previously.²

¹H NMR and ¹³C NMR spectra were recorded on Bruker AV300, AV301, DRX499 or AV500 spectrometers at ambient temperatures; chemical shifts are reported relative to TMS in ppm by referencing to the residual solvent signals. Column chromatography used silica gel as the stationary phase. Infrared spectra were obtained on a Bruker Vector 33 or a Perkin Elmer 1720 spectrometer. Mass spectrometry was performed on a Bruker Esquire Ion Trap Mass Spectrometer using electrospray ionization.

II. Synthesis of HOAr-CH₂py.

Compound **4** was prepared from commercially available 3,5-di-*tert*-butyl-2-hydroxybenzaldehyde as previously described.³

<u>(2-Benzyloxy-3,5-di-tert-butyl-phenyl)-pyridin-2-yl-methanol</u> (5). Following literature precedent, isopropyl magnesium chloride (3.15 mL of 2.0 M THF solution, 6.3 mmol) was added dropwise to a round bottom flask containing a solution of 2-bromopyridine (0.60 mL, 6.3 mmol) in 10 mL anhydrous THF and the mixture was stirred at room temperature under N₂.⁴ After 2 h, 4 (2.04 g, 6.3 mmol) was added as a solution in dry THF (10 mL) and the reaction mixture was stirred at room temperature under N₂. After 16 h, the reaction was quenched with water (10 mL) and diethyl ether was added to yield a biphasic mixture. The aqueous layer was washed with Et₂O (3 × 20 mL). The combined organic extracts were washed with 10% HCl_(aq) followed by brine and dried over MgSO₄ then the solvent was removed under vacuum. Column chromatography (10% EtOAc/hexanes) gave 5 (0.51 g, 50% yield) as a pale yellow oil. ¹H NMR

⁽¹⁾ DeSimone, R. E.; Drago, R. S. J. Am. Chem. Soc. 1970, 92, 2343-2352.

⁽²⁾ Rhile, I. J.; Markle, T. F.; Nagao, H.; DiPasquale, A. G.; Lam, O. P.; Lockwood, M. A.; Rotter, K.; Mayer, J. M. J. Am. Chem. Soc. 2006, 128, 6075-6088, and references therein.

⁽³⁾ Ryu, H.-K.; Kim, W.-Y.; Nahm, K. S.; Hahn, Y. B.; Lee, Y. S.; Lee, C. Synthetic Metals. **2002**, *128*, 21-25.

⁽⁴⁾ Trécourt, F.; Breton, G.; Bonnet, V.; Mongin, F.; Marsais, F.; Quèguiner, G. *Tetrahedron*. **2000**, *56*, 1349-1360.

δ: 8.54 (d, 1H, J = 5.0), 7.61 – 7.53 (m, 3H), 7.42 – 7.33(m, 4H), 7.18 (m, 1H), 7.09 (d, J = 7.9 Hz, 1H), 7.01 (d, J = 2.3 Hz, 1H), 6.22 (s, 1H, *CH*), 5.59 (s, br, 1H), 5.32 (d, J = 12.1 Hz, 1H), 5.13 (d, J = 12.1 Hz, 1H), 1.48 (s, 9 H), 1.21 (s, 9 H). $^{13}C{^{1}H}$ NMR (CDCl₃): δ 161.6, 154.4, 147.2, 146.6, 142.3, 138.2, 137.1, 136.4, 128.7, 127.8, 127.1, 124.45, 124.44, 122.4, 122.1 (aryl carbons); 77.4 (*C*H); 69.0 (*C*H₂); 35.8, 34.8 (*C*Me₃); 31.6 (^{*t*}Bu *C*H₃'s) [the two ^{*t*}Bu methyl resonances are overlapping]. MS (ESI, *m/z*) 404 (M+H), 386 (M-OH).

<u>Acetic acid (2-benzyloxy-3,5-di-*tert*-butyl-phenyl)-pyridin-2-yl-methyl ester (6).</u> The benzyl alcohol **5** (1.0 g, 2.5 mmol) was dissolved in 5 mL of pyridine and acetic anhydride (1:1) and heated to 100 °C under N₂ for 20 min. The volatiles were removed under vacuum yielding an amber oil which solidified on the benchtop to give a beige solid which was used without further purification. An analytical sample was purified on a silica column using 9:1 hexanes/EtOAc. ¹H-NMR (CDCl₃) δ : 8.58 (m, 1 H), 7.62 – 7.58 (m, 3H), 7.42 – 7.12 (m, 8H), 5.18(d, *J* = 11.8 Hz, 1H), 5.11 (d, *J* = 11.8 Hz, 1H), 2.20 (s, 3H), 1.44 (s, 9H), 1.28 (s, 9H). ¹³C {¹H} NMR (CDCl₃): δ 170.4 [OC(O)Me], 159.3, 154.0, 149.3, 146.5, 142.6, 137.9, 139.9, 132.3, 128.7, 127.9, 127.5, 125.4, 124.8, 122.6, 121.8 (aryl carbons); 76.9 (CH); 72.8 (CH₂); 35.8, 34.9 (CMe₃); 31.7 (^tBu CH₃'s); 21.5 [OC(O)CH₃] [the two ^tBu methyl resonances are overlapping]. MS (ESI, *m/z*) 446 (M+H), 386 (M-CH₃CO₂).

2,4-Di-*tert*-butyl-6-pyridin-2-ylmethyl-phenol (**HOAr-CH₂py**). A solution of **6** (1.1 g, 2.5 mmol) in EtOH (30 mL) containing Et₃N (0.73 mL, 5.0 mmol) was agitated on a Parr apparatus under H₂ (50 psi) in the presence of Pd(C) (10 mol%). After 50 h the reaction mixture was filtered through Celite and the volatiles were removed on the rotovap. Column chromatography (5% EtOAc in hexanes) yielded **HOAr-CH₂py** (0.67 g, 2.3 mmol, 92% yield) as a white solid. X-ray quality crystals were obtained by slow evaporation of a hexane solution. ¹H NMR (CD₃CN): δ 11.15 (s, 1 H, OH), 8.45 (m, 1 H, 6'-H), 7.80-7.75 (m, 1 H, 6'-H), 7.44 (d, *J* = 7.8 Hz, 1H, 3'-H), 7.25 (m, 1H, 5'-H), 7.18 (d, *J* = 2.6 Hz, 1H, Ar-H), 7.14 (d, *J* = 2.6 Hz, 1H, Ar-H), 4.06 (s, 2H, CH₂), 1.41 (s, 9H, C(CH₃)₃), 1.26 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (CD₃CN): δ 163.0, 154.0, 149.1, 143.0, 140.1, 138.9, 128.4, 126.4, 124.1, 123.9, 123.5 (aryl carbons); 42.3 (CH₂); 36.1, 35.2, (CMe₃); 32.3, 30.5 (¹Bu CH₃'s). MS (ESI, *m/z*) 298 (M+H).

III. V. X-ray Crystal Structures of HOAr-CH₂py.

General procedure. A colorless block 0.15 x 0.10 x 0.10 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using omega scans. Crystal-to-detector distance was 60 mm and exposure time was 20 seconds per frame using a scan width of 0.3° . Data collection was 100.0% complete to 25.00° in θ . A total of 14832 reflections were collected covering the indices, $-13 \le h \le 12$, $-21 \le k \le 22$, $-14 \le l \le 14$. 4078 reflections were found to be symmetry independent, with an R_{int} of 0.0236. Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P2₁/n (No. 14). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2004) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms, with the exception of the hydroxyl hydrogen H1, were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97. The hydroxyl hydrogen H1 was located from the difference map and its location refined isotropically. Collection and refinement data are given in Table S1. Data for the hydrogen bonds in the molecules are listed in Table S2. An ORTEP is shown in Figure S1.

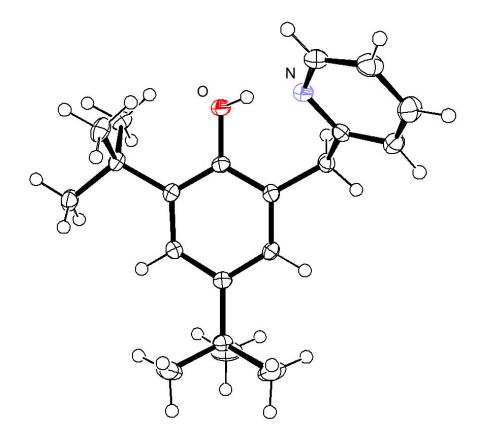


Figure S1. ORTEP depicting the crystallographic structure of HOAr-CH₂py.

Table SI. Collection and refinement data.		
Empirical formula	C20 H27 N O	
Formula weight	297.43	
Temperature (K)	100(2)	
Wavelength (Å)	0.71073	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Unit cell dimensions (Å,°)	a = 10.1110(7)	$\alpha = 90$
	b = 16.7180(12)	$\beta = 109.3150(10)$
	c = 11.0080(8)	$\gamma = 90$
Volume	$1756.0(2) \text{ Å}^3$	
Z	4	
Density (calculated)	1.125 Mg/m^3	
Absorption coefficient	0.068 mm^{-1}	
F(000)	648	
Crystal size (mm)	$0.15 \times 0.10 \times 0.10$	
Crystal color/habit	colorless block	
Theta range for data collection (°)	2.31 to 28.21	
Index ranges	$-13 \le h \le 12, -21 \le k \le 22$	2, $-14 \le l \le 14$
Reflections collected	14832	
Independent reflections	$4078 [R_{int} = 0.0236]$	
Completeness to theta = 25.00°	100.0 %	
Absorption correction	Semi-empirical from equ	ivalents
Max. and min. transmission	0.9932 and 0.9899	2
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	4078 / 0 / 208	
Goodness-of-fit on F ²	1.021	
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0463, wR_2 = 0.123$	
R indices (all data)	$R_1 = 0.0526, wR_2 = 0.128$	39
Largest diff. peak and hole (e $Å^{-3}$)	0.428 and -0.187	

Table S2. Hydrogen bonding parameters for HOAr-CH₂py (distances in Å, angles in °).

<i>d</i> (O-H)	<i>d</i> (H•••N)	$d(O \bullet \bullet \bullet N)$	∠(OHN)
0.923(17)	1.782(17)	2.6914(13)	167.7(15)

IV. Infrared spectroscopy

Vibrational spectra (Figures 1, S2-S4) were collected as solutions (0.18 M) in dry acetonitrile or CCl₄ in a cell with NaCl or ZnSe windows and as a KBr pellet. The identity of the phenolic OH stretching band was confirmed by analysis of the deutero analogues, **DOAr-B**, which were prepared by adding d_4 -methanol to a solution of **HOAr-B** in dry Et₂O followed by removal of solvents *in vacuo*. This process was repeated a total of three times. In the case of **HOAr-CH₂py**, KBr spectra obtained from crystals grown in a similar manner to that which yielded the X-ray structure were indistinguishable from spectra obtained from powder. Broad, structured OH stretching bands are common in hydrogen bonded systems.⁵

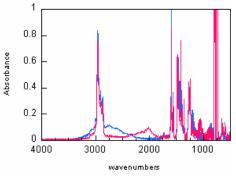


Figure S2. IR spectra of HOAr-py (blue) and DOAr-py (red) in CCl₄.

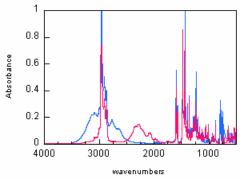


Figure S3. IR spectra of HOAr-CH₂py (blue) and DOAr-CH₂py (red) in CCl₄.

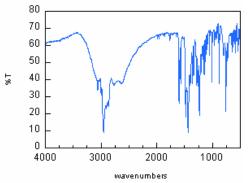
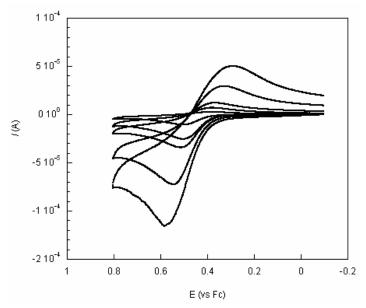



Figure S4. IR spectrum of crystalline HOAr-CH₂py as a KBr pellet.

⁽⁵⁾ Bratos, S; Leicknam, J-Cl; Gallot, G; Ratajczak, H, in *Ultafast Hydrogen Bonding Dynamics and Proton Transfer Processes in the Condensed Phase*, eds Elsaaesser, T; Bakker, H J. Kluwer Academic, Boston, **2002**, pp 5-30.

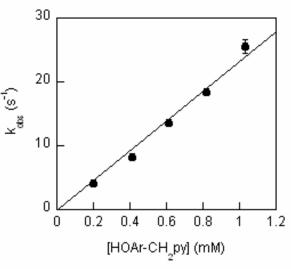
V. Electrochemistry

Cyclic voltammograms (Figure S5) were taken on an E2 Epsilon electrochemical analyzer (Bioanalytical Systems) at ca. 5 mM substrate in anaerobic 0.1 M n Bu₄NPF₆ acetonitrile solution. The electrodes were as follows: working, glassy carbon; auxiliary, platinum wire; and reference, Ag/AgNO₃ (0.01 M) in electrolyte solution. All potentials are reported vs. a Cp₂Fe^{+/0} internal standard. Errors are estimated to be ±0.02V.

Figure S5. Cyclic voltammograms of **HOAr-CH₂py** at v = 12, 25, 50, 100, 200, and 500 mV s⁻¹.

VI. Kinetics.

Kinetics experiments were performed on an OLIS RSM-1000 stopped-flow in anaerobic MeCN. The data were analyzed with SpecFitTM global analysis software.⁶ Kinetics were fit to pseudo-first order, second order, or opposing second order kinetics as appropriate. Kinetics for the reactions utilizing iron(III) oxidants were obtained at 0.1 M ^{*n*}Bu₄NPF₆ as the potentials for these compounds vary with ionic strength due to ion pairing.⁷


A. HOAr-CH₂py + $[Fe(N-N)_3]^{3+}$, and $[NAr_3]^{++}$ at room temperature.

The kinetics for reaction of **HOAr-CH₂py** + $[Fe(3,4,7,8-Me_4phen)_3](PF_6)_3$ were performed under pseudo-first order conditions with 8-40-fold excess of phenol, and fit to firstorder kinetics. The observed rate constants at individual concentrations are reported on Table S3 and plotted in Figure S6. The slope of k_{obs} v. [**HOAr-CH₂py**] is reported as the second-order rate constant.

Table S3. Second-order rate constants for**HOAr-CH2py**+ $[Fe(3,4,7,8-Me_4phen)_3]^{3+}$.

[HOAr-CH ₂ py] ^a	$k_{ m obs}(m s^{-1})$	σ
0.20	4.2	0.03
0.41	8.3	0.07
0.61	13.5	0.17
0.82	18.4	0.37
1.0	25.5	1.09

^{*a*} mM.

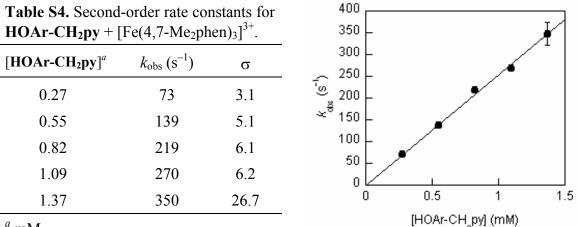


Figure S6. Pseudo first-order rate constants vs. concentration of phenol for **HOAr-** $CH_2py + [Fe(3,4,7,8-Me_4phen)_3]^{3+}$.

(6) Binstead, R. A.; Zuberbühler, A.D.; Jung, B. *Specfit*[™], version 3.0.36 (32-bit Windows); Spectrum Software Associates: Chapel Hill, NC, 2004.

^{(7) (}a) Noel, M.; Vasu, K. I. Cyclic Voltammetry and the Frontiers of Electrochemistry; Aspect: London, 1990; pp. 141-143. (b) Braga, T. G.; Wahl, A. C. J. Phys. Chem. 1985, 89, 5822-5828. (c) Chan, M.-S.; Wahl, A. C. J. Phys. Chem. 1978, 82, 2542-2549.

The kinetics for reaction of **HOAr-CH₂py** + $[Fe(4,7-Me_2phen)_3](PF_6)_3$ were performed under pseudo-first order conditions with 5-30-fold excess of phenol, and fit to first-order kinetics. The observed rate constants at individual concentrations are reported on Tables S4 and plotted in Figure S7. The slope of k_{obs} v. [**HOAr-CH₂py**] is reported as the second-order rate constant.

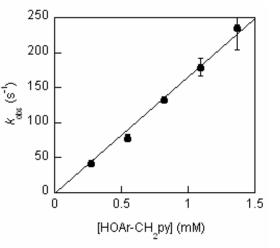
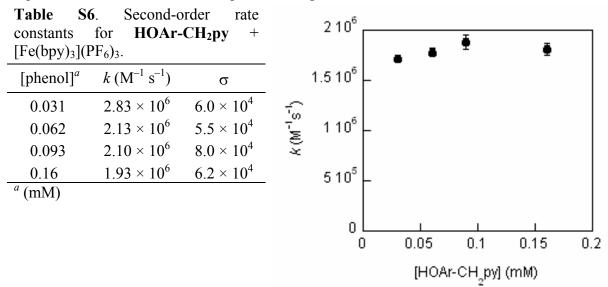

^{*a*} mM.

Figure S7. Pseudo first-order rate constants vs. concentration of phenol for **HOAr-** $CH_2py + [Fe(4,7-Me_2phen)_3]^{3+}$.

The kinetics for reaction of **HOAr-CH₂py** + $[Fe(5,5'-Me_2bpy)_3](PF_6)_3$ were performed under pseudo-first order conditions with 10-50-fold excess of phenol, and fit to first-order kinetics. The observed rate constants at individual concentrations are reported on Table S5 and plotted in Figure S8. The slope of k_{obs} v. [**HOAr-CH₂py**] is reported as the second-order rate constant.


Table S5.	Second-order	rate	constants
for HO	Ar-CH ₂ py	+	[Fe(5,5'-
$Me_2bpy)_3]^3$;+ -		

[HOAr-CH ₂ py] ^a	$k_{\rm obs}({ m s}^{-1})$	σ
0.27	42	3.4
0.55	78	5.5
0.82	133	0.9
1.1	180	12
1.4	240	30

Figure S8. Pseudo first-order rate constants vs. concentration of phenol for $HOAr-CH_2py + [Fe(5,5'-Me_2bpy)_3]^{3+}$.

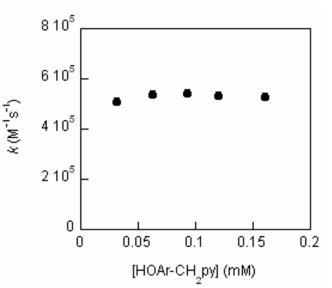
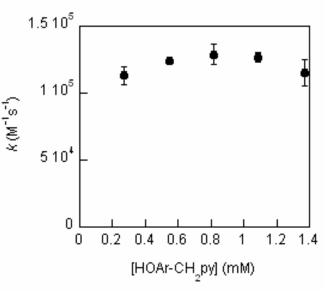

The rate constants for reaction of **HOAr-CH₂py** with $[Fe(bpy)_3](PF_6)_3$, and N(*p*-C₆H₄OMe)(*p*-C₆H₄Br)₂PF₆ were measured with 2-10-fold excess of phenol, and fit to opposing second-order kinetics. The rate constants for the two reactions at individual concentrations are reported in Tables S6 and S7 and plotted in Figures S9 and S10.

Figure S9. Second-order rate constants vs. concentration of phenol for $[Fe(bpy)_3](PF_6)_3$.

TableS7.Second-orderrateconstantsfor $HOAr-CH_2py$ + $N(p-C_6H_4OMe)(p-C_6H_4Br)_2PF_6.$

[phenol] ^a	$k\left(\mathbf{M}^{-1}\;\mathbf{s}^{-1}\right)$	σ
0.031	5.08×10^5	1900
0.062	5.37×10^5	2300
0.093	5.41×10^{5}	9100
0.12	5.33×10^{5}	8300
0.16	5.31×10^{5}	12000
a (mM)		

Figure S10. Second-order rate constants vs. concentration of phenol for $N(p-C_6H_4OMe)(p-C_6H_4Br)_2PF_6$.


The rate constants for reaction of **HOAr-CH₂py** with $N(p-C_6H_4OMe)_3PF_6$, and $N(p-C_6H_4Me)_3PF_6$ were measured with 10-50-fold excess of phenol, and fit to opposing second-order kinetics. The rate constants for the two reactions at individual concentrations are reported in Table S8 and S9 and plotted in Figures S11 and S12.

TableSaconstantsfor $C_6H_4OMe)_3$	or HOAr-CH ₂			1000						
C6114OIvie)3	-			800 -	•		-	-	_	
[phenol] ^a	$k (\mathrm{M}^{-1} \mathrm{s}^{-1})$	σ				-	•	-	•	
0.21	810	18	k (M ⁻¹ s ⁻¹)	600						
0.41	780	14	ĽS	400						
0.62	750	25	~	400 -						
0.83	770	14		200						
1.04	752	6								
a (mM)				οL	1	1	1	1	1	
				0	0.2	0.4	0.6	0.8	1	1.2
			[HOAr-CH ₂ py] (mM)							

TableS9.Second-orderrateconstantsfor $HOAr-CH_2py$ + $N(p-C_6H_4Me)_3PF_6.$

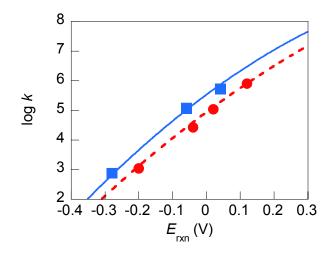

[phenol] ^a	$k (M^{-1} s^{-1})$	σ
0.27	1.13×10^5	6.5×10^{3}
0.55	1.24×10^5	1.1×10^{3}
0.82	1.29×10^5	7.6×10^{3}
1.1	1.27×10^{5}	3.7×10^{3}
1.4	1.15×10^{5}	1.0×10^{4}
a (mM)		

Figure S11. Second-order rate constants vs. concentration of phenol for $N(p-C_6H_4OMe)_3PF_6$.

Figure S12. Second-order rate constants vs. concentration of phenol for $N(p-C_6H_4Me)_3PF_6$.

Bi-molecular rate constants (k) are plotted vs. E_{rxn} (Table 1) for the r.t. reactions of **HOAr-CH₂py** with $[NAr_3]^{+}$ are plotted in Figure S13. Here, $Ar_3 = (p-C_6H_4OMe)_3$, $(p-C_6H_4Me)_3$, and $(p-C_6H_4OMe)(p-C_6H_4Br)_2$. The line to guide the eye is equation 1 with log Z = 9.5 and $\lambda = 21.6$ kcal mol⁻¹. Log k vs. E_{rxn} data for the reactions of **HOAr-C(Ph)_2NH_2** + $[NAr_3]^{+}$ (from reference 2) are included in Figure S13 for comparison. Rate constants for reactions of **HOAr-py** + $[NAr_3]^{+}$ have not been determined, they are apparently too fast to be measured with our stopped-flow apparatus.²

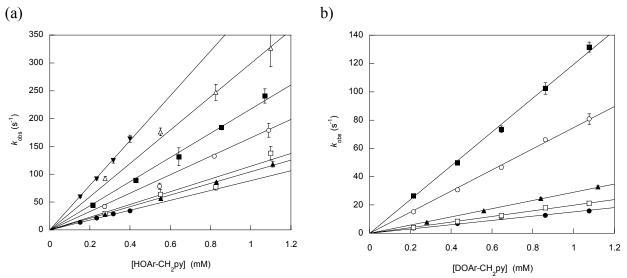


Figure S13. Relation between k and E_{rxn} (V) for the reactions **HOAr-CH₂py** + [NAr₃]^{+•} (\blacksquare , solid line). Rates for **HOAr-C(Ph)₂NH₂** + [NAr₃]^{+•} (\bullet , dashed line) from reference 2 are included for comparison. The curves are the fit to $k = Z e^{-[(\lambda - E_{rxn})^2/4\lambda k_B T]}$ with log($Z/M^{-1}s^{-1}$) = 9.5 and 10.4.

B. Temperature dependence and isotope effect experiments

The temperature dependence kinetics for $HOAr-CH_2py + [Fe(Me_2bpy)_3]^{3+}$ were performed under pseudo-first order conditions with a 6-50-fold excess of phenol at various temperatures. The slope of k_{obs} vs. [HOAr-CH₂py] was taken as the second-order rate constant. The rate constants are listed in Table S10 and plotted in Figure S14a. A summary of the rate constants vs. temperature is on Table S11 and Figure S15.

The isotope effect kinetics for **DOAr-CH₂py** + $[Fe(5,5'-Me_2bpy)_3](PF_6)_3$ were performed with a 10-50-fold excess of phenol in MeCN with 1% CD₃OD, and fit to pseudo-first order kinetics. The slope is taken as the second-order rate constant. Control experiments were performed for this reaction under the same conditions except benchtop CH₃OH (1%) was used in place of d_4 -methanol; the rates of these reactions were found to be within error of those performed without methanol. The rate constants are listed in Tables S10 and S12 and plotted in Figure S14b. A summary of the rate constants vs. temperature is in Tables S11 and S13.

Figure S14. Pseudo-first order rate constants vs. phenol concentration for: [a] **HOAr-CH₂py** + [Fe(Me₂bpy)₃]³⁺. Temperatures in K: 278.2 (\bullet), 282.7 (\Box), 286.2 (\blacktriangle), 297 (O), 308.2 (\blacksquare), 319.7 (\triangle), and 328.7 (\blacktriangledown). [b] **DOAr-CH₂py** + [Fe(Me₂bpy)₃]³⁺. Temperatures in K: 279 (\bullet), 287 (\Box), 297 (\bigstar), 319 (O), and 328 (\blacksquare).

T (°C)	[phenol] (mM)	$k_{\rm obs}({\rm s}^{-1})$	σ	T (°C)	[phenol] (mM)	$k_{\rm obs}({\rm s}^{-1})$	σ
5.0	0.15	13.8	0.44	24.0 ^{<i>a</i>}	0.28	38.1	0.16
	0.23	21.3	0.67		0.56	79.7	0.9
	0.32	29	2.0		0.84	125	2
	0.40	34	1.2		1.12	163	4
6.0 ^{<i>a</i>}	0.22	21.2	0.9	35.0	0.21	44	1.9
	0.43	42.4	1.7		0.43	89.3	0.96
	0.65	73	5		0.64	130	16
	0.86	122	2		0.86	184	4.1
	1.1	99	9		1.1	240	13
9.5	0.28	29	2.6	46.5	0.28	93	3.4
	0.55	64	8.9		0.55	176	6.7
	0.83	77	5.4		0.83	250	15
	1.1	140	12		1.1	330	33
	1.4	160	12		1.4	409	11
13.0	0.28	27.7	0.77	47.0 ^{<i>a</i>}	0.215	64.8	1.2
	0.55	56.3	0.68		0.431	131	7
	0.83	86	1.19		0.646	190	22
	1.1	118	5.16		0.862	260	20
	1.4	144	1.49				
24.0	0.27	42	3.4	55.5	0.151	60	1.7
	0.55	79	5.5		0.234	92	2.0
	0.82	132.5	0.88		0.316	124	4.3
	1.1	180	12		0.399	164	6.3
	1.4	240	30				

Table S10. Pseudo-first order rate constants vs. phenol concentration for $HOAr-CH_2py + [Fe(Me_2bpy)_3]^{3+}$.

^{*a*} These experiments were performed in the presence of 1 % CH₃OH.

Table S11.	Summary of ten	perature dependen	ce data for HOA	Ar-CH ₂ py +	$[Fe(Me_2bpy)_3]^{3+}$.
------------	----------------	-------------------	-----------------	-------------------------	--------------------------

	in the period of		
T (K)	$k ({ m M}^{-1}~{ m s}^{-1})$	T (K)	$k (M^{-1} s^{-1})$
278.2	$(9.2 \pm 0.9) \times 10^4$	297.2 ^{<i>a</i>}	$(1.50 \pm 0.15) \times 10^5$
279.2^{a}	$(1.0 \pm 0.2) \times 10^5$	308.2	$(2.5 \pm 0.3) \times 10^5$
282.7	$(1.12 \pm 0.11) \times 10^5$	319.7	$(3.0 \pm 0.3) \times 10^5$
286.2	$(1.05 \pm 0.11) \times 10^5$	320.2 ^{<i>a</i>}	$(3.1 \pm 0.3) \times 10^5$
297.2	$(1.66 \pm 0.16) \times 10^5$	328.7	$(4.1 \pm 0.5) \times 10^5$

^{*a*} These experiments were performed in the presence of 1 % CH₃OH.

T (°C)	[phenol] (mM)	$k_{\rm obs}({\rm s}^{-1})$	σ	T (°C)	[phenol] (mM)	$k_{\rm obs}({\rm s}^{-1})$	σ
6	0.215	3.4	0.5	46	0.215	15.16	0.80
	0.431	6.8	0.3		0.431	30.74	1.23
	0.646	11.4	1.5		0.646	46.62	1.20
	0.862	12.6	0.7		0.862	66.15	0.81
	1.077	15.7	1.1		1.077	80.82	3.68
14	0.215	3.98	0.06	55	0.215	26.5	0.9
	0.431	8.35	0.13		0.431	49.9	0.8
	0.646	12.46	0.49		0.646	73.4	2.4
	0.862	17.95	0.21		0.862	102.4	4.1
	1.077	21.20	1.29		1.077	131.6	3.5
24	0.280	7.80	0.07				
	0.560	15.88	0.09				
	0.839	24.58	0.79				
	1.119	32.75	0.79				
	1.399	40.57	0.88				

Table S12. Pseudo-first order rate constants vs. phenol concentration for **DOAr-CH₂py** + $[Fe(Me_2bpy)_3]^{3+}$.

Table S13. Summary of temperature dependence data for **DOAr-CH₂py** + $[Fe(Me_2bpy)_3]^{3+}$.

			-10 2 2 1 5 / 5 3
T (K)	$k (M^{-1} s^{-1})$	T (K)	$k (M^{-1} s^{-1})$
279	$(1.45 \pm 0.15) \times 10^4$	319	$(7.5 \pm 0.8) \times 10^4$
287	$(2.0 \pm 0.2) \times 10^4$	328	$(1.20 \pm 0.12) \times 10^5$
297	$(2.9 \pm 0.3) \times 10^4$		

VII. Calculations

Calculations were performed using Gaussian03.⁸ In all cases, methyl groups were used in place of *tert*-butyls. The two phenyl groups in **HOAr-C(Ph)₂NH₂** were replaced with hydrogens, **HOAr-CH₂NH₂**. All optimized geometries were confirmed to be local minima by vibrational analysis. Energies are not corrected for zero-point vibrational energy. When indicated a polarized continuum model (PCM) of acetonitrile solvent was used as implemented in Gaussian. All geometries were optimized at the (U)B3LYP/6-31G* level. It was shown for **HOAr-py** and 'OAr-pyH⁺ that optimization using larger basis sets (up to 6-311+G**) or with the inclusion of a solvent model produced geometries which were energetically equivalent (at (U)B3LYP/cc-pVTZ, with or without solvent model) to those produced with 6-31G*, Table S14.

A schematic representation of the four points of the energetic cycle used to calculate λ is shown in Figure S15. Qualitatively similar results for these calculations to those reported in Table 3 of the text were obtained at the B3LYP/6-31G*, B3LYP/6-311+G**, HF/6-311+G**, and MP2/6-311+G** levels of theory without a solvent model, Table S15. In all three phenol-base systems studied, geometries corresponding to the non-proton transferred phenol radical cation ([HOAr-B]⁺⁺) or the zwitterions (⁻OAr-BH⁺) could not be located as local minima at the B3LYP/6-31G* level of theory.


Heavy-atom bond lengths are given in Tables S16-S18. Cartesian coordinates for the optimized geometries of the neutral and radical cation species are given in Tables S19-S24.

⁽⁸⁾ Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

Table S14.	B3LYP/cc-pVTZ	absolute an	nd relative	energies	for H	IOAr-py	and	'OAr-pyH ⁺	at
geometries of	optimized with vari	ous basis se	ts. ^a						

0					
Energy:	(U)B3L	YP/cc-pVTZ//	(U)B3LYP/cc-pVTZ with solvent (MeCN) mod using PCM		
Geometry:	B3LYP/6-31G*	B3LYP/6-311+G**	B3LYP/6-31G*	B3LYP/6-31G* w/ solvent model	B3LYP/ 6-311+G**
HOAr-py	-633.43441	-633.43488	-633.44431	-633.44429	-633.44465
	0.0	-0.3	-6.2	-6.2	-6.4
'OAr-pyH ⁺	-633.18307	-633.18355	-633.25586	-633.25608	-633.2562
	0.0	-0.3	-45.7	-45.8	-45.9

^{*a*} Absolute energies are in hartrees, energies relative to (U)B3LYP/cc-pVTZ//B3LYP/6-31G* are in italics and are in kcal mol⁻¹.

Figure S15. Schematic representation of the energetic cycle used to calculate inner-sphere reorganization energies for the theoretical CPET self-exchange reactions, **HOAr-B** + **'OAr-BH**⁺ = **'OAr-BH**⁺ + **HOAr-B**, $\lambda_{se,in} = (E_{ng}^{+} - E_{cg}^{+}) + (E_{cg}^{0} - E_{ng}^{0})$.

or meory.				
-B	(U)B3LYP/ 6-31G*	(U)B3LYP/ 6-311+G**	(RO)HF/ 6-311+G**	(RO)MP2/ 6-311+G**
-ру	24.7	23.8	30.2	29.3
-CH ₂ NH ₂	35.6	34.1	38.3	38.9
-CH ₂ py	41.9	40.0	45.5	46.0

Table S15.	Calculated gas phase inner-sphere reorganization energies ($\lambda_{se,in}$) at different levels
of theory. ^a	

^{*a*} Energies are reported in kcal mol⁻¹ using single energy calculations at the level reported on (U)B3LYP/6-31G* geometries.

Table S16.Calculated heavy-atombond lengths and their change uponoxidation for HOAr-py.^a

	Δ^{b} .090 .054
	.054
C1-C2 = 1.421 = 1.475 = 0	
0102 1.121 1.175 0.175	007
C2-C3 1.413 1.386 -0	.027
C3-C4 1.387 1.414 0.	.027
C4-C5 1.407 1.415 0.	.008
C5-C6 1.387 1.378 -0	.009
C6-C1 1.415 1.466 0.	.051
C2'-C3' 1.412 1.404 -0	.008
C3'-C4' 1.387 1.390 0.	.003
C4'-C5' 1.397 1.401 0.	.004
C5'-C6' 1.389 1.381 -0	.008
C6'-N 1.337 1.347 0.	.010
N-C2' 1.356 1.363 0.	.007
C2-C2' 1.479 1.469 -0	.010
C4-CH ₃ 1.511 1.500 -0	.011
С6-СН ₃ 1.507 1.497 -0	.010
RMS: 0.	032 ^c

^{*a*}All distances are in Å, calculated at B3LYP/6-31G*. ^{*b*} Difference in bond length between neutral and radical cation. ^{*c*} Root mean square of Δ for the bond lengths reported here.

Table S17. Calculated heavy-atom bondlengths and their change upon oxidationfor HOAr-CH2py.^a

IUI HOAI	-сп2ру.		
Bond	HOArB	•OArBH ⁺	Δ^b
C1-O	1.364	1.268	-0.096
C1-C2	1.407	1.460	0.053
C2-C3	1.400	1.373	-0.027
C3-C4	1.395	1.425	0.030
C4-C5	1.402	1.409	0.007
C5-C6	1.394	1.383	-0.011
C6-C1	1.409	1.450	0.041
C2'-C3'	1.399	1.393	-0.006
C3'-C4'	1.393	1.396	0.003
C4'-C5'	1.395	1.399	0.004
C5'-C6'	1.393	1.384	-0.009
C6'-N	1.338	1.347	0.009
N-C2′	1.346	1.354	0.008
$C2-CH_2$	1.523	1.523	0.000
CH_2 - $C2'$	1.517	1.516	-0.001
C4-CH ₃	1.517	1.501	-0.016
C6-CH ₃	1.508	1.498	-0.010
		RMS:	0.031 ^c
a	. 0		

^{*a*}All distances are in Å, calculated at B3LYP/6-31G*. ^{*b*} Difference in bond length between neutral and radical cation. ^{*c*} Root mean square of Δ for the bond lengths reported here.

Bond	HOArB	$^{\bullet}\text{OArBH}^{+}$	Δ^b		
C1-O	1.362	1.27	-0.092		
C1-C2	1.408	1.461	0.053		
C2-C3	1.400	1.371	-0.029		
C3-C4	1.395	1.427	0.032		
C4-C5	1.403	1.409	0.006		
C5-C6	1.394	1.385	-0.009		
C6-C1	1.408	1.457	0.049		
N-CH ₂	1.481	1.519	0.038		
C2-CH ₂	1.513	1.508	-0.005		
C4-CH ₃	1.512	1.500	-0.012		
C6-CH ₃	1.507	1.497	-0.010		
		RMS:	0.040^{c}		

Table S18. Calculated heavy-atom bond lengths and their change upon oxidation for $HOAr-CH_2NH_2$.^{*a*}

^{*a*}All distances are in Å, calculated at B3LYP/6-31G*. ^{*b*} Difference in bond length between neutral and radical cation. ^{*c*} Root mean square of Δ for the bond lengths reported here.

Cartesian coordinates for

	ed geometry of	of HOAr-py		optimiz	ed geometry	of OAr-pyl	
atom	X	y	Z	atom	X	y	Z
C1	2.918605	0.189568	-0.000069	C1	2.957393	0.168247	-0.001385
C2	2.236126	1.419993	0.000039	C2	2.261015	1.399824	-0.001365
C3	0.849790	1.389959	0.000085	C3	0.847197	1.391839	-0.001237
C4	0.109467	0.186315	0.000044	C4	0.110898	0.217424	-0.000310
C5	0.837204	-1.034134	-0.000009	C5	0.837640	-1.066309	0.000231
C6	2.252369	-1.026975	-0.000088	C6	2.303697	-1.044545	-0.000499
C7	-1.369677	0.204767	0.000027	C7	-1.357937	0.245167	-0.000290
C8	-2.131143	1.393400	-0.000211	C8	-2.154029	1.402218	-0.001255
C9	-3.516995	1.327635	-0.000217	C9	-3.540080	1.299398	-0.000959
C10	-4.151448	0.082493	-0.000013	C10	-4.162058	0.043660	0.000297
C11	-3.342706	-1.046984	0.000156	C11	-3.357716	-1.079457	0.001179
N12	-2.006876	-0.991980	0.000198	N12	-2.017525	-0.947953	0.000875
C13	2.999068	2.724526	0.000150	C13	3.020025	2.694085	0.002230
C14	2.986447	-2.343188	-0.000179	C14	3.019640	-2.358871	-0.000648
O15	0.252169	-2.248158	0.000079	O15	0.240713	-2.174053	0.001038
H16	4.007594	0.187272	-0.000165	H16	4.044418	0.185470	-0.002231
H17	0.323590	2.339125	0.000219	H17	0.347663	2.354850	-0.001898
H18	-1.646309	2.361393	-0.000421	H18	-1.691870	2.380425	-0.002260
H19	-4.101339	2.244013	-0.000392	H19	-4.142439	2.202544	-0.001714
H20	-5.232609	-0.008827	-0.000006	H20	-5.240766	-0.058267	0.000559
H21	-3.774567	-2.045618	0.000327	H21	-3.738510	-2.094264	0.002136
H22	3.646519	2.814849	-0.881611	H22	2.357889	3.562360	-0.038796
H23	3.646360	2.814788	0.882030	H23	3.707481	2.743523	-0.851467
H24	4.069665	-2.186783	-0.000362	H24	4.102843	-2.218771	-0.000545
H25	2.721819	-2.945508	-0.877354	H25	2.738068	-2.954503	-0.876881
H26	2.722144	-2.945447	0.877155	H26	2.737847	-2.954868	0.875239
H27	-0.734685	-2.087937	0.000146	H27	-1.377384	-1.773321	0.001393
H28	2.319943	3.583557	0.000131	H28	3.637617	2.776835	0.906101

Table S20.

Table S19. Cartesian coordinates for optimized geometry of HOAr-py.

Table	S21 .	Cartesian	coordinates	for	
optimized geometry of HOAr-CH ₂ NH ₂ .					

atom	Х	у	Z
C1	0.007327	0.013375	0.000777
C2	0.015406	-0.007860	1.403342
C3	1.255611	0.001976	2.042711
C4	2.457591	0.036434	1.326236
C5	2.413910	0.037403	-0.080751
C6	1.177930	0.030811	-0.756414
C7	-1.276841	-0.045337	2.186949
C8	1.157480	0.040677	-2.263871
09	3.547807	0.056039	-0.835259
H10	-0.947466	0.005746	-0.523336
H11	1.296001	-0.007509	3.131206
H12	-1.849276	-0.960201	1.984587
H13	-1.928649	0.800760	1.934469
H14	0.131535	-0.003246	-2.642796
H15	1.716801	-0.809009	-2.673164
H16	1.633970	0.943804	-2.664352
H17	4.288839	-0.225863	-0.237053
H18	-1.089244	-0.006904	3.265225
C19	3.784913	0.139064	2.045821
N20	4.796213	-0.750680	1.429928
H21	3.640176	-0.050545	3.120043
H22	4.182235	1.159946	1.954741
H23	4.544596	-1.725963	1.585480
H24	5.711362	-0.602039	1.850834

Table S22.Cartesian coordinatesforoptimized geometry of 'OAr- $CH_2NH_3^+$.

• P ·····			2
atom	Х	У	Z
01	0.090140	-0.063510	0.076416
C2	0.023403	-0.011530	1.343305
C3	1.237736	-0.052841	2.153505
C4	1.149600	-0.064064	3.521933
C5	-0.114688	-0.012604	4.181374
C6	-1.287710	0.055417	3.403536
C7	-1.266093	0.060556	2.018706
C8	2.568493	0.032097	1.448894
N9	2.553423	-0.838426	0.204711
C10	-2.505242	0.116943	1.181140
C11	-0.171374	-0.021908	5.680081
H12	1.604211	-0.607839	-0.236710
H13	3.327425	-0.630585	-0.433349
H14	2.577554	-1.837696	0.431424
H15	2.052234	-0.093169	4.129013
H16	-2.245883	0.100064	3.914225
H17	3.402975	-0.269683	2.084607
H18	2.756455	1.047552	1.083632
H19	-3.400226	0.198708	1.801804
H20	-2.469937	0.968824	0.492168
H21	-2.591464	-0.778298	0.553578
H22	0.320983	-0.915450	6.085384
H23	-1.199252	0.000388	6.048423
H24	0.360581	0.844341	6.095386

Table	S23 .	Cartesian	coordinates	for
optimized geometry of HOAr-CH ₂ py.				

atom	Х	у	Ζ
C1	1.041550	0.931426	0.372601
C2	0.619131	-0.377324	0.669407
C3	1.459509	-1.449154	0.344047
C4	2.710667	-1.258715	-0.243818
C5	3.116219	0.059318	-0.494607
C6	2.309976	1.157680	-0.198034
C7	-0.696095	-0.628597	1.395343
C8	-1.935108	-0.407291	0.549162
N9	-2.207011	0.870381	0.223892
C10	-3.282087	1.137102	-0.526730
C11	-4.151265	0.151042	-0.988352
C12	-3.875286	-1.174723	-0.654970
C13	-2.754051	-1.458237	0.121998
C14	2.754715	2.571110	-0.477042
C15	3.597185	-2.428788	-0.604623
016	0.284889	2.030318	0.657304
H17	-0.674368	1.790359	0.610201
H18	4.092997	0.238205	-0.941844
H19	1.129254	-2.460675	0.576389
H20	-0.761728	0.039965	2.264961
H21	-0.700551	-1.654001	1.778077
H22	-3.450065	2.185509	-0.763595
H23	-5.013635	0.417426	-1.591117
H24	-4.524729	-1.977076	-0.994817
H25	-2.511510	-2.479915	0.398264
H26	4.635772	-2.258931	-0.296178
H27	3.254353	-3.351815	-0.124705
H28	3.610734	-2.609734	-1.688152
H29	2.039195	3.090263	-1.125376
H30	2.816816	3.160529	0.445825
H31	3.737073	2.585591	-0.959902

Table	S24 .	Cartesian	coordinates	for
optimized geometry of 'OAr-CH₂pyH ⁺ .				

x	V	-1 7
	•	
		0.568039
		0.226841
		-0.291603
		-0.438247
		-0.111137
		1.245463
		0.470749
		0.142279
		-0.507475
-4.242931	0.300296	-0.870021
-4.055650	-1.049192	-0.553751
-2.902155	-1.459480	0.116559
2.740856	2.653675	-0.261499
3.774797	-2.291905	-0.641562
0.203796	1.841734	0.624994
-1.369580	1.425773	0.392805
4.198132	0.398362	-0.822433
1.275227	-2.527910	0.371777
-0.728193	-0.289035	2.198660
-0.689536	-1.898894	1.491739
-3.311328	2.267061	-0.715117
-5.129901	0.644088	-1.389247
-4.809255	-1.780973	-0.828370
-2.749475	-2.502166	0.371805
4.063125	-2.852349	0.258260
3.301929	-3.011553	-1.321350
4.687110	-1.919324	-1.113082
2.061997	3.168478	-0.951499
2.657876	3.179854	0.696630
3.763401	2.755050	-0.632470
	$\begin{array}{c} 1.019072\\ 0.646909\\ 1.540069\\ 2.831541\\ 3.206954\\ 2.357789\\ -0.674523\\ -1.936956\\ -2.161010\\ -3.259909\\ -4.242931\\ -4.055650\\ -2.902155\\ 2.740856\\ 3.774797\\ 0.203796\\ -1.369580\\ 4.198132\\ 1.275227\\ -0.728193\\ -0.689536\\ -3.311328\\ -5.129901\\ -4.809255\\ -2.749475\\ 4.063125\\ 3.301929\\ 4.687110\\ 2.061997\\ 2.657876\end{array}$	1.540069 -1.482630 2.831541 -1.178487 3.206954 0.171966 2.357789 1.213294 -0.674523 -0.834445 -1.936956 -0.520015 -2.161010 0.773838 -3.259909 1.204444 -4.242931 0.300296 -4.055650 -1.049192 -2.902155 -1.459480 2.740856 2.653675 3.774797 -2.291905 0.203796 1.841734 -1.369580 1.425773 4.198132 0.398362 1.275227 -2.527910 -0.728193 -0.289035 -0.689536 -1.898894 -3.311328 2.267061 -5.129901 0.644088 -4.809255 -1.780973 -2.749475 -2.502166 4.063125 -2.852349 3.301929 -3.011553 4.687110 -1.919324 2.061997 3.168478 2.657876 3.179854