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Abstract Coping with time series cases is becoming an
important issue in applications of case based reasoning in
medical cares. This paper develops a knowledge discovery
approach to discovering significant sequences for depict-
ing symbolic time series cases. The input is a case library
containing time series cases consisting of consecutive dis-
crete patterns. The proposed approach is able to find from
the given case library all qualified sequences that are non-
redundant and indicative. A sequence as such is termed as
a key sequence. It is shown that the key sequences discov-
ered are highly valuable in case characterization to capture
important properties while ignoring random trivialities. The
main idea is to transform an original (lengthy) time series
into a more concise representation in terms of the detected
occurrences of key sequences. Four alternative ways to de-
velop case indexes based on key sequences are suggested
and discussed in detail. These indexes are simply vectors of
numbers that are easily usable when matching two time se-
ries cases for case retrieval. Preliminary experiment results
have revealed that such case indexes utilizing key sequence
information result in substantial performance improvement
for the underlying case-based reasoning system.
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1 Introduction

Coping with time series in case based reasoning has be-
come increasingly important in the medical domain but
also in industrial applications. Many medical domains also
exhibit dynamic properties. Unlike static cases where ob-
jects are described by attributes which are time independent,
a time series case contains profiles of time-varying variables
wherein pieces of data are associated with a timestamp and
are meaningful only for a specific segment in the case du-
ration. Temporal aspect of time series cases has to be taken
into account in the tasks of case indexing and case retrieval.
Abstraction and representation of temporal knowledge in
CBR systems were discussed in [5, 8, 18].

Signal analysis techniques have been applied to extract
relevant features from time series signals such as sensor
readings. The most common methods used in applications
are Discrete Fourier Transform and Wavelet Analysis, see
[6, 14, 15, 22]. Both have the merit of capturing significant
characteristics of the original signal with a compact repre-
sentation, and the features extracted are directly usable in
building similarity measures for case matching and retrieval.
However the available signal processing techniques are in-
herently restricted to dealing with numerical values, they are
not applicable to time series consisting of non-ordered dis-
crete symbols.

This paper aims to extract useful sequences for depict-
ing symbolic time series cases. As behaviors in dynamic
processes are usually reflected from transitional patterns
over time, occurrences of certain sequences are believed to
be significant evidences to identify properties existing in
historical sequential records. Deciding which sequences as
characteristic while others as trivial in characterization of
time series cases is largely domain dependent. Knowledge
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acquisition and discovery thus becomes imperative in cir-
cumstances when no prior knowledge is available.

The study presented is relevant to many medical health
care applications where physicians have to investigate se-
quences of symptoms of patients before making clinical di-
agnoses, and where frequently changing conditions with pa-
tients are more important than their static states within single
time segments. In particular this work is motivated by our
ongoing project in diagnosis and treatment of stress where
stress levels have to be estimated based on series of dys-
functional breathing patterns. Related medical research has
revealed that certain transitions of breathing patterns over
time may have high co-occurrence with stress levels of inter-
est [19]. An outline of this application scenario and the prob-
lem to be addressed will be formulated in the next section.

We developed a knowledge discovery approach to se-
quence extraction employing a case base as the information
source. The utilized case base is assumed to be symbolic and
contains a collection of time series cases consisting of con-
secutive discrete patterns. The proposed approach is able to
find from the given case library all those sequences that are
non-redundant and indicative in having strong occurrences
with a certain class. A sequence as such is termed as a key
sequence. We show that the knowledge about key sequences
is highly valuable in case characterization to capture impor-
tant properties while ignoring randomly occurred trivialities
in a dynamic process. Four alternative ways to index time se-
ries cases according to the set of discovered key sequences
are suggested and discussed in detail. These indexes are sim-
ply vectors of numbers that are easily usable when match-
ing two time series cases for case retrieval. Our preliminary
experiments have shown the merit of such case indexes for
enhancing CBR performance.

It is worth noting that the knowledge discovery treated
here distinguishes itself from traditional learning included in
a CBR cycle. The retain step in CBR typically stores a new
case in the library or modifies some existing cases and may
contain a number of sub-steps [1]. Learning therein is there-
fore case specific with knowledge stemming directly from
newly solved cases. Contrarily, in our approach, learning is
treated as a background task separated from the retain step
and the whole case library is the input to the knowledge dis-
covery process. Some relevant works combining knowledge
discovery and CBR systems include: genetic-based knowl-
edge acquisition for case indexing and matching [9], incre-
mental learning to organize a case base [16], exploitation of
background knowledge in text classification [23], and analy-
sis of pros and cons for explanations in CBR systems [11].

The remainder of the paper is organized as follows. Sec-
tion 2 briefly outlines a medical scenario motivating our re-
search and also formulates the problem to be addressed. In
Sect. 3 criteria to evaluate sequences are established, fol-
lowed by presentation of the key sequence search algorithm

in Sect. 4. How to index time series cases using discovered
key sequences is addressed in Sect. 5. Then, in Sect. 6, we
illustrate some results of experiments for discussion. Sec-
tion 7 is devoted to related works and finally Sect. 8 ends
the paper with concluding remarks.

2 A medical scenario and problem statements

In this section we first briefly outline a typical medical sce-
nario in which patients’ stress levels are to be determined
based on a series of respiratory sinus arrhythmia (RSA)
breathing patterns. After this some definitions are given and
the formulation of the problem.

2.1 Classification via respiratory sinus arrhythmia

In stress medicine, RSA signals obtained from patients are
typically employed to classify their stress levels. A patient
is usually tested through a series of 40–80 breathing cycles
(including inhalation and exhalation). Every respiration cy-
cle lasts on average 5–15 seconds and corresponds to either
a normal breathing pattern or one of the dysfunctional pat-
terns. The patterns of breathing (also called RSA patterns)
are identified from RSA measurements in the respective res-
piration periods. Further patterns from consecutive breath-
ing cycles constitute a symbolic time series, which is to be
investigated to find information reflecting stress levels of pa-
tients.

An overview of the stress medicine project is depicted
in Fig. 1. First the RSA signal measured during the whole
test period is decomposed into a collection of sub-signals.
By sub-signal in Fig. 1 we denote the portion of the sig-
nal recorded for the ith cycle. Each sub-signal i is deliv-
ered to the block “signal classifier” to decide upon pattern
i corresponding to it. The identified patterns are then com-
posed into a symbolic series in terms of their appearance
order in time. So far the part of signal classifier has been im-
plemented in the previous work using wavelet analysis and
case based reasoning [14]. The next step of the project is
to further estimate the level of stress given a time series of
respiration patterns. For applying CBR again in the second
step we feel it necessary to acquire knowledge about key
sequences to characterize and index time series cases.

2.2 Problem statements

To clearly present our work fitting into the scenario, we now
give descriptions of the various terms and concepts that are
related. We begin with the definitions about time series, se-
quences, and time series case bases, and then we precisely
formulate the problem to tackle.
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Fig. 1 An overview of the RSA
based stress diagnosis system

Definition 1 A time series is a series of elements occurred
sequentially over time, X = 〈x(1), x(2), . . . , x(i), . . . ,

x(n)〉, where i indexes the time segment corresponding to
a recorded element and n can be very large.

The elements x in time series can be numerical or sym-
bolic values. But in the discussions of this paper we restrict
our attention to symbolic time series consisting of discrete
patterns.

Moreover, every time series has an inherent class. The
previous time series data are supposed to have been classi-
fied and they are stored in a case base together with their
associated classes. A formal definition of time series case
bases for purpose of classification is given as follows:

Definition 2 A time series case base is a set of pairs
{(Xi,Zi)}Ki=1, where Xi denotes a time series and Zi the
class assigned to Xi and K is the number of time series cases
in the case base.

With a time series case base at hand, the knowledge dis-
covery process involves analyzing sequences that are in-
cluded in the case base. A sequence in a time series is for-
mally described in Definition 3.

Definition 3 A sequence S in a time series X = 〈x(1),

x(2), . . . , x(n)〉 is a list consisting of elements taken from
contiguous positions of X, i.e., S = 〈x(k), x(k + 1), . . . ,

x(k + m − 1)〉 with m ≤ n and 1 ≤ k ≤ n − m + 1.

Usually there is a very large amount of sequences in-
cluded in the time series case base. But only a quite small
part of them that carry useful information for estimating
consequences are in line with our interest. Such sequences
are referred to as indicative sequences and defined in the fol-
lowing:

Definition 4 A sequence is regarded as indicative given
a time series case base provided that

(1) it appears in sufficient amount of time series cases of the
case base;

(2) the discriminating power of it, assessed upon the case
base, is above a specified threshold.

A measure for discriminating power together with the ar-
guments that lie behind this definition will be elaborated in
the next section. The intuitive explanation is that an indica-
tive sequence is such a one that, on one hand, appears fre-
quently in the case base, and on the other hand, exhibits high
co-occurrence with a certain class.

Obviously, should a sequence be indicative, another se-
quence that contains it as subsequence may also be indica-
tive for predicting the outcome. However, if these both are
indicative of the same class, the second sequence is con-
sidered as redundant with respect to the first one because it
conveys no more information. Redundant sequences can be
easily recognized by checking possible inclusion between
sequences encountered. The goal here is to find sequences
that are not only indicative but also non-redundant and inde-
pendent of each other.

Having given necessary notions and clarifications we can
now formally define our problem to be addressed as follows:

Problem Given a time series case base consisting of time
series instances and associated classes, find a set of indica-
tive sequences {S1, S2, . . . , Sp} that satisfy the following two
criteria:

(1) For any i, j ∈ {1,2, . . . , p} neither Si ⊆ Sj nor Sj ⊆ Si

if Si and Sj are indicative of a same class;
(2) For any sequence S that is indicative, S ∈ {S1, S2, . . . ,

Sp} if S is not redundant with respect to Sj for any j ∈
{1,2, . . . , p}.

The first criterion above requests compactness of the set
of sequences {S1, S2, . . . , Sp} in the sense that no sequence
in it is redundant by having a subsequence indicative of the
same class as it. A sequence that is both indicative and non-
redundant is called a key sequence. The second criterion fur-
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ther requires that no single key sequence shall be lost, which
signifies a demand for completeness of the set of key se-
quences to be discovered.

3 Evaluation of single sequences

This section aims to evaluate individual sequences to de-
cide whether one sequence can be regarded as indicative.
The main thread is to assess the discriminating power of
sequences in terms of their co-occurrence relationship with
possible time series classes. In addition we also illustrate the
importance of sequence appearing frequencies in the case
base for ensuring reliable assessments of the discriminating
power.

Given a sequence S there may be a set of probable con-
sequent classes {C1,C2, . . . ,Ck}. The strength of the co-
occurrence between sequence S and class Ci(i = 1, . . . , k)

can be measured by the probability, p(Ci |S) , of Ci condi-
tioned upon S. Sequence S is considered as discriminative in
predicting outcomes as long as it has a strong co-occurrence
with either of the possible outcomes. The discriminating
power of S is defined as the maximum of the strengths of
its relations with probable classes. Formally this definition
of discriminating power PD is expressed as:

PD(S) = max
i=1,...,k

P (Ci |S). (1)

In addition we say that the class yielding the maximum
strength of the co-occurrences, i.e.,

C = arg
i=1,...,k

maxP(Ci |S),

is the class that sequence S is indicative of.
The conditional probabilities in (1) can be derived ac-

cording to the Bayes theorem as:

P(Ci |S) = P(S|Ci)P (Ci)

P (S)
. (2)

As the probability P(S) is generally obtainable by

P(S) = P(S|Ci)P (Ci) + P(S|Ci)P (Ci) (3)

(2) for conditional probability assessment can be rewritten
as

P(Ci |S) = P(S|Ci)P (Ci)

P (S|Ci)P (Ci) + P(S|Ci)P (Ci)
. (4)

Our aim here is to yield the conditional probability
P(Ci |S) in terms of (4). As P(Ci) is a priori probability
of occurrence of Ci which can be acquired from domain
knowledge or approximated by experiences with randomly
selected samples, the only things that remain to be resolved
are the probabilities of S in (time series) cases having class

Ci and in cases not belonging to class Ci respectively. For-
tunately such probability values can be easily estimated by
resorting to the given case base. For instance we use the ap-
pearance frequency of sequence S in class Ci cases as an
approximation of P(S|Ci), thus we have:

P(S|Ci) ≈ N(Ci, S)

N(Ci)
(5)

where N(Ci) denotes the number of cases having class Ci

in the case base and N(Ci, S) is the number of cases hav-
ing both class Ci and sequence S. Likewise the probability
P(S|Ci) is approximated by

P(S|Ci) ≈ N(Ci, S)

N(Ci)
(6)

with N(Ci) denoting the number of cases not having class
Ci and N(Ci, S) being the number of cases containing se-
quence S but not belonging to class Ci .

The denominator in (4) has to stay enough above zero
to enable reliable probability assessment using the estimates
in (5) and (6). Hence it is crucial to acquire an adequate
amount of time series cases containing S in the case base.
The more such cases available the more reliably the prob-
ability assessment could be derived. For this reason we re-
fer the quantity N(S) = N(Ci, S) + N(Ci, S) as evaluation
base of sequence S in this paper.

At this point we realize that two requirements have to be
satisfied for believing a sequence to be indicative of a certain
class. Firstly the sequence has to possess an adequate evalu-
ation base by appearing in a sufficient amount of time series
cases. Obviously a sequence that occurred randomly in few
occasions is not convincing and can hardly be deemed sig-
nificant. Secondly, the conditional probability of that class
under the sequence must be dominatingly high, signifying
a strong discriminating power. These explain why indicative
sequence is defined by the demands on its appearance fre-
quency and discriminating power in Definition 4.

In real applications two minimum thresholds need to be
specified for the evaluation base and discriminating power
respectively, to judge sequences as indicative or not. The
values of these thresholds are domain dependent and are to
be decided by human experts in the related area. The thresh-
old for discriminating power may reflect the minimum prob-
ability value that suffices to predict a potential outcome in
a specific scenario. The threshold for the evaluation base in-
dicates the minimum amount of samples required to fairly
approximate the conditional probabilities of interest. This
threshold value can be estimated in terms of the distribution
of cases of classes in the case library as well as their prior
probabilities. It is shown in the following.

Let δ > 0 be the smallest distance for the denominator in
(4) to remain sufficiently away from zero, we demand
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N(Ci, S)

N(Ci)
P (Ci) + N(Ci, S)

N(Ci)
P (Ci) ≥ δ. (7)

Further the above relation has to hold for every class Ci to
ensure reliable assessments of conditional probabilities for
all the classes given sequence S. Next the lower bound for
the left side of inequality (7) is yielded by

N(Ci, S)

N(Ci)
P (Ci) + N(Ci, S)

N(Ci)
P (Ci)

≥ N(Ci, S)P (Ci) + N(Ci, S)P (Ci)

max[N(Ci),N(Ci)]

≥ [N(Ci, S) + N(Ci, S)] · min[P(Ci),P (Ci)]
max[N(Ci),N(Ci)]

= min[P(Ci),P (Ci)]
max[N(Ci),N(Ci)]

N(S). (8)

Since this lower bound not being less than δ is a sufficient
condition for satisfaction of inequality (7), we simply im-
pose constraints on the information base N(S) as given by

N(S) ≥ max[N(Ci),N(Ci)]
min[P(Ci),P (Ci)]

· δ ∀i. (9)

Therefore it can be clearly seen that the threshold value for
the information base can be defined as the minimum num-
ber of N(S) that satisfies all the constraints in (9) for every
class Ci . Finally only those sequences that pass thresholds
for both discriminating power and information base are eval-
uated as indicative ones.

4 Discovering a complete set of key sequences

With the evaluation of sequences being established, we now
turn to exploration of qualified sequences in the problem
space. The goal is to locate all key sequences that are non-
redundant and indicative. A sequence search algorithm for

this purpose is detailed here. Later we will demonstrate sim-
ulation results on a synthetic case base with the proposed
algorithm in Sect. 6.1.

Discovery of key sequences can be considered as a search
problem in a state space in which each state represents a se-
quence of patterns. Connection between two states signi-
fies an operator between them for transition, i.e. addition
or removal of a single pattern in time sequences. The state
space for a scenario with three patterns a, b, c is illustrated
in Fig. 2, where an arc connects two states if one can be cre-
ated by extending the sequence of the other with a following
pattern.

A systematic exploration in the state space is entailed for
finding a complete set of key sequences. We start from a null
sequence and generate new sequences by adding a single
pattern to parent nodes for expansion. The child sequences
are evaluated according to evaluation bases and discriminat-
ing powers. The results of evaluation determine the way to
treat each child node in one of the following three situations:

(i) If the evaluation base of the sequence is under
a threshold required for conveying reliable probability as-
sessment, terminate expansion at this node. The reason is
that the child nodes will have even smaller evaluation bases
by appearing in fewer cases than their parent node.

(ii) If the evaluation base and discriminating power are
both above their respective thresholds, do the redundancy
checking for the sequence against the list of key sequences
already identified. The sequence is redundant if at least one
known key sequence constitutes its subsequence while both
remaining indicative of the same class. Otherwise the se-
quence is considered non-redundant and hence is stored into
the list of key sequences together with the class it indicates.
After that this node is further expanded with the hope of
finding, among its children, qualified sequences that might
be indicative of other classes.

(iii) If the evaluation base is above its threshold whereas
the discriminating power still not reaching the threshold,
continue to expand this node with the hope of finding quali-
fied sequences among its children.

Fig. 2 The state space for
sequences with three patterns
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The expansion of non-terminate nodes is proceeded in
a level-by-level fashion. A level in the search space consists
of nodes for sequences of the same length and only when
all nodes at a current level have been visited does the al-
gorithm move on to the next level of sequences having one
more pattern. This order of treating nodes is very beneficial
for redundancy checking because a redundant sequence will
always be encountered later than its subsequences including
the key one(s) during the search procedure.

From a general structure, the proposed sequence search
algorithm is a little similar to the traditional breadth-first
procedure. However, there are still substantial differences
between both. The features distinguishing our search algo-
rithm are: (1) it does not attempt to expand every node en-
countered and criteria are established to decide whether ex-
ploration needs to be proceeded at any given state; (2) it pre-
sumes multiple goals in the search space and thus the search
procedure is not terminated when a single key sequence is
found. Instead the search continues on other prospective
nodes until none of the nodes in the latest level needs to
be expanded. A formal description of the proposed search
algorithm is given as follows:

Algorithm for finding a complete set of key sequences

1. Initialize the Open list with an empty sequence.
2. Initialize the Key_List to be an empty list.
3. Remove the most left node t from the Open list.
4. Generate all child nodes of t .
5. For each child node, C(t), of the parent node t

(a) Evaluate C(t) according to its discriminating power
and evaluation base;

(b) If the evaluation base and discriminating power are
both above their respective thresholds, do the redun-
dancy checking for C(t) against the sequences in the
Key_list. Store C(t) into the Key_list if it is judged
as not redundant. Finally put C(t) on the right of the
Open list.

(c) If the evaluation base of C(t) is above its threshold
but the discriminating power is not satisfying, put
C(t) on the right of the Open list.

6. If the Open list is not empty go to step 3, otherwise return
the Key_list and terminate the search.

5 Case indexing based on key sequences

The discovered key sequences are treated as significant fea-
tures in capturing dynamic system behaviors. Rather than
enumerating what happened in every consecutive time seg-
ment, we can now more concisely represent a time series
case in terms of occurrences of key sequences in it. Let
{S1, S2, . . . , Sp} be the set of key sequences. We have to

search for every Si(i = 1, . . . ,P ) in a time series X to detect
all possible appearances. Then case index for X can be es-
tablished according to the results of key sequence detection.
In the following four alternative ways to index X based on
key sequences are suggested.

5.1 Naive case index

A naive means of indexing a time series case X is to depict
it by a vector of binary numbers each of which corresponds
to a key sequence. A number in the vector is unity if the
corresponding sequence is detected in X and zero otherwise.
This means that, by the naive method, the index of X is given
by

Id1(X|S1, . . . , SP ) = [b1, b2, . . . , bP ] (10)

where

bi =
{

1 if Si is subsequence of X,
0 otherwise. (11)

This index has the merit of imposing low demand in com-
putation. It also enables the similarity between two cases to
be calculated as the proportion of the positions where their
indexing vectors have identical values. Suppose two time se-
ries cases X1 and X2 which are indexed by binary vectors
[b11, . . . , b1P ] and [b21, . . . , b2P ] respectively, the similar-
ity between them is simply defined as

Sim1(X1,X2) = 1 − 1

P

P∑
j=1

|bij − b2j |. (12)

5.2 Case index using sequence appearance numbers

With a binary structure the case index in Sect. 5.1 carries
a little limited content and would be usable only in rela-
tively simple circumstances. A main reason is that the index
can not reflect how many times a key sequence has appeared
in a series of consideration. To incorporate that information,
an alternative way is to directly employ the numbers of ap-
pearances of single key sequences in describing time series
cases. By doing this we acquire the second method of index-
ing time series X by an integer vector as

Id2(X|S1, . . . , SP ) = [f1, f2, . . . , fP ] (13)

where fi denotes the number of occurrences of sequence Si

in series X.
Further, considering the case index in (13) as a state vec-

tor, we use the cosine matching function [17] as the similar-
ity measure between two time series cases X1 and X2. Thus
we have
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Sim2(X1,X2) =
∑P

j=1 f1j f2j√∑P
j=1 f 2

1j

√∑P
j=1 f 2

2j

(14)

with f1j , f2j denoting the numbers of occurrences of key
sequence Sj in X1 and X2 respectively.

5.3 Index in terms of discriminating power

Although the case index in (13) can distinguish two cases
having a same key sequence but with different numbers of
appearances, it still might not be an optimal representation
to capture the exact nature of the problem. Recall that the
value of a key sequence is conveying a degree of confi-
dence in the sense of discriminating power for predicting
a potential class, a time series X would be more precisely
characterized by the discriminating powers of the appear-
ances of single key sequences. Intuitively two times of oc-
currences of a key sequence would give a stronger discrim-
inating power than occurring just once, but not twice in the
quantity of the strength. From view of this we suggest in-

dexing X as a vector of real numbers, representing discrim-
inating powers for the appearances of single key sequences,
as follows:

Id3(X|S1, . . . , SP ) = [g1, g2, . . . , gP ] (15)

with

gi =
{

DP(fi ∗ Si) if fi ≥ 1,
0 if fi = 0,

(16)

with DP(fi ∗ Si) we denote the discriminating power by
sequence Si appearing fi times in X.

Let C be the class that the key sequence Si is indica-
tive of. We define the discriminating powerDP(fi ∗ Si)

as the probability for class C given fi appearances of se-
quence Si . Assuming the appearances of Si are independent
of each other, this probability can be obtained by applying
the Bayes theorem in a sequential procedure. Considering
a two class problem without loss of generality, this proce-
dure is depicted here by a series of equations as follows:

P(C|Si) = P(Si |C)P (C)

P (Si |C)P (C) + P(Si |C)P (C)
, (17)

P(C|2 ∗ Si) = P(Si |C)P (C|Si)

P (Si |C)P (C|Si) + P(Si |C)P (C|Si)
, (18)

...

P (C|t ∗ Si) = P(Si |C)P (C|(t − 1) ∗ Si)

P (Si |C)P (C|(t − 1) ∗ Si) + P(Si |C)P (C|(t − 1) ∗ Si)
, (19)

...

DP (fi ∗ Si) = P(C|fi ∗ Si) = P(Si |C)P (C|(fi − 1) ∗ Si)

P (Si |C)P (C|(fi − 1) ∗ Si) + P(Si |C)P (C|(fi − 1) ∗ Si)
(20)

where the probabilities P(Si |C) and P(Si |C) can be esti-

mated according to (5) and (6) respectively. The probability

updated in (17) represents the probability for class C given

one appearance of Si , which is further updated in (18) by

the second appearance of Si producing a higher probabil-

ity considering both occurrences. Generally, the probabil-

ity P(C|t ∗ Si) is yielded by updating the prior probabil-

ity P(C|(t − 1) ∗ Si) with one more occurrence of Si in

(19). Finally we obtain the ultimate probability assessment

incorporating all appearances, i.e. the required discriminat-

ing power, by (20).

We now give a concrete example to illustrate how a case

index can be built in terms of occurrences of key sequences.

Suppose a two class (C1 and C2) situation in which three

key sequences S1, S2, and S3 are discovered. Sequence S1

appears twice in time series X and S2 appears once while S3

is not detected. S1 and S2 are both indicative of a C1. The

a priori probability for class C1 is 40% and the probabili-

ties of sequences S1, S2 in situations of class C1 and C2 are

shown below:

P(S1|C1) = 0.5, P (S1|C2) = 0.2,

P (S2|C1) = 0.8, P (S2|C2) = 0.3.
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With all the information assumed above, the discriminat-
ing powers for the appearances of S1 and S2 are calculated
in the following:

1. Calculate the probability for C1 with the first appear-
ance of S1 by

P(C1|S1) = P(S1|C1)P (C1)

P (S1|C1)P (C1) + P(S1|C2)P (C2)

= 0.5 · 0.4

0.5 · 0.4 + 0.2 · 0.6
= 0.6250.

2. Refine the probability P(C1|S1) with the second ap-
pearance of S1, producing the discriminating power for the
appearances of S1

DP(2 ∗ S1) = P(C1|2 ∗ S1)

= P(S1|C1)P (C1|S1)

P (S1|C1)P (C1|S1) + P(S1|C2)P (C2|S1)

= 0.5 · 0.625

0.5 · 0.625 + 0.2 · 0.375
= 0.8065.

It is clearly seen here that the power of discrimination is
increased from 0.6250 to 0.8065 due to the key sequence
occurring for the second time.

3. Derive the discriminating power for the occurrence of
S2 by calculating the conditional probability for C2 upon S2

as

DP(1 ∗ S2) = P(C1|S2)

= P(S2|C1)P (C1)

P (S2|C1)P (C1) + P(S2|C2)P (C2)

= 0.8 · 0.4

0.8 · 0.4 + 0.3 · 0.6
= 0.6400.

Moreover, because S3 is not detected in X, there is no
discriminating power for it. Hence we construct the index
for this time series case as:

Id3(X|S1, S2, S3) = [0.8065,0.6400,0].
With this case indexing scheme, we first calculate the dis-

similarity between two time series X1 and X2 as the average
of the differences in discriminating powers over all key se-
quences as follows:

Dis3(X1,X2) = 1

P

P∑
j=1

|gij − g2j | (21)

where g1j and g2j denote the j th elements in the case in-
dexes (15) for X1 and X2 respectively. Since the dissimi-
larity measure in (21) is opposite to that of similarity, the

degree of similarity between X1 and X2 is simply given
by

Sim3(X1,X2) = 1 − Dis3(X1,X2). (22)

5.4 Case indexing with key sequence union

In the preceding section cases are indexed according to
the discriminating powers of occurrences of single key se-
quences. Such work could be extended by regarding the key
sequences that are indicative of a common class as a col-
lective union. This view motivates us to group occurrences
of key sequences in time series X into a set of clusters. For
every class Ci there is a cluster Vi corresponding to it. Vi is
a collection of events for occurrences of those key sequences
that are indicative of class Ci . The discriminating power of
cluster Vi is defined as the probability of class Ci in light of
the events included in the cluster. Hence we write

DP(Vi) =
{

P(Ci |{ej |ej ∈ Vi}) if Vi �= ∅,
0 if Vi = ∅.

(23)

Further, the discriminating powers of clusters of events rep-
resenting key sequences occurrences are utilized to index
a time series case. Hence the index for time series X is given
by

Id4(X|S1, . . . , SP ) = [DP(V1),DP(V2), . . . ,DP(VK)] (24)

where K denotes the number of classes of interest.
It is clear that the case index in the form of (24) is highly

concise. It reduces the length of index vector to the number
of classes. This is achieved by calculating the discriminat-
ing power for a union of key sequences that are consistent.
Consequently every component in the vector of (24) con-
tains rich information by fusion of occurrences from multi-
ple key sequences. This proposed case index is valuable for
further dimensionality reduction particularly under the cir-
cumstances when the number of key sequences discovered
is still quite large.

Let Vi = {e1, e2, . . . , eT } be a cluster of events of key
sequences occurrences corresponding to class Ci . We now
want to obtain the discriminating power of cluster Vi by
calculating the conditional probability P(Ci |e1, e2, . . . , eT ).
This probability is yielded by exploiting the events ej as ev-
idences for probability updating in separate steps. At every
step we use a single event to revise prior probabilities ac-
cording to the Bayes theorem and these updated probability
estimates are then propagated as prior beliefs to the next
step. The procedure of probability updating using events in
cluster Vi is depicted by a series of equations as follows:
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P(Ci |e1) = P(e1|Ci)P (Ci)

P (e1|Ci)P (Ci) + P(e1|Ci)P (Ci)
, (25)

P(Ci |e1, e2) = P(e2|Ci)P (Ci |e1)

P (e2|Ci)P (Ci |e1) + P(e2|Ci)P (Ci |e1)
, (26)

...

P (Ci |e1, . . . , ei) = P(ei |Ci)P (Ci |e1, . . . , ei−1)

P (ei |Ci)P (Ci |e1, . . . , ei−1) + P(ei |Ci)P (Ci |e1, . . . , ei)
, (27)

...

P (Ci |e1, . . . , eT ) = P(eT |Ci)P (Ci |e1, . . . , eT −1)

P (eT |Ci)P (Ci |e1, . . . , eT −1) + P(eT |Ci)P (Ci |e1, . . . , eT −1)
(28)

where the probabilities P(ei |Ci) and P(ei |Ci) for i ∈
{1, . . . , T } can be estimated according to (5) and (6) respec-
tively, as ei is considered as the occurrence of a sequence.
The probability updated in (25) represents the probability
for class Ci given event e1, which is further updated in
(26) by event e2 producing a more refined belief considering
both e1 and e2. Generally the probability P(C|e1, . . . , ei) is
yielded by updating the prior probability P(C|e1, . . . , ei−1)

with a new event ei in (27). Finally we obtain the ultimate
probability assessment incorporating all available events by
(28).

At this stage one may question the order in which sin-
gle events from a cluster are used to refine probability as-
sessments. This seems a fundamental issue and involves al-
location of events to different steps of a sequential proce-
dure. Fortunately our study has clarified that the order of
events used in probability updating is completely indiffer-
ent. The final probability value remains constant as long
as each piece of event is assigned to a distinct step. The

claims as such are formally based on the following theo-
rems.

Lemma Let {e1, . . . , eT } be a cluster of events represent-
ing appearances of certain key sequences in a time series
X. The probability for class C given the cluster is not af-
fected if two adjacent events exchange their positions in
the order of events used for probability refinements. This
means that the relation P(C|e1, . . . , ei, ei+1, . . . , eT } =
P(C|e1, . . . , ei+1, ei, . . . , eT } holds for i ∈ {1, . . . , T − 1}.

Proof For proof of the lemma with the statement that
P(C|e1, . . . , ei−1, ei, ei+1, . . . , eT } = P(C|e1, . . . , ei−1,

ei+1, ei , . . . , eT }, we only need to establish the relation for

P(C|e1, . . . , ei−1, ei, ei+1} = P(C|e1, . . . , ei−1, ei+1, ei},
which is equivalent to the lemma.

We start to consider the probability P(C|e1, . . . , ei , ei+1}
which is acquired by updating the prior belief P(C|e1, . . . , ei}
with a new evidence ei+1, hence it can be written as

P(C|e1, . . . , ei, ei+1) = P(e(i + 1)|C)P (C|e1, . . . , ei)

P (ei+1|C)P (C|e1, . . . , ei) + P(ei+1|C)P (C|e1, . . . , ei)
. (29)

Further the probability P(C|e1, . . . , ei) is formulated by

taking P(C|e1, . . . , ei−1) as its prior estimate such that

P(C|e1, . . . , ei) = P(ei |C)P (C|e1, . . . , ei−1)

P (ei |e1, . . . , ei−1
. (30)

Likewise we obtain

P(C|e1, . . . , ei) = P(ei |C)P (C|e1, . . . , ei−1)

P (ei |e1, . . . , ei−1)
. (31)

Combining (30) and (31) into (29) gives rise to a trans-
formed formulation as
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P(C|e1, . . . , ei, ei+1) = P(ei+1|C)P (ei |C)P (C|e1, . . . , ei−1)

P (ei+1|C)P (ei |C)P (C|e1, . . . , ei−1) + P(ei+1|C)P (ei |C)P (C|e1, . . . , ei−1)
. (32)

Next we express the conditional probabilities P(ei+1|C),
P(ei+1|C), P(ei |C), P(ei |C) with their Bayes forms by

P(ei+1|C) = P(C|ei+1)P (ei+1)

P (C)
, (33)

P(ei+1|C) = P(C|ei+1)P (ei+1)

P (C)
, (34)

P(ei |C) = P(C|ei)P (ei)

P (C)
, (35)

P(ei |C) = P(C|ei)P (ei)

P (C)
(36)

where P(C) and P(C) denote the initial probability es-
timates for class C and its complementary without any
events about key sequences appearances. Using the Bayes
forms from (33) to (36), (32) is finally rewritten as

P(C|e1, . . . , ei, ei+1) = P 2(C)P (C|ei+1)P (C|ei)P (C|e1, . . . , ei−1)

P 2(C)P (C|ei+1)|P(C|ei)P (C|e1, . . . , ei−1) + P 2(C)P (C|ei+1)|P(C|ei)P (C|e1, . . . , ei−1)
. (37)

Clearly we see from (37) that the order between ei and ei+1

has no effect at all on the probability P(C|e1, . . . , ei, ei+1)
assessed. It follows that

P(C|e1, . . . , ei−1, ei, ei+1)

= P(C|e1, . . . , ei−1, ei+1, ei) (38)

and here from the lemma is proved. �

With the lemma justified by the proof above, we further
contemplate the implication of it. This leads to a corollary
presented below.

Corollary Let {e1, . . . , eT } be a cluster of events represent-
ing appearances of certain key sequences in a time series
X. The probability for X in class C given the cluster is
independent of the order according to which single events
e1,e2,...,eT , are used in probability refinements.

The proof of the above corollary is obvious. According
to the lemma, an element in a given order of events can be
moved to an arbitrary position by repeatedly exchanging its
position with an adjacent one while not affecting the final
probability assessments. As this can be done to every piece
of event, we enable transitions to any orders of events with-
out altering the estimated value of the probability.

This corollary is important in providing theoretic argu-
ments allowing for an arbitrary order of sequences to be used
in probability fusion based on the Bayes theorem. The con-
notation is that when a key sequence occurred in the time

series does not matter for the case index. Instead only the
numbers of appearances of key sequences affect the likeli-
hoods of classes given respective occurrence clusters, which
are included as components in the case index vector.

Now let us study an illustrative example to better under-
stand how the above sequential procedure works in deriva-
tion of required probabilities using clusters of events as evi-
dences. Consider a time series X with two probable classes.
Suppose that four key sequences S1, S2, S3, and S4 are de-
tected in X, and S1, S2 are indicative of class C while S3

and S4 are indicative of the complementary of C. The a pri-
ori probability of class C is 50%, and the probabilities of
sequences S1, S2, S3, and S4 in situations of class C and its
complementary are shown below:

P(S1|C) = 0.56, P (S1|C) = 0.24,

P (S2|C) = 0.80, P (S2|C) = 0.40,

P (S3|C) = 0.35, P (S3|C̃) = 0.62,

P (S4|C) = 0.18, P (S4|C̃) = 0.30.

Further we assume that sequence S1 appears twice
in X and S2, S3, S4 appear once, hence the clusters of
key sequence occurrences for X are notated as V1(X) =
{S1, S1, S2} and V2(X) = {S3, S4}. With these three occur-
rences detected, the probability of class C yielded in the
following three steps:



Concise case indexing of time series in health care by means of key sequence discovery 257

Step A1: Update the a priori probability P(C) with the first
appearance of S1 by

P(C|S1) = P(S1|C)P (C)

P (S1|C)P (C) + P(S1|C)P (C)

= 0.56 · 0.5

0.56 · 0.5 + 0.24 · 0.5
= 0.70.

Step A2: Refine the probability updated in step A1 with
the second appearance of S1, thus we have

P(C|S1, S1) = P(S1|C)P (C|S1)

P (S1|C)P (C|S1) + P(S1|C)P (C|S1)

= 0.56 · 0.70

0.56 · 0.70 + 0.24 · 0.30
= 0.8448.

Step A3: Refine the probability updated in step 2 with the
occurrence of S2, and we acquire the final probability as-
sessment taking into account all events by

P(C|S1, S1, S2)

= P(S2|C)P (C|S1, S1)

P (S2|C)P (C|S1, S1) + P(S2|C)P (C|S1, S1)

= 0.80 · 0.8448

0.80 · 0.8448 + 0.40 · 0.1552
= 0.9159.

Likewise we calculate the probability P(C|S3, S4) with two
steps as follows:

Step B1: Update the prior probability P(C) with occur-
rence of S3

P(C̃|S3) = P(S3|C̃)P (C̃)

P (S3|C)P (C) + P(S3|C̃)P (C̃)

= 0.62 · 0.5

0.35 · 0.5 + 0.62 · 0.5
= 0.6392.

Step B2: Refine the probability updated in step B1 with
appearance of S4

P(C̃|S3, S4) = P(S4|C̃)P (C̃|S3)

P (S4|C)P (C|S3) + P(S4|C̃)P (C̃|S3)

= 0.30 · 0.6392

0.18 · 0.3608 + 0.30 · 0.6392
= 0.7470.

Finally, with the required probabilities at hand, we can es-
tablish the case index for the time series X as follows

Id4(X|S1, S2, S3, S4) = [DP(V1),DP(V2)]
= [P(C|S1, S1, S2),P (C|S3, S4)]
= [0.9159,0.7470].

For similarity assessment, we first calculate the dissimilarity
between two time series X1 and X2 as the average of the

differences in discriminating powers over all key sequences
clusters

Dis4(X1,X2) = 1

K

K∑
j=1

|DP(V1j ) − DP(V2j )| (39)

where V1j and V2j denote the j th clusters of key sequences
corresponding to class Ci , for X1 and X2 respectively. Since
the concept of dissimilarity is opposite to that of similarity,
the degree of similarity between X1 and X2 is simply de-
fined as unity subtracted by the dissimilarity value

Sim4(X1,X2) = 1 − Dis4(X1,X2). (40)

6 Experiment results

This section presents some experimental results to demon-
strate the feasibility and usefulness of the proposed ap-
proaches. We first verify the ability of our search mechanism
to find key sequences from a symbolic time series data set.
Subsequently we examine the performance of case-based
classification using these discovered key sequences.

6.1 Finding key sequences from time series data

A synthetic time series data set was created to test the fea-
sibility of our key sequence search mechanism. A case in
this data set is depicted by a time series of 60 patterns and
one diagnosis class as the outcome. A pattern in a time se-
ries belongs to {a, b, c, d, e} and a diagnosis class is either
1, 2, or 3. The four key sequences assumed are [a c e b],
[d b a c], [b c b e], and [d d a e]. The first two sequences
were supposed to have strong co-occurrences with class 1
and the third and fourth exhibit strong co-occurrences with
classes 2 and 3 respectively. Each time series in the data
set was created in such a way as follows. The sequence
[a c e b] was reproduced once with the probability of 75%
for cases of class 1, while the sequences [d b a c] and
[b c b e] were created twice with the probability of 60%
for both class 1 and class 2 cases. Moreover, with a chance
of 50%, the sequence [d d a e] was inserted three times into
cases of class 3. After stochastic reproduction of these key
sequences, the remaining patterns in the time series of all
cases were generated randomly. The whole data set consists
of 100 instances for each class. Presuming such time series
cases to be randomly selected samples from a practical do-
main, a priori probability of each class is believed to be one
third.

The sequence search algorithm was applied to this data
set to find key sequences and potential co-occurrences hid-
den in the data. The threshold for the discriminating power
was set at 70% to ensure adequate strengths of relationships
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discovered. For reliable assessment of probabilities, we also
defined the threshold of the evaluation base according to (9)
with δ being specified as 0.1. The sequences found in our
test are shown in Table 1.

As seen from Table 1 we detected all the four key se-
quences previously assumed. They were recognized as po-
tentially related to the respective classes with probabilities
ranging from 83.51% to 87.50%. These relationships with
a degree of uncertainty are due to the many randomly gen-
erated patterns in the data set such that any sequence of pat-
terns is more or less probable to appear in time series of
any class. But this would reflect non-deterministic property
prevalent in many real world situations.

6.2 Case-based classification using key sequences

The next step is to utilize the information of key sequences
to transform original symbolic time series into numerical
feature vectors. Each of the case indexing schemes sug-
gested in Sect. 5 can be used here for this purpose. The point
of departure is that the data generated above are strongly
characterized by some crucial transitions of patterns rather
than single pattern values. As a consequence, it makes no
sense to compare two time series cases in terms of the dis-
tance between them over the whole time span. Such judg-
ment has also been verified by conducted tests in which the
kNN method was applied on the original time series cases
using the similarity metric as:

Similarity(X1,X2) = 1

K

K∑
j=1

{
1, if X1(j) = X2(j),
0, if X1(j) �= X2(j)

(41)

Table 1 Key sequences discovered on a synthetic data set

Key sequences Discriminating Evaluation Dominating

discovered power base class

[a c e b] 84.71% 85 Class 1

[d b a c] 83.51% 97 Class 1

[b c b e] 86.54% 104 Class 2

[d d a e] 87.50% 104 Class 3

where K is the length of the original symbolic time series
and by Xi(j) we denote the j th sequential pattern in time
series Xi .

The results of these tests using (41) as similarity assess-
ment are shown in Table 2, which includes the leave-one-out
accuracy of the kNN classifications with k = 1,3,5,7,9,11.
It is seen from the table that no improvement was achieved
by kNN in classification accuracy over the prior probabilities
of classes. The reason lies in the simple distance measure-
ment applied in similarity matching, which appears knowl-
edge poor and ignores all the information about occurrences
of key sequences in time series cases.

To better characterize problems for CBR tasks, we con-
verted the symbolic time series data according to occur-
rences of key sequences in our further experiments. The
kNN method was then applied on the newly converted com-
pact cases where a numerical vector was adopted as case
index to convey descriptions of problems. All the four sug-
gested case indexes (naive, sequence appearance number,
discriminating power, sequence union) were investigated,
leading to the employment of the similarity metrics in (12),
(14), (22), and (40) respectively for case matching and re-
trieval. Table 3 illustrates the leave-one-out performances of
the kNN classifications in association with different case in-
dexes. Observing the results in Table 3 enables us to draw
the statements as follows:

(1) The use of case indexes based on key sequences re-
sults in substantial improvement of classification accuracy
in all cases against the situations with simple distances as
similarity criterion.

(2) The case index in terms of discriminating powers
seems to achieve the better classification performance than
the naive index and the index using sequence appearance
numbers, regardless the value of k specified for the kNN
method. This probably can be explained by the more pre-
cise information carried by the discriminating powers com-
pared with the binary or appearance number descriptions
connected with key sequences.

(3) The case index upon key sequence unions causes al-
most the same performance as the index based on discrimi-

Table 2 The leave-one-out
accuracy of kNN using the
similarity metric in (41)

k = 1 k = 3 k = 5 k = 7 k = 9 k = 11

Accuracy 34.00% 33.33% 31.00% 35.33% 31.33% 29.33%

Table 3 The leave-one-out
accuracy of kNN with the case
indexes based on key sequences

k = 1 k = 3 k = 5 k = 7 k = 9 k = 11

Naive index 57.00% 85.67% 89.33% 90.00% 88.33% 86.33%

Index using appearance numbers 58.67% 89.67% 88.67% 89.33% 90.00% 86.33%

Index upon discriminating powers 73.33% 92.33% 91.33% 90.00% 91.67% 92.00%

Index upon key sequence unions 73.67% 92.33% 91.33% 89.00% 92.00% 91.00%
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nating powers. The former index can be understood as com-
pressing discriminating powers of key sequences of identical
unions into single values. The merit of doing so is further
reduction of the dimension of the case index, particularly
when the number of key sequences is still large.

7 Related works

Representation and retrieval of time dependent situations
has received increasing research efforts during the recent
years. The two most common methods are Fourier and
Wavelet transforms which aim to convert time-evolving pro-
files into somehow simplified and shorter vectors that still
preserve core properties. The usages of Fourier and Wavelet
transforms for retrieving similar cases to support medical
and industrial diagnoses have been shown in [12, 14] and
[15] respectively. Besides, the theory of temporary interval
is also shown a suitable tool for representing temporal re-
lations insides cases [8]. The idea is to maintain temporary
information in a temporary network where nodes represent
individual intervals and all possible relationships between
nodes are processed by means of a predefined transitivity ta-
ble. This temporal approach was applied in a CBR system
Creek for prediction of unwanted events in oil well drilling
[8].

A general framework for tackling cases in time depen-
dent domain was proposed by [13], in which temporal
knowledge embedded in cases are represented at two levels:
case level and history level. The case level is tasked to de-
pict single cases with features varying within case durations,
while consecution of cases occurrences have to be captured
in the history level to reflect the evolution of the system as
a whole. It was also recommended by the authors that, at
both of the two levels, the methodology of temporal abstrac-
tion [4, 20] could be exploited to derive series of qualitative
states or behaviors, which facilitate easy interpretation as
well as pattern matching for case retrieval.

This paper would be a valuable supplementary to the
framework by Montani and Portinale in the sense that our
key sequence discovery approach can be beneficially applied
to the series of symbols abstracted from original time series.
The point of departure is that, in many practical circum-
stances, significant transitional patterns in history are more
worthy of attentions than the states or behaviors themselves
associated with single episodes. It follows that the key se-
quences discovered will offer us useful knowledge to focus
on what are really important in case characterization. More-
over, as the number of key sequences is usually is smaller
than the number of elements in the series, indexing cases
in terms of key sequences exhibits a further dimensionality
reduction from series obtained via temporal abstraction.

Finding sequential patterns was widely addressed in the
literature of sequence mining [2, 7, 21], where the goal was

merely to find all legal sequential patterns with their fre-
quencies of appearances above a user-specified threshold.
High occurrence frequency was regarded in [3] as strong ev-
idence to identify coherent sequences in a case-based sys-
tem for recommendation of songs playlist. Identifying key
sequences in our context differs from those in sequence min-
ing in that we have to consider the cause-outcome effect for
classification purpose. Only those non-redundant sequences
that are not only frequent but also possess strong discrimi-
nating power will be selected.

Finally, but not the least, Martin and Plaza [10] investi-
gated temporarily related cases prevalent in many real world
domains. They defined sequential case as an assemblage of
a few sub-cases among which a temporal order is estab-
lished. Based on that a new model termed ceaseless CBR
was proposed, which consists of the steps of ceaseless re-
trieval and ceaseless reuse. Ceaseless retrieval aims to con-
tinuously compare the sequence of alerts at hand with se-
quential cases in the case base to update the set of hypothe-
ses on the occurrences of similar past cases, while ceaseless
reuse is tasked to search for the combinations of such hy-
potheses to best explain the sequence of observational data
so far received.

8 Conclusion

This paper aims to identify significant sequences to inter-
pret and deal with dynamic properties of time series cases
consisting of discrete, symbolic patterns. A knowledge dis-
covery approach is proposed for this purpose. This approach
uses the whole case library as available resources and is
able to find from the problem space all qualified sequences
that are non-redundant and indicative. An indicative se-
quence exhibits a high co-occurrence with a certain class
and is hence valuable in offering discriminative strength
for prediction. A sequence that is both indicative and non-
redundant is termed as a key sequence.

It is shown that the key sequences discovered are highly
usable to characterize time series cases in case based rea-
soning. The idea is to transform an original (lengthy) time
series into a more concise representation in terms of the oc-
currences of key sequences detected. Four alternative ways
to develop case indexes based on key sequences are sug-
gested. Preliminary results of experiments have shown that
these case indexes can lead to much better performance of
the CBR system compared with using the whole symbolic
series as problem descriptions. Further comparative studies
regarding performance and applicability of these four case
indexes will be done in conjunction with a number of med-
ical application scenarios in future.
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