
205

Concise Details of RADS

Stuart M Brooks*

Colleges of Public Health and Medicine, University of South Florida, USA

*Corresponding author: Stuart M Brooks, Colleges of Public Health and Medicine, University of South Florida, USA..

To Cite This Article: Stuart M Brooks, Concise Details of RADS. Am J Biomed Sci & Res. 2019 - 6(3). AJBSR.MS.ID.001029. DOI: 10.34297/

AJBSR.2019.06.001029.

Received:   November 05, 2019;  Published:   November 22, 2019

Copy Right@ Stuart M Brooks

This work is licensed under Creative Commons Attribution 4.0 License  AJBSR.MS.ID.001029.

American Journal of

Biomedical Science & Research

www.biomedgrid.com

---------------------------------------------------------------------------------------------------------------------------------

ISSN: 2642-1747

Review Article

Introduction

Reactive Airways Dysfunction Syndrome (RADS) is an 

abrupt-onset asthmatic disorder of a non-allergy origin [1]. 

RADS development involves the inhalation of a single high-level 

irritant exposure [2]. Innate immunity plays a critical role in 

RADS pathogenesis. Implementation of innate immunity permits 

the airways to deal with non-microbiological constituents arising 

after a massive irritant inhalation exposure [3-5]. Allergy, antigen-

antibody interaction, and actions by immune Th2 lymphocyte are  

 

not part of the pathogenetic processes of RADS. Causative agents 

causing RADS are irritating gases, vapors, aerosols and/or fumes, 

as well as solvent vapors and acid mists [6,7]. There generally is need for prompt medical assistance within the first 24 hours after 
the inhalation exposure [8]. The foremost clinical characteristics of RADS are asthma-like symptoms and nonspecific airway 
hyperresponsiveness, which may be transient or present for a 

longer period [9,10]. Table 1 presents the diagnostic criteria of 

RADS [2]. 
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Table 1: Diagnostic Criteria for RADS

S.no Diagnostic Criteria for RADS

1.
Absence of pre-existing respiratory disorder, asthma symptomatology or a history of asthma in remission and exclusion of conditions 

that can simulate asthma.

2. Onset of asthma occurs after a single high-level exposure or accident.

3. Exposure is to an irritant vapor, gas, fumes, aerosols, or smoke present in very high concentrations.

4. Onset of asthma occurs within minutes to hours and always less than 24 hours after the exposure.

5. Finding of a positive methacholine challenge test (<8 mg/ml) after the exposure when tested.

6. Airflow obstruction on pulmonary function testing is common.
7. Another pulmonary disorder to explain the symptoms and findings is excluded.

Humans and Rads

RADS ensues following an unforeseen or unexpected excessive 

irritant chemical release. There may be unanticipated explosions 

or circumstances where there is the sudden accidental release of 

irritant(s) held under pressure [11-20]. Dangerous inhalation  

events occur in the workplace, the home surroundings, and in 
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various community environmental situations [21]. Accomplishing workplace activities within a confined space having reduced rates 
of air exchanges and/or a space with reduced fresh air make-up 

are potentially unsafe situations. Elevated irritating emissions accompany a fire with smoke [22]. Workers engaged in repairing 
damaged workplace structures or malfunctioning machines are in 

potential danger. Cleaning activities become risky when a worker 

is not properly equipped, trained, or aware of potential hazardous 

risks while performing a job [23]. 

Adverse pulmonary consequences transpire after accidents 

involving trains or trucks transporting chemicals. The Bhopal 

release disaster, involving methyl isocyanate, caused serious lung 

consequences to workers and surrounding residents [24-26]. 

Intentional inhalational casualties occurred because of chemical warfare attacks during World War I and the Iran–Iraq War. A RADS-
like condition affected rescue workers involved with the collapse of New York’s World Trade Center on September 11, 2001 [27]. 
The originally reported causative agents of RADS were uranium hexafluoride gas, floor sealant, spray paint containing significant 
concentrations of ammonia, heated acid, 35-percent hydrazine, 

fumigating fog, metal coating remover, and smoke. When a massive exposure suddenly materializes, like a bolt 
from the blue, an oncoming exposure cloud quickly gains the 

attention of witnessing individuals. The expanding suspension 

may force persons to retreat in fear. Persons in attendance at a 

worksite or in a community location where a catastrophic massive 

irritant exposure emerges become frightened and surprised by the 

unannounced exposure. Panic may ensue. Vocal communications 

warn of a looming “danger.” Finally, the disastrous exposure 

envelops victims who breathe in its dangerous constituents, which 

enter the airway striking the bronchial epithelial cells and mucosal surfaces; both are the first lines of airway defense [5,28]. Serial 
bronchial biopsies were obtained on an injured individual at three 

and 15 days after an accidental workplace inhalational of chlorine gas [29]; bronchial biopsies were also taken at three and five 
months after the exposure. The earliest bronchial biopsy depicted sloughing of epithelial cells, and infiltration of the submucosa with a fibrinohemorrhagic exudate. Basal and parabasal cells proliferation 
and deposition of collagen took place early on. Mononuclear cell inflammation, denuded epithelium, and edematous mucosa were 
reported for the originally reported cases of RADS [1]. Mucosal 

squamous cell metaplasia, thickening of the basement membrane with reticulum, and collagen-associated bronchial wall fibrosis tended to be later pathological findings [30,31]. An individual 
who inhaled sodium hypochlorite and hydrochloric acid disclosed bronchial biopsy pathological findings of cellular destruction, lymphocytic inflammation and subepithelial fibrosis several 
months after the exposure [30].

An investigation utilizing Sprague-Dawley rats mirrored a 

human RADS exposure. The laboratory rats sustained a single 

exposure to 1,500 parts per million of chlorine gas for 5 minutes 

[32,33]. The massive exposure caused a severe airway injury with ensuing detachment of damaged and dead epithelial cells; the first 
line of defense is laid bare [5,28]. At 24 hours after the exposure, the 

rat’s airway tissue exhibited a severe injury to the bronchial mucosal 

with sloughing of damaged or dead epithelial cells, and cellular 

detachment from the basement membrane. Bronchoalveolar lavage fluid identified an initial neutrophilic inflammation. There 
were mucosal regenerative changes by the third day after the 

exposure. Cellular regeneration changes persisted for the next 7-14 

days. There was the appearance of increasing numbers of mucus-

secreting cells. Reparative pathological abnormalities disappeared 

by 90 days after the exposure. 

Discussion 

Human and animal pathological surveys afford clues to what 

happens biomedically. Pathological specimens reveal sloughing of 

damaged and dead epithelial cells; there is and cellular detachment 

from the basement membrane. In response to the inhalation injury, 

activated innate repair genes proceed without reliance on an 

adapted immunity route that requires an antigen-antibody trigger 

and contributions by Th2 lymphocytes. Hematopoietic and bone 

marrow-derived cells migrate to renew the denuded cellular barrier 

[34-38]. Damage-Associated Molecular Patterns (DAMPs) are 

released by stressed or dying cells [39-45]. A variety of cytokines 

and chemokines, arachidonic and prostaglandin products, and 

nitric oxide emissions appear [41,42,46-48]. Soluble growth 

factors, G-protein-coupled receptor agonists, and liberations from 

airway smooth muscle cells contribute to epithelial and tissue 

repair [34,38,41,42,46-50]. The mononuclear lymphoid-type cell, 

noted in RADS, may embody innate lymphoid cells that lack T-cell 

and B-cell receptors. Type 2 innate lymphoid cells produce cytokines IL-5 and IL-13 in response to IL-25 or IL-33. These type cells are involved in the 
pathogenesis of airway hyperreactivity [51,52]. RAGE (Receptor 

for Advanced Glycation End-products) molecules, expressed on macrophages, influence the inflammatory response through DAMPs [38,40,53-56]. RAGE triggers NF-κB (nuclear factor kappa-
light-chain-enhancer of activated B cells) and numerous MAPKs (Mitogen-activated protein kinases) [57-59]. NF-κB controls genes involved in inflammation while MAPKs transduce a wide 
range of cellular responses. HMGB1 (High Mobility Group Box 1), 

a chromatin-associated, non-histone protein and DAMP, kindles 

cellular proliferation, angiogenesis, neovascularization, and 

cellular differentiation of bone marrow-derived mesenchymal stem 

cells with RAGE binding [60]. Adenosine triphosphate (ATP) influences migration of 
vascular smooth muscle cells and in “cleanup” operations [42]. 

The chemokine RANTES (Regulated on Activation, Normal T Cell Expressed and Secreted) plays a role in the inflammatory process 

https://biomedgrid.com/


Am J Biomed Sci & Res                                                                                                                                                                          Copy@ Stuart M Brooks

American Journal of Biomedical Science & Research 207

[61,62]. The amount of RANTES contained in bronchoalveolar lavage fluid is higher in patients with non-allergic asthma [63]. Lung macrophages assist the repair and clean-up processes; and influence airway hyperresponsiveness [64-67]. The presence of nonspecific airway hyperresponsiveness (AHR) is a cardinal feature 
of RADS. Components of metalloproteases and extracellular matrix 

improve the epithelial-to-mesenchymal matrix [68,69]. Airway wall thickening, subepithelial fibrosis, mucus metaplasia, myofibroblast 
hyperplasia, muscle cells hyperplasia and hypertrophy, and 

epithelial hypertrophy are characteristic features of the airway 

remodeling response described in cases of RADS [70]. 

Conclusion

The massive exposure causing RADS initiates detachment of 

damaged and dead epithelial cells. Molecules of Damage-Associated 

Molecular Patterns (DAMPs) enter the extracellular space after being 

release by stressed or dying cells. Hematopoietic and bone marrow-

derived cells migrate to renew the denuded cellular barrier. Soluble 

growth factors, interleukins, chemokines, arachidonic acid products, 

and discharges from airway smooth muscle cells aid epithelial and tissue repair. Lung macrophages contribute to the repair and influence airway hyperresponsiveness. Type 2 innate lymphoid 
cells release important cytokines. Proteases and extracellular matrix influence the epithelial-to-mesenchymal matrix. Further 
airway remodeling entails airway wall thickening, subepithelial fibrosis, mucus metaplasia, myofibroblast hyperplasia, muscle cells 
hyperplasia and hypertrophy, and epithelial hypertrophy.
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