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Due to its ability to tolerate high channel loss, decoy-state quantum key distribution (QKD) has been one of

the main focuses within the QKD community. Notably, several experimental groups have demonstrated that it is

secure and feasible under real-world conditions. Crucially, however, the security and feasibility claims made by

most of these experiments were obtained under the assumption that the eavesdropper is restricted to particular

types of attacks or that the finite-key effects are neglected. Unfortunately, such assumptions are not possible

to guarantee in practice. In this work, we provide concise and tight finite-key security bounds for practical

decoy-state QKD that are valid against general attacks.

DOI: 10.1103/PhysRevA.89.022307 PACS number(s): 03.67.Dd, 03.67.Hk

I. INTRODUCTION

In 1984, Bennett and Brassard proposed a quantum key

distribution (QKD) scheme in which a cryptographic key can

be securely distributed between two remote parties, Alice and

Bob, in an untrusted environment [1]. Since then, this proposal

(traditionally referred to as the BB84 protocol) has received

considerable attention, and significant progress has been made

in both theory and practice [2].

In actuality, implementations of the BB84 protocol differ in

some important aspects from the original theoretical proposal.

This is particularly the case in the choice of the quantum

information carrier, where a weak pulsed laser source is

used in place of an ideal single-photon source (which is not

yet available). However, pulsed laser sources have a critical

drawback in that a non-negligible fraction of the emitted laser

pulses contain more than one photon—which an adversary,

Eve, can exploit via the so-called photon-number-splitting

(PNS) attack [3]. In fact, this attack has been shown to be

extremely powerful, especially when the loss in the quantum

channel connecting Alice and Bob is high.

To tackle the PNS attack in the presence of high channel

loss, most BB84 implementations (e.g., see Refs. [4–14]) adopt

the decoy-state method [15–17]. The basic idea is conceptually

very simple, and more importantly, it requires minimal modifi-

cation to existing BB84 implementations. Specifically, instead

of preparing phase-randomized laser pulses of the same mean

photon-number, Alice varies randomly and independently the

mean photon number of each laser pulse she sends to Bob.

Crucially, by using the fact that the variation of the mean

photon number is inaccessible to Eve, it is possible to detect

the presence of photon-number-dependent loss in the quantum

channel, i.e., by analyzing the data shared between Alice and

Bob. As a result, photon-number-dependent type of attacks are

circumvented, and the secret key rates and the tolerance to the

channel loss are significantly improved.

The security of decoy-state QKD has been obtained in the

asymptotic regime [16,17], i.e., in the limit of infinitely long

keys. In the case of finite-length keys, several attempts have

*Corresponding author: charles.lim.geneva@gmail.com

been made (e.g., see Refs. [18–23]), but most (if not all) of

these results assume that Eve is restricted to particular types

of attacks. Very recently, finite-key security bounds against

general attacks have been derived by Hayashi and Nakayama

[24], although the security analysis is rather involved.
In this work, we provide concise and tight finite-key

security bounds for a practical decoy-state QKD protocol
that are directly applicable to most current decoy-state QKD
implementations. The security analysis is based on a com-
bination of a recent security proof technique [25,26] and a
finite-size analysis for the decoy-state method, which allows
us to greatly simplify the security analysis. As a result,
we are able to derive tight finite-key security bounds that
are valid against general attacks. Moreover, these bounds
can be straightforwardly computed with just five concise
formulas [see Eqs. (1)–(5)], which experimentalists can readily
use for their implementations. In addition, we evaluate the
performance of our security bounds by applying them to
a realistic fiber-based system model. The evaluation shows
that our security bounds are relatively tight, in the sense that
for realistic postprocessing block sizes, the achievable secret
key rates are comparable to those obtained in the asymptotic
regime. In fact, for small postprocessing block sizes (of the
order of 104 bits), we observe that secret keys can be securely
distributed over a fiber length of up to 135 km.

II. PROTOCOL DESCRIPTION

We consider an asymmetric coding BB84 protocol [27], i.e.,

the bases X and Z are chosen with probabilities that are biased.

Specifically, the bases X and Z are selected with probabilities

qx and 1 − qx, respectively, and the secret key is extracted from

the events whereby Alice and Bob both choose the X basis. In

addition, the protocol is based on the transmission of phase-

randomized laser pulses, and uses two-decoy settings. The in-

tensity of each laser pulse is randomly set to one of the three in-

tensities μ1, μ2, and μ3, and the intensities satisfy μ1 > μ2 +
μ3 and μ2 > μ3 � 0. Note, however, that our analysis can also

be straightforwardly generalized to any number of intensity

levels. Next, we provide a detailed description of the protocol.

1. Preparation. Alice chooses a bit value uniformly at ran-

dom and records the value in yi . Then, she selects a basis choice
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ai ∈ {X,Z} with probabilities qx and 1 − qx, respectively, and

an intensity choice ki ∈ K := {μ1,μ2,μ3} with probabilities

pμ1
, pμ2

, and pμ3
= 1 − pμ1

− pμ2
, respectively. Finally, she

prepares a (weak) laser pulse based on the chosen values and

sends it to Bob via the quantum channel.

2. Measurement. Bob chooses a basis bi ∈ {X,Z} with

probabilities qx and 1 − qx, respectively. Then, he performs

a measurement in basis bi and records the outcome in y ′
i .

In practice, the measurement device is usually implemented

with two single-photon detectors. In this case, there are four

possible outcomes {0,1,∅, ⊥} where 0 and 1 are the bit values,

and ∅ and ⊥ are the no detection and double detection events,

respectively. For the first three outcomes, Bob assigns what he

observes to y ′
i , and for the last outcome ⊥ he assigns a random

bit value to y ′
i .

3. Basis reconciliation. Alice and Bob announce their basis

and intensity choices over an authenticated public channel and

identify the following sets:Xk := {i : ai = bi = X ∧ ki = k ∧
y ′

i �= ∅} andZk := {i : ai = bi = Z ∧ ki = k ∧ y ′
i �= ∅} for all

k ∈ K. Then, they check for |Xk| � nX,k and |Zk| � nZ,k for

all values of k. They repeat steps 1–3 until these conditions

are satisfied. We denote as N the number of laser pulses sent

by Alice until the conditions are fulfilled.

4. Generation of raw key and error estimation. First, a

raw key pair (XA,XB) is generated by choosing a random

sample of size nX =
∑

k∈K nX,k of X = ∪k∈KXk , where nX is

the postprocessing block size. Note that we use all intensity

levels for the key generation, while existing decoy-state QKD

protocols typically use only one intensity level. Second, they

announce the sets Zk and compute the corresponding number

of bit errors, mZ,k . Third, they calculate the number of vacuum

events sX,0 [Eq. (2)] and the number of single-photon events

sX,1 [Eq. (3)] in (XA,XB). Also, they calculate the number of

phase errors cX,1 [Eq. (5)] in the single-photon events. Finally,

they check that the phase error rate φX is less than φtol where

φtol is a predetermined phase error rate, φX := cX,1/sX,1 < φtol.

If this condition is not met, they abort the protocol, otherwise

they proceed to step 5.

5. Postprocessing. First, Alice and Bob perform an error-

correction step that reveals at most λEC bits of information. In

this step, we assume that they try to correct for an error rate

that is predetermined. Next, to ensure that they share a pair

of identical keys, they perform an error-verification step using

two-universal hash functions that publishes ⌈log2 1/εhash⌉ bits

of information [28]. Here, εhash is the probability that a pair

of nonidentical keys passes the error-verification step. Finally,

conditioned on passing this last step, they perform privacy

amplification on their keys to extract a secret key pair (SA,SB)

where |SA| = |SB| = ℓ bits.

III. SECURITY BOUNDS

Before we state the security bounds for our protocol, it is

instructive to spell out the security criteria that we are using.

For some small protocol errors, εcor,εsec > 0, we say that our

protocol is εcor + εsec secure if it is εcor correct and εsec secret.

The former is satisfied if Pr[SA �= SB] � εcor, i.e., the secret

keys are identical except with a small probability εcor. The

latter is satisfied if (1 − pabort)‖ρAE − UA ⊗ ρE‖1/2 � εsec

where ρAE is the classical-quantum state describing the joint

state of SA and E, UA is the uniform mixture of all possible

values of SA, and pabort is the probability that the protocol

aborts. Importantly, this secrecy criterion guarantees that the

protocol is universally composable: the pair of secret keys can

be safely used in any cryptographic task, e.g., for encrypting

messages, that requires a perfectly secure key [29].

In the following, we present only the necessary formulas

to compute the security bounds; the full security analysis is

deferred to Appendixes A and B.

The correctness of the protocol is guaranteed by the error-

verification step. This step ensures that Bob’s corrected key

is identical to Alice’s key with probability at least 1 − εhash,

which implies that the final secret keys (SA, SB) are identical

with probability at least 1 − εhash. Therefore, the correctness

of the protocol is εcor = εhash.

Conditioned on passing the checks in the error-estimation

and error-verification steps, a εsec-secret key of length

ℓ =
⌊

sX,0 + sX,1 − sX,1h(φX)

− λEC − 6 log2

21

εsec

− log2

2

εcor

⌋

(1)

can be extracted, where h(x) := −x log2 x − (1 − x) log2(1 −
x) is the binary entropy function. Recall that sX,0, sX,1, and

φX = cX,1/sX,1 are the number of vacuum events, the number

of single-photon events, and the phase error rate associated

with the single-photons events in XA, respectively. Next, we

show how to calculate them in two steps.

First, we extend the decoy-state analysis proposed in

Ref. [30] to the case of finite sample sizes. Accordingly, the

number of vacuum events in XA satisfies

sX,0 � τ0

μ2n
−
X,μ3

− μ3n
+
X,μ2

μ2 − μ3

, (2)

where τn :=
∑

k∈K e−kknpk/n! is the probability that Alice

sends a n-photon state, and

n±
X,k

:=
ek

pk

[

nX,k ±

√

nX

2
ln

21

εsec

]

, ∀k ∈ K.

The number of single-photon events in XA is

sX,1 �

τ1μ1

[

n−
X,μ2

− n+
X,μ3

− μ2
2−μ2

3

μ2
1

(

n+
X,μ1

− sX,0

τ0

)]

μ1(μ2 − μ3) − μ2
2 + μ2

3

. (3)

We also calculate the number of vacuum events, sZ,0, and the

number of single-photon events, sZ,1, for Z = ∪k∈KZk , i.e.,

by using Eqs. (2) and (3) with statistics from the basis Z.

In addition, the number of bit errors vZ,1 associated with the

single-photon events in Z is also required. It is given by

vZ,1 � τ1

m+
Z,μ2

− m−
Z,μ3

μ2 − μ3

, (4)

where

m±
Z,k

:=
ek

pk

[

mZ,k ±

√

mZ

2
ln

21

εsec

]

, ∀k ∈ K,

and mZ =
∑

k∈K mZ,k .
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Second, the formula for the phase error rate of the single-

photon events in XA is [31]

φX :=
cX,1

sX,1

�
vZ,1

sZ,1

+ γ

(

εsec,
vZ,1

sZ,1

,sZ,1,sX,1

)

, (5)

where

γ (a,b,c,d) :=

√

(c + d)(1 − b)b

cd log 2
log2

(

c + d

cd(1 − b)b

212

a2

)

.

IV. EVALUATION

We consider a fiber-based QKD system model that borrows

parameters from recent decoy-state QKD and single-photon

detector experiments. In particular, we assume that Alice

can set the intensity of each laser pulse to one of the three

predetermined intensity levels, μ1, μ2, and μ3 = 2 × 10−4

[32]. Bob uses an active measurement setup with two single-

photon detectors (InGaAs APDs): they have a detection

efficiency of ηBob = 10%, a dark count probability of pdc =
6 × 10−7, and an after-pulse probability of pap = 4 × 10−2

[33]. The measurement has four possible outcomes {0,1,∅,⊥}
which correspond to bit values 0, 1, no detection, and double

detection.

The system model is applied to two types of channel

architectures, namely one that uses a dedicated optical fiber

for the quantum channel and one that uses dense wavelength

division multiplexing (DWDM) to put the quantum channel

together with the classical channels into one optical fiber (e.g.,

see Refs. [34–36]). In both cases, we assume that the fibers

have an attenuation coefficient of 0.2 dB/km. That is, their

transmittance is ηch = 10−0.2L/10, where L (km) is the fiber

length.

The considered channel architectures, however, do not

have the same channel error model. For the dedicated fiber,

the probability of having a bit error for intensity k is

ek = pdc + emis[1 − exp(−ηchk)] + papDk/2, where emis is

the error rate due to optical errors. Here, the expected

detection rate (excluding after-pulse contributions) is Dk =
1 − (1 − 2pdc) exp(−ηsysk), where ηsys = ηchηBob. The ex-

pected detection rate (including after-pulse contributions) is

thus Rk = Dk(1 + ppa). The channel error model for the

DWDM architecture is more involved due to additional noise

contributions from Raman scattering and cross talks between

channels. We refer to Ref. [35] for details about it.

The parameter λEC is set to a simple function fECh(eobs)

where fEC is the error-correction efficiency and eobs is the

average of the observed error rates in basis X (we note that

very recently, a more accurate theoretical model of λEC has

been derived in Ref. [37]). In practice, however, λEC should

be set to the size of the information exchanged during the

error-correction step. Regarding the secrecy, we set εsec to be

proportional to the secret key length, that is, εsec = κℓ where

κ is a security constant; this security constant can be seen as

the secrecy leakage per generated bit.

For the evaluation, we numerically optimize the secret key

rate R := ℓ/N over the free parameters {qx,pμ1
,pμ2

,μ1,μ2}
given that the set {κ,εcor,emis,fEC,L,nX} is fixed. Specifically,

we fix κ = 10−15, εcor = 10−15, emis = 5 × 10−3, and fEC =
1.16, and generate curves (see Fig. 1) for a range of realistic
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FIG. 1. (Color online) Secret key rate vs fiber length (dedicated

fiber). Numerically optimized secret key rates (in logarithmic scale)

are obtained for a fixed postprocessing block size nX = 10s with

s = 4,5, . . . ,9 (from left to right). The dashed curve corresponds to

the asymptotic secret key rate, i.e., in the limit of infinitely large keys;

however, here we still assume that the number of intensity levels is 3.

The number of laser pulses sent by Alice can be approximated with

the secret key rate and the block size, i.e., N � nX/R.

postprocessing block sizes, i.e., nX = 10s with s = 4,5, . . . ,9.

From Fig. 1, we see that the security performances corre-

sponding to block sizes 107, 108, and 109 have only slight

differences. For example, at a fiber length of 100 km, the

secret key rate obtained with nX = 109 is about 1.75 times

the one based on nX = 107. This suggests that it may not

be necessary to go to large block sizes (where computational

resources are high) to gain significant improvements. On the

other hand, for block sizes 104, 105, and 106, there is a distinct

advantage in terms of the secret key rate and fiber length for

larger block sizes. This is expected since smaller block sizes

correspond to larger statistical fluctuations in the estimation

process. Interestingly, we see that even if we use a block size

of 104, cryptographic keys can still be distributed over a fiber

length of 135 km. The same trend is observed for the DWMD

channel architecture (see Fig. 2).

V. CONCLUDING REMARKS

Although our security bounds are rather general and

can be applied to a wide class of implementations, some

assumptions are still needed. In particular, we require that

the probability of having a detection in Bob’s measurement

device is independent of his basis choice. This assumption is

normally satisfied when the detectors are operating according

to specification. However, if the detectors are not implemented

correctly, then there may be serious security consequences,

e.g., see Ref. [39]; see also Ref. [40] for the corresponding

countermeasures. Alternatively, one can adopt the recently

proposed measurement-device-independent QKD (mdiQKD)

[41] to remove all detector side channels. We note, however,

that the implementation of mdiQKD is more complex than the

one of decoy-state QKD, and the achievable finite-key secret

key rates are typically lower [42].

In summary, we have provided tight finite-key security

bounds for a practical decoy-state QKD protocol that can be
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FIG. 2. (Color online) Secret key rate vs fiber length (DWDM).

We consider a (4+1) DWDM channel architecture [35] that puts four

classical channels and one quantum channel into an optical fiber. In

the simulation, we take that each classical channel has a power of −34

dBm at the receiver [38]. Numerically optimized secret key rates (in

logarithmic scale) are obtained for a fixed postprocessing block size

nX = 10s with s = 4,5, . . . ,9 (from left to right). The dashed curve

corresponds to the asymptotic secret key rate, i.e., in the limit of

infinitely long keys.

applied to existing QKD implementations. More importantly,

these bounds are secure against general attacks, and can be

easily computed by referring to just five concise formulas,

i.e., Eqs. (1)–(5). On the application side, we also see that

secret keys can be securely distributed over large distances

with rather small postprocessing block sizes. Accordingly,

this allows existing QKD implementations to speed up their

key-distillation processes.
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APPENDIX A: DECOY-STATE ANALYSIS

Here, we provide the details for the security bounds pre-

sented in the main text. The security analysis is a combination

of a proof technique based on entropic uncertainty relations

[26] and a finite-size analysis for the two-decoy-state method.

In the following, we first present the details for the decoy-state

analysis.

Recall that our two-decoy-state method consists in Alice

setting the intensity of each laser pulse to one of the

three intensity levels, μ1, μ2, and μ3, where μ1 > μ2 + μ3

and μ2 > μ3 � 0. Crucially, from the perspective of the

eavesdropper, the final prepared state (i.e., with the encoded

bit value) appears the same to her regardless of the choice of

intensity level (or equivalently, the average photon number).

Therefore, one can imagine an equivalent counterfactual

protocol: one in which Alice has the ability to send n-photon

states, and she only decides on the choice of the average photon

number after Bob has a detection. In the following, we provide

the analysis for the X basis; the same analysis applies to the Z
basis.

Consider the case whereby Alice encodes the states in the X
basis and let sX,n be the number of detections observed by Bob

given that Alice sent n-photon states. Note that
∑∞

n=0 sX,n =
nX is the total number of detections given that Alice sent states

prepared in the X basis. In the asymptotic limit, we expect nX,k

events from nX events to be assigned to the intensity k, that is,

nX,k → n∗
X,k =

∞
∑

n=0

pk|nsX,n, ∀k ∈ K = {μ1,μ2,μ3},

where pk|n is the conditional probability of choosing the

intensity k given that Alice prepared a n-photon state. For finite

sample sizes, using Hoeffding’s inequality for independent

events [43], we have that nX,k satisfies

|n∗
X,k − nX,k| � δ(nX,ε1), (A1)

with probability at least 1 − 2ε1, where δ(nX,ε1) :=√
nX/2ln(1/ε1). Note that the deviation term δ(nX,ε1) is the

same for all values of k. Basically, Eq. (A1) allows us to

establish a relation between the asymptotic values and the

observed statistics (i.e., nX,μ1
, nX,μ2

, and nX,μ3
). Moreover,

the same relation can also be made for the expected number

of errors and the observed number of errors. Let vX,n be the

number of errors associated with sX,n, then in the asymptotic

limit, we expect mX,k errors from mX errors to be assigned to

the intensity k, i.e.,

mX,k → m∗
X,k =

∞
∑

n=0

pk|nvX,n, ∀k ∈ K = {μ1,μ2,μ3}.

Using Hoeffding’s inequality [43], we thus have for all values

of k,

|m∗
X,k − mX,k| � δ(mX,ε2), (A2)

which holds with probability at least 1 − 2ε2.

For the moment, we keep these relations aside; they will

be needed later when we apply the decoy-state analysis (to be

detailed below) to the observed statistics.

1. Lower-bound on the number of vacuum events

An analytical lower-bound on sX,0 can be established by

exploiting the structure of the conditional probabilities pk|n.

First of all, we note that with Bayes’ rule, for all k, we have

pk|n =
pk

τn

pn|k =
pk

τn

e−kkn

n!
, (A3)

where τn :=
∑

k∈K pke
−kkn/n! is the probability that Alice

prepares a n-photon state. Using this and following an

approach proposed by [30], we have that

μ2e
μ3n∗

X,μ3

pμ3

−
μ3e

μ2n∗
X,μ2

pμ2

=
(μ2 − μ3)sX,0

τ0

− μ2μ3

∞
∑

n=2

(

μn−1
2 − μn−1

3

)

sX,n

n!τn

,
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where the second term on the right-hand side is non-negative

for μ2 > μ3. Rewriting the above expression for sX,0 gives

sX,0 �
τ0

(μ2 − μ3)

(

μ2e
μ3n∗

X,μ3

pμ3

−
μ3e

μ2n∗
X,μ2

pμ2

)

. (A4)

Note that this lower bound is tight when μ3 → 0.

2. Lower bound on the number of single-photon events

The lower bound for the number of single-photon events

is slightly more involved, but it can be demonstrated in three

concise steps.

First, note that

eμ2n∗
X,μ2

pμ2

−
eμ3n∗

X,μ3

pμ3

=
(μ2 − μ3)sX,1

τ1

+
∞

∑

n=2

(

μn
2 − μn

3

)

sX,n

n!τn

�
(μ2 − μ3)sX,1

τ1

+
μ2

2 − μ2
3

μ2
1

∞
∑

n=2

μn
1sX,n

n!τn

,

where the inequality is due to

μn
2 − μn

3 =
(

μ2
2 − μ2

3

)

(μ2 + μ3)

n−1
∑

i=0

μn−i−1
2 μi

3

�
(

μ2
2 − μ2

3

)

(μ2 + μ3)n−2
�

(

μ2
2 − μ2

3

)

μn−2
1 ,

for n � 2 and μ2 + μ3 � μ1. Note that we used
∑n−1

i=0 μn−i−1
2 μi

3 � (μ2 + μ3)n−1 for n � 2.

Second, using the fact that the sum of multiphoton events

is given by

∞
∑

n=2

μn
1sX,n

n!τn

=
eμ1n∗

X,μ1

pμ1

−
sX,0

τ0

−
μ1sX,1

τ1

,

we further get

eμ2n∗
X,μ2

pμ2

−
eμ3n∗

X,μ3

pμ3

�
(μ2 − μ3)sX,1

τ1

+
μ2

2 − μ2
3

μ2
1

(

eμ1n∗
X,μ1

pμ1

−
sX,0

τ0

−
μ1sX,1

τ1

)

.

Finally, solving for sX,1 gives

sX,1 �
μ1τ1

μ1(μ2 − μ3) −
(

μ2
2 − μ2

3

)

[

eμ2n∗
X,μ2

pμ2

−
eμ3n∗

X,μ3

pμ3

+
μ2

2 − μ2
3

μ2
1

(

sX,0

τ0

−
eμ1n∗

X,μ1

pμ1

)]

. (A5)

3. Upper bound on the number of single-photon errors

An upperbound on the number of single-photon errors

can be obtained with just m∗
X,μ2

and m∗
X,μ3

; i.e., by taking

eμ2m∗
X,μ2

/pμ2
− eμ3m∗

X,μ3
/pμ3

, it is easy to show that

vX,1 �
τ1

μ2 − μ3

(

eμ2m∗
X,μ2

pμ2

−
eμ3m∗

X,μ3

pμ3

)

. (A6)

4. Finite-size decoy-state analysis

The bounds given above are still not applicable to the observed

statistics since Eqs. (A4)–(A6) involve terms that are valid

only in the asymptotic limit, i.e., {n∗
X,k

}k∈K and {m∗
X,k

}k∈K.

However, this is easily resolved by using Eqs. (A1) and (A2).

Specifically, let

n∗
X,k � nX,k + δ(nX,ε1) =: ñ+

X,k
, (A7)

n∗
X,k � nX,k − δ(nX,ε1) =: ñ−

X,k
, (A8)

and

m∗
X,k � mX,k + δ(mX,ε2) =: m̃+

X,k
, (A9)

m∗
X,k � mX,k − δ(mX,ε2) =: m̃−

X,k
(A10)

for all values of k. Putting them into Eqs. (A4)–(A6), we thus

have the formulas as stated in the main text.

APPENDIX B: SECRECY ANALYSIS

The secrecy analysis roughly follows along the lines of

Ref. [26], i.e., we use a certain family of entropic uncertainty

relations to establish bounds on the smooth min-entropy of the

raw key conditioned on Eve’s information.

To start with, let system E′ be the information that Eve

gathers on XA, i.e., the raw key of Alice, up to the error-

verification step. By applying privacy amplification with two-

universal hashing [29], a εsec-secret key of length ℓ can be

extracted from XA. Specifically, the secret key is εsec secret if

ℓ is chosen such that

ℓ =
⌊

H ν
min(XA|E′) − 2 log2

1

2ν

⌋

, (B1)

for ν + ν � εsec where ν,ν are chosen to be proportional to

εsec/(1 − pabort). Here, H ν
min(XA|E′) is the conditional smooth

min-entropy, which quantifies the amount of uncertainty

system E′ has on XA. In fact, this quantity is the heart of

our security analysis. In the following, we show how to bound

H ν
min(XA|E′) using statistics obtained in the protocol.

First, using a chain-rule inequality for smooth entropies,

and the fact that λEC bits and log2 2/εcor bits of in-

formation were published during the error-correction and

error-verification steps, respectively, we get H ν
min(XA|E′) �

H ν
min(XA|E) − λEC − log2 2/εcor, where system E is the

remaining (possibly quantum) information Eve has on

XA. In general, λEC should be determined by the

amount of leakage the actual protocol reveals during the

error-correction step.

Second, we decompose XA into Xv
AXs

AXm
A , which are the

corresponding bit strings due to the vacuum, single-photon,

and multiphoton events. Note that this decomposition is known

to Eve, i.e., the decomposition information is included inside

system E. By using a generalized chain-rule result from

Ref. [44], we have that

H ν
min(XA|E) � H α1

min

(

Xs
A|Xv

AXm
AE

)

+H α3+2α4+α5

min

(

Xv
AXm

A |E
)

− 2 log2

1

α2

− 1,
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for ν = 2α1 + α2 + (α3 + 2α4 + α5) where αi > 0 for all i.

Next, we use the same chain rule again on the second term on

the right-hand side to get

H α3+2α4+α5

min

(

Xv
AXm

A |E
)

� H α4

min

(

Xm
A |Xv

AE
)

+ H α5

min

(

Xv
A|E

)

− 2 log2

1

α3

− 1

� sX,0 − 2 log2

1

α3

− 1.

To get the second inequality, we used H α4
min(Xm

A |Xv
AE) �

0 and H α5
min(Xv

A|E) � Hmin(Xv
A|E) = Hmin(Xv

A) = log2 2sX,0 =
sX,0. The former is given by the fact that all multiphoton

events are taken to be insecure, i.e., due to the photon-

number-splitting attack. The latter is based on the assumption

that vacuum contributions contain zero information about the

chosen bit values and the bits are uniformly distributed.

Third, we provide a bound on the remaining smooth min-

entropy quantity which is now restricted to the single-photon

events, i.e., via the uncertainty relation for smooth entropies

[25]. Under the assumption that Alice prepares the states using

mutually unbiased bases (i.e., X is the computational basis and

Z is the Hadamard basis), we can further bound this quantity

with the max-entropy between Alice and Bob, which is directly

given by the amount of correlation between them [26]. More

precisely, we have

H α1

min

(

Xs
A|Xv

AXm
AE

)

� sX,1 − H α1

max

(

Zs
A|Zs

B

)

� sX,1

[

1 − h

(

cX,1

sX,1

)]

,

where the first inequality is given by the uncertainty relation

[25] and the smooth max-entropy H α1
max(Zs

A|Zs
B) is a measure

of correlations between Zs
A and Zs

B. Here, Zs
A and Zs

B are

the bit strings Alice and Bob would have obtained if they

had measured in the basis Z instead. The second inequality is

achieved by using H α1
max(Zs

A|Zs
B) � sX,1h(cX,1/sX,1) (see [26,

Lemma 3]), where cX,1 is the number of phase errors in the

single-photon events. Here, the number of phase errors cX,1

has to be estimated via a random-sampling theory (without

replacement) as these errors are not directly observed in

the protocol. More concretely, by using a random sampling

without replacement result given in Ref. [31] which is

based on an approximation technique for the hypergeometric

distribution, we have with probability at least 1 − α1,

cX,1

sX,1

�
vZ,1

sZ,1

+ γ

(

α1,
vZ,1

sZ,1

,sZ,1,sX,1

)

, (B2)

where

γ (a,b,c,d) :=

√

(c + d)(1 − b)b

cd log 2
log2

(

c + d

cd(1 − b)b

1

a2

)

.

Fourth, putting everything together, we arrive at a secret

key length of

ℓ =
⌊

sX,0 + sX,1

[

1 − h

(

cX,1

sX,1

)]

− λEC − log2

2

εcorβ

⌋

,

(B3)

where β := (α2α3ν)2. Note that sX,0, sX,1, sZ,0, sZ,1, vZ,1 are

to be bounded by Eqs. (A4)–(A6) using the relations given by

Eqs. (A7)–(A10).

Finally, after composing the error terms due to finite-sample

sizes and setting α4 = α5 = 0, the secrecy is

εsec = 2[2α1 + α2 + α3] + ν + 10ε1 + 2ε2. (B4)

To get the secrecy given in the main text we set each error term

to a common value ε, thus εsec = 21ε.
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