PAPERS COMMUNICATED

47. Concircular Geometry I. Concircular Transformations.

By Kentaro Yano.
Mathematical Institute, Tokyo Imperial University. (Comm. by S. Kakeya, m.I.A., June 12, 1940.)

§1. Let $C: u^{\lambda}(s)$ be a curve in a Riemannian space V_{n} whose fundamental quadratic form is

$$
\begin{equation*}
d s^{2}=g_{\mu \nu} d u^{\mu} d u^{\nu}, \quad(\lambda, \mu, \nu, \ldots=1,2,3, \ldots, n) \tag{1.1}
\end{equation*}
$$

Denoting the unit tangent, and unit normals of order $1,2, \ldots, n-1$ and the first, second, $\ldots(n-1)$-st curvatures of C by $\xi_{1}^{\lambda}, \xi_{2}^{\lambda}, \ldots, \xi_{n}^{\lambda}$ and $\stackrel{1}{\varkappa},{ }_{\varkappa}^{2}, \ldots,{ }_{n}^{n-1}$ respectively, the Frenet equations of C may be written as

$$
\begin{equation*}
\frac{\delta}{\partial s} \xi_{a}^{\lambda}=-{ }_{x}^{a-1} \xi_{a-1}^{\lambda}+\underset{a+1}{a}, \quad\left(a=1,2, \ldots, n ; \xi^{\boldsymbol{a}}=\boldsymbol{n}=0\right), \tag{1.2}
\end{equation*}
$$

where $\delta / \delta s$ denotes covariant differentiation with respect to arc length s along C.

A geodesic circle ${ }^{1}$ is defined as a curve whose first curvature is constant and whose second curvature is identically zero. For such a geodesic circle, we have, from (1.2),

$$
\begin{align*}
& \frac{\delta}{\delta s} \xi_{1}^{\lambda}=\underset{\substack{x \\
2 \\
2}}{\lambda}, \tag{1.3}
\end{align*}
$$

where $\frac{1}{x}$ is a constant. Differentiating (1.3) covariantly and then substituting (1.4) in the obtained equation, we have

$$
\begin{equation*}
\frac{\delta^{2}}{\delta s^{2}} \xi_{1}^{\lambda}=-\left(\frac{1}{x}\right)_{1}^{2 \xi^{\lambda}} . \tag{1.5}
\end{equation*}
$$

The $\underset{1}{\xi^{\lambda}}$ denoting the unit tangent, we may put

$$
\xi_{1}^{\lambda}=\frac{\delta u^{\lambda}}{\delta s}
$$

so that we have, from (1.3),

$$
\left(\frac{1}{u}\right)^{2}=g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\delta^{2} u^{\nu}}{\delta s^{2}} .
$$

The equation (1.5) then becomes

$$
\begin{equation*}
\frac{\delta^{3} u^{\lambda}}{\partial s^{3}}+g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\partial s^{2}} \frac{\delta^{2} u^{\nu}}{\partial s^{2}} \frac{\delta u^{\lambda}}{\delta s}=0 . \tag{1.6}
\end{equation*}
$$

1) A. Fialkow : Conformal geodesics, Trans. Amer. Math. Soc. 45 (1939), 443-473.

Conversely, if the equation (1.6) is satisfied, we have

$$
\begin{aligned}
\frac{\delta}{\delta s}\left(g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\partial s^{2}} \frac{\delta^{2} u^{\nu}}{\delta s^{2}}\right) & =2 g_{\mu \nu} \frac{\delta^{3} u^{\mu}}{\partial s^{3}} \frac{\delta^{2} u^{\nu}}{\delta s^{2}} \\
& =-2\left(g_{a \beta} \frac{\delta^{2} u^{a}}{\delta s^{2}} \frac{\delta^{2} u^{\beta}}{\delta s^{2}}\right) g_{\mu \nu} \frac{\delta u^{\mu}}{\delta s} \frac{\delta^{2} u^{\nu}}{\delta s^{2}}=0,
\end{aligned}
$$

consequently, the first curvature ${ }^{\frac{1}{x}}$ which appears in

$$
\frac{\delta}{\partial s} \xi_{1}^{\nu}=\quad \chi_{2}^{1} \xi^{\lambda}
$$

is a constant. The first curvature $\frac{1}{\boldsymbol{u}}$ being a constant, the differentiation of

$$
\xi_{2}^{\lambda}=\frac{1}{x} \frac{\delta}{\delta s} \xi^{\lambda}
$$

gives us

$$
\frac{\delta}{\delta s} \xi_{2}^{\lambda}=\frac{1}{x} \frac{\delta^{2}}{\delta s^{2}} \xi_{1}^{\lambda}=-\frac{1}{\mathfrak{n}}\left(\frac{1}{\varkappa}\right)^{2} \xi_{1}^{\lambda}=-\underset{1}{\varkappa_{1}} \xi^{\lambda} .
$$

We can, consequently, see that the second curvature ${ }_{2}^{2}$ is identically zero. We can then conclude that the equations (1.6) are differential equations of geodesic circles.
$\S 2$. We shall now consider a conformal transformation

$$
\begin{equation*}
\bar{g}_{\mu \nu}=\rho^{2} g_{\mu \nu} \tag{2.1}
\end{equation*}
$$

of the fundamental tensor $g_{\mu \nu}$. A geodesic circle is not in general transformed into a geodesic circle by this conformal transformation. The are length s and the Christoffel symbols $\left\{\begin{array}{l}\lambda \\ \mu \nu\end{array}\right\}$ being transformed by

$$
\begin{gather*}
\frac{d \bar{s}}{d s}=\rho, \tag{2.2}\\
\left\{\left\{_{\mu \nu}^{\bar{\mu}}\right\}=\left\{{ }_{\mu \nu}^{\lambda}\right\}+\rho_{\mu} \delta_{\nu}^{\lambda}+\rho_{\nu} \delta_{\mu}^{\lambda}-g^{\lambda a} \rho_{a} g_{\mu \nu},\right. \tag{2.3}
\end{gather*}
$$

respectively, where

$$
\begin{equation*}
\rho_{\mu}=\frac{\partial \log \rho}{\partial u^{\mu}} \tag{2.4}
\end{equation*}
$$

we have

$$
\begin{align*}
& \frac{\delta u^{\lambda}}{\delta \bar{s}}=\frac{1}{\rho} \frac{\delta u^{\lambda}}{\delta s}, \tag{2.5}\\
& \frac{\delta^{2} u^{\lambda}}{\delta s^{2}}=\frac{1}{\rho^{2}}\left[\frac{\delta^{2} u^{\lambda}}{\delta s^{2}}+\rho_{\mu} \frac{\delta u^{\mu}}{\delta s} \frac{\delta u^{\lambda}}{\delta s}-g^{\lambda \alpha} \rho_{a}\right], \\
& \frac{\delta^{3} u^{\lambda}}{\delta \bar{s}^{3}}=\frac{1}{\rho^{3}}\left[\frac{\delta^{3} u^{\lambda}}{\delta s^{2}}+\rho_{\mu ; \nu} \frac{\delta u^{\mu}}{\delta s} \frac{\delta u^{\nu}}{\delta s} \frac{\delta u^{\lambda}}{\delta s}-\rho^{\lambda} ; \nu \frac{\delta u^{\nu}}{\partial s}\right. \\
& \\
& \left.\quad+\rho^{\lambda} \rho_{\nu} \frac{\delta u^{\nu}}{\delta s}-g^{a \beta} \rho_{a} \rho_{\beta} \frac{\delta u^{\lambda}}{\delta s}+2 \rho_{\mu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\delta u^{\lambda}}{\partial s}\right]
\end{align*}
$$

where

$$
\rho^{\lambda}=g^{\lambda a} \rho_{a}, \quad \rho_{\mu ; \nu}=\frac{\partial \rho_{\mu}}{\partial u^{\nu}}-\rho_{\lambda}\left\{\left\{_{\mu \nu}^{\lambda}\right\},\right.
$$

and

$$
\rho_{; \nu}^{\lambda}=g^{\lambda a} \rho_{a ; \nu} .
$$

These successive derivatives being calculated, we have, from (2.6),

$$
\begin{align*}
& \bar{g}_{\mu \nu}{\stackrel{\delta^{2} u^{\mu}}{\partial \bar{s}^{2}} \frac{\partial^{2} u^{\nu}}{\partial \overline{\mathrm{s}}^{2}} \frac{\delta u^{\lambda}}{\delta \bar{s}}=}^{\frac{1}{\rho^{3}}\left[g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\delta^{2} u^{\nu}}{\delta s^{2}} \frac{\partial u^{\lambda}}{\partial s}-\rho_{\mu} \rho_{\nu} \frac{\delta u^{\mu}}{\partial s} \frac{\delta u^{\nu}}{\delta s} \frac{\delta u^{\lambda}}{\partial s}\right.} \tag{2.8}\\
&\left.+g^{\alpha \beta} \rho_{\alpha} \rho_{\beta} \frac{\delta u^{\lambda}}{\delta s}-2 \rho_{\mu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\delta u^{\lambda}}{\delta \mathrm{s}}\right] .
\end{align*}
$$

The equations (2.7) and (2.8) give us

$$
\begin{align*}
\frac{\delta^{3} u^{\lambda}}{\delta \bar{s}^{3}}+\bar{g}_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\delta \bar{s}^{2}} \frac{\partial^{2} u^{\nu}}{\delta \bar{s}^{2}} \frac{\delta u^{\lambda}}{\delta \bar{s}} & =\frac{1}{\rho^{3}}\left[\frac{\delta^{3} u^{\lambda}}{\delta s^{3}}+g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\delta^{2} u^{\nu}}{\delta s^{2}} \frac{\delta u^{\lambda}}{\delta s}\right. \tag{2.9}\\
& \left.+\rho_{\mu \nu} \frac{\delta u^{\mu}}{\delta s} \frac{\delta u^{\nu}}{\delta s} \frac{\delta u^{\lambda}}{\delta s}-\rho_{\nu}^{\lambda} \frac{\delta u^{\nu}}{\delta s}\right],
\end{align*}
$$

where

$$
\begin{equation*}
\rho_{\mu \nu}=\rho_{\mu ; \nu}-\rho_{\mu} \rho_{\nu}+\frac{1}{2} g^{a \beta} \rho_{a} \rho_{\beta} g_{\mu \nu} \quad \text { and } \quad \rho_{\nu}^{\lambda}=g^{\lambda \rho} \rho_{a \nu} . \tag{2.10}
\end{equation*}
$$

Then we can see that a curve whose conformal transform is a geodesic circle may be defined as a solution of the differential equations

$$
\begin{equation*}
\frac{\delta^{3} u^{\lambda}}{\delta s^{3}}+g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\delta^{2} u^{\nu}}{\delta s^{2}} \frac{\delta u^{\lambda}}{\delta s}+\rho_{\mu \nu} \frac{\delta u^{\mu}}{\delta s} \frac{\delta u^{\nu}}{\delta s} \frac{\delta u^{\lambda}}{\delta s}-\rho_{\nu}^{\lambda} \frac{\delta u^{\nu}}{\delta s}=0 . \tag{2.11}
\end{equation*}
$$

We may call such a curve conformal geodesic circle. It may be noticed that the so-called conformal geodesic is a conformal geodesic circle.

If a conformal transformation (2.1) transforms every geodesic circle into a geodesic circle, then the function ρ must satisfy the partial differential equations

$$
\begin{equation*}
\rho_{\mu \nu}=\phi g_{\mu \nu} .^{1)} \tag{2.12}
\end{equation*}
$$

It has been shown by A. Fialkow ${ }^{2)}$ that there exists actually a very large class of V_{n} 's which admit such transformations.

Since a conformal transformation with ρ satisfying (2.12) changes a geodesic circle into a geodesic circle, we shall call it concircular transformation and concircular geometry the geometry in which we concern only with the concircular transformation (2.12) and with the spaces admitting such transformations.
§3. Denoting by $R_{\mu \nu \omega}^{\lambda}$ the curvature tensor of our Riemannian space V_{n}, we can show by a straight-forword culculation that the cur-

1) See H. W. Brinkmann: Einstein spaces which are mapped conformally on each other. Math. Ann. 94 (1925), 119-145.
2) A. Fialkow, loc. cit. \& 12, p. 470.
vature tensor $R_{\mu \nu \omega}^{\lambda}$ is tranformed into $\bar{R}_{\mu \nu \omega}^{\lambda}$ by a conformal transformation (2.1) where

$$
\begin{equation*}
\bar{R}_{\mu \nu \omega}^{\lambda}=R_{\mu \nu \omega}^{\lambda}-\rho_{\mu \nu} \delta_{\omega}^{\lambda}+\rho_{\mu \omega} \delta_{\nu}^{\lambda}-g_{\mu \nu} \rho_{\omega}^{\lambda}+g_{\mu \omega} \rho_{\nu}^{\lambda} . \tag{3.1}
\end{equation*}
$$

If the conformal transformation (2.1) is a concircular one, the equation (3.1) becomes

$$
\begin{equation*}
\bar{R}_{\mu \nu \omega}^{\lambda}=R_{\mu \nu \omega}^{\lambda}-2 \phi\left(g_{\mu \nu} \delta_{\omega}^{\lambda}-g_{\mu \omega} \delta_{\nu}^{\lambda}\right) \tag{3.2}
\end{equation*}
$$

Contracting, in this equation, with respect to the indices λ and ω, we obtain

$$
\begin{equation*}
\bar{R}_{\mu \nu}=R_{\mu \nu}-2(n-1) \phi g_{\mu \nu} \tag{3.3}
\end{equation*}
$$

where

$$
\bar{R}_{\mu \nu}=\bar{R}_{\mu \nu \lambda}^{\lambda}, \quad R_{\mu \nu}=R_{\mu \nu \lambda}^{\lambda} .
$$

Contracting $\bar{g}^{\mu \nu}=\frac{1}{\rho^{2}} g^{\mu \nu}$, we can obtain ϕ from (3.3), say,

$$
\begin{align*}
\bar{R} & =\frac{1}{\rho^{2}}[R-2 n(n-1) \phi] \\
2 \phi & =-\frac{\rho^{2} \bar{R}-R}{n(n-1)} \tag{3.4}
\end{align*}
$$

where

$$
\bar{R}=\bar{g}^{\mu \nu} \bar{R}_{\mu \nu}, \quad R=g^{\mu \nu} R_{\mu \nu}
$$

Substituting the value of ϕ into (3.2), we find

$$
\bar{R}_{\mu \nu \omega}^{\lambda}=R_{\mu \nu \omega}^{\lambda}+\frac{\rho^{2} \bar{R}-R}{n(n-1)}\left(g_{\mu \nu} \delta_{\omega}^{\lambda}-g_{\mu \omega} \delta_{\nu}^{\lambda}\right),
$$

or

$$
\begin{equation*}
\bar{R}_{\mu \nu \omega}^{\lambda}-\frac{\bar{R}}{n(n-1)}\left(\bar{g}_{\mu \nu} \delta_{\omega \omega}^{\lambda}-\bar{g}_{\mu \omega} \delta_{\nu}^{\lambda}\right)=R_{\mu \nu \omega}^{\lambda}-\frac{R}{n(n-1)}\left(g_{\mu \nu} \delta_{\omega}^{\lambda}-g_{\mu \omega} \delta_{\nu}^{\lambda}\right) \tag{3.5}
\end{equation*}
$$

which shows that the tensor

$$
\begin{equation*}
Z_{\mu \nu \omega}^{\lambda}=R_{\mu \nu \omega}^{\lambda}-\frac{R}{n(n-1)}\left(g_{\mu \nu} \delta_{\omega}^{\lambda}-g_{\mu \omega} \delta_{\nu}^{\lambda}\right) \tag{3.6}
\end{equation*}
$$

is invariant under-a concircular transformation.
Contracting with respect to the indices λ and ω, we have from (3.6)

$$
\begin{equation*}
Z_{\mu \nu}=Z_{\mu \nu \lambda}^{\lambda}=R_{\mu \nu}-\frac{R}{n} g_{\mu \nu} \tag{3.7}
\end{equation*}
$$

which is also invariant under a concircular transformation. It is easily seen that the contracted tensor $g^{\mu \nu} Z_{\mu \nu}$ vanishes identically.
§4. We shall, in this Paragraph, prove the following
Theorem I. The necessary and sufficient condition that a Riemannian
space V_{n} may be reduced to a Euclidean space by a suitable concircular transformation is that the concircularly invariant tensor $Z_{\mu \nu \omega}^{\lambda}$ should vanish identically.

Proof: Suppose that we can reduce the curvature tensor $\bar{R}_{\mu \nu \omega}^{\lambda}$ to zero, then we have from (3.5)

$$
\begin{equation*}
Z_{\mu \nu \omega}^{\lambda}=R_{\mu \nu \omega}^{\lambda}-\frac{R}{n(n-1)}\left(g_{\mu \nu} \delta_{\omega}^{\lambda}-g_{\mu \omega} \delta_{\nu}^{\lambda}\right)=0 \tag{4.1}
\end{equation*}
$$

Conversely, if the concircularly invariant tensor $Z_{\mu \nu \omega}^{\lambda}$ vanishes identically, we have

$$
\begin{equation*}
R_{\mu \nu \omega}^{\lambda}=\frac{R}{n(n-1)}\left(g_{\mu \nu} \delta_{\omega}^{\lambda}-g_{\mu \omega} \delta_{\nu}^{\lambda}\right), \tag{4.2}
\end{equation*}
$$

then we can see that the scalar curvature R is a constant.
Substituting the equation (4.2) into (3.2), we find

$$
\bar{R}_{\mu \nu \omega}^{\lambda}=\left[\frac{R}{n(n-1)}-2 \phi\right]\left(g_{\mu \nu} \delta_{\omega}^{\lambda}-g_{\mu \omega} \delta_{\nu}^{\lambda}\right)
$$

To reduce $\bar{R}_{\mu \nu \omega}^{\lambda}$ to zero, we must have

$$
2 \phi=\frac{R}{n(n-1)},
$$

which is a constant, consequently, if we choose a concircular transformation such that

$$
\begin{equation*}
\rho_{\mu \nu}=\frac{R}{2 n(n-1)} g_{\mu \nu}, \tag{4.3}
\end{equation*}
$$

the curvature tensor $\bar{R}_{\mu \nu \omega}^{\lambda}$ may be reduced to zero. We shall now show that the partial differential equations (4.3) are completely integrable. The equations (4.3) may be written as

$$
\begin{equation*}
\rho_{\mu ; \nu}=\rho_{\mu} \rho_{\nu}-\left[\frac{1}{2} g^{a \beta} \rho_{a} \rho_{\beta}-\frac{R}{2 n(n-1)}\right] g_{\mu \nu} . \tag{4.4}
\end{equation*}
$$

Differentiating these equations covariantly, we have

$$
\begin{equation*}
\rho_{\mu ; \nu ; \omega}=\rho_{\mu ; \omega} \rho_{\nu}+\rho_{\mu \mu} \rho_{\nu ; \omega}-g^{a \beta} \rho_{a ; \omega} \rho_{\beta} g_{\mu \nu} . \tag{4.5}
\end{equation*}
$$

Substituting (4.4) into (4.5), we obtain

$$
\begin{align*}
\rho_{\mu ; \nu ; \omega}=\left[\rho_{\mu} \rho_{\omega}\right. & \left.-\frac{1}{2}\left\{g^{a \beta} \rho_{a} \rho_{\beta}-\frac{R}{n(n-1)}\right\} g_{\mu \omega}\right] \rho_{\nu} \tag{4.6}\\
& +\left[\rho_{\nu} \rho_{\omega}-\frac{1}{2}\left\{g^{\alpha \beta} \rho_{a} \rho_{\beta}-\frac{R}{n(n-1)}\right\} g_{\nu \omega}\right] \rho_{\mu} \\
& -g^{\alpha \beta}\left[\rho_{a} \rho_{\omega}-\frac{1}{2}\left\{g^{r \delta} \rho_{\tau} \rho_{\delta}-\frac{R}{n(n-1)}\right\} g_{a \omega}\right] \rho_{\beta} g_{\mu \nu},
\end{align*}
$$

from which we have

$$
\begin{align*}
-\rho_{a} R_{\mu \nu \omega}^{a} & =\rho_{\mu ; \nu ; \omega}-\rho_{\mu ; \omega ; \nu} \tag{4.7}\\
& =-\rho_{a} \frac{R}{n(n-1)}\left(g_{\mu \nu} \delta_{\omega}^{a}-g_{\mu \omega} \delta_{\nu}^{a}\right)
\end{align*}
$$

which is identically satisfied. Then the theorem is proved.
We shall call concircularly flat space a space whose concircular curvature tensor $\boldsymbol{Z}_{\mu \nu \omega}^{\lambda}$ vanishes identically. A concircularly flat space being a space of constant curvature, we have
Theorem II. A space of constant curvature is transformed into a space of constant curvature by a concircular transformation.
If the concircular tensor $Z_{\mu \nu}$ vanishes identically, then the space is an Einstein space, consequently we have
Theorem III. An Einstein space is tranformed into an Einstein space by a concircular transformation.

