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Abstract

This study aims mainly at investigating the effects of concircular flatness and con-
circular symmetry of a warped product manifold on its fiber and base manifolds.
Concircularly flat and concircularly symmetric warped product manifolds are investi-
gated. The divergence-free concircular curvature tensor on warped product manifolds
is considered. Finally, we apply some of these results to generalized Robertson–Walker
and standard static space-times.
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1 Introduction

A transformation which preserves geodesic circles is called a concircular transfor-
mation [31]. The geometry which deals with concircular transformation is called
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concircular geometry. The concircular curvature tensor C remains invariant under
concircular transformation of a (pseudo-)Riemannian manifold M . M is called concir-
cularly flat if its concircular curvature tensor C vanishes at every point. A concircularly
flat manifold M is a manifold of constant curvature. Thus, the tensor C measures the
deviation of M from constant curvature. (For further details, see [1,31].)

In a series of studies, Pokhariyal and Mishra studied the recurrent properties and
relativistic significance of concircular curvature tensor, among many others, in Rie-
mannian manifolds [22–25]. Concircularly semi-symmetric K -contact manifolds are
considered in [18], and concircularly recurrent Finsler manifolds are studied in [33] . In
[19], the authors considered N (k)-contact metric manifolds satisfying C ·P = 0, where
P denotes the projective curvature tensor. Similarly, a study of (k, μ, ν) −contact
metric 3-manifolds satisfying one of the conditions ∇C = 0, C (ζ, X) · C = 0,
R (ζ, X) · C = 0, where ζ is the Reeb field, is considered in [16]. Perfect fluid
space-times with either vanishing or divergence-free concircular curvature tensor are
considered in [2]. The authors of [34] considered equitorsion concircular mapping
between generalized Riemannian manifolds (in the sense of Eisenhart’s definition)
and obtained some invariant curvature tensors. These tensors are generalizations of
concircular curvature tensor on Riemannian manifolds. In a recent paper [10], Chen
provided some classification of Ricci solitons with respect to a concircular potential
field. In [17], the concept of special concircular vector fields is introduced and it is
proved that an n-dimensional Riemannian manifold that admits n linearly independent
special concircular vector fields has constant sectional curvature. Similarly, in [9], the
authors characterize the local structure of a Riemannian manifold whose Codazzi ten-
sor has exactly two distinct eigenvalues. In [21], it is proven that each concircularly
recurrent manifold is necessarily a recurrent manifold.

Motivated by these studies and many others, the main purpose of this article is
to study concircular curvature tensor on warped product manifolds and to apply
some of the results to two different n-dimensional space-times, namely, general-
ized Robertson–Walker space-times and standard static space-times. Concircularly flat
and concircularly symmetric warped product manifolds are also considered. Finally,
divergence-free concircular curvature tensor on warped product manifolds is investi-
gated.

This article is organized as follows. The next section presents the main properties
of the concircular curvature tensor. In Sect. 3, the semi-symmetries of the concircular
curvature tensor are investigated. Section 4 is devoted to the study of concircularly flat
warped product manifolds, whereas Sect. 5 is devoted to the study of concircularly
symmetric warped product manifolds. Finally, divergence-free concircular curvature
tensor on warped product space-time models is considered in Sect. 6.

2 Concircular Curvature Tensor

Let (M, g) be a pseudo-Riemannian n-dimensional manifold n ≥ 3. Throughout this
section, ∇, R, Ric and τ denote the Levi-Civita connection, curvature tensor, Ricci
curvature and scalar curvature of the metric tensor g, respectively.
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The concircular curvature tensor C on a pseudo-Riemannian manifold (M, g,∇) is
defined as follows [2,25,28,32]. Let X , Y , Z , V ∈ X (M), then

C (X , Y ) Z = R (X , Y ) Z

−
τ

n (n − 1)
[g (X , Z) Y − g (Y , Z) X ] , (2.1)

where R (X , Y ) Z = ∇Y ∇X Z −∇X∇Y Z +∇[X ,Y ] Z is the Riemann curvature tensor.
It is clear that C (X , Y ) Z is skew-symmetric in the first two indices. Furthermore,

C (X , Y , Z , V ) = R (X , Y , Z , V )

−
τ

n (n − 1)
[g (X , Z) g (Y , V ) − g (Y , Z) g (X , V )] . (2.2)

The definition of the concircular curvature tensor in local coordinates is as follows

Ci jkl = Ri jkl −
τ

n (n − 1)

[

gik g jl − g jk gil

]

, (2.3)

where τ = gi jRi j is the scalar curvature. This formula suggests a generalization of
this tensor of the form

Ki jkl = a0Ri jkl + a1gi j gkl + a2gik g jl + a3g jk gil , (2.4)

where ai are constants and a0 �= 0. Assume that a pseudo-Riemannian manifold
(M, g) is a K-curvature flat manifold, then

a0Ri jkl + a1gi j gkl + a2gik g jl + a3g jk gil = 0. (2.5)

Multiplying both sides by gil , we get

−a0R jk + a1gk j + a2gk j + na3g jk = 0.

Again, by multiplying both sides of Eq. (2.5) by gik , we get

a0R jl + a1g jl + na2g jl + a3g jl = 0

Thus (M, g) is Einstein with

R jk =
a1 + a2 + na3

a0
g jk

R jl = −

(

a1 + na2 + a3

a0

)

g jl .

Consequently, a second contraction implies

a1 + a2 + na3 =
τ

n
a0
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a1 + na2 + a3 = −
τ

n
a0.

However, Eq. (2.5) yields

na1 + a2 + a3 = 0.

These equations imply that

a1 = 0, a2 = −a3 =
−a0τ

n (n − 1)

Again, Eq. (2.5) becomes

a0

[

Ri jkl −
τ

n (n − 1)

(

gik g jl − g jk gil

)

]

= 0.

Thus, M is of constant sectional curvature. Therefore, the only K-curvature flat tensor
is the concircular curvature tensor and we have:

Theorem 1 Let M be a K-curvature flat manifold. Then M is of constant curvature

and

a1 = 0, a2 = −a3 =
−a0τ

n (n − 1)
(2.6)

i.e., K is a constant multiple of C.

This result is proved in [31] when K = C. Moreover, it is found in [33] for the
Finslerian case. Assume that M is a 4-dimensional space-time obeying Einstein’s
field equation with cosmological constant, i.e.,

Ri j −
τ

2
gi j + �gi j = kTi j (2.7)

where T is the energy-momentum tensor. Let us define

K jl = gik
Ki jkl

= a0R jl + (a1 + na2 + a3) g jl . (2.8)

Now Eq. (2.7) becomes

Ki j − (a1 + na2 + a3) gi j −
a0τ

2
gi j + a0�gi j = a0kTi j . (2.9)

Thus

∇iK
i
j −

a0

2
∇ jτ = a0k∇i T

i
j .

We can now state:

123



Concircular Curvature on Warped Product Manifolds and…

Theorem 2 In a relativistic space-time obeying Einstein’s field equations, the energy-

momentum tensor is divergence free if and only if

∇iK
i
j =

a0

2
∇ jτ.

3 Semi-symmetries of C

It is noted that Eq. (2.2) has the form

C = R −
τ

2n (n − 1)
(g ∧ g)

= R −
τ

n (n − 1)
G, (3.1)

where ∧ is Kulkarni−Nomizu product of two symmetric 2-tensors (see [6, p. 47]) and
G = 1

2 (g ∧ g). This equation leads us to

R · C = R · R −
τ

n (n − 1)
R · G

= R · R,

where R · C means that R (X , Y ) acts as a derivation on C for any vector fields X , Y ∈

X (M). However,

C · R =

(

R −
τ

n (n − 1)
G

)

· R

= R · R −
τ

n (n − 1)
G · R.

We thus have the following:

Proposition 1 A pseudo-Riemannian manifold M admits a semi-symmetric concircu-

lar curvature tensor C if and only if M is semi-symmetric.

Proposition 2 A pseudo-Riemannian manifold M is pseudo-symmetric ( i.e., R · R =
τ

n(n−1)
G · R) if and only if C · R = 0.

On the other hand

C · C =

(

R −
τ

n (n − 1)
G

)

·

(

R −
τ

n (n − 1)
G

)

= R · R −
τ

n (n − 1)
G · R.

We thus have:
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Proposition 3 A pseudo-Riemannian manifold M is pseudo-symmetric if and only if

C · C = 0.

Now, assume that C vanishes on M . Then

R =
τ

n (n − 1)
G,

i.e., M is of constant curvature κ = τ
n(n−1)

. The converse is also true and we have:

Proposition 4 A concircularly flat pseudo-Riemannian manifold M (i.e., M admits a

flat concircular curvature tensor) is of constant curvature.

A pseudo-Riemannian manifold M is said to be concircularly symmetric if ∇C = 0.
It is clear that

∇C = ∇R −
1

n (n − 1)
(∇τ) G.

Assume that M is concircularly symmetric i.e., ∇C = 0. Then

∇R =
1

n (n − 1)
(∇τ) G.

The second Bianchi identity implies that M is of constant curvature κ and consequently
M is locally symmetric. Conversely, now suppose that M is locally symmetric, that
is, ∇R = 0, then the scalar curvature is constant and hence ∇C = 0. This discussion
leads to the following result.

Proposition 5 A pseudo-Riemannian manifold (M, g) is locally symmetric if and only

if it is concircularly symmetric.

In [8], it is proved that a semi-symmetric manifold (M, g) whose Ricci tensor is a
Codazzi tensor is a locally symmetric manifold. This result and Proposition (5) lead
to the following.

Corollary 1 A semi-symmetric manifold (M, g) whose Ricci tensor is a Codazzi tensor

is a concircularly symmetric manifold.

4 Concircularly Flat Warped Products

In this section, we shall first give some basic definitions about warped product
manifolds and then apply them to study the concircularly flat warped products.
Suppose that

(

M1, g1,∇
1
)

and
(

M2, g2,∇
2
)

are two smooth pseudo-Riemannian

manifolds equipped with Riemannian metrics gi , where ∇ i is the Levi-Civita con-
nection of the metric gi for i = 1, 2. Further suppose that π1 : M1 × M2 → M1

and π2 : M1 × M2 → M2 are the natural projection maps of the Cartesian product
M1 × M2 onto M1 and M2, respectively. If f : M1 → (0,∞) is a positive real-valued
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smooth function, then the warped product manifold M1 × f M2 is the product manifold
M1 × M2 equipped with the metric tensor g = g1 ⊕ f 2g2 defined by

g = π∗
1 (g1) ⊕ ( f ◦ π1)

2 π∗
2 (g2) ,

where ∗ denotes the pull-back operator on tensors [7,20,30]. The function f is called
the warping function of the warped product manifold M1 × f M2. In particular, if
f = 1, then M1 ×1 M2 = M1 × M2 is the usual Cartesian product manifold. It is
clear that the submanifold M1 × {q} is isometric to M1 for every q ∈ M2. Moreover,
{p} × M2 is homothetic to M2. Throughout this article we use the same notation for
a vector field and for its lift to the product manifold [11,12,29,30].

Throughout this section, (M, g,∇) is a (singly) warped product manifold of
(

Mi , gi ,∇
i
)

, i = 1, 2 with dimensions ni �= 1, where n = n1 + n2. R,Ri

and Ric,Rici denote the curvature tensor and Ricci curvature tensor on M, Mi ,
respectively. Moreover, grad f ,� f denote gradient and Laplacian of f on M1 and
f ♯ = f � f + (n2 − 1) g1 (grad f , grad f ). Finally, concircular curvature tensor on M

and Mi is denoted by C and Ci , respectively.
We now define generalized Robertson–Walker space-times. Let (M, g) be an n-

dimensional pseudo-Riemannian manifold and f be a positive smooth function on an
open connected subinterval I of R. Then the (n + 1)-dimensional product manifold
I × M furnished with the metric tensor

ḡ = −dt2 ⊕ f 2g

is called a generalized Robertson–Walker space-time and is denoted by M̄ = I × f M,

where dt2 is the Euclidean usual metric tensor on I . These space-times are general-
ization of the well-known Robertson–Walker space-times [15,26,27] . From now on,
we will denote ∂

∂t
∈ X(I ) by ∂t to state our results in simpler forms.

Similarly, we define standard static space-times. Let (M, g) be an n-dimensional
pseudo-Riemannian manifold and f : M → (0,∞) be a smooth function. Then the
(n + 1)-dimensional product manifold I × M furnished with the metric tensor

ḡ = − f 2dt2 ⊕ g

is called a standard static space-time and is denoted by M̄ = I f × M, where I is an
open, connected subinterval of R and dt2 is the Euclidean metric tensor on I . Note
that standard static space-times can be considered as a generalization of the Einstein
static universe [3–6,13,14].

The following theorem provides a description of the concircular curvature tensor
on pseudo-Riemannian warped product manifolds.

Proposition 6 Let M = M1 × f M2 be a singly warped product manifold with the

metric tensor g = g1 ⊕ f 2g2. If X i , Yi , Zi ∈ X(Mi ) i = 1, 2, then the concircular

curvature tensor C on M is given by

C (X1, Y1) Z1 = R
1 (X1, Y1) Z1
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−
τ

n (n − 1)
[g1 (X1, Z1) Y1 − g1 (Y1, Z1) X1] (4.1)

C (X2, Y1) Z1 =

[

1

f
H f (Y1, Z1) +

τ

n (n − 1)
g1 (Y1, Z1)

]

X2 (4.2)

C (X1, Y2) Z2 = f g2 (Y2, Z2)

[

∇1
X1

grad f +
τ f

n (n − 1)
X1

]

, (4.3)

and

C (X2, Y2) Z2 = R
2 (X2, Y2) Z2

−

(

‖grad f ‖2
1 +

τ f 2

n (n − 1)

)

[g2 (X2, Z2) Y2 − g2 (Y2, Z2) X2] ,

(4.4)

where H f (Y1, Z1) = g1

(

∇1
X1

grad f , Z1

)

is the Hessian of f .

The following theorem is a direct consequence of the above proposition.

Theorem 3 Let M = M1 × f M2 be a singly warped product manifold with the metric

tensor g = g1 ⊕ f 2g2. M is concircularly flat if and only if

(1) M1 is of constant curvature

κ1 = κ =
τ

n (n − 1)
.

(2) 1
f

H f (Y1, Z1) + τ
n(n−1)

g1 (Y1, Z1) = 0, and

(3) M2 is of constant curvature

κ2 = ‖grad f ‖2
1 +

τ f 2

n (n − 1)
= κ f 2 + ‖grad f ‖2

1 .

Now suppose that the concircular curvature tensor C on M = M1 × f M2 vanishes,
then equation (4.2) implies that

H f (Y1, Z1) =
−τ f

n (n − 1)
g1 (Y1, Z1) , (4.5)

i.e., M1 is of Hessian type. Taking the trace of this equation we get that

� f =
−n1τ

n (n − 1)
f = −n1κ1 f . (4.6)

Corollary 2 Let M = M1× f M2 be a concircularly flat singly warped product manifold

with the metric tensor g = g1⊕ f 2g2. Then M1 is of Hessian type and � f = −n1κ1 f .
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Now, we note that C can be simplified if the last position is a concurrent field. Let
ζ = ζ1 + ζ2 be a vector field on M = M1 × f M2, {ei |1 ≤ i ≤ n1} be an orthonormal
basis of X(U1) and {ei |n1 + 1 ≤ i ≤ n1 + n2} be an orthonormal basis of X(U2)

where Ui is an open subset of Mi . Then {ei |1 ≤ i ≤ n1 + n2} is an orthogonal basis
of X

(

U1 × f U2
)

. Thus

∇ei
ζ − ei = ∇1

ei
ζ1 − ei + ei (ln f ) ζ2

for 1 ≤ i ≤ n1 and

∇ei
ζ − ei = ζ1 (ln f ) ei + ∇2

ei
ζ2 − f g2 (ζ2, ei ) grad f − ei

for n1 + 1 ≤ i ≤ n1 + n2.

Lemma 1 Let M = M1 × f M2 be a singly warped product manifold with the metric

tensor g = g1⊕ f 2g2. Then ζ = ζ1+ζ2 is a concircular vector field on M = M1× f M2

if and only if ζ1 is a concircular vector field on M1 and one of the following conditions

holds

(1) ζ2 is a concircular vector field on M2, and f is constant; or

(2) ζ2 = 0 and ζ1 ( f ) = f .

Let ζ be a concurrent vector field, then

R (X , Y ) ζ = 0.

Thus

C (X , Y ) ζ = −
τ

n (n − 1)
[g (X , ζ ) Y − g (Y , ζ ) X ] .

Suppose that M = M1 × f M2 is a concircularly curvature flat warped product mani-
fold, then

τ [g (Y , ζ ) X − g (X , ζ ) Y ] = 0

for any vector fields X and Y . Thus τ = 0 and consequently M is flat. This discussion
leads to the following result.

Theorem 4 Let M = M1× f M2 be a concircularly flat singly warped product manifold

with the metric tensor g = g1 ⊕ f 2g2. Then M is flat if M1 admits a concircular vector

field ζ1 and one of the following conditions holds:

(1) M2 admits a concircular vector field ζ2 and f is constant; or

(2) ζ1 ( f ) = f .

We will now focus on generalized Robertson–Walker space-times and consider the
concircular curvature on this class of space-times by using our previous results. Let
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M̄ = I × f M be a generalized Robertson–Walker space-time equipped with the metric
tensor ḡ = −dt2 ⊕ f 2g. Then the concircular curvature tensor C̄ on M̄ is given by

C̄(∂t , ∂t )∂t = 0, C̄(X , ∂t )∂t =
−1

f

[

f̈ +
τ̄ f

n(n + 1)

]

X ,

C̄(∂t , X)Y = f g(X , Y )

[

f̈ +
τ̄ f

n(n + 1)

]

∂t ,

C̄(X , Y )Z = R(X , Y )Z +

[

ḟ 2 −
τ̄ f 2

n(n + 1)

]

[g(X , Z)Y − g(Y , Z)X ],

for any vector fields X , Y , Z ∈ X(M), where R is the (Riemann) curvature tensor on
M . By using direct calculation and our previous results one can conclude the following.

Proposition 7 Let M̄ = I × f M be an (n + 1)-dimensional generalized Robertson–

Walker space-time equipped with the metric tensor ḡ = −dt2 ⊕ f 2g, n ≥ 3. M̄ is

concircularly flat if and only if

(1) The scalar curvature of (M̄, ḡ) satisfies f̈ +
τ̄ f

n(n + 1)
= 0, and

(2) (M, g) has constant sectional curvature κ ≡ −
[

ḟ 2 + f f̈
]

.

The above result gives us a full characterization for the warping function f .

Proposition 8 Let M̄ = I × f M be an (n + 1)-dimensional concircularly flat general-

ized Robertson–Walker space-time equipped with the metric tensor ḡ = −dt2 ⊕ f 2g.

Suppose that X̄ = h∂t + X is a vector field on M̄, where X is a vector field on M

and h is a smooth function on I . Then (M̄, ḡ) is flat if one of the following conditions

holds

(1) M admits a concircular vector field and f is constant, or

(2) f (t) = at + b.

Now, we are ready to study concircular curvature tensor C̄ on M̄ = f I × M . Let
M̄ = I f × M be a standard static space-time equipped with the metric tensor ḡ =

− f 2dt2 ⊕ g. Then the concircular curvature tensor C̄ on M̄ is given by

C̄(X , ∂t )∂t = − f

[

∇X grad f +
τ̄ f

n(n + 1)
X

]

,

C̄(∂t , X)Y =

[

1

f
H f (X , Y ) +

τ̄

n(n + 1)
g(X , Y )

]

∂t ,

C̄(X , Y )Z = R̄(X , Y )Z −
τ̄

n(n + 1)
[g(X , Z)Y − g(Y , Z)X ] ,

for any vector fields X , Y , Z ∈ X(M), where R is the (Riemann) curvature tensor on
M . Now, we can characterize concircularly flat standard static space-time as:

Proposition 9 Let M̄ = I f × M be an (n + 1)-dimensional standard static space-time

equipped with the metric tensor ḡ = − f 2dt2 ⊕ g, n ≥ 3. M̄ is concircularly flat if

and only if
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(1) ∇X grad f = −
τ̄

n(n + 1)
X for any vector field X on M, and

(2) (M, g) has constant sectional curvature κ =
τ̄

n(n + 1)
.

5 Concircularly Symmetric Warped Product Manifolds

A pseudo-Riemannian singly warped product manifold M is said to be concircular
symmetric if

(

∇ζ C
)

(X , Y , Z) = 0

for any vector fields X , Y , Z and ζ . It is clear that (see Sect. 3)

(

∇ζ R
)

(X , Y , Z) = 0.

This condition yields the following consequences

(

∇ζ1R
)

(X1, Y1, Z1) =
(

∇1
ζ1

R
1
)

(X1, Y1, Z1) = 0. (5.1)

Thus M1 is locally symmetric. The second case is

(

∇ζ1R
)

(X2, Y1, Z1) = 0. (5.2)

This yields

−
1

f 2
ζ1 ( f ) H f (Y1, Z1) X2

+
1

f
g1

(

∇1
ζ1

∇1
Y1

grad f , Z1

)

X2 −
1

f
H f

(

∇1
ζ1

Y1, Z1

)

X2 = 0, (5.3)

i.e., F = 1
f

H f is parallel. The next case is

(

∇ζ2R
)

(X2, Y1, Z1) = 0

0 = ∇ζ2R (X2, Y1) Z1 − R
(

∇ζ2 X2, Y1
)

Z1 − Z1 (ln f )R (X2, Y1) ζ2

= F (Z1, Y1) ∇ζ2 X2 − R
(

∇ζ2 X2, Y1
)

Z1 + Z1 ( f ) g2 (X2, ζ2) ∇1
Y1

grad f

and so

R
1 (grad f , Y1) Z1 = F (Z1, Y1) grad f − Z1 (ln f ) ∇1

Y1
grad f

Now, we have

(

∇ζ1R
)

(X2, Y2, Z2) =
(

∇ζ2R
)

(X1, Y2, Z2) = 0
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Thus

X1 ( f )R
2 (ζ2, Y2) Z2 =

(

X1 ( f ) ‖grad f ‖2 − f 2
F (X1, grad f )

)

G2 (ζ2, Y2, Z2) ,

(5.4)

where G2 (ζ2, Y2, Z2) = [g2 (ζ2, Z2) Y2 − g2 (Y2, Z2) ζ2]. The next case is

(

∇ζ2R
)

(X2, Y2, Z2) = 0.

This yields

(

∇2
ζ2

R
2
)

(X2, Y2, Z2) = 0. (5.5)

Theorem 5 Let M = M1 × f M2 be a concircularly symmetric warped product man-

ifold with the metric tensor g = g1 ⊕ f 2g2. Then,

(1) both M1 and M2 are locally symmetric,

(2) M2 is of constant curvature given that f is not constant, and

(3) F = 1
f

H f is parallel.

6 Divergence-free Concircular Curvature Tensor

It is well known that the Riemann tensor is harmonic if and only if the Ricci tensor is
a Codazzi tensor, i.e., for any vector fields X , Y , Z ∈ X (M), we have

(∇X Ric) (Y , Z) = (∇Y Ric) (X , Z) .

Moreover, the concircular curvature tensor is divergence free if and only if the Riemann
tensor is harmonic. Let us define

T (X , Y , Z) = (∇X Ric) (Y , Z) − (DY Ric) (X , Z)

for any vector fields X , Y , Z ∈ X (M). It is clear that the Ricci tensor is a Codazzi
tensor if and only if T (X , Y , Z) vanishes. Let

(

M1 × f M2, g
)

be a singly warped
product manifold with T (X , Y , Z) = 0. Then

T 1 (X1, Y1, Z1) =
n2

f
Y1 ( f ) F (X1, Z1) −

n2

f
X1 ( f )F (Y1, Z1)

−
n2

f
R

1 (X1, Y1, grad f , Z1) . (6.1)

The next case is

0 = X1
(

f ♯
)

g2 (Y2, Z2) − 2X1 (ln f ) Ric (Y2, Z2)

−Y1
(

f ♯
)

g2 (X2, Z2) + 2Y1 (ln f ) Ric (X2, Z2)
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X1 ( f ) Ric (Y2, Z2) = f
(

X1
(

f ♯
)

− f Ric (X1, grad f )
)

g2 (Y2, Z2) . (6.2)

Finally,

T 2 (X2, Y2, Z2) = 0. (6.3)

The tensor T vanishes in the rest cases. Now, one can write the following results.

Theorem 6 Let
(

M1 × f M2, g
)

be a singly warped product manifold with warping

function f > 0 on M1. Assume the concircular curvature tensor C is divergence free.

Then,

(1) the concircular curvature tensor C1 is divergence free if

R
1 (X1, Y1, grad f , Z1) = Y1 ( f ) F (X1, Z1) − X1 ( f )F (Y1, Z1)

(2) the concircular curvature tensor C2 is divergence free, and

(3) f is constant or (M2, g2) is Einstein.

Theorem 7 Let
(

M1 × f M2, g
)

be a singly warped product manifold with warping

function f > 0 on M1. The concircular curvature tensor of the metric tensor g is

divergence free if

(1) f is constant and the concircular curvature tensors Ci of the metric tensors gi ; i =

1, 2 are divergence free, or

(2) H f = 0, C1 is divergence free and (M2, g2) is Einstein with factor g1(grad f ,

grad f ).

The following results are special cases on a generalized Robertson–Walker space-
time and on a standard static space-time.

Corollary 3 Let M̄ = I × f M be a generalized Robertson–Walker space-time with

the metric tensor ḡ = −dt2 ⊕ f 2g. If the concircular curvature tensor C̄ of (M̄, ḡ) is

divergence free, then the concircular curvature tensor C of (M, g) is divergence free.

If, in addition, f = at + b, then (M, g) is Einstein.

Corollary 4 Let M̄ = I × f M be a generalized Robertson–Walker space-time with the

metric tensor ḡ = −dt2 ⊕ f 2g. Then the concircular curvature tensor C̄ of (M̄, ḡ) is

divergence free if

(1) f is constant and the concircular curvature tensor C of (M, g) is divergence free,

or

(2) f = at + b and (M, g) is Einstein with factor −a2.

Corollary 5 Let M̄ = f I × M be a standard static space-time with the metric tensor

ḡ = − f 2dt2 ⊕ g and H f = 0. Then the concircular curvature tensor C̄ of (M̄, ḡ) is

divergence free if and only if the concircular curvature tensor C of (M, g) is divergence

free.
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