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ABSTRACT

The ability to speak, swallow, masticate, taste food, and
maintain a healthy oral cavity is heavily reliant on the pres-
ence of saliva, the hugely important effect of which on our
everyday lives is often unappreciated. Hyposalivation, fre-
quently experienced by people receiving radiation therapy
for head and neck cancers, results in a plethora of symp-
toms whose combined effect can drastically reduce quality
of life. Although artificial lubricants and drugs stimulating
residual function are available to ameliorate the consequen-
ces of hyposalivation, their effects are at best transient.
Such management techniques do not address the source of
the problem: a lack of functional saliva-producing acinar
cells, resulting from radiation-induced stem cell steriliza-
tion. Post-radiotherapy stimulation of cell proliferation

only results in improved saliva secretion when part of the
tissue has been spared or when the dose to the salivary
gland (SG) remains below a certain level. Therefore, stem
cell replacement therapy may be a good option to treat
radiation-induced hyposalivation. Substantial progress has
been made lately in the understanding of cell turnover in
the SG, and the recent identification of stem and progenitor
cell populations in the SG provides a basis for studies to-
ward development of a stem cell-based therapy for xerosto-
mia. Here, we review the current state of knowledge of SG
stem cells and their potential for use in a cell-based therapy
that may provide a more durable cure for hyposalivation.
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INTRODUCTION

More than 40,000 new patients in the U.S.A. are expected to
be diagnosed with head and neck cancer in 2012 [1]. The ma-
jority of these patients will be treated with radiotherapy (RT)
alone, or in combination with chemotherapy and/or surgery,
with a consequent 5-year-survival rate of approximately 50%
for non-metastatic locally advanced disease [2]. While signifi-
cantly improving the patient’s chances of survival, RT treat-
ment often results in unavoidable co-irradiation of normal
tissues surrounding the tumor, such as the salivary glands
(SGs). Although protocols have been developed to minimize
early and late loss of gland function following RT, 40% of
head and neck cancer patients receiving the most modern in-
tensity modulated RT will still experience moderate or severe
xerostomia [3–7].

Induced by radiation, SG dysfunction and consequential
hyposalivation causes many post-treatment complications,
including hampered speech, dental problems, difficulties with
swallowing and food mastication, impaired taste, and noctur-
nal oral discomfort. Hyposalivation and the resultant
symptoms are together termed xerostomia (‘‘dry mouth syn-
drome’’), can lead to a dramatic loss in quality of life for the

patient, and remains extremely difficult to manage [3, 4, 8, 9].
This review describes recent progress in our comprehension
of radiation-induced hyposalivation, the characterization of
rodent and human SG stem cells, and advances in design of
an adult stem cell-based therapy for long-term treatment of
hyposalivation in post-RT patients.

A CELLULAR BASIS FOR RADIATION-INDUCED
LONG-TERM HYPOSALIVATION

The SGs of mice, rats, and humans are composed basically of
two saliva-producing cells types, namely mucous and serous aci-
nar cells, myoepithelial cells, which facilitate saliva expulsion
and a ductal cell system which modifies saliva composition and
through which saliva is secreted into the oral cavity (Fig. 1).
Intertwined cholinergic and adrenergic nerve fibers stimulate sa-
liva production and also indirectly affect SG secretion through
innervation of the blood vessels that supply the glands. The
whole consortium of cells is kept in close physical proximity to
each other by supporting stromal tissue [10, 11] (Fig. 1). The
impact of RT on function of SGs is bifaceted. Saliva-producing
acinar cells are largely postmitotic in nature, and according
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classical radiobiology theory not predicted to be radiation-sensi-
tive [12]. RT of the SG however induces severe early (phases 1
and 2, 0–10 days and 10–60 days, respectively) loss in saliva pro-
duction, suggesting that the SG is more radiosensitive than antici-
pated [13]. Debate is still ongoing as to whether this observed
early RT-induced hyposalivation is attributable to apoptosis or to
membrane damage-induced dysfunction of the acinar cells [3,
13–19]. The later phases of RT-induced hyposalivation (phases 3
and 4, from 60 to 120 and 120 to 240 days, respectively), wherein
functionally mature acinar cells senesce and are not replenished
with new ones, are now suggested to be due to RT-induced steri-
lization of a SG stem/progenitor cell population (SSPCs) ([13,
14, 20–26]; Fig. 1). Stem or progenitor cells are characterized by
their self-renewal and differentiation capabilities, can replenish
damaged cells, and have been identified in many tissues within
the mouse and human [27–33]. In this hypothesis therefore, the
number of remaining undamaged SSPCs will determine the re-
generative capacity of the gland after irradiation. Recovery and
compensatory responses in nonirradiated regions (presumably
containing SSPCs) have been observed after radiation, indicating
the potential of surviving SSPCs to regenerate the tissue [23, 34].
We now review the evidence for the existence of such a SSPC
population that is both responsible for SG homeostasis, and for
long-term hyposalivation when sterilized.

ADULT SG STEM/PROGENITOR CELLS

Through label-retaining cell studies using nucleotide analogs
such as bromodeoxyuridine and 3H-thymidine, proliferating
cells have been localized mainly to the excretory and interca-
lated ducts in the SG ([20–22, 24, 35]; Fig. 1). Ligating the
major excretory duct of the SG, creating a dysfunctional/apo-
ptotic acinar cell environment, results in the proliferation of
intercalated and excretory duct cells [21, 36–41]. The initial
functional ablation in ligated glands can be rescued after deli-
gation through proliferation and suggested differentiation of
these ductal cells, and saliva flow will rather rapidly return to
pre-ligation levels. Label-retaining cell studies have also dem-
onstrated that acinar cells themselves display a limited degree
of proliferative ability, but the total ablation of acinar cell
function in ligation experiments suggests that acinar cell pro-
liferation is unlikely to account for the rescue of function.
The above studies imply that cells capable of proliferation
and differentiation reside within the ducts of SGs and may
represent a potent SSPC population. Further studies have also
suggested that these putative SSPCs are responsive to growth
factor-mediated stimulation, whereby RT-induced hyposaliva-
tion was rescued through administration of keratinocyte

Figure 1. Schematic representation of a generic salivary gland showing component cell types and theorized stem and progenitor cell

locations. Visualization of proposed location of primitive stem cells, within larger excretory and striated ducts, and progenitor cells, within the
striated and intercalated ducts. The stem cell pool supplies in the progenitor cell pool, which in turn replenishes the population of functionally
mature duct and acinar cell types. Both stem and progenitor cells have the capacity to self-renew and differentiate. Schematic diagram generated
based on available duct ligation, label-retaining cell, and stem/progenitor cell marker expression data.
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growth factor (KGF), or GFs secreted by bone marrow cells
(BMCs) mobilized to the SG via granulocyte-colony-stimulat-
ing factor (G-CSF) [42, 43]. Tissue recovery in G-CSF- or
KGF-treated animals was markedly higher than that in control
animals, as assessed by a significantly higher acinar cell con-
tent in and saliva production from treated glands [42, 43].
However, reducing the number of surviving putative SSPCs
by increasing the radiation dose prevented these growth fac-
tors from rescuing SG function [42, 43].

These data serve to emphasize further the importance of a
functional residual SSPC population in the SG for hyposaliva-
tion recovery. Pre-RT isolation of SSPCs followed by post-
RT replacement into the patient could therefore increase the
regenerative potential of the SG and potentially completely
restore tissue homeostasis following RT. In order to develop
such a cell-based therapy for hyposalivation, determine the
most potent SSPC population, and further characterize these
cells, the ability to manipulate putative SSPCs in vitro is
paramount.

RODENT SSPCS

Numerous studies have now demonstrated that in vitro culture
of processed SG tissue is possible, a summary of which can
be found in Table 1. Some of these studies have used a
monolayer culture technique, where adherent, proliferative
colonies of presumed SSPCs were cultured from rat SGs, and
after 7 days of culture with added epidermal growth factor
and hepatocyte growth factor demonstrated expression of duc-
tal (cytokeratins 18 and 19 and c-Met), acinar (amylase and
aquaporin-5), and myoepithelial (vimentin and a-smooth mus-
cle actin) differentiation marker proteins (Table 1). Also
CD24/CD49f (a6b1 integrin) and CD117 (c-Kit) stem-cell-
associated proteins were found at frequencies of 90% and 6%,
respectively, in these cultures [49, 50]. Recent developments
in the study of stem cell populations from other glandular tis-
sues such as the prostrate and mammary gland, and also from
the neural system, have used nonadherent culture methods to
derive functional populations of adult progenitor cells [27–
32]. Following these advancements, our lab developed a non-
adherent method for culturing potential murine SSPCs ([44,

45, 56]; Table 1). After mechanical and enzymatic digestion,
aggregates of cells cultured in suspension, which were named
salispheres, increased in size over time in culture and con-
tained proliferating cells [44, 56]. Murine salispheres were
found to express the adult stem cell marker proteins CD117,
CD24, CD29, CD49f, Sca-1, Musashi-1, CD44, CD90, and
CD34, expression of most of which has been localized to
ducts in naı̈ve SGs ([44–46]; Fig. 1), with the exception of
CD44, whose expression was also suggested to be associated
with differentiated serous acinar cells [54]. Interestingly,
CD117 expression in 3-day cultured salispheres (>0.6%) was
markedly higher than that immediately following salisphere
isolation (< 0.01%), suggesting that salisphere culture repre-
sents a form of lineage selection and could be used as a tool
to enrich for stem cells prior to therapeutic use [45]. Sponta-
neous differentiation into cells expressing acinar (a-amylase)
and ductal cell (cytokeratins 7 and 14) marker proteins during
culture was also reported in salisphere cultures [44, 46]. Thus,
through ligation, label-retaining cell, growth factor, and
culture-based studies, we can surmise that a stem cell-like
population is likely to be contained within SG duct cells. For
the development of a (stem) cell therapy for hyposalivation,
ductal-like cells from salisphere or monolayer cultures may
be promising candidates.

The first evidence of ductal-like SSPC functionality in
vivo was reported from studies in which donor cells isolated
from salisphere cultures were transplanted back into irradiated
recipient murine glands [44, 45]. Recovery of SG function of
70% of the transplanted animals was achieved with as few as
300 c-Kitþ SSPCs from primary salispheres. In serial trans-
plantation experiments, only 100 c-Kitþ donor-derived cells
isolated from salispheres grown from primary recipient glands
repopulated glands in a secondary transplant. Non-c-Kit-
expressing cells were much less potent leading to 33% recov-
ery following transplantation of 10,000–90,000 cells [44].
Importantly, and in contrast to studies involving transplanted
BMCs, the transplanted c-Kitþ SSPCs had functionally inte-
grated within the recipient gland, expressed donor-derived
markers, and displayed ductal and acinar cell-type morpholo-
gies [44]. Studies of the regenerative capacity of potential
SSPCs expressing the CD24, CD49f, and CD133 ductal-asso-
ciated marker proteins yielded similar exciting functional
recovery, with effective cell numbers of approximately 5,000

Table 1. Summary of current salivary gland stem cell phenotypic studies presented in chronological order within species

Species Marker/s of interest Culture method

Tested for

First author RefIn vitro differentiation? In vivo function?

Mouse CD117 Salispheres Yes Yes Lombaert [44]
CD49f, CD29, CD24, CD117 Salispheres No Yes Nanduri [45]
CD117 and ALDH Salispheres Yes No Banh [46]
SP cells, Sca-1, clusterin No culture No Yes Mishima [47]
Ascl-3 Salispheres Yesa No Rugel-Stahl [48]

Rat No marker Monolayer Yes No Kishi [49]
CD49f, CD29 Monolayer No No David [50]
CD49f, CD29, CD117 Monolayer Yes No Neumann [51]

Human CD49f, CD90 Monolayer Yesb No Sato [52]
CD117 Salispheres Yes No Feng [53]
CD34, CD117, ALDH, CD90, CD44 Salispheres Yes No Banh [46]
CD44, CD166 No culture — — Maria [54]
CD49f, CD29 Monolayer No No Palmon [55]

—, indicates not applicable in study. aLineage tracing data. bPancreatic-like differentiation shown. CD nomenclature are given where
possible. Pseudonyms are: CD49f ¼ integrin a6; CD117 ¼ c-Kit; CD90 ¼ Thy-1; CD166 ¼ activated leukocyte cell adhesion molecule
(ALCAM); CD24 ¼ heat stable antigen (HSA); CD29 ¼ integrin b1. Abbreviations: ALDH, aldehyde dehydrogenase; CD, cluster of
differentiation; SP, side population cells.
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CD24, CD29, or CD133-expressing cells [45]. When side
population (SP) cells, shown to be stem cell-like cells in other
tissues, were isolated from SGs and immediately transplanted
into irradiated recipient glands without a culture period, func-
tional recovery was indeed observed within 2 months, how-
ever integrated acinar and ductal-like donor cells were not
detected in the recipient SGs [47, 71–78]. These data suggest
that selection for donor ductal-like cells, both by inclusion of
an in vitro cell culture phase, and/or employment of marker
proteins enhances functional recovery in vivo.

HUMAN SSPCS

Preliminary data suggests that salisphere-based culture princi-
ples and the employment of protein markers can be utilized in
the study of human SSPCs (hSSPCs) ([44, 46, 53]; see also
Table 1). Data from our own lab demonstrates that CD117,
CD24, CD29 and CD49f are expressed by a proportion of
cells in 3-5 day old human salisphere cultures (Fig. 2). Pre-
liminary data showing some human salisphere differentiation
into three-dimensional organoid structures containing acinar
and ductal-like regions is also encouraging in terms of the
potential differentiation capabilities of these cells [53]. Alter-
natively, cells grown in monolayers have also been shown to
express a panel of stem-cell-associated marker proteins
(CD44, CD49f, CD24/CD49f, CD90, CD104, and p75NGFR).
The colocalization of two such markers, CD49f and CD90, in
the periductal region of a native gland was further suggested
to be evidence for the ductal location of hSSPCs [52, 55].

Studies regarding hSSPCs are few in number as yet and
crucial assays for the reliable assessment of hSSPC differ-
entiation and proliferation capabilities are still lacking.
Even if hSSPCs mirror the in vivo functional ability of mu-
rine SSPCs, they still represent by no means the only cell-
based option for a xerostomia therapy. Since 1998, a huge
effort has been directed toward the investigation of human
embryonic stem cell (hESC) potential as a source of cells
for therapeutic applications, based on their capability to
turn into any cell type in the body and self-renew indefi-
nitely [57, 58]. In 2001, the first clinical trial using hESC-

derived cells began, as a therapy for spinal cord injury
[59]. An hESC-based approach to xerostomia therapy has
not yet been reported, and may be hazardous due to the
vulnerable nature of post-RT patients, in combination with
the inherent teratogenicity of hESCs and their tendency to
acquire karyotypic abnormalities during in vitro culture,
exclusive of the ethically contentious nature of hESC
research [60, 61]. Technically, the expertise required to
generate hSSPCs from hESCs is currently still lacking, but
it remains possible that hESC-derived hSSPCs may repre-
sent an interesting option for xerostomia therapy in the
future. Transplantation of BMCs into numerous disease-like
mouse models and the progression toward clinical trials
using BMCs suggest also that existing adult human stem
cells represent a simple source of cells for xerostomia ther-
apy [42–44, 62–70]. Although mobilized BMCs seem to
have some ameliorating effect on hyposalivation in studies
described above, this effect was most likely due to growth
factor secretion. Transdifferentiation of BMCs into acinar
cells was not observed, and functional recovery was attrib-
uted to stimulation of surviving endogenous SSPCs [42, 43,
64–70]. BMC-mediated hyposalivation rescue is therefore
limited first by the requirement for surviving SSPCs and
second by the lifespan of the growth factor-secreting
BMCs. We hypothesize that hSSPCs are likely to be prefer-
able to hESCs and BMCs as therapeutic agents for hyposa-
livation, when considering the ability of murine SSPCs to
differentiate appropriately into saliva-producing cells, inte-
grate effectively into host tissue, and rescue hyposalivation.
We speculate further that a long-term cell therapy for hypo-
salivation is feasible, through the employment of hSSPCs.

CHALLENGES

The above studies are encouraging in terms of the develop-
ment of a stem cell therapy for hyposalivation, however the
most potent SSPC population within the mouse and rat system
remains to be defined, and further translated to the human
system. Indeed, the hSSPC hierarchy may not necessarily mir-
ror that observed in the mouse system, and furthermore, the
effect of prolonged in vitro culture on expression of cell-sur-
face markers that may define this hierarchy is still unclear.
Moreover, due to the relatively long turnover time of SG tis-
sue and following the protocol of the hematopoietic system,
most likely a cocktail of stem and progenitor cells will need
to be given to effectively induce SG recovery. In that sce-
nario, short-term recovery may result from the progenitors
within the graft and long-term sustained improvement from
the stem cells. A definitive minimal SSPC number required
for SG rescue is also unknown and is likely to differ depend-
ing on for instance patient age and extent of irradiation. A
number of additional challenges clutter the path toward a
hSSPC-based therapy, including ensuring the efficacious
delivery of the hSSPCs. Putative SSPC populations are cur-
rently delivered to recipient mice by means of site non-spe-
cific injection directly into the gland. Due to the lobular na-
ture of SGs, the exact localization of injected SSPCs cannot
be guaranteed. Unpublished data from our group suggest that
retrograde injection of SSPC solutions directly into the open-
ing of the rat submandibular or parotid SGs might be used to
control transplantation direction and efficacy, while other
studies suggest that echo guidance may also be useful to over-
come this problem [71, 72]. Both the above techniques sug-
gest that ductal delivery for hSSPCs is most desirable. Aside
from the delivery of the cells, various facets of the culture

Figure 2. Human salispheres express adult stem cell marker

proteins. Adult human salivary gland biopsies were subject to me-
chanical and enzymatic digestion and cultured as previously reported
[45, 56]. Flow cytometry was performed between 3 and 5 days post-
isolation, to detect expression of the CD117, CD29, CD49f, CD24,
and CD133 stem cell-associated proteins. Data points within each
marker protein are from separate patient isolations. Bars represent
mean percentage expression. Alternative nomenclatures if applicable
are also stated. Abbreviation: int, integrin prom-1, prominin-1.
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systems must be further optimized. In salisphere culture for
example, the majority of culture components are now compli-
ant with current good manufacturing practice (cGMP)-regula-
tions, although isolation still relies on an enzyme of bovine
origin, hyaluronidase. cGMP guidelines dictate that all com-
plicit reagents must be derived from non-animal sources, thus
substitute cGMP-approved reagents must be sourced. cGMP-
compliant selection of hSSPCs from monolayer or salisphere
cultures should be achievable using magnetic activated cell
sorting (MACS) and cGMP-approved antibodies [55].

RT treatment schedules with curative intent generally last
between 5 and 7 weeks, not including extra time required for
biopsy of the SG, pre-RT. In an ideal situation, transplanta-
tion should be performed as soon as possible after RT, before
onset of tissue fibrosis which is likely to be detrimental to
cell engraftment. Thus, hSSPCs will probably be cultured
briefly during this 5–7-week period and then undergo cryopre-
servation until the desired time point. Both manipulations
present their own challenges. Culture of some stem cell popu-
lations, albeit mostly hESCs, has been documented to increase
the incidence of karyotypic abnormalities in the cells, thus
genomic stability must be demonstrated in human salisphere
cultures to ensure potentially oncogenic cells are not delivered
to a vulnerable patient [60, 61, 73]. Cryopreservation is al-
ready possible using cGMP-approved reagents, and the pre-
served function of CD24þCD49fþ putative rat SSPCs frozen
for 3 years has been documented [51]. Once thawed, these
SSPCs demonstrated equal and in some cases better prolifera-
tive ability and expression of differentiation markers com-
pared to their noncryopreserved counterparts [51]. Parallel
experiments using hSSPCs remain to be performed, to provide
the equivalent functional guarantee for patients awaiting trans-
plantation. In conclusion, further optimization of culture
methods and application of additional procedures is required
in the near future.

FUTURE PERSPECTIVES

Research into the true identity of SG stem or progenitor cells
is gathering pace. This is important as an ever increasing del-
uge of new head and neck cancer patients are admitted every
year into hospitals worldwide. Regretfully, most of these
patients are of old age and have been suggested to respond
even more dramatically to the deleterious effects of radiation
on the SGs [74]. Moreover, we observed a reduction in

salisphere-forming capability of cells from SGs of mice of
old age [53]. This combined with the fact that only a small
piece of tissue from the patient may be obtained prior to the
RT makes it essential to multiply the number of SSPCs before
transplantation, and it is therefore of eminent importance to
find protocols that safely permit this. Current in vitro culture,
self-renewal, and differentiation assays for SSPCs open new
possibilities for the screening of novel factors and genes that
may be useful tools for SSPC amplification. Administration of
KGF and/or manipulation of the Wnt/b-catenin and Notch
pathways represent potential approaches for SSPC amplifica-
tion. The involvement of Notch signaling pathway has been
implicated in postnatal SG development and regeneration, and
the protective effects of both KGF treatment and of the transi-
ently activated Wnt pathway against radiation-induced
damage of the SG have been suggested [43, 75–77]. When
successful, novel allogeneic stem cell selection and expansion
protocols, pending further investigation into the immune
rejection of such transplanted hSSPCs, will greatly expand the
reach of the future SSPC therapies, for example, to treat dis-
eases such as Sj€ogrens syndrome and aging-related xerosto-
mia. Although consensus is that some form of SG cellular
therapy is feasible to increase the quality of life of head and
neck cancer patients post-RT, the hurdles facing the develop-
ment of a cellular therapy for hyposalivation are considerable.
Perhaps SG researchers should take heart from the complete
integration of bone marrow transplantation into our clinical
practices, as an example of what is possible using an adult
stem cell population in a clinical situation, to dramatically
improve the quality of life of patients.
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