Concise Stereocontrolled Formal Synthesis of (\pm)-Quinine and Total Synthesis of (\pm)-7-Hydroxyquinine via Merged Morita-Baylis-Hillman-Tsuji-Trost Cyclization

Peter Webber and Michael J. Krische ${ }^{\star}$
University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA

Abstract

Concise stereoselective syntheses of (\pm)-quinine and (\pm)-7-hydroxyquinine are achieved using a catalytic enone cycloallylation that combines the nucleophilic features of the Morita-Baylis-Hillman reaction and the electrophilic features of the Tsuji-Trost reaction. Cyclization of enone-allyl carbonate $\mathbf{1 1}$ delivers the product of cycloallylation $\mathbf{1 3}$ in 68% yield. Diastereoselective conjugate reduction of the enone $\mathbf{1 3}$ ($>20: 1 \mathrm{dr}$) followed by exchange of N-protecting groups provides the saturated N-Boc-protected methyl ketone 19 , which upon aldol dehydration provides quinoline containing enone $\mathbf{1 5}$, possessing all carbon atoms of quinine. Exposure of ketone $\mathbf{1 5}$ to L-selectride enables diastereoselective carbonyl reduction ($>20: 1 \mathrm{dr}$) to furnish the allylic alcohol 16. Stereoselective hydroxyl-directed epoxidation using an oxovanadium catalyst modified by N -hydroxy- N-Me-pivalamide delivers epoxide $\mathbf{1 7}$ (17:1 dr). Cyclization of the resulting amine-epoxide $\mathbf{1 7}$ provides (\pm)-7-hydroxyquinine in 13 steps and 11% overall yield from aminoacetaldehyde diethyl acetal. Notably, highly stereoselective formation of five contiguous stereocenters is achieved through a series of 1,2 -asymmetric induction events. A formal synthesis of (\pm-quinine is achieved upon deoxygenation of the N-Cbz-protected allylic acetate $\mathbf{2 2}$ to provide olefin $\mathbf{2 3}$, which previously has been converted to quinine. Thus, (\pm)-quinine is accessible in 16 steps and 4% overall yield from commercial aminoacetaldehyde diethyl acetal, making this route the most concise approach to quinine, to date.

Introduction

Over three centuries ago centuries ago, Jesuit monks found the essence of cinchona bark to be a powerful therapeutic agent in the treatment of malaria, ${ }^{1}$ which remains the foremost cause of death among human beings since recorded history. ${ }^{2}$ Nearly two centuries have elapsed since the active constituent of cinchona bark, quinine 1, was isolated in 1820 by Pelletier and Caventou. ${ }^{3}$ The proper connectivity of quinine was proposed in 1908 by Rabe, who in 1918 reconstructed quinine via degradation, thereby establishing the veracity of his structural assignment. ${ }^{4}$ The first total synthesis of quinine was reported by Woodward in 1944. ${ }^{5}$ A "formal total synthesis," Woodward's approach is based on the interception of quinotoxine, a compound that was converted to quinine in three manipulations by Rabe. ${ }^{4}$ Recently, Williams and coworkers validated the three-step "Rabe protocol" for the conversion of quinotoxine $\mathbf{2}$ to quinine 1,6 and in doing so ended the controversy surrounding the Woodward-Doering claim of the first "total synthesis" of quinine (Scheme 1, Top). ${ }^{7}$

[^0]Subsequent to Woodward's seminal work, total syntheses of quinine $\mathbf{1}$ were reported by Uskoković, Gates, Taylor, Stork, Jacobsen, and Kobayashi. ${ }^{8}$ Uskoković and co-workers at Hoffman-La Roche developed four different routes to quinine. Although the group at HoffmanLa Roche was unable to develop a highly stereoselective approach, many of their discoveries, especially the $\mathrm{N}-1$ to $\mathrm{C}-8$ amine-epoxide cyclization strategy and the diastereoselective C-9 hydroxylation, have been utilized frequently in subsequent syntheses. In 2001, Stork reported the first stereoselective synthesis of quinine $\mathbf{1}$ in 20 steps from trans-butene-1,4-diol employing a novel $\mathrm{N}-1$ to C-6 disconnection strategy. Completion of this synthesis resulted in optimization of the Hoffman-La Roche C-9 hydroxylation. In 2004, Jacobsen and Kobayashi published synthetic approaches relying on the $\mathrm{N}-1$ to $\mathrm{C}-8$ amine-epoxide cyclization initially reported by Hoffman-La Roche. These syntheses cleverly provide access to both quinine and quinidine 1. Jacobsen's catalytic asymmetric synthesis of quinine $\mathbf{1}$ is achieved in 17 steps from N -(chloroacetyl)-benzamide but is not fully stereocontrolled. The C-3 stereocenter is obtained in a 3:1 epimeric ratio after epimerization of an initially formed 1:1.7 mixture favoring the undesired isomer. Finally, in a recent effort to prepare quinine, Williams disclosed the synthesis of 7-hydroxyquinine in 27 steps which took advantage of a unique C-3 to C-4 bond construction. ${ }^{9}$ Despite these enormous advances, a concise route to quinine that addresses both relative and absolute stereocontrol remains absent (Scheme 1, Bottom).

Here, we report a highly stereoselective formal synthesis of (\pm)-quinine in 16 steps and 4% overall yield from aminoacetaldehyde diethyl acetal employing a novel cycloallylation methodology developed in our laboratory, wherein the nucleophilic features of the Morita-Baylis-Hillman reaction and the electrophilic features of the Tsuji-Trost reaction are combined. ${ }^{10}$ To our knowledge, this route represents the most concise synthetic approach to quinine reported, to date. Additionally, we report a stereoselective route to (\pm)-7-hydroxyquinine in 13 steps and 11% overall yield from aminoacetaldehyde diethyl acetal, wherein highly stereoselective formation of five contiguous stereocenters is achieved through a series of 1,2asymmetric induction events.

Results and Discussion

Quinine can be envisioned to arise by way of compound 4 via amine-glycidic epoxide cyclization. Cyclization would furnish 7-hydroxyquinine 3, which upon C-7 deoxygenation would deliver quinine. The N-protected glycidic epoxide 4 may be obtained by way of aldol coupling-dehydration of piperidine 5 and 6-methoxyquinoline-4-carbaldehyde, followed by diastereoselective 1,2-reduction and hydroxy-directed epoxidation of the resulting allylic alcohol. Finally, the requisite cis-1,2-disubstituted piperidine $\mathbf{5}$ is potentially accessible through merged Morita-Baylis-Hillman-Tsuji-Trost reaction of enone-allyl carbonate 6 followed by diastereoselective conjugate reduction. In accordance with this approach, all five stereocenters of glycidic epoxide 4, 7-hydroxyquinine 3 and, ultimately, the relative stereochemistry embodied by quinine itself, would be controlled through a series of 1,2asymmetric induction events, relayed from the initially formed stereocenter bearing the vinyl moiety, which arises at the stage of cycloallylation (Scheme 2).

Efforts toward quinine began with the preparation of enone-allyl carbonate 6, the substrate for merged Morita-Baylis-Hillman-Tsuji-Trost cycloallylation. Sulfonylation of commercially available aminoacetaldehyde diethyl acetal 7 with either p-toluene sulfonyl chloride or 2,4,6trisopropylbenzene sulfonyl chloride provides the crude sulfonamides which under Mitsunobu conditions couple to (Z)-4-hydroxy-2-butenyl methyl carbonate ${ }^{11}$ to furnish the products of N-allylation 8 and 9 in excellent yields over two steps. Hydrolysis of acetal $\mathbf{8}$ and 9 mediated by trifluoroacetic acid followed by Wittig olefination of the resulting aldehyde delivers enoneallyl carbonates $\mathbf{1 0}$ and $\mathbf{1 1}$ in 69% and 68% yields over two steps, respectively (Scheme 3).

With the requisite cycloallylation substrate in hand, the merged Morita-Baylis-Hillman-TsujiTrost cycloallylation of the N -Ts protected enone-allyl carbonate $\mathbf{1 0}$ was explored. Applying standard conditions, ${ }^{10}$ which involve exposure of substrate to $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1 \mathrm{~mol} \%), \mathrm{PBu}_{3}(100$ $\mathrm{mol} \%$) in tert-butanol $(0.1 \mathrm{M})$ at $60^{\circ} \mathrm{C}$, only a 3% isolated yield of cyclization product $\mathbf{1 2}$ was obtained. This result is attributed to the sulfonamide moiety, which enhances the electrophilicity of the enone such that anion polymerization becomes problematic. Intramolecular capture of the phosphonio-enolate is facilitated by increasing the loading of palladium ($5 \mathrm{~mol} \%$) and by conducting the reaction at ambient temperature. Under these conditions, the N -Ts protected substrate $\mathbf{1 0}$ undergoes cyclization to furnish $\mathbf{1 2}$ in 62% isolated yield. A major side-product in the cyclization of $\mathbf{1 0}$ is the β, γ-unsaturated piperidine. This material is not produced upon reexposure of piperidine $\mathbf{1 2}$ to the reaction conditions, suggesting it is formed upon E_{2}-elimination of the β-phosphonium intermediate. The corresponding N Trs (Trs = 2,4,6-trisopropylphenyl sulfonyl) derivative 11, should be resistant to deprotonation at the γ-position after cyclization. Further, the N-Trs moiety of $\mathbf{1 1}$ may facilitate cyclization through the Thorpe-Ingold effect. ${ }^{12}$ In practice, the steric demand of the N-Trs moiety mandated use of smaller phosphine, trimethylphosphine, which upon substoichiometric loading ($80 \mathrm{~mol} \%$) provided the N-Trs protected piperidine 13 in 68% isolated yield (Table 1).

Elaboration of the cyclization product $\mathbf{1 3}$ to quinine requires diastereoselective conjugate reduction to establish appropriate relative stereochemistry at C-3 and C-4. Using a modification of the copper-hydride mediated 1,4-reduction developed by Tsuda and Saegusa, ${ }^{13}$ the cispiperidine $\mathbf{1 4}$ was formed as a single diastereomer, as established ${ }^{1} \mathrm{H}$ NMR analysis. The relative stereochemistry of piperidine $\mathbf{1 4}$ was corroborated through single crystal X-ray diffraction analysis. Interestingly, the corresponding N-Ts derivative $\mathbf{1 2}$ forms an equimolar mixture of diastereomers upon exposure to identical conjugate reduction conditions. cisPiperidine 14 requires careful handling, as rapid isomerization to trans-piperidine epi-14 occurs upon exposure to acid or base (Scheme 5).

In our hands, the N-sulfonyl protecting group could not be removed under reductive conditions in the presence of the quinoline. Hence, N-Trs protected cis-piperidine 14 was converted to the corresponding N-Boc derivative 18. Exposure of $\mathbf{1 4}$ to sodium naphthalenide in DME at -78 ${ }^{\circ} \mathrm{C}$ resulted in cleavage of the sulfonyl moiety. However, to avoid epimerization to the transpiperidine, quenching of the reaction mixture at $-78^{\circ} \mathrm{C}$ using saturated aqueous ammonium chloride was required. Treatment of the crude amine with $\mathrm{Boc}_{2} \mathrm{O}$ delivers the N-Boc protected cis-piperidine 18 in 76% isolated yield over these two manipulations (Scheme 4).

Introduction of the quinoline moiety was accomplished using an aldol coupling-dehydration protocol involving N-Boc protected cis-piperidine 18 and 6-methoxyquinoline-4-
carbaldehyde. To circumvent epimerization of the cis-piperidine, carefully tailored conditions were required. Regioselective deprotonation at the methyl group of the acetyl moiety is accomplished by treating cis-piperidine $\mathbf{1 8}$ with one equivalent of LHMDS at $-78{ }^{\circ} \mathrm{C}$ in THF solvent. After stirring for one hour, 6-methoxyquinoline-4-carbaldehyde ${ }^{14}$ was added. The reaction mixture was quenched at $-78^{\circ} \mathrm{C}$ with acetic anhydride and warmed to $-40^{\circ} \mathrm{C}$, at which point DBU was added. Quenching of the reaction mixture at $-40^{\circ} \mathrm{C}$ using saturated aqueous ammonium chloride was required to avoid epimerization. Using this procedure, the N-Boc protected aldol adduct $\mathbf{1 5}$, which retains the cis-piperidine, is obtained in 70% isolated yield. Thus, in eight manipulations from commercially available aminoacetaldehyde diethyl acetal, all carbon atoms of quinine are assembled (Scheme 4).

With clear evidence for the thermodynamic preference of a trans-relationship about the piperidine of enone $\mathbf{1 5}$, it was imperative to immediately reduce the ketone functional group. Upon exposure of enone $\mathbf{1 5}$ to L-selectride at $-78^{\circ} \mathrm{C}$ in THF, allylic alcohol $\mathbf{1 6}$ is formed as a single stereoisomer, as determined by ${ }^{1} \mathrm{H}$ NMR analysis ($>20: 1 \mathrm{dr}$). This transformation
removed the threat of epimerization, while introducing the functionality required for hydroxyldirected diastereoselective epoxidation. However, under standard conditions developed by Sharpless employing VO(acac) $)_{2}(5 \mathrm{~mol} \%)$ as precatalyst and TBHP as terminal oxidant in toluene at $50^{\circ} \mathrm{C},{ }^{15}$ the glycidic alcohol 17 is formed in 98% yield as a 3:1 ratio of diastereomers. This modest level of stereoselectivity presumably arises in response to the relatively low levels of allylic strain embodied by the trans-1,2-disubstituted olefin of 16. ${ }^{16}$

Hydroxamates are effective ligands in asymmetric oxovanadium catalyzed epoxidations of allylic alcohols. ${ }^{17}$ Upon screening a number of achiral hydroxamic acids, that derived from N -methyl hydroxylamine and pivaloyl chloride, when complexed to $\mathrm{VO}(\mathrm{acac})_{2}$ in situ, promoted greater levels of diastereoselection ($6: 1 \mathrm{dr}$). It was found that preformation of the oxovanadium bis(hydroxamate) complex was required to suppress a less selective background reaction promoted by $\mathrm{VO}(\mathrm{acac})_{2} .{ }^{18}$ After extensive optimization, it was found that exposure of $\mathbf{1 6}$ to $\mathrm{VO}\left[{ }^{t} \mathrm{BuCO}(\mathrm{MeNO})\right]_{2}(5 \mathrm{~mol} \%)$ and TBHP ($1000 \mathrm{~mol} \%$) in dichloromethane at $4{ }^{\circ} \mathrm{C}$ promotes formation of epoxide 17 in 91% isolated yield as a $17: 1$ ratio of diastereomers. In this way, highly stereoselective formation of five contiguous stereocenters is achieved through a series of 1,2-asymmetric induction events. Validating the superiority of the bis(hydroxamate) catalyst, epoxidation of allylic alcohol $\mathbf{1 6}$ under identical conditions employing $\mathrm{VO}(\mathrm{acac})_{2}$ as catalyst results in a substantial decline in stereoselectivity ($6: 1 \mathrm{dr}$). The stereochemical assignment of glycidic alcohol $\mathbf{1 7}$ was confirmed by single crystal X-ray diffraction analysis.

Removal of the N-protecting group of glycidic alcohol 17 was accomplished upon treatment of $\mathbf{1 7}$ with trifluoroacetic acid in dichloromethane. The resulting crude amine underwent intramolecular cyclization when exposed to $\mathrm{Zn}(\mathrm{OTf})_{2}$ and in refluxing MeCN to provide 7hydroxyquinine $\mathbf{3}$ in 70% yield.

Several different strategies to deoxygenate 7-hydroxyquinine 3 were explored. Selective functionalization of the C-9 hydroxyl is readily achieved, as demonstrated by the formation of the p-methoxybenzyl ether 24 and methoxymethyl ether $\mathbf{2 5}$ (Scheme 7). Having differentiated the alcohol functionalities, the Barton-McCombie deoxygenation was first investigated. ${ }^{19}$ This strategy appeared quite attractive, as deoxygenation of the epimeric C-7 hydroxyl had been accomplished in a quinine model study. ${ }^{20}$ The C-7 hydroxyl of $\mathbf{2 4}$ and $\mathbf{2 5}$, however, proved to be especially resistant to the action of external reagents. Treatment of $\mathbf{2 4}$ and $\mathbf{2 5}$ with thiocarbonyldiimidazole under a range of conditions provided none of the desired thiocarbamate. Attempted xanthate formation also failed. Protocols for the radical deoxygenation of tertiary alcohols and hindered secondary alcohols are reported by Barton, which involve formation of mixed oxalates, ${ }^{21}$ thioformates ${ }^{22}$ and phenylselenocarbonates. ${ }^{23}$ These too were ineffective.

The remarkable resistance of alcohols $\mathbf{2 4}$ and $\mathbf{2 5}$ toward derivatization is underscored by their reluctance to react with ketene, neat acetic anhydride or acetyl chloride. The singular method identified for derivation of alcohols 24 and 25 involves mesylation, which likely occurs through the intervention of sulfene $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{SO}_{2}\right)$. Mesylates 26 and 27 were treated with a range of hydride sources, molten thiolate, various iodide sources and hydrazines, however, mesylates 26 and 27 proved to be quite impervious. Presumably, an appropriate trajectory for $\mathrm{S}_{\mathrm{N}}{ }^{2}$ displacement cannot be attained due to the position of the C-3 vinyl moiety. In the hope of exploiting the C-3 vinyl moiety as an active volume, the reaction of mesylates 26 and $\mathbf{2 7}$ with low valent metals was explored. However, the Collman reagent ${ }^{24}\left(\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}\right)$, Rieke manganese ${ }^{25}$ and conditions developed by Yus ${ }^{26}$ for the deoxygenation of hindered sulfonates also were ineffective.

Given the difficulties encountered in the deoxygenation of 7-hydroxyquinine, an alternate strategy was pursued involving C-7 deoxygenation in advance of amine-epoxide cyclization.

Thus, in analogy to the preparation of the corresponding N-Boc protected allylic alcohol 16, cis-piperidine 14 was converted to the N-Cbz derivative 19 , which was transformed to the quinoline containing enone $\mathbf{2 0}$ via aldol coupling-dehydration to 6-methoxyquinoline-4carbaldehyde. Exposure of enone 20 to L-selectride in THF solvent at $-78{ }^{\circ} \mathrm{C}$ resulted in 1,2reduction to furnish allylic alcohol 21 as a single diastereomer, as determined by ${ }^{1} \mathrm{H}$ NMR analysis (>20:1 dr). Conversion of allylic alcohol 21 to the corresponding acetate 22 followed by palladium-catalyzed, formate-mediated reduction delivers the product of C-7 deoxygenation 23 as a single alkene regio- and stereoisomer (Scheme 6). ${ }^{27}$

Diene $\mathbf{2 3}$ is an intermediate in Jacobsen's synthesis of quinine 1. Although Jacobsen's approach provides diene $\mathbf{2 3}$ in optically enriched form, the C-3 stereocenter is initially formed as a 1:1.7 mixture favoring the undesired isomer, which after epimerization is converted to a 3:1 mixture favoring the desired isomer. Our route to racemic diene $\mathbf{2 3}$ is accomplished in two fewer manipulations and with complete control of relative stereochemistry.

Summary

We report concise stereoselective syntheses of quinine and 7-hydroxyquinine using a catalytic enone cycloallylation that combines the nucleophilic features of the Morita-Baylis-Hillman reaction and the electrophilic features of the Tsuji-Trost reaction. In accordance with this strategy, quinine is accessible in 16 steps and 4% overall yield from commercial aminoacetaldehyde diethyl acetal, making it the most concise approach to quinine, to date. Additionally, 7-hydroxyquinine is prepared in 13 steps and 11% overall yield from aminoacetaldehyde diethyl acetal through a sequence wherein five contiguous stereocenters are formed with high levels of relative stereocontrol through a series of 1,2-asymmetric induction events. Our route delivers 7 -hydroxyquinine in less than half the number of manipulations previously reported. ${ }^{9}$

Among the many challenges that remain, control of absolute stereochemistry and the identification of an effective method for C-7 deoxygenation of 7-hydroxyquinine figure prominently. With regard to the former issue, it is interesting to note that the $N-2,4,6-$ triisopropylbenzenesulfinyl derivative of compound $\mathbf{6}$ engages in cyclization with only modest levels of diastereoselection (2:1), presumably as highly diastereoselective cyclization requires high levels of diastereofacial selectivity at the stage of phosphine conjugate addition and enolate allylation.

Quinine, which was present at the very inception of organic chemistry as a field, may be viewed as a barometer of the state-of-the-art. Hence, it is remarkable that to this day, a step-economic route to quinine that completely addresses both relative and absolute stereochemistry remains absent. The present study has evoked effective new strategies for controlling the relative stereochemistry of quinine via substrate direction. However, it is but one of many small steps toward the distant goal of devising an ideal synthesis.

Experimental Section

General

All reactions were run under an atmosphere of argon when exclusion of water or oxygen was deemed appropriate. Anhydrous solvents were transferred by an oven-dried syringe. Dichloromethane (DCM), ${ }^{t} \mathrm{BuOH},{ }^{t} \mathrm{AmOH}, \mathrm{MeCN},{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$, and HMPA were dried by distillation over $\mathrm{CaH}_{2} . \mathrm{Et}_{2} \mathrm{O}, \mathrm{DME}$, THF, and toluene were dried by distillation over sodium benzophenone. DMF and pyridine were stored over molecular sieves and KOH respectively. Chemical reagents were purchased from Aldrich, Fischer, and Strem Chemicals and used as received without further purification unless otherwise stated. Flasks were flame-dried and
cooled under a stream of argon. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica get plates (DC-Fertigplatten Kieselgel $60 \mathrm{~F}_{254}$). Flash chromatography was performed on silica gel $60(200-400 \mathrm{mesh})$ according to the method of Still. Solvents for chromatography are listed as volume:volume ratios.

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on a Varian Inora 500, Varian Mercury 400, or Varian UNITY +300 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained at either 500,400 , or 300 MHz , as indicated. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from trimethylsilane. Coupling constants are reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Varian Inora 500, Varian Mercury 400, or Varian UNITY + 300 spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were obtained at either 125,100 , or 75 MHz , as indicated. Chemical shifts are reported in delta (δ) units, parts per million (ppm) relative to the residual solvent. ${ }^{13} \mathrm{C}$ NMR spectra were routinely run with broadband decoupling. Vanadium- 51 nuclear magnetic resonance (${ }^{51} \mathrm{~V}$ NMR) spectra were recorded on a Varian Inora $500 .{ }^{51} \mathrm{~V}$ NMR spectra were obtained at 131 MHz . Chemical shifts are reported in delta (δ) units, parts per million (ppm) relative to the singlet at 2.0 ppm for VOCl_{3}. FT-IR spectra were obtained using a Nicolet Impact 410 spectrometer. High-resolution mass spectra (HRMS) were obtained on a Micromass ZAB-E spectrometer and are reported m / z (relative intensity). Accurate masses are reported for the molecular ion $(M+1)$ or a suitable fragment ion. Melting points were obtained on a ThomasHoover Unimelt apparatus in open capillaries and are uncorrected.

Conversion of aminoacetaldehyde diethyl acetal 7 to enone 10-To a solution of aminoacetaldehyde diethyl acetal $7(5.07 \mathrm{~mL}, 34.9 \mathrm{mmol}, 100 \mathrm{~mol} \%$) in DCM ($55.8 \mathrm{~mL}, 0.63$ $\mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(6.46 \mathrm{~mL}, 46.4 \mathrm{mmol}, 133 \mathrm{~mol} \%)$ and tosyl chloride ($8.85 \mathrm{~g}, 46.4$ $\mathrm{mmol}, 133 \mathrm{~mol} \%)$. The reaction mixture was allowed to slowly warm to room temperature with stirring over 20 hours, at which point the reaction mixture was quenched with water and extracted with DCM with the aid of a separatory funnel. The combined organic layers were washed with saturated $\mathrm{Cu}_{2} \mathrm{SO}_{4}$ (aq.), brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to furnish the crude sulfonamide.

The crude sulfonamide (10.76 g) was dissolved in THF ($116 \mathrm{~mL}, 0.3 \mathrm{M}$) and the solution was cooled to $0^{\circ} \mathrm{C}$ with stirring. The known allylic alcohol ${ }^{11}(5.72 \mathrm{~g}, 39.1 \mathrm{mmol}, 110 \mathrm{~mol} \%)$, DIAD ($8.32 \mathrm{~mL}, 42.3 \mathrm{mmol}, 120 \mathrm{~mol} \%$), and $\mathrm{PPh}_{3}(11.1 \mathrm{~g}, 42.3 \mathrm{mmol}, 120 \mathrm{~mol} \%)$ were added to the reaction vessel. The reaction mixture was allowed to slowly warm to room temperature with stirring over 20 hours, at which point the reaction mixture was concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes:EtOAc, 10:1 to $2: 1)$ to provide $\mathbf{8}(12.47 \mathrm{~g})$ as a thick yellow oil.

Compound $\mathbf{8}(12.47 \mathrm{~g})$ was dissolved in $\mathrm{CHCl}_{3}(74 \mathrm{~mL}, 0.32 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}(36 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Trifluoroacetic acid ($36 \mathrm{~mL}, 492 \mathrm{mmol}, 1410 \mathrm{~mol} \%$) was added and the reaction mixture was allowed to slowly warm to room temperature with stirring over 20 hours, at which point it was quenched with solid NaHCO_{3}, poured into $\mathrm{H}_{2} \mathrm{O}$, and extracted with DCM with the aid of a separatory funnel. The combined organic extracts were washed with saturated NaHCO_{3} (aq.), brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes: $\mathrm{EtOAc}, 5: 1$ to $\left.1: 1\right)$ to provide the aldehyde (8.07 $\mathrm{g}, 23.7 \mathrm{mmol}$) as a yellow oil in 68% over 3 steps. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.56(\mathrm{~s}, 1$ H), $7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 5.78-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.53(\mathrm{~m}, 1 \mathrm{H})$, $4.55(\mathrm{~d}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.94(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3$ H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.7,155.5,144.1,135.5,129.9,128.9,128.5,127.3,62.3$, 56.1, 54.9, 45.8, 21.5; IR (film): 2958, 1598, 1445, 1345, 1267, 1161, $763 \mathrm{~cm}^{-1}$; HRMS (CI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+1]: 342.1011$, found: 342.1011

To a solution of the aldehyde ($0.26 \mathrm{~g}, 0.75 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in $\mathrm{DCM}(7.5 \mathrm{~mL}, 0.1 \mathrm{M})$ at ambient temperature was added the known Wittig reagent ${ }^{28}$ ($0.24 \mathrm{~g}, 0.75 \mathrm{mmol}, 100 \mathrm{~mol} \%$). The reaction mixture was allowed to stir for 20 hours, at which point the reaction mixture was concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes:EtOAc, 5:1 to 2:1) to provide $10(0.20 \mathrm{~g}, 0.52 \mathrm{mmol})$ as a yellow oil in 69% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 6.51$ $(\mathrm{dt}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}), 6.06(\mathrm{dt}, 1 \mathrm{H}, J=16.4,1.4 \mathrm{~Hz}), 5.66-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.42(\mathrm{~m}, 1 \mathrm{H})$, $4.51(\mathrm{dd}, 2 \mathrm{H}, J=6.8,1.0 \mathrm{~Hz}), 3.86(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 197.4,155.2,143.7,141.1,136.2,132.4,129.7,129.1,127.2$, 127.0, 62.3, 54.6, 48.2, 44.6, 26.9, 21.2; IR (film): 3055, 2985, 1599, 1422, 1265, 741, 706 cm^{-1}; HRMS (CI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+1]: 382.1324$, found: 382.1329.

Conversion of aminoacetaldehyde diethyl acetal 7 to enone 11-To a solution of aminoacetaldehyde diethyl acetal $7(11.7 \mathrm{~mL}, 80.7 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in DCM ($129 \mathrm{~mL}, 0.63$ M) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(13.8 \mathrm{~mL}, 99.0 \mathrm{mmol}, 120 \mathrm{~mol} \%)$ and $2,4,6-$ triisopropylbenzenesulfonyl chloride ($25 \mathrm{~g}, 82.6 \mathrm{mmol}, 102 \mathrm{~mol} \%$). The reaction mixture was allowed to slowly warm to room temperature over 22 hours with stirring, at which point the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM with the aid of a separatory funnel. The combined organic extracts were washed with $5 \% \mathrm{Cu}_{2} \mathrm{SO}_{4}$ (aq.), brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to furnish the crude sulfonamide.

The crude sulfonamide (32.25 g) was dissolved in THF ($269 \mathrm{~mL}, 0.3 \mathrm{M}$) and the solution was cooled to $0^{\circ} \mathrm{C}$ with stirring. The known allylic alcohol ${ }^{11}(17.67 \mathrm{~g}, 121.1 \mathrm{mmol}, 150 \mathrm{~mol} \%)$, DIAD ($25.4 \mathrm{~mL}, 129.1 \mathrm{mmol}, 160 \mathrm{~mol} \%$), and $\mathrm{PPh}_{3}(34.04 \mathrm{~g}, 121.1 \mathrm{mmol}, 160 \mathrm{~mol} \%)$ were added to the reaction vessel. The reaction mixture was allowed to slowly warm to room temperature with stirring over 20 hours, at which point the reaction mixture was concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes:EtOAc, 15:1 to 3:1) to provide compound $9(42.59 \mathrm{~g}, 26.9 \mathrm{mmol})$ as a thick yellow oil in 100% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.16(\mathrm{~s}, 2 \mathrm{H}), 5.78-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.56$ $(\mathrm{m}, 1 \mathrm{H}), 4.66(\mathrm{dd}, 2 \mathrm{H}, J=6.8,1.0 \mathrm{~Hz}), 4.53(\mathrm{t}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}), 4.15-4.07(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~d}$, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~d}, 2 \mathrm{H}, J=5.5$ $\mathrm{Hz}), 2.89(\mathrm{hp}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.25(\mathrm{dd}, 18 \mathrm{H}, J=6.9,1.1 \mathrm{~Hz}), 1.18(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 155.4,153.1,151.2,131.2,129.5,127.5,123.8,102.3,63.0,63.0$, 54.6, 47.1, 43.6, 34.0, 29.1, 24.6, 23.4, 15.1; IR (film): 2962, 2872, 1752, 1601, 1445, 1425, 1365, 1012, $940 \mathrm{~cm}^{-1}$; HRMS (CI) calc. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}-1]$: 526.2839, found: 526.2845.

Compound 9 ($29.38 \mathrm{~g}, 55.70 \mathrm{mmol}, 100 \mathrm{~mol} \%$) was dissolved in $\mathrm{CHCl}_{3}(137 \mathrm{~mL}, 0.4 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}(68 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Trifluoroacetic acid ($68 \mathrm{~mL}, 915 \mathrm{mmol}, 1640 \mathrm{~mol} \%$) was added and the reaction mixture was allowed to slowly warm to ambient temperature with stirring over 20 hours, at which point solid NaHCO_{3} was added and the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$, and extracted with DCM with the aid of a separatory funnel. The combined organic extracts were washed with saturated NaHCO_{3} (aq.), brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to provide the crude aldehyde (24.01 g) as a yellow oil.

To a solution of the crude aldehyde in $\operatorname{DCM}(520 \mathrm{~mL}, 0.1 \mathrm{M})$ at ambient temperature was added the known Wittig reagent ${ }^{28}$ ($\left.19.73 \mathrm{~g}, 61.98 \mathrm{mmol}, 110 \mathrm{~mol} \%\right)$. The reaction mixture was allowed to stir for 18 hours, at which point the reaction mixture was concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$:
hexanes:EtOAc, 5:1 to 3:1) to provide compound $11(18.70 \mathrm{~g}, 37.88 \mathrm{mmol}, 68 \%)$ as a white solid. M.P.: $42{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18$ (s, 2 H), 6.65 (dt, $1 \mathrm{H}, J=16.1,6.4$ $\mathrm{Hz}), 6.14(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}), 5.79-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.68-5.62(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, 2 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 4.10(\mathrm{hp}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.97(\mathrm{dd}, 2 \mathrm{H}, J=5.2,1.0 \mathrm{~Hz}), 3.89(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 2.90(\mathrm{hp}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{dd}, 18 \mathrm{H}, J=6.8,1.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.5,155.3,153.5,151.4,141.0,133.3,130.3,129.1,127.6,124.0,70.9$, 62.4, 54.8, 46.6, 42.8, 36.2, 34.0, 29.2, 28.5, 26.9, 24.7, 23.4; IR (film): 2960, 2931, 2871, 1601, 1384, 1107, 1072, 1060, $703 \mathrm{~cm}^{-1}$; HRMS (CI) calc. for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+1]: 494.2576$, found: 494.2579.

1-[1-(Toluene-4-sulfonyl)-3-vinyl-1,2,3,6-tetrahydro-pyridin-4-yl]-ethanone (12)

-To a degassed solution of enone $10(83 \mathrm{mg}, 0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in ${ }^{t} \mathrm{AmOH}(2.0 \mathrm{~mL}, 0.1$ M) at ambient temperature was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and freshly distilled $\mathrm{PBu}_{3}(50 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%)$. The reaction mixture was allowed to stir at ambient temperature for 20 minutes, at which point the reaction mixture was concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$:
hexanes:EtOAc, $5: 1$ to 2:1) to provide the title compound ($42 \mathrm{mg}, 0.12 \mathrm{mmol}$) as a yellow oil in 62% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.66(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.2$ $\mathrm{Hz}), 6.72(\mathrm{t}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 5.83(\mathrm{ddd}, 1 \mathrm{H}, J=17.1,10.3,6.8 \mathrm{~Hz}), 5.12-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.20$ (dd, $1 \mathrm{H}, J=19.0,3.8 \mathrm{~Hz}$), $3.74(\mathrm{dd}, 1 \mathrm{H}, J=11.6,2.1 \mathrm{~Hz}$), $3.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.36(\mathrm{dt}, 1 \mathrm{H}, J=$ $19.1,2.4 \mathrm{~Hz}), 2.54(\mathrm{dd}, 1 \mathrm{H}, J=11.5,3.8 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.4,143.9,139.2,136.6,134.0,132.8,129.7,127.6,116.9,47.2,44.8,36.8$, 25.6, 21.5; IR (film): 2924, 2854, 1674, 1597, 1354, 1166, 1093, $668 \mathrm{~cm}^{-1}$; HRMS (CI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+1]: 306.1164$, found: 306.1173 .

1-[1-(2,4,6-Triisopropyl-benzenesulfonyl)-3-vinyl-1,2,3,6-tetrahydro-pyridin-4-yl]-ethanone (13)—To a degassed solution of enone 11 ($0.50 \mathrm{~g}, 1.0 \mathrm{mmol}, 100 \mathrm{~mol} \%$) in ${ }^{t} \mathrm{AmOH}(10.0 \mathrm{~mL}, 0.1 \mathrm{M})$ at ambient temperature was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(59 \mathrm{mg}, 0.05 \mathrm{mmol}$, $5 \mathrm{~mol} \%$) and $\mathrm{PMe}_{3}(1.0 \mathrm{M}$ in toluene, $0.82 \mathrm{~mL}, 0.8 \mathrm{mmol}, 80 \mathrm{~mol} \%)$. The reaction mixture was allowed to stir for 30 minutes, at which point the reaction mixture was poured into water and extracted with DCM with the aid of a separatory funnel. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes: $\mathrm{EtOAc}, 10: 1$ to $\left.5: 1\right)$ to provide the title compound $(0.29 \mathrm{~g}, 0.68 \mathrm{mmol})$ as a yellow oil in 68% yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.18(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{t}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 5.70(\mathrm{ddd}, 1 \mathrm{H}, J=17.1,10.3,6.8 \mathrm{~Hz})$, 5.03-4.96 (m, 2 H), $4.12(\mathrm{hp}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.93(\mathrm{dd}, 1 \mathrm{H}, J=18.7,4.0 \mathrm{~Hz}), 3.80(\mathrm{dt}, 1 \mathrm{H}$, $J=18.7,2.6 \mathrm{~Hz}), 3.68(\mathrm{dd}, 1 \mathrm{H}, J=12.2,2.6 \mathrm{~Hz}), 3.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.04(\mathrm{dd}, 1 \mathrm{H}, J=12.0,3.8$ $\mathrm{Hz}), 2.90(\mathrm{hp}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.23(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 196.5,153.5,151.8,139.3,136.9,134.4,129.4,123.9,116.7,45.6,43.8,36.8,34.1$, 29.4, 28.5, 25.6, 25.0, 24.7, 23.4, 23.4; IR (film): 3068, 2962, 2870, 2823, 2255, 1674, 1601, 1562, 1462, 1385, 1152, $918 \mathrm{~cm}^{-1}$; HRMS (CI) calc. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+1]: 418.2410$, found: 418.2407 .

cis-1-[1-(2,4,6-Triisopropyl-benzenesulfonyl)-3-vinyl-piperidin-4-yl]-ethanone

(14)—To a solution of $\mathrm{CuI}(2.92 \mathrm{~g}, 15.37 \mathrm{mmol}, 110 \mathrm{~mol} \%)$ in THF (480 mL) at $-60^{\circ} \mathrm{C}$ was added $\mathrm{MeLi}\left(1.6 \mathrm{M}^{2} \mathrm{Et}_{2} \mathrm{O}, 10.8 \mathrm{~mL}, 17.3 \mathrm{mmol}, 125 \mathrm{~mol} \%\right.$), HMPA ($59.3 \mathrm{~mL}, 340.8 \mathrm{mmol}$, $2500 \mathrm{~mol} \%$), and DIBAL (1.0 M in cyclohexane, $69 \mathrm{~mL}, 69 \mathrm{mmol}, 500 \mathrm{~mol} \%$). The resulting mixture was allowed to stir between $-60^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ for 1.5 hours and was then cooled to $-78{ }^{\circ} \mathrm{C}$. Enone $13(5.74 \mathrm{~g}, 13.76 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in THF ($19 \mathrm{~mL}, 0.72 \mathrm{M}$) was added to the reaction mixture at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 10 minutes, at which point the reaction mixture was quenched with 2 M HCl (aq.) at $-78^{\circ} \mathrm{C}$ and the cooling bath was removed. The reaction mixture was allowed to reach room temperature, at which point the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ with the aid of a separatory funnel. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes:EtOAc, $5: 1$ to $\left.4: 1\right)$ to provide the title compound $(4.47 \mathrm{~g}, 10.60 \mathrm{mmol})$ as a white solid in 77% yield exclusively as the cis-diastereomer. M.P.: $112-113{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.16(\mathrm{~s}, 2 \mathrm{H}), 5.83(\mathrm{ddd}, 1 \mathrm{H}, J=17.2,10.5,8.7 \mathrm{~Hz}), 5.30-5.06(\mathrm{~m}, 2 \mathrm{H})$, 4.16-4.07 (m, 2 H), 3.78-3.73 (m, 1 H), 3.44-3.40 (m, 1 H), 3.12 (dd, $1 \mathrm{H}, J=11.8,3.3 \mathrm{~Hz}$), 2.94-2.84 (m, 3 H), 2.66 (dt, $1 \mathrm{H}, J=10.3,4.4 \mathrm{~Hz}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{dt}$, $18 \mathrm{H}, J=6.9,1.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.5,153.4,151.8,135.0,129.6$, $123.9,117.7,51.6,48.4,43.9,40.4,34.1,31.6,29.4,28.6,25.1,24.7,23.5,22.6,22.6,14.1$; IR (film): 2959, 2929, 2869, 1711, 1601, 1276, 1261, 1151, 764, $750 \mathrm{~cm}^{-1}$; HRMS (CI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+1]$: 420.2572, found: 420.2585.
cis-4-Acetyl-3-vinyl-piperidine-1-carboxylic acid tert-butyl ester (18)—To a solution of naphthalene ($9.57 \mathrm{~g}, 74.64 \mathrm{mmol}, 940 \mathrm{~mol} \%)$ in DME $(22.8 \mathrm{~mL})$ at room temperature was added freshly cut sodium ($1.42 \mathrm{~g}, 61.72 \mathrm{mmol}, 780 \mathrm{~mol} \%$). The resulting green solution of the anion radical was stirred for 2 hours, at which point it was added dropwise to a solution of N-trisyl piperidine $14(3.33 \mathrm{~g}, 7.94 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in DME ($50 \mathrm{~mL}, 0.16$ $\mathrm{M})$ at $-78^{\circ} \mathrm{C}$. Once the green color of the anion radical persisted for 10 seconds, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) was added immediately. The crude reaction mixture was allowed to reach ambient temperature, at which point the reaction mixture was filtered with the aid of CHCl_{3}, and concentrated in vacuo.

The crude amine was dissolved in $\operatorname{DCM}(79 \mathrm{~mL}, 0.1 \mathrm{M})$, and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. To the stirred solution was added $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL}, 21.52 \mathrm{mmol}, 270 \mathrm{~mol} \%), \mathrm{Boc}_{2} \mathrm{O}(8.66 \mathrm{~g}, 39.68$ $\mathrm{mmol}, 500 \mathrm{~mol} \%)$, and DMAP $(0.98 \mathrm{~g}, 8.02 \mathrm{mmol}, 101 \mathrm{~mol} \%)$. The reaction mixture was allowed to slowly warm to ambient temperature with stirring over 18 hours, at which point the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) and extracted with DCM with the aid of a separatory funnel. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes: $\left.\mathrm{EtOAc}, 5: 1\right)$ to provide the title compound $(1.52 \mathrm{~g}, 6.03 \mathrm{mmol})$ as a colorless oil in 76% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$ - DMSO, $90^{\circ} \mathrm{C}$): $\delta 5.65(\mathrm{ddd}, 1 \mathrm{H}, J=$ $17.3,10.5,2.8 \mathrm{~Hz}$), 5.11 (ddd, $1 \mathrm{H}, J=17.3 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}$), 5.03 (ddd, $1 \mathrm{H}, J=10.6,1.7$, $1.0 \mathrm{~Hz}), 3.93$ (ddd, $1 \mathrm{H}, J=13.2 \mathrm{~Hz}, 3.5 \mathrm{~Hz}, 1.6 \mathrm{~Hz}), 3.95-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{dd}, 1 \mathrm{H}, J=$ $13.2 \mathrm{~Hz}, 3.3 \mathrm{~Hz}$), 2.85-2.80 (m, 2 H), 2.77 (dt, $1 \mathrm{H}, J=10.7 \mathrm{~Hz}, 4.2 \mathrm{~Hz}$), 2.07 (s, 3 H), 1.62-1.59 (m, 1 H$), 1.58-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.8,154.7$, $134.8,117.2,79.4,79.3,52.3,40.6,28.4,28.2,28.1,22.5$; IR (neat): 2976, 2930, 2854, 1478, $1464,1423,1366,1241,1164,1119 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+1]$: 254.1756 , found: 254.1757 .

4-[3-(6-Methoxy-quinolin-4-yl)-acryloyl]-3-vinyl-piperidine-1-carboxylic acid tert-butyl ester (15)—To a solution of methyl ketone $14(0.11 \mathrm{~g}, 0.44 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in THF ($1.4 \mathrm{~mL}, 0.3 \mathrm{M}$) at $-78^{\circ} \mathrm{C}$ was rapidly added LHMDS (1.0 M in THF, $0.53 \mathrm{~mL}, 0.53$ $\mathrm{mmol}, 120 \mathrm{~mol} \%$). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour, at which point the quinoline-bearing aldehyde ${ }^{14}(0.11 \mathrm{~g}, 0.57 \mathrm{mmol}, 130 \mathrm{~mol} \%)$ was added as a solution in THF $(0.3 \mathrm{~mL})$. The reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 45 minutes, at which point $\mathrm{Ac}_{2} \mathrm{O}(80 \mu \mathrm{~L}, 0.89 \mathrm{mmol}, 200 \mathrm{~mol} \%)$ and DMAP ($54 \mathrm{mg}, 0.44 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. The reaction was allowed to stir at $-78^{\circ} \mathrm{C}$ for an additional 45 minutes, at which point it was allowed to reach $-40^{\circ} \mathrm{C}\left(\mathrm{MeCN} /\right.$ solid $\left.\mathrm{CO}_{2}\right)$ and was allowed to stir for 30 minutes. To the reaction mixture was added $\mathrm{DBU}(0.34 \mathrm{~mL}, 2.27 \mathrm{mmol}, 520 \mathrm{~mol} \%)$ at $-40^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 15 minutes at $-40^{\circ} \mathrm{C}$, at which point it was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) and was extracted with $\mathrm{Et}_{2} \mathrm{O}$ with the aid of a separatory funnel. The combined ethereal extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes:EtOAc, $1: 1$ to $1: 3$) to provide the title compound ($0.13 \mathrm{~g}, 0.31 \mathrm{mmol}$) as a yellow foam in 70% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO, $90^{\circ} \mathrm{C}$): $\delta 8.76(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 8.18(\mathrm{~d}, 1$ $\mathrm{H}, J=15.8 \mathrm{~Hz}), 7.99(\mathrm{dd}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, 3.1 \mathrm{~Hz}), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 7.48-7.45(\mathrm{~m}, 2$ H), $7.23(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 5.72(\mathrm{ddd}, 1 \mathrm{H}, J=17.3,10.6,2.8 \mathrm{~Hz}), 5.11-5.07(\mathrm{~m}, 1 \mathrm{H})$,
5.05-5.02 (m, 1 H), 3.98-3,92 (m, 2 H), 3.97 (s, 3 H), 3.31-3.24 (m, 2 H$)$, 2.98-2.95 (m, 2 H), $1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 199.0$, $170.6,158.0,154.5,146.9,144.5,138.1,136.6,134.6,131.3,128.7,127.1,122.1,117.9,117.1$, 100.6, 79.3, 55.3, 55.3, 51.0, 40.5, 28.0, 22.6; IR (film): 2974, 1690, 1619, 1506, 1472, 1429, 1366, 1318, 1227, $1165 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+1]: 423.2284$, found: 423.2284 .

4-[1-Hydroxy-3-(6-methoxy-quinolin-4-yl)-allyl]-3-vinyl-piperidine-1-carboxylic acid tert-butyl ester (16)—To a solution of enone $15(0.98 \mathrm{~g}, 2.33 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in THF ($65.8 \mathrm{~mL}, 0.04 \mathrm{M}$) at $-78^{\circ} \mathrm{C}$ was added dropwise L-Selectride (1.0 M in THF, 3.1 mL , $3.07 \mathrm{mmol}, 130 \mathrm{~mol} \%$). The reaction mixture was allowed to stir for 5 minutes, at which point saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ with the aid of a separatory funnel. The combined ethereal extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes: $\mathrm{EtOAc}, 1: 1$ to $1: 3$) to provide the title compound $(0.93 \mathrm{~g}, 2.19$ mmol) as a white solid in 94% yield as a single diastereomer. M.P.: $148-149{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO, $90^{\circ} \mathrm{C}$): $\delta 8.66(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}$), $7.92(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 7.51(\mathrm{~d}$, $1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 7.48(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 7.40(\mathrm{dd}, 1 \mathrm{H}, J=9.2,2.8 \mathrm{~Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.3 \mathrm{~Hz}), 6.49(\mathrm{dd}, 1 \mathrm{H}, J=15.8,7.0 \mathrm{~Hz}), 5.93(\mathrm{ddd}, 1 \mathrm{H}, J=17.4,10.5,2.3 \mathrm{~Hz}), 5.22$ (ddd, $1 \mathrm{H}, J=17.4,2.4,1.1 \mathrm{~Hz}$), $5.16(\mathrm{dd}, 1 \mathrm{H}, J=10.9,1.9 \mathrm{~Hz}), 4.73$ (brs, 1 H), 4.08-4.02 (m, 3 H), 3.94 (s, 3 H), 2.90 (dd, $1 \mathrm{H}, J=13.2,3.0 \mathrm{~Hz}$), 2.79 (brs, 1 H), 2.70 (td, $1 \mathrm{H}, J=12.4,3.0$ Hz), 1.77-1.71 (m, 1 H$), 1.45-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.33(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.5,154.9,147.0,144.0,141.2,138.4,135.4,130.8,126.9,125.6,121.7$, $117.5,101.2,79.3,73.5,65.7,55.3,55.3,45.2,39.1,28.2,23.8,15.1$; IR (film): 3630, 3264, 2359, 2341, 2018, 1693, 1620, 1392, 1366, 1230, 1164, 1138, $1034 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+1]: 425.2440$, found: 425.2441 .

VO(hydroxamate) $\mathbf{2}_{\mathbf{2}}$ —To a solution of the known hydroxamic acid ${ }^{29}(1.00 \mathrm{~g}, 7.64 \mathrm{mmol}$, $160 \mathrm{~mol} \%)$ in $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ at ambient temperature was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.80 \mathrm{~g}, 7.52 \mathrm{mmol}$, $150 \mathrm{~mol} \%)$ and $\mathrm{VO}(\mathrm{SO})_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.80 \mathrm{~g}, 4.89 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL}, 0.4 \mathrm{M})$. The reaction mixture, which immediately turned purple, was allowed to stir for 5 minutes, at which point the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and VO (hydroxamate) $)_{2}(0.32 \mathrm{~g}, 1.27 \mathrm{mmol})$ was collected by filtration with the aid of a Hirsch funnel, washed with cold $\mathrm{H}_{2} \mathrm{O}$ and dried in vacuo to provide the title compound as a light purple solid in 26% yield. M.P.:134-135 ${ }^{\circ}$ C; ${ }^{51}$ V NMR (130 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-375.3,-412.7,-492.4,-552.0$; IR (film): 2978, 2939, $2361,1572,1483,1422,1368,1111,983,956,718,606 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~V}[\mathrm{M}+1]: 328.1203$, found: 328.1206.

4-\{Hydroxy-[3-(6-methoxy-quinolin-4-yl)-oxiranyl]-methyl\}-3-vinyl-piperidine-1carboxylic acid tert-butyl ester (17)—To a solution of allylic alcohol 16 ($1.00 \mathrm{~g}, 2.27$ $\mathrm{mmol}, 100 \mathrm{~mol} \%$) in DCM ($22.3 \mathrm{~mL}, 0.1 \mathrm{M}$) at $4^{\circ} \mathrm{C}$ was added VO(hydroxamate) $)_{2}(38 \mathrm{mg}$, $0.11 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and TBHP (5.0 M in decane, $4.4 \mathrm{~mL}, 22.2 \mathrm{mmol}, 980 \mathrm{~mol} \%$). The reaction mixture was allowed to stir at $4{ }^{\circ} \mathrm{C}$ for 71 hours, at which point the reaction mixture was concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes: $\mathrm{EtOAc}, 1: 1$ to $\left.1: 2\right)$ to provide the title compound $(0.91 \mathrm{~g}, 2.07 \mathrm{mmol})$ as a white foam in 91% yield as a $17: 1$ ratio of separable diastereomers. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO, $\left.90^{\circ} \mathrm{C}\right): \delta 8.69(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 7.96(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 7.44(\mathrm{dd}, 1 \mathrm{H}, J=9.2,2.8 \mathrm{~Hz})$, $7.28(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 5.88$ (ddd, $1 \mathrm{H}, J=17.4,10.5,2.3 \mathrm{~Hz}) 5.25$ (ddd, $1 \mathrm{H}, J=17.4,2.3$, $1.1 \mathrm{~Hz}), 5.15(\mathrm{dd}, 1 \mathrm{H}, J=10.5,2.3 \mathrm{~Hz}), 4.96(\mathrm{dd}, 1 \mathrm{H}, J=6.2,2.1 \mathrm{~Hz}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=2.0$ Hz), 4.10-4.05 (m, 2 H), 3.95 (s, 3 H), 3.23 (ddd, $1 \mathrm{H}, J=12.6,9.5,6.4 \mathrm{~Hz}$), 3.01-2.99 (m, 1 H), $2.91(\mathrm{dd}, 1 \mathrm{H}, J=13.0,2.8 \mathrm{~Hz}$), 2.75-2.70 (m, 2 H), 1.91-1.85 (m, 1 H), $1.65(\mathrm{dd}, 1 \mathrm{H}, J$ $=13.6,2.9 \mathrm{~Hz}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.1,154.9$,
$147.4,143.3,141.6,135.1,131.2,127.2,122.0,118.1,116.8,109.7,100.9,79.6,70.5,63.3$, 55.7, 52.1, 44.7, 39.4, 29.7, 28.3, 22.9; IR (film): 2975, 2932, 2858, 2358, 2338, 2029, 1689, 1621, 1429, 1238, 1167, 1147, $853 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+1]$: 441.2389, found: 441.2383.

7-Hydroxy-quinine (3)—To a solution of epoxide $\mathbf{1 7}(53 \mathrm{mg}, 0.12 \mathrm{mmol}, 100 \mathrm{~mol} \%$) in DCM $(1.2 \mathrm{~mL}, 0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added trifluoroacetic acid $(0.30 \mathrm{~mL}, 3.90 \mathrm{mmol}, 3300 \mathrm{~mol}$ $\%$). The reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 1 hour, at which point the reaction mixture was concentrated in vacuo. Toluene (2 mL) was then added to the flask and the mixture was concentrated again in vacuo. The yellow residue was dissolved in MeCN ($3 \mathrm{~mL}, 0.04 \mathrm{M}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(64 \mathrm{mg}, 0.60 \mathrm{mmol}, 500 \mathrm{~mol} \%)$ and $\mathrm{Zn}(\mathrm{OTf})_{2}(65 \mathrm{mg}, 0.18 \mathrm{mmol}, 150 \mathrm{~mol} \%)$ were added. The reaction mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 41 hours, at which point the reaction mixture was allowed to cool to ambient temperature. The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and was extracted with DCM with the aid of a separatory funnel. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\mathrm{DCM}: \mathrm{MeOH}, 20: 1$ to 15:1) to provide the title compound ($28 \mathrm{mg}, 0.084 \mathrm{mmol}$) as a white solid in 70% yield. M.P.: $196{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.69$ (d, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}$), 7.91 (d, 1 H , $J=9.2 \mathrm{~Hz}), 7.59(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 7.37(\mathrm{dd}, 1 \mathrm{H}, J=9.2,2.7 \mathrm{~Hz})$, 5.99-5.90 (m, 1 H), 5.60 (dd, 1 H, J=9.4, 4.3 Hz), $5.46(\mathrm{~d}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}), 5.07-5.01(\mathrm{~m}, 2$ H), $4.81(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.26-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{dd}$, $1 \mathrm{H}, J=13.2,10.1 \mathrm{~Hz}$), 2.49-2.24 (m, 3 H), 2.08-1.99 (m, 2 H$), 1.18-1.11(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, d_{6}-DMSO): $\delta 156.6,148.9,147.5,144.0,142.0,131.0,127.8,120.9,120.0,114.5$, $102.8,66.9,64.9,63.8,55.4,54.5,48.6,41.4,34.3,20.0$; IR (film): 3310, 2918, 2868, 2216, $2159,2035,1622,1509,1476,1275,1261,1242,1094,1025,750 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+1]: 341.1865$, found: 341.1863 .
cis-4-Acetyl-3-vinyl-piperidine-1-carboxylic acid benzyl ester (19)—To a solution of naphthalene ($0.57 \mathrm{~g}, 4.45 \mathrm{mmol}, 1850 \mathrm{~mol} \%$) in DME $(1.35 \mathrm{~mL})$ at ambient temperature was added freshly cut sodium $(0.90 \mathrm{~g}, 3.8 \mathrm{mmol}, 1580 \mathrm{~mol} \%)$. The resulting green solution of anion radical was allowed to stir for 2 hours, at which point it was added dropwise to a solution of N-trisyl piperidine $14(0.10 \mathrm{~g}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in DME $(1.42 \mathrm{~mL}, 0.17 \mathrm{M})$ at -78° C. Once the green color of the anion radical persisted for 10 seconds, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) was added. The crude reaction mixture was filtered through a pipette packed with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ with the aid of CHCl_{3} and the filtrate was concentrated. The residue was dissolved in DCM (2.4 $\mathrm{mL}, 0.1 \mathrm{M})$ and the solution was cooled to $0^{\circ} \mathrm{C}$, at which point $\mathrm{Et}_{3} \mathrm{~N}(0.20 \mathrm{~mL}, 1.43 \mathrm{mmol}$, $600 \mathrm{~mol} \%$) and $\mathrm{CbzCl}(0.11 \mathrm{~mL}, 0.78 \mathrm{mmol}, 330 \mathrm{~mol} \%)$ were added. The reaction mixture was allowed to slowly warm to ambient temperature with stirring over 18 hours, at which point saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) was added and the reaction mixture was extracted with DCM with the aid of a separatory funnel. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography (SiO_{2} : hexanes: $\mathrm{EtOAc}, 3: 1$) to provide the title compound ($41 \mathrm{mg}, 0.15 \mathrm{mmol}$) as a colorless oil in 61% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$ - DMSO, $90^{\circ} \mathrm{C}$): $\delta 7.37-7.28(\mathrm{~m} 5 \mathrm{H})$, 5.65 (ddd, $1 \mathrm{H}, J=17.3,10.5,2.7 \mathrm{~Hz}$), $5.12-4.99(\mathrm{~m}, 4 \mathrm{H}), 4.01-3.94$ (m, 2 H), 3.21 (dd, 1 H , $J=13.3,3.5 \mathrm{~Hz}), 2.97-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{dt}, 1 \mathrm{H}, J=10.6,4.2 \mathrm{~Hz}), 2.08$ (s, 3 H), 1.71-1.58 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 208.5,154.5,136.9,135.6$, 128.3, 128.3, 127.7, 127.6, 127.4, 117.0, 66.1, 51.0, 47.6, 42.6, 28.1, 22.0; IR (film): 2923, 2361, 2340, 1717, 1700, 1696, 1684, 1653, 1559, 1437, 1233, $668 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}[\mathrm{M}+1]: 288.1600$, found: 288.1599.

4-[3-(6-Methoxy-quinolin-4-yl)-acryloyl]-3-vinyl-piperidine-1-carboxylic acid
benzyl ester (20)—To a stirred solution of methyl ketone 19 ($42 \mathrm{mg}, 0.15 \mathrm{mmol}, 100 \mathrm{~mol}$
$\%)$ in THF $(0.54 \mathrm{~mL}, 0.28 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$ was rapidly added LHMDS $(0.9 \mathrm{M}$ in methylcyclohexane, $0.19 \mathrm{~mL}, 0.17 \mathrm{mmol}, 110 \mathrm{~mol} \%$). The reaction mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 1 hour, at which point the quinoline bearing aldehyde ${ }^{14}(39 \mathrm{mg}, 0.21 \mathrm{mmol}$, $140 \mathrm{~mol} \%$) was added. The reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 1 hour, at which point $\mathrm{Ac}_{2} \mathrm{O}(30 \mu \mathrm{~L}, 0.32 \mathrm{mmol}, 210 \mathrm{~mol} \%)$ and $\mathrm{DMAP}(18 \mathrm{mg}, 0.14 \mathrm{mmol}, 90 \mathrm{~mol} \%)$ were added. The reaction was allowed to stir at $-78^{\circ} \mathrm{C}$ for an additional 45 minutes, at which point the reaction mixture was allowed to reach $-40^{\circ} \mathrm{C}\left(\mathrm{MeCN} /\right.$ solid $\left.\mathrm{CO}_{2}\right)$ and was allowed to stir for 30 minutes. DBU $(0.11 \mathrm{~mL}, 0.74 \mathrm{mmol}, 500 \mathrm{~mol} \%)$ was added to the reaction mixture at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 minutes at $-40^{\circ} \mathrm{C}$, at which point it was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ with the aid of a separatory funnel. The combined ethereal extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes:EtOAc, $1: 1$ to $\left.1: 3\right)$ to afford $\mathbf{2 0}(43 \mathrm{mg}, 0.10 \mathrm{mmol}, 64 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO, $90^{\circ} \mathrm{C}$): $\delta 8.78(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 8.19(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz})$, 8.02-8.00 (m, 1 H), $7.78(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}$, $1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 5.71(\mathrm{ddd}, 1 \mathrm{H}, J=17.3,10.5,2.7 \mathrm{~Hz}), 5.13-5.00(\mathrm{~m}, 4 \mathrm{H}), 4.04-3.98(\mathrm{~m}, 2$ H), 3.97 ($\mathrm{s}, 3 \mathrm{H}$), 3.38-3.31 (m, 2 H), 3.12-3.07 (m, 1 H), 3.02-2.99 (m, 1 H), 1.88-1.80 (m, 1 H), 1.75-1.70 (m, 1 H$)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 199.8,157.8,154.5,147.5,144.4$, $138.2,137.0,135.8,135.3,131.3,130.4,128.3,127.8,127.4,126.8,122.1,118.7,117.0,66.1$, 55.6, 49.4, 42.4, 30.4; IR (film): 2960, 2360, 2340, 1700, 1695, 1684, 1617, 1506, 1436, 1227, $668 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+1]: 457.2122$, found: 457.2128.

4-[1-Hydroxy-3-(6-methoxy-quinolin-4-yl)-allyl]-3-vinyl-piperidine-1-carboxylic

 acid benzyl ester (21)—To a solution of enone $20(27 \mathrm{mg}, 0.065 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in THF $(1.8 \mathrm{~mL}, 0.04 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$ was added dropwise L-Selectride (1.0 M in THF, $70 \mu \mathrm{~L}, 0.070$ $\mathrm{mmol}, 110 \mathrm{~mol} \%)$. The reaction mixture was stirred for 5 minutes at which time it was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ with the aid of a separatory funnel. The combined ethereal extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$:hexanes:EtOAc, $1: 2$ to $1: 3$) to provide the title compound ($29 \mathrm{mg}, 0.062 \mathrm{mmol}$) as a clear oil in 96% yield as a single diastereomer. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO, $90^{\circ} \mathrm{C}$): $\delta 8.66(\mathrm{~d}, 1 \mathrm{H}$, $J=4.6 \mathrm{~Hz}), 7.93(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 7.48(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 7.40$ (dd, $1 \mathrm{H}, J=9.1,2.8 \mathrm{~Hz}), 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 6.49(\mathrm{dd}, 1 \mathrm{H}, J=$ $15.7,7.0 \mathrm{~Hz}$), 5.92 (ddd, $1 \mathrm{H}, J=17.3,10.5,2.2 \mathrm{~Hz}$), $5.28-5.24(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{dd}, 1 \mathrm{H}, J=$ $10.6,2.3 \mathrm{~Hz}), 5.10(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 5.06(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 4.76(\mathrm{brs}, 1 \mathrm{H}), 4.15-4.12$ (m, 2 H), 4.06-4.03 (m, 1 H), $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, 1 \mathrm{H}, J=13.2,2.9 \mathrm{~Hz}$), 2.84-2.78 (m, 2 H), 1.80-1.74 (m, 1 H$), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.3,154.6$, $147.5,144.2,140.8,139.6,137.0,135.7,130.9,128.3,127.7,127.4,126.7,124.7,121.6,117.4$, 117.1, 101.9, 79.1, 72.3, 66.0, 55.6, 44.6, 43.6, 38.1, 30.4; IR (film): 2927, 2360, 2340, 1700, 1695, 1684, 1507, 1472, 1436, 1231, 668, $417 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}$ $+1]: 459.2284$, found: 459.2280 .

4-[1-Acetoxy-3-(6-methoxy-quinolin-4-yl)-allyl]-3-vinyl-piperidine-1-carboxylic acid benzyl ester (22)—To a solution of allylic alcohol $21(22 \mathrm{mg}, 0.052 \mathrm{mmol}, 100 \mathrm{~mol}$ $\%)$ in $\mathrm{DCM}(0.87 \mathrm{~mL}, 0.6 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(40 \mu \mathrm{~L}, 0.29 \mathrm{mmol}, 560 \mathrm{~mol} \%), \mathrm{Ac}_{2} \mathrm{O}$ ($30 \mu \mathrm{~L}, 0.32 \mathrm{mmol}, 620 \mathrm{~mol} \%$), and DMAP ($1.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The reaction mixture was stirred for 45 minutes, at which point it was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM with the aid of a separatory funnel. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes: $\mathrm{EtOAc}, 1: 1$ to $1: 2$) to provide the title compound ($21 \mathrm{mg}, 0.042 \mathrm{mmol}$) as a white foam in 81% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}, 9{ }^{\circ} \mathrm{C}$): $\delta 8.70(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 7.97(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 7.46-7.42(\mathrm{~m}$,
$2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 6 \mathrm{H}), 6.41(\mathrm{dd}, 1 \mathrm{H}, J=15.6,7.6 \mathrm{~Hz}), 5.89$ (ddd, $1 \mathrm{H}, J=17.1,10.5,1.5$ Hz), 5.19-5.05 (m, 5 H), 4.17-4.14 (m, 1 H), 4.10-4.07 (m, 1 H), 3.94 (s, 3 H), 3.08 (dd, 1 H , $J=13.4,2.9 \mathrm{~Hz}), 2.89-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, 1.56-1.48 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, d_{6}-DMSO): $\delta 169.5,157.6,154.5,146.8,143.1$, $140.9,137.0,135.1,133.8,130.2,128.3,128.3,127.7,127.4,126.7,122.2,117.7,117.5,102.0$, $79.1,75.5,66.1,55.6,43.3,41.8,40.1,38.9,20.8$; IR (film): 3009, 2931, 2863, 2360, 2340, 1734, 1700, 1696, 1685, 1617, 1507, 1231, $1027 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}$ [M $+1]: 501.2389$, found: 501.2391.

4-[3-(6-Methoxy-quinolin-4-yl)-allyl]-3-vinyl-piperidine-1-carboxylic acid benzyl ester (23)-To a solution of allylic acetate $22(50 \mathrm{mg}, 0.13 \mathrm{mmol}, 100 \mathrm{~mol} \%$) in THF (1.0 $\mathrm{mL}, 0.13 \mathrm{M})$ at ambient temperature was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{mg}, 0.003 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, freshly distilled $\mathrm{PBu}_{3}(20 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 60 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}(90 \mu \mathrm{~L}, 0.65 \mathrm{mmol}, 500 \mathrm{~mol} \%)$, and formic acid (88% in $\mathrm{H}_{2} \mathrm{O}, 20 \mu \mathrm{~L}, 0.53 \mathrm{mmol}, 400 \mathrm{~mol} \%$). The reaction mixture was stirred for 4 hours, at which point it was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ with the aid of a separatory funnel. The combined ethereal extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: hexanes: $\mathrm{EtOAc}, 1: 1$ to $1: 2$) to provide the title compound ($42 \mathrm{mg}, 0.10$ mmol) as a colorless oil in 78% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO, $90^{\circ} \mathrm{C}$): $\delta 8.65(\mathrm{~d}, 1 \mathrm{H}$, $J=4.6 \mathrm{~Hz}), 7.92(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 7.46(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 7.40$ (dd, $1 \mathrm{H}, J=9.1,2.8 \mathrm{~Hz}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 6.56-6.50(\mathrm{~m}, 1 \mathrm{H})$, 5.87 (ddd, $1 \mathrm{H}, J=17.3,10.4,2.1 \mathrm{~Hz}), 5.20-5.05(\mathrm{~m}, 4 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, 3.17 (dd, $1 \mathrm{H}, J=13.2,3.2 \mathrm{~Hz}), 3.02-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.24(\mathrm{~m}, 2 \mathrm{H})$, $1.97-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{dd}, 1 \mathrm{H}, J=13.4,3.7 \mathrm{~Hz}), 1.50-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.6,155.4,147.3,144.3,142.0,136.8,135.4,131.1,128.3$, $127.8,127.7,127.0,126.6,121.7,117.5,117.4,101.4,66.9,55.4,49.0,48.5,43.9,42.5,38.9$, $37.3,27.2$; IR (film): 2928, 2360, 2340, 1695, 1619, 1506, 1470, 1432, 1365, $1229 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+1]: 443.2335$, found: 443.2332.

7-Hydroxy-9-(4-methoxybenzyloxy)-quinine (24)—To a solution of KH (30\% in oil, $47 \mathrm{mg}, 0.35 \mathrm{mmol}, 120 \mathrm{~mol} \%)$ in DMF ($2.9 \mathrm{~mL}, 0.1 \mathrm{M}$) at $0^{\circ} \mathrm{C}$ was added diol $3(100 \mathrm{mg}$, $0.30 \mathrm{mmol}, 100 \mathrm{~mol} \%)$. The reaction mixture stirred at $0^{\circ} \mathrm{C}$ for 35 minutes, at which point $\mathrm{PMBCl}(40 \mu \mathrm{~L}, 0.42 \mathrm{mmol}, 140 \mathrm{~mol} \%)$ was added and the mixture was warmed to $4^{\circ} \mathrm{C}$. After 46 hours at $4{ }^{\circ} \mathrm{C}$, the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ with the aid of a separatory funnel. The combined ethereal extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography (SiO_{2} : $\mathrm{DCM}: \mathrm{MeOH}, 40: 1$ to $30: 1$) to provide the title compound $(0.11 \mathrm{~g}, 0.23$ mmol) as a white foam in 78% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.71(\mathrm{~d}, 1 \mathrm{H}, J=4.4$ $\mathrm{Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.55(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 7.41(\mathrm{dd}, 1 \mathrm{H}, J=9.2$, $2.7 \mathrm{~Hz}), 7.18(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 5.91-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.13$ (brs, 1 H), 4.98-4.91 (m, 2 H$), 4.30(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}), 4.20(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1$ H), $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO): $\delta 158.6$, $156.4,147.5,142.2,141.9,131.2,131.0,130.9,130.3,130.1,129.4,129.2,129.0,121.0,114.4$, $113.6,71.5,70.8,70.1,63.0,55.3,55.0,54.4,34.6,30.5$; IR (film): 2931, 2360, 2340, 1684, $1618,1518,1543,1363,1240,1036 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+1]$: 461.2440, found: 461.2442 .

7-Hydroxy-9-(methoxymethyloxy)-quinine (25)—To a solution of KH (30\% in oil, 47 $\mathrm{mg}, 0.35 \mathrm{mmol}, 120 \mathrm{~mol} \%)$ in DMF ($2.9 \mathrm{~mL}, 0.1 \mathrm{M}$) at $0^{\circ} \mathrm{C}$ was added diol $\mathbf{3}(100 \mathrm{mg}, 0.30$ $\mathrm{mmol}, 100 \mathrm{~mol} \%)$. The reaction mixture stirred at $0^{\circ} \mathrm{C}$ for 35 minutes at which time MOMCl $(30 \mu \mathrm{~L}, 0.39 \mathrm{mmol}, 130 \mathrm{~mol} \%)$ was added and the mixture was warmed to $4^{\circ} \mathrm{C}$. After 45 hours
at $4{ }^{\circ} \mathrm{C}$, the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$ with the aid of a separatory funnel. The combined ethereal extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: $\mathrm{DCM}: \mathrm{MeOH}, 40: 1$ to $30: 1$) to provide the title compound ($60 \mathrm{mg}, 0.17$ mmol) as a colorless oil in 58% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.74(\mathrm{brs}, 1 \mathrm{H}), 8.02(\mathrm{~d}$, $1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 7.46(\mathrm{brs}, 1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 5.92-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.04(\mathrm{~m}, 2 \mathrm{H})$, $4.57(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.16$ $(\mathrm{m}, 1 \mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.19(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, d_{6}-DMSO): $\delta 156.6,156.5,147.5,142.2,131.1,131.0,120.8,120.7,114.7,114.4$, 102.8, 95.9, 79.1, 55.4, 55.3, 54.3, 41.7, 34.6, 32.6, 30.4, 29.0, 20.4; IR (film): 3246 (br), 2929, 2361, 2340, 1622, 1508, 1473, 1244, 1101, 1032, $668 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+1]: 385.2127$, found: 385.2124 .

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Acknowledgment is made to the Research Corporation Cottrell Scholar Program, the Sloan Foundation, the Dreyfus Foundation, Eli Lilly, Johnson \& Johnson, the Robert A. Welch Foundation and the NSF (CHE-0749016) for partial support of this research.

References

1. For a authoritative review on quinine, including previous syntheses, see: Kaufman TS, Rúveda EA. Angew Chem Int Ed 2005;44:854.
2. For reviews on malaria, see: (a) Greenwood B, Mutabingwa T. Nature 2002;415:670. [PubMed: 11832954] (b) Wiesner J, Ortmann R, Jomaa H, Schlitzer M. Angew Chem Int Ed 2003;42:5274.
3. (a) Pelletier PJ, Caventou JB. Ann Chim Phys 1820;15:291. (b) Pelletier PJ, Caventou JB. Ann Chim Phys 1820;15:337.
4. Rabe P, Kindler K. Ber Dtsch Chem Ges 1918;51:466.
5. (a) Woodward RB, Doering WE. J Am Chem Soc 1944;66:849. (b) Woodward RB, Doering WE. J Am Chem Soc 1945;67:860.
6. Smith AC, Williams RM. Angew Chem Int Ed 2008;47:1736.
7. Seeman JI. Angew Chem Int Ed 2007;46:1378.
8. (a) Uskoković M, Gutziller J, Henderson T. J Am Chem Soc 1970;92:203. [PubMed: 5410107] (b) Gutzwiller J, Uskoković M. J Am Chem Soc 1970;92:204. [PubMed: 5410108] (c) Gutzwiller J, Uskoković MR. J Am Chem Soc 1978;100:576. (d) Grethe G, Lee HL, Mitt T, Uskoković MR. J Am Chem Soc 1978;100:581. (e) Grethe G, Lee HL, Mitt T, Uskoković MR. J Am Chem Soc 1978;100:589. (f) Gates M, Sugavanam B, Schreiber WL. J Am Chem Soc 1970;92:205. [PubMed: 5410109] (g) Taylor EC, Martin SF. J Am Chem Soc 1972;94:6218. [PubMed: 5054415] (h) Stork G, Niu D, Fujimoto A, Koft ER, Balkovec JM, Tata JR, Dake GR. J Am Chem Soc 2001;123:3239. [PubMed: 11457058] (i) Raheem IT, Goodman SN, Jacobsen EN. J Am Chem Soc 2004;126:706. [PubMed: 14733531] (j) Igarashi J, Katsukawa M, Wang YG, Acharaya HP, Kobayashi Y. Tetrahedron Lett 2004;45:3783. (k) Igarashi J, Kobayashi Y. Tetrahedron Lett 2005;46:6381.
9. Johns DM, Mori M, Williams RM. Org Lett 2006;8:4051. [PubMed: 16928071]
10. Jellerichs BG, Kong J-R, Krische MJ. J Am Chem Soc 2003;125:7758. [PubMed: 12822967] For a related cycloallylation methodology see, Krafft ME, Haxell TFN. J Am Chem Soc 2005;127:10168. [PubMed: 16028918]
11. Oppolzer W, Fürstner A. Helv Chim Acta 1993;76:2329.
12. Jung ME, Piizzi G. Chem Rev 2005;105:1735. [PubMed: 15884788]
13. Tsuda T, Hayashi T, Satomi H, Kawamoto T, Saegusa T. J Org Chem 1986;51:537.
14. (a) Estévez C, Venemalm L, Alvarez M, Joule J. Tetrahedron 1994;50:7879. (b) Theeraladanon C, Arisawa M, Nishida A, Nakagawa M. Tetrahedron 2004;60:3017. (c) Biot C, Delhaes L, Maciejewski LA, Mortuaire M, Campus D, Dive D, Brocard JS. Eur J Med Chem 2000;35:707. [PubMed: 10960186]
15. Sharpless KB, Michaelson RC. J Am Chem Soc 1973;95:6136.
16. Hoveyda AH, Evans DA, Fu GC. Chem Rev 1993;93:1307.
17. (a) Michaelson RC, Palermo RE, Sharpless KB. J Am Chem Soc 1977;99:1990. (b) Hoshino Y, Yamamoto H. J Am Chem Soc 2000;122:10452. (c) Zhang W, Basak A, Kosugi Y, Hoshino Y, Yamamoto H. Angew Chem Int Ed 2005;44:4389.
18. Berrisford DJ, Bolm C, Sharpless KB. Angew Chem Int Ed Engl 1995;34:1059.
19. Barton DHR, McCombie SW. J Chem Soc, Perkin Trans 1 1975:1574.
20. Stotter PL, Friedman MD, Minter DE. J Org Chem 1985;50:29.
21. (a) Barton DHR, Crich D. J Chem Soc, Chem Commun 1984:774. (b) Barton DHR, Crich D. J Chem Soc Perkin Trans 1 1986:1603.
22. (a) Barton DHR, McCombie SW. J Chem Soc Perkin Trans 1 1975:1574. (b) Barton DHR, Hartwig W, Motherwell RSH, Motherwell WB, Stange A. Tetrahedron Lett 1982;23:2019.
23. Pfenninger J, Heuberger C, Graf W. Helv Chim Acta 1980;63:2328.
24. Collman JP. Acc Chem Res 1975;8:342.
25. Kim SH, Rieke RD. Tetrahedron Lett 1999;40:4931.
26. Radivoy G, Alonso F, Moglie Y, Vitale C, Yus M. Tetrahedron 2005;61:3859.
27. Hutchins RO, Learn K, Fulton RP. Tetrahedron Lett 1980;21:27.
28. Kuroda H, Hanaki E, Izawa H, Kano M, Itahasi H. Tetrahedron 2004;60:1913.
29. (a) Lin X, Artmant GD III, Stien D, Weinreb SM. Tetrahedron 2001;57:8779. (b) Grigat H, Zinner G. Arch Pharm 1986:1037.

Rabe (1918)
Woodward (1944)
Uskokovic (1970)
Gates (1970)
Taylor (1972)
Jacobsen (2004)
Kobayashi (2004)

Quinine 1
Quinotoxine 2

Uskokovic: R = H, Mixture of Epoxide Epimers
Quinine 1
EtOH, PhMe, $110^{\circ} \mathrm{C}, 73 \%$ Yield (4 Diastereomers)
Jacobsen: $\mathrm{R}=\mathrm{Cbz}$, Single Epoxide Diastereomer
(a) $\mathrm{Et}_{2} \mathrm{AlCl}, \mathrm{PhSMe}, 0^{\circ} \mathrm{C}$. (b) $\mu \mathrm{w}, \mathrm{MeCN}, 185{ }^{\circ} \mathrm{C}, 68 \%$ Yield

Kobayashi: $\mathrm{R}=\mathrm{Bz}$, Single Epoxide Diastereomer
(a) DIBAL, PhMe. (b) DMF, $160^{\circ} \mathrm{C}, 66 \%$ Yield

Scheme 1.
Top: Strategic bond constructions in prior syntheses and synthetic approaches to quinine. Bottom: Key amine-epoxide cyclization developed by Uskoković.

4
$\mathrm{R}=\mathrm{H}$, Quinine 1
$\mathrm{R}=\mathrm{OH}, 7$-Hydroxyquinine 3

5
6

Scheme 2.
Retrosynthetic analysis of quinine via merged Morita-Baylis-Hillman-Tsuji-Trost cycloallylation.

Scheme 3.

Preparation of enone-allyl carbonates $\mathbf{1 0}$ and 11.
Reagents: (a) $\mathrm{ArSO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$. (b) (Z)-4-hydroxy-2-butenyl methyl carbonate, DIAD, PPh_{3}, THF, $0^{\circ} \mathrm{C} . \mathrm{Ar}=p$-Tol, 86% over two steps. $\mathrm{Ar}=2,4,6-(i-\mathrm{Pr})_{3} \mathrm{Ph}, 99 \%$ over two steps. (c) TFA, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C}$. (d) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOMe}, \mathrm{DCM}, \mathrm{rt}$. $\mathrm{Ar}=p$-Tol, 69% over two steps. $\mathrm{Ar}=2,4,6-(i-\mathrm{Pr})_{3} \mathrm{Ph}, 68 \%$ over two steps.

Scheme 4.

Stereoselective conversion of cycloallylation product 13 to (\pm)-7-hydroxyquinine employing a series of 1,2-asymmetric induction events.
Reagents: (a) $\mathrm{CuI}, \mathrm{MeLi}$, DIBAL, THF-HMPA, $-78^{\circ} \mathrm{C} .77 \%$ yield, $>20: 1 \mathrm{dr}$. (b) Na , naphthalene, DME, $-78{ }^{\circ} \mathrm{C}$. (c) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DCM}, 0^{\circ} \mathrm{C} .76 \%$ yield over two steps. (d) LHMDS, 6-methoxyquinoline-4-carbaldehyde, THF, $-78^{\circ} \mathrm{C}$. Then $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, DBU, $-78^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C} .70 \%$ yield. (e) L-selectride, THF, $-78^{\circ} \mathrm{C} .94 \%$ yield, $>20: 1 \mathrm{dr}$. (f) VO $[\mathrm{tBuCO}(\mathrm{MeNO})]_{2}, \mathrm{TBHP}, \mathrm{DCM}, 4{ }^{\circ} \mathrm{C} .91 \%$ yield, $17: 1 \mathrm{dr} .(\mathrm{g}) \mathrm{TFA}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$. (h) Zn $(\mathrm{OTf})_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, 80^{\circ} \mathrm{C} .70 \%$ yield over two steps.

Scheme 5.
Epimerization to thermodynamically preferred trans-piperidine 14 and 18.

Scheme 6.
Formal synthesis of (\pm)-quinine 1 via conversion of cis-piperidine 14 to diene 23.
Reagents: (a) Na, naphthalene, DME, $-78^{\circ} \mathrm{C}$. (b) $\mathrm{CbzCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C} .61 \%$ yield over two steps. (c) LHMDS, 6-methoxyquinoline-4-carbaldehyde, THF, $-78^{\circ} \mathrm{C}$. Then $\mathrm{Ac}_{2} \mathrm{O}$,
DMAP, DBU, $-78^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$. 64% yield. (e) L-selectride, THF, $-78^{\circ} \mathrm{C} .96 \%$ yield, $>20: 1$ dr. (f) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, DCM, $0^{\circ} \mathrm{C} .81 \%$ yield. (g) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{PBu}_{3}, \mathrm{HCO}_{2} \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}$, THF, $25^{\circ} \mathrm{C} .78 \%$ yield.

$\begin{array}{rl}a \\ \mathrm{a} & \mathrm{R}=\mathrm{H}, 7 \text {-Hydroxyquinine } \mathbf{3} \\ \mathrm{b} & \mathrm{R}=\mathrm{PMB}, \mathbf{2 4} \\ & \mathrm{R}=\mathrm{CH}_{2} \mathrm{OMe}, \mathbf{2 5}\end{array}$
$\mathrm{R}=\mathrm{PMB}, 26$
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{OMe}, 27$

Scheme 7.
Selective functionalization of 7-hydroxyquinine 3.
Reagents: (a) KH, DMF, PMBCl, $4{ }^{\circ} \mathrm{C} .78 \%$ yield. (b) $\mathrm{KH}, \mathrm{DMF}, \mathrm{MOMCl}, 4^{\circ} \mathrm{C} .58 \%$ yield. (c) $\mathrm{MsCl}, \mathrm{pyr}$.
łd!uosnuew rouın $\forall \forall d-H I N$
Selected experiments in the optimization of the merged Morita-Baylis-Hillman-Tsuji-Trost reaction of enone-allyl carbonates $\mathbf{1 0}$ and $\mathbf{1 1} .^{a}$

[^0]: mkrische@mail.utexas.edu.
 Supporting Information Available: Spectral data for all new compounds. Single crystal X-ray diffraction data for piperidine 14 and glycidic alcohol 17. This material is available free of charge via the internet at http://pubs.acs.org.

