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CONCISE TENSORS OF MINIMAL BORDER RANK

JOACHIM JELISIEJEW, J. M. LANDSBERG, AND ARPAN PAL

Abstract. We determine defining equations for the set of concise tensors of minimal border
rank in C

m
⊗C

m
⊗C

m when m = 5 and the set of concise minimal border rank 1∗-generic tensors
when m = 5,6. We solve the classical problem in algebraic complexity theory of classifying
minimal border rank tensors in the special case m = 5. Our proofs utilize two recent develop-
ments: the 111-equations defined by Buczyńska-Buczyński and results of Jelisiejew-Šivic on the
variety of commuting matrices. We introduce a new algebraic invariant of a concise tensor, its
111-algebra, and exploit it to give a strengthening of Friedland’s normal form for 1-degenerate
tensors satisfying Strassen’s equations. We use the 111-algebra to characterize wild minimal
border rank tensors and classify them in C

5
⊗C

5
⊗C

5.

1. Introduction

This paper is motivated by algebraic complexity theory and the study of secant varieties in
algebraic geometry. It takes first steps towards overcoming complexity lower bound barriers first
identified in [22, 26]. It also provides new “minimal cost” tensors for Strassen’s laser method
to upper bound the exponent of matrix multiplication that are not known to be subject to the
barriers identified in [2] and later refined in numerous works, in particular [10] which shows there
are barriers for minimal border rank binding tensors (defined below), as our new tensors are not
binding.

Let T ∈ Cm⊗Cm⊗Cm = A⊗B⊗C be a tensor. One says T has rank one if T = a⊗b⊗c for some
nonzero a ∈ A, b ∈ B, c ∈ C, and the rank of T , denoted R(T ), is the smallest r such that T may
be written as a sum of r rank one tensors. The border rank of T , denoted R(T ), is the smallest
r such that T may be written as a limit of a sum of r rank one tensors. In geometric language,
the border rank is smallest r such that T belongs to the r-th secant variety of the Segre variety,
σr(Seg(Pm−1 × Pm−1 × Pm−1)) ⊆ P(Cm⊗Cm⊗Cm).

Informally, a tensor T is concise if it cannot be expressed as a tensor in a smaller ambient space.
(See §1.1 for the precise definition.) A concise tensor T ∈ Cm⊗Cm⊗Cm must have border rank
at least m, and if the border rank equals m, one says that T has minimal border rank.

As stated in [16], tensors of minimal border rank are important for algebraic complexity theory
as they are “an important building stone in the construction of fast matrix multiplication algo-
rithms”. More precisely, tensors of minimal border rank have produced the best upper bound
on the exponent of matrix multiplication [21, 46, 51, 41, 1] via Strassen’s laser method [48].
Their investigation also has a long history in classical algebraic geometry as the study of secant
varieties of Segre varieties.
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Problem 15.2 of [16] asks to classify concise tensors of minimal border rank. This is now under-
stood to be an extremely difficult question. The difficulty manifests itself in two substantially
different ways:

● Lack of structure. Previous to this paper, an important class of tensors (1-degenerate, see
§1.1) had no or few known structural properties. In other words, little is known about
the geometry of singular loci of secant varieties.

● Complicated geometry. Under various genericity hypotheses that enable one to avoid the
previous difficulty, the classification problem reduces to hard problems in algebraic geom-
etry: for example the classification of minimal border rank binding tensors (see §1.1) is
equivalent to classifying smoothable zero-dimensional schemes in affine space [35, §5.6.2],
a longstanding and generally viewed as impossible problem in algebraic geometry, which
is however solved for m ≤ 6 [42, 44].

The main contributions of this paper are as follows: (i) we give equations for the set of concise
minimal border rank tensors for m ≤ 5 and classify them, (ii) we discuss and consolidate the
theory of minimal border rank 1∗-generic tensors, extending their characterization in terms of
equations to m ≤ 6, and (iii) we introduce a new structure associated to a tensor, its 111-algebra,
and investigate new invariants of minimal border rank tensors coming from the 111-algebra.

Our contributions allow one to streamline proofs of earlier results. This results from the power
of the 111-equations, and the utilization of the ADHM correspondence discussed below. While
the second leads to much shorter proofs and enables one to avoid using the classification results
of [50, 37], there is a price to be paid as the language and machinery of modules and the Quot
scheme need to be introduced. This language will be essential in future work, as it provides the
only proposed path to overcome the lower bound barriers of [22, 26], namely deformation theory.
We emphasize that this paper is the first direct use of deformation theory in the study of tensors.
Existing results from deformation theory were previously used in [9].

Contribution (iii) addresses the lack of structure and motivates many new open questions,
see §1.4.

1.1. Results on tensors of minimal border rank. Given T ∈ A⊗B⊗C, we may consider it
as a linear map TC ∶ C∗ → A⊗B. We let T (C∗) ⊆ A⊗B denote its image, and similarly for
permuted statements. A tensor T is A-concise if the map TA is injective, i.e., if it requires all
basis vectors in A to write down T in any basis, and T is concise if it is A, B, and C concise.

A tensor T ∈ Ca⊗Cm⊗Cm is 1A-generic if T (A∗) ⊆ B⊗C contains an element of rank m and
when a = m, T is 1-generic if it is 1A, 1B , and 1C generic. Define a tensor T ∈ Cm⊗Cm⊗Cm to
be 1∗-generic if it is at least one of 1A, 1B , or 1C-generic, and binding if it is at least two of 1A,
1B , or 1C -generic. We say T is 1-degenerate if it is not 1∗-generic. Note that if T is 1A generic,
it is both B and C concise. In particular, binding tensors are concise.

Two classical sets of equations on tensors that vanish on concise tensors of minimal border rank
are Strassen’s equations and the End-closed equations. These are discussed in §2.1. These
equations are sufficient for m ≤ 4, [27, Prop. 22], [47, 24].

In [13, Thm 1.3] the following polynomials for minimal border rank were introduced: Let T ∈
A⊗B⊗C = Cm⊗Cm⊗Cm. Consider the map

(1.1) (T (A∗)⊗A) ⊕ (T (B∗)⊗B) ⊕ (T (C∗)⊗C)→ A⊗B⊗C ⊕A⊗B⊗C
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that sends (T1, T2, T3) to (T1 −T2, T2 −T3), where the A, B, C factors of tensors are understood
to be in the correct positions, for example T (A∗)⊗A is more precisely written as A⊗T (A∗). If
T has border rank at most m, then the rank of the above map is at most 3m2−m. The resulting
equations are called the 111-equations.

Consider the space

(1.2) (T (A∗)⊗A) ∩ (T (B∗)⊗B) ∩ (T (C∗)⊗C).

We call this space the triple intersection or the 111-space. We say that T is 111-abundant if the
inequality

(1.3) (111−abundance) dim ((T (A∗)⊗A) ∩ (T (B∗)⊗B) ∩ (T (C∗)⊗C)) ≥m

holds. If equality holds, we say T is 111-sharp. When T is concise, 111-abundance is equivalent
to requiring that the equations of [13, Thm 1.3] are satisfied, i.e., the map (1.1) has rank at most
3m2 −m.

Example 1.1. For T = a1⊗b1⊗c2 + a1⊗b2⊗c1 + a2⊗b1⊗c1 ∈ C
2⊗C2⊗C2, a tangent vector to

the Segre variety, also called the W -state in the quantum literature, the triple intersection is
⟨T,a1⊗b1⊗c1⟩.

We show that for concise tensors, the 111-equations imply both Strassen’s equations and the
End-closed equations:

Proposition 1.2. Let T ∈ Cm⊗Cm⊗Cm be concise. If T satisfies the 111-equations then it also
satisfies Strassen’s equations and the End-closed equations. If T is 1A generic, then it satisfies the
111-equations if and only if it satisfies the A-Strassen equations and the A-End-closed equations.

The first assertion is proved in §3.3. The second assertion is Proposition 3.2.

In [43], and more explicitly in [40], equations generalizing Strassen’s equations for minimal border
rank, called p = 1 Koszul flattenings were introduced. (At the time it was not clear they were a
generalization, see [39] for a discussion.). The p = 1 Koszul flattenings of type 210 are equations
that are the size m(m − 1) + 1 minors of the map T ∧1A ∶ A⊗B∗ → Λ2A⊗C given by a⊗β ↦
∑T ijkβ(bj)a ∧ ai⊗ck. Type 201, 120, etc. are defined by permuting A, B and C. Together
they are called p = 1 Koszul flattenings. These equations reappear in border apolarity as the
210-equations, see [20].

Proposition 1.3. The p = 1 Koszul flattenings for minimal border rank and the 111-equations are
independent, in the sense that neither implies the other, even for concise tensors in C

m⊗Cm⊗Cm.

Proposition 1.3 follows from Example 3.5 where the 111-equations are nonzero and the p = 1

Koszul flattenings are zero and Example 5.9 where the reverse situation holds.

We extend the characterization of minimal border rank tensors under the hypothesis of 1∗-
genericity to dimension m = 6, giving two different characterizations:

Theorem 1.4. Let m ≤ 6 and consider the set of tensors in C
m⊗Cm⊗Cm which are 1∗-generic

and concise. The following subsets coincide

(1) the zero set of Strassen’s equations and the End-closed equations,

(2) 111-abundant tensors,
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(3) 111-sharp tensors,

(4) minimal border rank tensors.

More precisely, in (1), if the tensor is 1A-generic, only the A-Strassen and A-End-closed conditions
are required.

The equivalence of (1), (2), (3) in Theorem 1.4 is proved by Proposition 3.2. The equivalence
of (1) and (4) is proved in §8.

For 1A-generic tensors, the p = 1 Koszul flattenings of type 210 or 201 are equivalent to the
A-Strassen equations, hence they are implied by the 111-equations in this case. However, the
other types are not implied, see Example 5.9.

The result fails for m ≥ 7 by [37, Prop. 5.3], see Example 5.9. This is due to the existence of
additional components in the Quot scheme, which we briefly discuss here.

The proof of Theorem 1.4 introduces new algebraic tools by reducing the study of 1A-generic
tensors satisfying the A-Strassen equations to deformation theory in the Quot scheme (a general-
ization of the Hilbert scheme, see [34]) in two steps. First one reduces to the study of commuting
matrices, which implicitly appeared already in [47], and was later spelled out in in [37], see §2.
Then one uses the ADHM construction as in [34]. From this perspective, the tensors satisfying
(1)-(3) correspond to points of the Quot scheme, while tensors satisfying (4) correspond to points
in the principal component of the Quot scheme, see §8.1 for explanations; the heart of the theo-
rem is that when m ≤ 6 there is only the principal component. We expect deformation theory to
play an important role in future work on tensors. As discussed in [20], at this time deformation
theory is the only proposed path to overcoming the lower bound barriers of [22, 26]. As another
byproduct of this structure, we obtain the following proposition:

Proposition 1.5. A 1-generic tensor in C
m⊗Cm⊗Cm with m ≤ 13 satisfying the A-Strassen

equations has minimal border rank. A 1A and 1B-generic tensor in C
m⊗Cm⊗Cm with m ≤ 7

satisfying the A-Strassen equations has minimal border rank.

Proposition 1.5 is sharp: the first assertion does not hold for higher m by [31, Lem. 6.21] and
the second by [17].

Previously it was known (although not explicitly stated in the literature) that the A-Strassen
equations combined with the A-End-closed conditions imply minimal border rank for 1-generic
tensors when m ≤ 13 and binding tensors when m ≤ 7. This can be extracted from the discussion
in [35, §5.6].

While Strassen’s equations and the End-closed equations are nearly useless for 1-degenerate
tensors, this does not occur for the 111-equations, as the following result illustrates:

Theorem 1.6. When m ≤ 5, the set of concise minimal border rank tensors in C
m⊗Cm⊗Cm is

the zero set of the 111-equations.

We emphasize that no other equations, such as Strassen’s equations, are necessary. More-
over Strassen’s equations, or even their generalization to the p = 1 Koszul flattenings, and the
End-closed equations are not enough to characterize concise minimal border rank tensors in
C
5⊗C5⊗C5, see Example 3.5 and §1.4.3.
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By Theorem 1.4, to prove Theorem 1.6 it remains to prove the 1-degenerate case, which is
done in §7. The key difficulty here is the above-mentioned lack of structure. We overcome this
problem by providing a new normal form, which follows from the 111-equations, that strengthens
Friedland’s normal form for corank one 1A-degenerate tensors satisfying Strassen’s equations [24,
Thm. 3.1], see Proposition 3.3.

It is possible that Theorem 1.6 also holds for m = 6; this will be subject to future work. It is
false for m = 7, as already Theorem 1.4 fails when m = 7.

The 1∗-generic tensors of minimal border rank in C
5⊗C5⊗C5 are essentially classified in [37],

following the classification of abelian linear spaces in [50]. We write “essentially”, as the list has
redundancies and it remains to determine the precise list. Using our normal form, we complete
(modulo the redundancies in the 1∗-generic case) the classification of concise minimal border
rank tensors:

Theorem 1.7. Up to the action of GL5(C)×3 ⋊S3, there are exactly five concise 1-degenerate,
minimal border rank tensors in C

5⊗C5⊗C5. Represented as spaces of matrices, the tensors may
be presented as:

TO58
=

⎛
⎜⎜⎜⎜⎜
⎝

x1 x2 x3 x5
x5 x1 x4 −x2

x1
−x5 x1

x5

⎞
⎟⎟⎟⎟⎟
⎠

, TO57
=

⎛
⎜⎜⎜⎜⎜
⎝

x1 x2 x3 x5
x1 x4 −x2

x1
x1
x5

⎞
⎟⎟⎟⎟⎟
⎠

,

TO56
=

⎛
⎜⎜⎜⎜⎜
⎝

x1 x2 x3 x5
x1 + x5 x4

x1
x1
x5

⎞
⎟⎟⎟⎟⎟
⎠

, TO55
=

⎛
⎜⎜⎜⎜⎜
⎝

x1 x2 x3 x5
x1 x5 x4

x1
x1
x5

⎞
⎟⎟⎟⎟⎟
⎠

, TO54
=

⎛
⎜⎜⎜⎜⎜
⎝

x1 x2 x3 x5
x1 x4

x1
x1
x5

⎞
⎟⎟⎟⎟⎟
⎠

.

In tensor notation: set

TM1 = a1⊗(b1⊗c1 + b2⊗c2 + b3⊗c3+ b4⊗c4)+a2⊗b3⊗c1+a3⊗b4⊗c1+a4⊗b4⊗c2+a5⊗(b5⊗c1+ b4⊗c5)
and

TM2 = a1⊗(b1⊗c1+b2⊗c2+b3⊗c3+b4⊗c4)+a2⊗(b3⊗c1−b4⊗c2)+a3⊗b4⊗c1+a4⊗b3⊗c2+a5⊗(b5⊗c1+b4⊗c5).
Then

TO58
=TM2 + a5⊗(b1⊗c2 − b3⊗c4)

TO57
=TM2

TO56
=TM1 + a5⊗b2⊗c2

TO55
=TM1 + a5⊗b3⊗c2

TO54
=TM1.

Moreover, each subsequent tensor lies in the closure of the orbit of previous: TO58
☎TO57

☎TO56
☎

TO55
☎ TO54

.

The subscript in the name of each tensor is the dimension of its GL(A) ×GL(B)×GL(C) orbit
in projective space P(A⊗B⊗C). Recall that dimσ5(Seg(P4 × P4 × P4)) = 64 and that it is the
orbit closure of the so-called unit tensor [∑5

j=1 aj⊗bj⊗cj].
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Among these tensors, TO58
is (after a change of basis) the unique symmetric tensor on the list (see

Example 4.6 for its symmetric version). The subgroup of GL(A) ×GL(B) ×GL(C) preserving
TO58

contains a copy of GL2C while all other stabilizers are solvable.

The smoothable rank of a tensor T ∈ A⊗B⊗C is the minimal degree of a smoothable zero dimen-
sional scheme Spec(R) ⊆ PA × PB × PC which satisfies the condition T ∈ ⟨Spec(R)⟩. See, e.g.,
[49, 14] for basic definitions regarding zero dimensional schemes.

The smoothable rank of a polynomial with respect to the Veronese variety was introduced in
[45] and generalized to points with respect to arbitrary projective varieties in [11]. It arises
because the span of the (scheme theoretic) limit of points may be smaller than the limit of the
spans. The smoothable rank lies between rank and border rank. Tensors (or polynomials) whose
smoothable rank is larger than their border rank are called wild in [11]. The first example of a
wild tensor occurs in C

3⊗C3⊗C3, see [11, §2.3] and it has minimal border rank. We characterize
wild minimal border rank tensors:

Theorem 1.8. The concise minimal border rank tensors that are wild are precisely the concise
minimal border rank 1-degenerate tensors.

Thus Theorem 1.7 classifies concise wild minimal border rank tensors in C
5⊗C5⊗C5.

The proof of Theorem 1.8 utilizes a new algebraic structure arising from the triple intersection
that we discuss next.

1.2. The 111-algebra and its uses. We emphasize that 111-abundance, as defined by (1.3),
is a necessary condition for border rank m only when T is concise. The condition can be defined
for arbitrary tensors and we sometimes allow that.

Remark 1.9. The condition (1.3) is not closed: for example it does not hold for the zero tensor.
It is however closed in the set of concise tensors as then T (A∗) varies in the Grassmannian,
which is compact.

For X ∈ End(A) = A∗⊗A, let X ○A T denote the corresponding element of T (A∗)⊗A. Explicitly,
if X = α⊗a, then X ○A T ∶= T (α)⊗a and the map (−) ○A T ∶End(A) → A⊗B⊗C is extended
linearly. Put differently, X ○A T = (X⊗ IdB ⊗ IdC)(T ). Define the analogous actions of End(B)
and End(C).
Definition 1.10. Let T be a concise tensor. We say that a triple (X,Y,Z) ∈ End(A)×End(B)×
End(C) is compatible with T if X ○A T = Y ○B T = Z ○C T . The 111-algebra of T is the set of
triples compatible with T . We denote this set by AT

111
.

The name is justified by the following theorem:

Theorem 1.11. The 111-algebra of a concise tensor T ∈ A⊗B⊗C is a commutative unital
subalgebra of End(A) ×End(B) ×End(C) and its projection to any factor is injective.

Theorem 1.11 is proved in §4.

Example 1.12. Let T be as in Example 1.1. Then

AT111 = ⟨(Id, Id, Id), (a1⊗α2, b1⊗β2, c1⊗γ2)⟩.
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In this language, the triple intersection is AT
111
⋅ T . Once we have an algebra, we may study its

modules. The spaces A,B,C are all AT
111

-modules: the algebra AT
111

acts on them as it projects
to End(A), End(B), and End(C). We denote these modules by A, B, C respectively.

Using the 111-algebra, we obtain the following algebraic characterization of all 111-abundant
tensors as follows: a tensor T is 111-abundant if it comes from a bilinear map N1 ×N2 → N3

between m-dimensional A-modules, where dim A ≥ m, A is a unital commutative associative
algebra and N1, N2, N3 are A-modules, see Theorem 5.5. This enables an algebraic investigation
of such tensors and shows how they generalize abelian tensors from [37], see Example 5.6. We
emphasize that there are no genericity hypotheses here beyond conciseness, in contrast with the
1∗-generic case. In particular the characterization applies to all concise minimal border rank
tensors.

In summary, for a concise tensor T we have defined new algebraic invariants: the algebra AT
111

and its modules A, B, C. There are four consecutive obstructions for a concise tensor to be of
minimal border rank:

(1) the tensor must be 111-abundant. For simplicity of presentation, for the rest of this
list we assume that it is 111-sharp (compare §1.4.1). We also fix a surjection from a
polynomial ring S = C[y1, . . . , ym−1] onto AT

111
as follows: fix a basis of AT

111
with the

first basis element equal to (Id, Id, Id) and send 1 ∈ S to this element, and the variables
of S to the remaining m − 1 basis elements. In particular A, B, C become S-modules
(the conditions below do not depend on the choice of surjection).

(2) the algebra AT
111

must be smoothable (Lemma 5.7),

(3) the S-modules A, B, C must lie in the principal component of the Quot scheme, so there
exist a sequence of modules Aǫ limiting to A with general Aǫ semisimple, and similarly
for B, C (Lemma 5.8),

(4) the surjective module homomorphism A⊗AT
111

B → C associated to T as in Theorem 5.5

must be a limit of module homomorphisms Aǫ⊗AǫBǫ → Cǫ for a choice of smooth algebras
Aǫ and semisimple modules Aǫ, Bǫ, Cǫ.

Condition (3) is shown to be nontrivial in Example 5.9.

In the case of 1-generic tensors, by Theorem 1.8 above, they have minimal border rank if and
only if they have minimal smoothable rank, that is, they are in the span of some zero-dimensional
smoothable scheme Spec(R). Proposition 9.1 remarkably shows that one has an algebra isomor-
phism AT

111
≅ R. This shows that to determine if a given 1-generic tensor has minimal smoothable

rank it is enough to determine smoothability of its 111-algebra, there is no choice for R. This
is in contrast with the case of higher smoothable rank, where the choice of R presents the main
difficulty.

Remark 1.13. While throughout we work over C, our constructions (except for explicit compu-
tations regarding classification of tensors and their symmetries) do not use anything about the
base field, even the characteristic zero assumption. The only possible nontrivial applications of
the complex numbers are in the cited sources, but we expect that our main results, except for
Theorem 1.7, are valid over most fields.

1.3. Previous work on tensors of minimal border rank in C
m⊗Cm⊗Cm.
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When m = 2 it is classical that all tensors in C
2⊗C2⊗C2 have border rank at most two.

For m = 3 generators of the ideal of σ3(Seg(P2 × P2 × P2)) are given in [38].

For m = 4 set theoretic equations for σ4(Seg(P3 × P3 × P3)) are given in [24] and lower degree
set-theoretic equations are given in [25, 6] where in the second reference they also give numerical
evidence that these equations generate the ideal. It is still an open problem to prove the known
equations generate the ideal. (This is the “salmon prize problem” posed by E. Allman in 2007.
At the time, not even set-theoretic equations were known).

Regarding the problem of classifying concise tensors of minimal border rank:

For m = 3 a complete classification of all tensors of border rank three is given in [15].

For m = 4, a classification of all 1∗-generic concise tensors of border rank four in C
4⊗C4⊗C4 is

given in [37].

When m = 5, a list of all abelian subspaces of End(C5) up to isomorphism is given in [50].

The equivalence of (1) and (4) in the m = 5 case of Theorem 1.4 follows from the results of [37],
but is not stated there. The argument proceeds by first using the classification in [32], [50] of
spaces of commuting matrices in End(C5). There are 15 isolated examples (up to isomorphism),
and examples that potentially depend on parameters. (We write “potentially” as further normal-
ization is possible.) Then each case is tested and the tensors passing the End-closed condition
are proven to be of minimal border rank using explicit border rank five expressions. We give
a new proof of this result that is significantly shorter, and self-contained. Instead of listing all
possible tensors, we analyze the possible Hilbert functions of the associated modules in the Quot
scheme living in the unique non-principal component.

1.4. Open questions and future directions.

1.4.1. 111-abundant, not 111-sharp tensors. We do not know any example of a concise tensor T
which is 111-abundant and is not 111-sharp, that is, for which the inequality in (1.3) is strict.
By Proposition 3.2 such a tensor would have to be 1-degenerate, with T (A∗), T (B∗), T (C∗) of
bounded (matrix) rank at most m − 2, and by Theorems 1.7 and 1.6 it would have to occur in
dimension greater than 5. Does there exist such an example?1

1.4.2. 111-abundant 1-degenerate tensors. The 111-abundant tensors of bounded rank m−1 have
remarkable properties. What properties do 111-abundant tensors with T (A∗), T (B∗), T (C∗) of
bounded rank less than m − 1 have?

1.4.3. 111-abundance v. classical equations. A remarkable feature of Theorem 1.6 is that 111-
equations are enough: there is no need for more classical ones, like p = 1 Koszul flattenings [40].
In fact, the p = 1 Koszul flattenings, together with End-closed condition, are almost sufficient,
but not quite: the 111-equations are only needed to rule out one case, described in Example 3.5.
Other necessary closed conditions for minimal border rank are known, e.g., the higher Koszul
flattenings of [40], the flag condition (see, e.g., [37]), and the equations of [36]. We plan to
investigate the relations between these and the new conditions introduced in this paper. As
mentioned above, the 111-equations in general do not imply the p = 1 Koszul flattening equations,
see Example 5.9.

1After this paper was submitted, A. Conca pointed out an explicit example of a 111-abundant, not 111-sharp
tensor when m = 9. We do not know if such exist when m = 6,7,8. The example is a generalization of Example 4.6.
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1.4.4. 111-abundance in the symmetric case. Given a concise symmetric tensor T ∈ S3
C
m ⊆

C
m⊗Cm⊗Cm, one classically studies its apolar algebra A = C[x1, . . . , xm]/Ann (T ), where x1, . . . , xm

are coordinates on the dual space C
m∗ and Ann (T ) are the polynomials that give zero when

contracted with T . This is a Gorenstein (see §2.4) zero-dimensional graded algebra with Hilbert
function (1,m,m,1) and each such algebra comes from a symmetric tensor. A weaker version of
Question 1.4.1 is: does there exist such an algebra with Ann (T ) having at least m minimal cubic
generators? There are plenty of examples with m − 1 cubic generators, for example T = ∑mi=1 x

3

i

or the 1-degenerate examples from the series [30, §7].

1.4.5. The locus of concise, 111-sharp tensors. There is a natural functor associated to this
locus, so we have the machinery of deformation theory and in particular, it is a linear algebra
calculation to determine the tangent space to this locus at a given point and, in special cases,
even its smoothness. This path will be pursued further and it gives additional motivation for
Question 1.4.1.

1.4.6. 111-algebra in the symmetric case. The 111-algebra is an entirely unexpected invariant in
the symmetric case as well. How is it computed and how can it be used?

1.4.7. The Segre-Veronese variety. While in this paper we focused on C
m⊗Cm⊗Cm, the 111-

algebra can be defined for any tensor in V1⊗V2⊗V3⊗ . . .⊗Vq and the argument from §4 generalizes
to show that it is still an algebra whenever q ≥ 3. It seems worthwhile to investigate it in greater
generality.

1.4.8. Strassen’s laser method. An important motivation for this project was to find new tensors
for Strassen’s laser method for bounding the exponent of matrix multiplication. This method
has barriers to further progress when using the Coppersmith-Winograd tensors that have so far
given the best upper bounds on the exponent of matrix multiplication [2]. Are any of the new
tensors we found in C

5⊗C5⊗C5 better for the laser method than the big Coppersmith-Winograd
tensor CW3? Are any 1-degenerate minimal border rank tensors useful for the laser method?
(At this writing there are no known laser method barriers for 1-degenerate tensors.)

1.5. Overview. In §2 we review properties of binding and more generally 1A-generic tensors
that satisfy the A-Strassen equations. In particular we establish a dictionary between properties
of modules and such tensors. In §3 we show 1A-generic 111-abundant tensors are exactly the
1A-generic tensors that satisfy the A-Strassen equations and are A-End-closed. We establish
a normal form for 111-abundant tensors with T (A∗) corank one that generalizes Friedland’s
normal for tensors with T (A∗) corank one that satisfy the A-Strassen equations. In §4 we prove
Theorem 1.11 and illustrate it with several examples. In §5 we discuss 111-algebras and their
modules, and describe new obstructions for a tensor to be of minimal border rank coming from
its 111-algebra. In §6 we show certain classes of tensors are not concise to eliminate them from
consideration in this paper. In §7 we prove Theorems 1.6 and 1.7. In §8 we prove Theorem 1.4
using properties of modules, their Hilbert functions and deformations. In §9 we prove Theorem
1.8.

1.6. Definitions/Notation. Throughout this paper we adopt the index ranges

1 ≤ i, j, k ≤ a
2 ≤ s, t, u ≤ a − 1,

and A,B,C denote complex vector spaces respectively of dimension a,m,m. Except for §2 we
will also have a = m. The general linear group of changes of bases in A is denoted GL(A) and
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the subgroup of elements with determinant one by SL(A) and their Lie algebras by gl(A) and
sl(A). The dual space to A is denoted A∗. For Z ⊆ A, Z⊥ ∶= {α ∈ A∗ ∣ α(x) = 0∀x ∈ Z} is its
annihilator, and ⟨Z⟩ ⊆ A denotes the span of Z. Projective space is PA = (A/{0})/C∗. When A
is equipped with the additional structure of being a module over some ring, we denote it A to
emphasize its module structure.

Unital commutative algebras are usually denoted A and polynomial algebras are denoted S.

Vector space homomorphisms (including endomorphisms) between m-dimensional vector spaces
will be denoted Ki,Xi,X,Y,Z, and we use the same letters to denote the corresponding matrices
when bases have been chosen. Vector space homomorphisms (including endomorphisms) between(m − 1)-dimensional vector spaces, and the corresponding matrices, will be denoted xi,y,z.

We often write T (A∗) as a space of m ×m matrices (i.e., we choose bases). When we do this,
the columns index the B∗ basis and the rows the C basis, so the matrices live in Hom(B∗,C).
(This convention disagrees with [37] where the roles of B and C were reversed.)

For X ∈ Hom(A,B), the symbol Xt denotes the induced element of Hom(B∗,A∗), which in
bases is just the transpose of the matrix of X.

The A-Strassen equations were defined in [47]. The B and C Strassen equations are defined
analogously. Together, we call them Strassen’s equations. Similarly, the A-End-closed equations
are implicitly defined in [28], we state them explicitly in (3.13). Together with their B and C

counterparts they are the End-closed equations. We never work with these equations directly
(except proving Proposition 1.2), we only consider the conditions they impose on 1∗-generic
tensors.

For a tensor T ∈ Cm ⊗C
m ⊗C

m, we say that T (A∗) ⊆ B⊗C is of bounded (matrix) rank r if all
matrices in T (A∗) have rank at most r, and we drop reference to “matrix” when the meaning is
clear. If rank r is indeed attained, we also say that T (A∗) is of corank m − r.

1.7. Acknowledgements. We thank M. Michałek for numerous useful discussions, in particular
leading to Proposition 1.5, M. Michałek and A. Conner for help with writing down explicit
border rank decompositions, and J. Buczyński for many suggestions to improve an earlier draft.
Macaulay2 and its VersalDeformation package [33] was used in computations. We thank the
anonymous referee for helpful comments.

2. Dictionaries for 1∗-generic, binding, and 1-generic tensors satisfying
Strassen’s equations for minimal border rank

2.1. Strassen’s equations and the End-closed equations for 1∗-generic tensors. A 1∗-
generic tensor satisfying Strassen’s equations may be reinterpreted in terms of classical objects
in matrix theory and then in commutative algebra, which allows one to apply existing results in
these areas to their study.

Fix a tensor T ∈ A⊗B⊗C = C
a⊗Cm⊗Cm which is A-concise and 1A-generic with α ∈ A∗ such

that T (α) ∶ B∗ → C has full rank. The 1A-genericity implies that T is B and C-concise.

Consider
Eα(T ) ∶= T (A∗)T (α)−1 ⊆ End(C).

This space is T ′(A∗) where T ′ ∈ A⊗C∗⊗C is a tensor obtained from T using the isomorphism
IdA⊗(T (α)−1)t⊗ IdC . It follows that T is of rank m if and only if the space Eα(T ) is simulta-
neously diagonalizable and that T is of border rank m if and only if Eα(T ) is a limit of spaces
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of simultaneously diagonalizable endomorphisms [37, Proposition 2.8] also see [36]. Note that
IdC = T (α)T (α)−1 ∈ Eα(T ).
A necessary condition for a subspace Ẽ ⊆ End(C) to be a limit of simultaneously diagonalizable

spaces of endomorphisms is that the elements of Ẽ pairwise commute. The A-Strassen equations
[24, (1.1)] in the 1A-generic case are the translation of this condition to the language of tensors,
see, e.g., [37, §2.1]. For the rest of this section, we additionally assume that T satisfies the
A-Strassen equations, i.e., that Eα(T ) is abelian.

Another necessary condition on a space to be a limit of simultaneously diagonalizable spaces has
been known since 1962 [28]: the space must be closed under composition of endomorphisms. The
corresponding equations on the tensor are the A-End-closed equations.

2.2. Reinterpretation as modules. In this subsection we introduce the language of modules
and the ADHM correspondence. This extra structure will have several advantages: it provides
more invariants for tensors, it enables us to apply theorems in the commutative algebra literature
to the study of tensors, and perhaps most importantly, it will enable us to utilize deformation
theory.

Let Ẽ ⊆ End(C) be a space of endomorphisms that contains IdC and consists of pairwise com-

muting endomorphisms. Fix a decomposition Ẽ = ⟨IdC⟩ ⊕ E. A canonical such decomposition
is obtained by requiring that the elements of E are traceless. To eliminate ambiguity, we will
use this decomposition, although in the proofs we never make use of the fact that E ⊆ sl(C).
Let S = SymE be a polynomial ring in dim E = a − 1 variables. By the ADHM correspondence
[3], as utilized in [34, §3.2] we define the module associated to E to be the S-module C which
is the vector space C with action of S defined as follows: let e1, . . . , ea−1 be a basis of E, write
S = C[y1, . . . , ya−1], define yj(c) ∶= ej(c), and extend to an action of the polynomial ring.

It follows from [34, §3.4] that Ẽ is a limit of simultaneously diagonalizable spaces if and only if C
is a limit of semisimple modules, which, by definition, are S-modules of the formN1⊕N2⊕. . .⊕Nm

where dim Nh = 1 for every h. The limit is taken in the Quot scheme, see [34, §3.2 and Appendix]
for an introduction, and [23, §5], [49, §9] for classical sources. The Quot scheme will not be used
until §5.2.

Now we give a more explicit description of the construction in the situation relevant for this
paper. Let A, B, C be C-vector spaces, with dim A = a, dim B = dim C = m, as above. Let
T ∈ A⊗B⊗C be a concise 1A-generic tensor that satisfies Strassen’s equations (see §2.1). To
such a T we associated the space Eα(T ) ⊆ End(C). The module associated to T is the module C

associated to the space Ẽ ∶= Eα(T ) using the procedure above. The procedure involves a choice
of α and a basis of E, so the module associated to T is only defined up to isomorphism.

Example 2.1. Consider a concise tensor T ∈ Cm⊗Cm⊗Cm of minimal rank, say T = ∑mi=1 ai⊗bi⊗ci
with {ai}, {bi}, {ci} bases of A,B,C and {αi} the dual basis of A∗ etc.. Set α = ∑mi=1 αi. Then
Eα(T ) is the space of diagonal matrices, so E = ⟨Eii−E11 ∣ i = 2,3, . . . ,m⟩ where Eij = γi⊗cj . The
module C decomposes as an S-module into ⊕m

i=1Cci and thus is semisimple. Every semisimple
module is a limit of such.

If a module C is associated to a space Ẽ, then the space Ẽ may be recovered from C as the
set of the linear endomorphisms corresponding to the actions of elements of S≤1 on C. If C is
associated to a tensor T , then the tensor T is recovered from C up to isomorphism as the tensor
of the bilinear map S≤1⊗C → C coming from the action on the module.
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Remark 2.2. The restriction to S≤1 may seem unnatural, but observe that if Ẽ is additionally
End-closed then for every s ∈ S there exists an element s′ ∈ S≤1 such that the actions of s and s′

on C coincide.

Additional conditions on a tensor transform to natural conditions on the associated module. We
explain two such additional conditions in the next two subsections.

2.3. Binding tensors and the Hilbert scheme.

Proposition 2.3. Let T ∈ Cm⊗Cm⊗Cm = A⊗B⊗C be concise, 1A-generic, and satisfy the A-
Strassen equations. Let C be the S-module obtained from T as above. The following conditions
are equivalent

(1) the tensor T is 1B-generic (so it is binding),

(2) there exists an element c ∈ C such that S≤1c = C,

(3) the S-module C is isomorphic to S/I for some ideal I and the space Eα(T ) is End-closed,

(4) the S-module C is isomorphic to S/I for some ideal I,

(5) the tensor T is isomorphic to a multiplication tensor in a commutative unital rank m

algebra A.

The algebra A in (5) will be obtained from the module C as described in the proof.

The equivalence of (1) and (5) for minimal border rank tensors was first obtained by Bläser and
Lysikov [9].

Proof. Suppose (1) holds. Recall that Eα(T ) = T ′(A∗) where T ′ ∈ A⊗C∗⊗C is obtained from
T ∈ A⊗B⊗C by means of (T (α)−1)t∶B → C∗. Hence T ′ is 1C∗-generic, so there exists an
element c ∈ (C∗)∗ ≃ C such that the induced map A∗ → C is bijective. But this map is exactly
the multiplication map by c, S≤1 → C, so (2) follows.

Let ϕ∶S → C be defined by ϕ(s) = sc and let I = kerϕ. (Note that ϕ depends on our choice
of c.) Suppose (2) holds; this means that ϕ∣S≤1 is surjective. Since dim S≤1 = m = dim C, this
surjectivity implies that we have a vector space direct sum S = S≤1⊕I. Now X ∈ Eα(T ) ⊆ End(C)
acts on C in the same way as the corresponding linear polynomial X ∈ S≤1. Thus a product
XY ∈ End(C) acts as the product of polynomials XY ∈ S≤2. Since S = I ⊕ S≤1 we may write
XY = U + Z, where U ∈ I and Z ∈ S≤1. The actions of XY,Z ∈ End(C) on C are identical, so
XY = Z. This proves (3). Property (3) implies (4).

Suppose that (4) holds and take an S-module isomorphism ϕ′∶C → S/I. Reversing the argument
above, we obtain again S = I ⊕ S≤1. Let A ∶= S/I. This is a finite algebra of rank dimS≤1 = m.
The easy, but key observation is that the multiplication in A is induced by the multiplication
S⊗A → A on the S-module A. The multiplication maps arising from the S-module structure
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give the following commutative diagram:

S≤1 ⊗ C C

S ⊗ C C

S/I ⊗ C C

S/I ⊗ S/I S/I

ψ

ϕ′ ϕ′

The direct sum decomposition implies the map ψ is a bijection. Hence the tensor T , which is
isomorphic to the multiplication map from the first row, is also isomorphic to the multiplication
map in the last row. This proves (5). Finally, if (5) holds, then T is 1B-generic, because the
multiplication by 1 ∈ A from the right is bijective. �

The structure tensor of a module first appeared in Wojtala [52]. The statement that binding
tensors satisfying Strassen’s equations satisfy End-closed conditions was originally proven jointly
with M. Michałek. A binding tensor is of minimal border rank if and only if C is a limit of
semisimple modules if and only if S/I is a smoothable algebra. For m ≤ 7 all algebras are
smoothable [17].

2.4. 1-generic tensors. A 1-generic tensor satisfying the A-Strassen equations is isomorphic to
a symmetric tensor by [37]. (See [39] for a short proof.). For a commutative unital algebra A,
the multiplication tensor of A is 1-generic if and only if A is Gorenstein, see [35, Prop. 5.6.2.1].
By definition, an algebra A is Gorenstein if A∗ = Aφ for some φ ∈ A∗, or in tensor language, if
its structure tensor TA is 1-generic with TA(φ) ∈ A∗⊗A∗ of full rank. For m ≤ 13 all Gorenstein
algebras are smoothable [18], proving Proposition 1.5.

2.5. Summary. We obtain the following dictionary for tensors in C
a⊗Cm⊗Cm with a ≤m:

tensor satisfying A-Strassen eqns. is isomorphic to multiplication tensor in

1A-generic module
1A- and 1B-generic (hence binding and a =m) unital commutative algebra

1-generic (a =m) Gorenstein algebra

3. Implications of 111-abundance

For the rest of this article, we restrict to tensors T ∈ A⊗B⊗C = Cm⊗Cm⊗Cm. Recall the notation
X ○A T from §1.2 and that {ai} is a basis of A. In what follows we allow ãh to be arbitrary
elements of A.
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Lemma 3.1. Let T = ∑rh=1 ãh⊗Kh, where ãh ∈ A and Kh ∈ B⊗C are viewed as maps Kh∶B∗ → C.
Let X ∈ End(A), Y ∈ End(B) and Z ∈ End(C). Then

X ○A T =
r

∑
h=1

X(ãh)⊗Kh,

Y ○B T =
r

∑
h=1

ãh⊗(KhY
t),

Z ○C T =
r

∑
h=1

ãh⊗(ZKh).
If T is concise and Ω is an element of the triple intersection (1.2), then the triple (X,Y,Z) such
that Ω = X ○A T = Y ○B T = Z ○C T is uniquely determined. In this case we call X, Y , Z the
matrices corresponding to Ω.

Proof. The first assertion is left to the reader. For the second, it suffices to prove it for X. Write
T = ∑mi=1 ai⊗Ki. The Ki are linearly independent by conciseness. Suppose X,X ′ ∈ End(A) are
such that X ○A T = X ′ ○A T . Then for X ′′ = X −X ′ we have 0 =X ′′ ○A T = ∑mi=1X

′′(ai)⊗Ki. By
linear independence of Ki, we have X ′′(ai) = 0 for every i. This means that X ′′ ∈ End(A) is zero
on a basis of A, hence X ′′ = 0. �

3.1. 1A-generic case.

Proposition 3.2. Suppose that T ∈ Cm⊗Cm⊗Cm = A⊗B⊗C is 1A-generic with α ∈ A∗ such
that T (α) ∈ B⊗C has full rank. Then T is 111-abundant if and only if the space Eα(T ) =
T (A∗)T (α)−1 ⊆ End(C) is m-dimensional, abelian, and End-closed. Moreover if these hold,
then T is concise and 111-sharp.

Proof. Assume T is 111-abundant. The map (T (α)−1)t∶B → C∗ induces an isomorphism of T
with a tensor T ′ ∈ A⊗C∗⊗C, so we may assume that T = T ′, T (α) = IdC and B = C∗. We
explicitly describe the tensors Ω in the triple intersection. We use Lemma 3.1 repeatedly. Fix
a basis a1, . . . , am of A and write T = ∑mi=1 ai⊗Ki where K0 = IdC , but we do not assume the
Ki are linearly independent, i.e., that T is A-concise. Let Ω = ∑mi=1 ai⊗ωi ∈ A⊗B⊗C. Suppose
Ω = Y t ○B T = Z ○C T for some Y ∈ End(C) and Z ∈ End(C).
The condition Ω = Y t ○B T means that ωi = KiY for every i. The condition Ω = Z ○C T means
that ωi = ZKi. For i = 1 we obtain Y = IdC ⋅Y = ω1 = Z ⋅ IdC = Z, so Y = Z. For other i we obtain
ZKi =KiZ, which means that Z is in the joint commutator of T (A∗).
A matrix X such that Ω = X ○A T exists if and only if ωi ∈ ⟨K1, . . . ,Km⟩ = T (A∗) for every i.
This yields ZKi =KiZ ∈ T (A∗) and in particular Z = Z ⋅ IdC ∈ T (A∗).
By assumption, we have a space of choices for Ω of dimension at least m. Every Ω is determined
uniquely by an element Z ∈ T (A∗). Since dim T (A∗) ≤ m, we conclude that dim T (A∗) = m,
i.e., T is A-concise (and thus concise), and for every Z ∈ T (A∗), the element Ω = Z ○C T
lies in the triple intersection. Thus for every Z ∈ T (A∗) we have ZKi = KiZ, which shows
that T (A∗) ⊆ End(C) is abelian and ZKi ∈ T (A∗), which implies that Eα(T ) is End-closed.
Moreover, the triple intersection is of dimension dim T (A∗) =m, so T is 111-sharp.

Conversely, if Eα(T ) is m-dimensional, abelian and End-closed, then reversing the above argu-
ment, we see that Z ○C T is in the triple intersection for every Z ∈ T (A∗). Since (Z ○C T )(α) = Z,
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the map from T (A∗) to the triple intersection is injective, so that T is 111-abundant and the
above argument applies to it, proving 111-sharpness and conciseness. �

3.2. Corank one 1A-degenerate case: statement of the normal form. We next consider
the 1A-degenerate tensors which are as “nondegenerate” as possible: there exists α ∈ A∗ with
rank(T (α)) =m − 1.
Proposition 3.3 (characterization of corank one concise tensors that are 111-abundant). Let
T = ∑mi=1 ai⊗Ki be a concise tensor which is 111-abundant and not 1A-generic. Suppose that
K1∶B∗ → C has rank m − 1. Choose decompositions B∗ = B∗′ ⊕ ker(K1) =∶ B∗′ ⊕ ⟨βm⟩ and
C = Im(K1) ⊕ ⟨cm⟩ =∶ C ′ ⊕ ⟨cm⟩ and use K1 to identify B∗′ with C ′. Then there exist bases of
A,B,C such that

(3.1) K1 = (IdC′ 0

0 0
) , Ks = (xs 0

0 0
) for 2 ≤ s ≤m − 1, and Km = (xm wm

um 0
) ,

for some x2, . . . ,xm ∈ End(C ′) and 0 ≠ um ∈ B′⊗cm ≅ C ′
∗, 0 ≠ wm ∈ βm⊗C ′ ≅ C ′ where, setting

x1 ∶= IdC′ ,

(1) umx
jwm = 0 for every j ≥ 0 and x ∈ ⟨x1, . . . ,xm⟩, so in particular umwm = 0.

(2) the space ⟨x1,x2, . . . ,xm−1⟩ ⊆ End(C ′) is (m − 1)-dimensional, abelian, and End-closed.

(3) the space ⟨x2, . . . ,xm−1⟩ contains the rank one matrix wmum.

(4) For all 2 ≤ s ≤m − 1, umxs = 0 and xswm = 0.

(5) For every s, there exist vectors us ∈ C ′
∗

and ws ∈ C ′, such that

(3.2) xsxm +wsum = xmxs +wmus ∈ ⟨x2, . . . ,xm−1⟩.
The vector [us, wt

s] ∈ C2(m−1)∗ is unique up to adding multiples of [um, wt

m].
(6) For every j ≥ 1 and 2 ≤ s ≤m − 1

(3.3) xsx
j
mwm = 0 and umx

j
mxs = 0.

Moreover, the tensor T is 111-sharp.

Conversely, any tensor satisfying (3.1) and (1)–(5) is 111-sharp, concise and not 1A-generic,
hence satisfies (6) as well.

Additionally, for any vectors u∗ ∈ C ′ and w∗m ∈ (C ′)∗ with umu
∗ = 1 = w∗wm, we may normalize

xm such that for every 2 ≤ s ≤m − 1

(3.4) xmu
∗ = 0, w∗xm = 0, us = w∗xsxm, and ws = xmxsu∗.

Remark 3.4. Atkinson [4] defined a normal form for spaces of corank m − r where one element

is (Idr 0

0 0
) and all others of the form (x W

U 0
) and satisfy UxjW = 0 for every j ≥ 0. The zero

block is clear and the equation follows from expanding out the minors of (ξ Idr +x W

U 0
) with

a variable ξ. This already implies (3.1) and (1) except for the zero blocks in the Ks just using
bounded rank.
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Later, Friedland [24], assuming corank one, showed that the A-Strassen equations are exactly
equivalent to having a normal form satisfying (3.1), (1), and (6). In particular, this shows the
111-equations imply Strassen’s equations in the corank one case.

Proof. We use Atkinson normal form, in particular we use K1 to identify B∗′ with C ′.

Take (Y,Z) ∈ End(B) × End(C) with 0 ≠ Y ○B T = Z ○C T ∈ T (A∗)⊗A, which exist by 111-
abundance. Write these elements following the decompositions of B∗ and C as in the statement:

Y t = ( y wY
uY tY

) Z = ( z wZ
uZ tZ

) ,
with y ∈ End((B∗)′), z ∈ End(C ′) etc. The equality Y ○B T = Z ○C T ∈ T (A∗)⊗A says KiY

t =
ZKi ∈ T (A∗) = ⟨K1, . . . ,Km⟩. When i = 1 this is

(3.5) (y wY
0 0

) = ( z 0

uZ 0
) ∈ T (A∗),

so wY = 0, uZ = 0, and y = z. For future reference, so far we have

(3.6) Y t = ( z 0

uY tY
) Z = (z wZ

0 tZ
) .

By (3.5), for every (Y,Z) above the matrix z belongs to B′⊗C ′ ∩ T (A∗). By conciseness, the
subspace B′⊗C ′ ∩ T (A∗) is proper in T (A∗), so it has dimension less than m. The triple
intersection has dimension at least m as T is 111-abundant, so there exists a pair (Y,Z) as
in (3.6) with z = 0, and 0 ≠ Y ○B T = Z ○C T . Take any such pair (Y0,Z0). Consider a matrix
X ∈ T (A∗) with the last row nonzero and write it as

X = ( x wm
um 0

)
where um ≠ 0. The equality

(3.7) XY t

0 = (wmuY0 wmtY0
0 0

) = Z0X = (wZ0
um 0

tZ0
um 0

)
implies wmtY0 = 0, 0 = tZ0

(as um ≠ 0) and wZ0
um = wmuY0 . Observe that wZ0

≠ 0 as otherwise
Z0 = 0 while we assumed Z0 ○B T ≠ 0. Since um ≠ 0 and wZ0

≠ 0, we have an equality of rank one
matrices wZ0

um = wmuY0 . Thus um = λuY0 and wm = λwZ0
for some nonzero λ ∈ C. It follows

that wm ≠ 0, so tY0 = 0. The matrix X was chosen as an arbitrary matrix with nonzero last row
and we have proven that every such matrix yields a vector [um, wt

m] proportional to a fixed
nonzero vector [uY0 , wt

Z0
]. It follows that we may choose a basis of A such that there is only

one such matrix X. The same holds if we assume instead that X has last column nonzero. This
gives (3.1).

Returning to (3.5), from uZ = 0 we deduce that z ∈ ⟨x1, . . . ,xm−1⟩.
Now Y0 and Z0 are determined up to scale as

(3.8) Y t

0 = ( 0 0

um 0
) Z0 = (0 wm

0 0
) ,

so there is only a one-dimensional space of pairs (Y,Z) with Y ○B T = Z ○C T and upper left block
zero. The space of possible upper left blocks z is ⟨x1, . . . ,xm−1⟩ so it is (m − 1)-dimensional.
Since the triple intersection is at least m-dimensional, for any matrix z ∈ ⟨x1, . . . ,xm−1⟩ there
exist matrices Y t and Z as in (3.6) with this z in the top left corner.
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Consider any matrix as in (3.6) corresponding to an element Y ○B T = Z ○C T ∈ T (A∗)⊗A. For
2 ≤ s ≤ m − 1 we get zxs = xsz ∈ ⟨x1, . . . ,xm−1⟩. Since for any matrix z ∈ ⟨x1, . . . ,xm−1⟩ a
suitable pair (Y,Z) exists, it follows that ⟨x1, . . . ,xm−1⟩ ⊆ End(C ′) is abelian and closed under
composition proving (2). The coefficient of am in Y ○B T = Z ○C T gives

(3.9) (xmz +wmuY wmtY
umz 0

) = (zxm +wZum zwm
tZum 0

) = λYKm +KY ,

where λY ∈ C and KY ∈ ⟨K1, . . . ,Km−1⟩. It follows that tY = λY = tZ and that zwm = λY wm as
well as umz = λY um.

Iterating over z ∈ ⟨x1, . . . ,xm−1⟩, we see that wm is a right eigenvector and um a left eigenvector
of any matrix from this space, and um,wm have the same eigenvalues for each matrix. We make
a GL(A) coordinate change: we subtract this common eigenvalue of xs times x1 from xs, so that
xswm = 0 and umxs = 0 for all 2 ≤ s ≤m− 1 proving (4). Take z ∈ ⟨x2, . . . ,xm−1⟩ so that zwm = 0
and umz = 0. The top left block of (3.9) yields

(3.10) zxm +wZum = xmz +wmuY = λY xm +KY .

Since zwm = 0, the upper right block of (3.9) implies λY = 0 and we deduce that

(3.11) zxm +wZum = xmz +wmuY =KY ∈ ⟨x2, . . . ,xm−1⟩.
For a pair (Y,Z) with z = xs, set ws ∶= wZ and us ∶= uY . Such a pair is unique up to adding
matrices (3.8), hence [us, wt

s] is uniquely determined up to adding multiples of [um, wt

m]. With
these choices (3.11) proves (5). Since xs determines us,ws we see that T is 111-sharp.

The matrix (3.7) lies in T (A∗), hence wmum ∈ ⟨x1, . . . ,xm−1⟩. Since 0 = (umwm)um = um(wmum)
we deduce that wmum ∈ ⟨x2, . . . ,xm−1⟩, proving (3).

Conversely, suppose that the space of matrices K1, . . . ,Km satisfies (3.1) and (1)–(5). Conciseness
and 1A-degeneracy of K1, . . . ,Km follow by reversing the argument above. That T is 111-sharp
follows by constructing the matrices as above.

To prove (6), we fix s and use induction to prove that there exist vectors vh ∈ C ′
∗ for h = 1,2, . . .

such that for every j ≥ 1 we have

(3.12) xjmxs +
j−1

∑
h=0

xhmwmvj−h ∈ ⟨x2, . . . ,xm−1⟩.
The base case j = 1 follows from (5). To make the step from j to j+1 use (5) for the element (3.12)
of ⟨x2, . . . ,xm−1⟩, to obtain

xm
⎛
⎝xjmxs +

j−1

∑
h=0

xhmwmvj−h
⎞
⎠ +wmvj+1 ∈ ⟨x2, . . . ,xm−1⟩,

for a vector vj+1 ∈ C ′. This concludes the induction. For every j, by (4), the expression (3.12) is
annihilated by um:

um ⋅
⎛
⎝xjmxs +

j−1

∑
h=0

xhmwmvj−h
⎞
⎠ = 0.

By (1) we have umx
h
mwm = 0 for every h, so umx

j
mxs = 0 for all j. The assertion xsx

j
mwm = 0 is

proved similarly. This proves (6).
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Finally, we proceed to the “Additionally” part. The main subtlety here is to adjust the bases of
B and C. Multiply the tuple from the left and right respectively by the matrices

(IdC′ γ

0 1
) ∈ GL(C) (IdB′∗ 0

β 1
) ∈ GL(B∗)

and then add αwmum to xm. These three coordinate changes do not change the x1, xs,
um, or wm and they transform xm into x′m ∶= xm + wmβ + γum + αwmum. Take (α,β, γ) ∶=(w∗xmu∗,−w∗xm,−xmu∗), then x′m satisfies w∗x′m = 0 and x′mu

∗ = 0. Multiplying (3.2) from
the left by w∗ and from the right by u∗ we obtain respectively

w∗xsxm + (w∗ws)um = us
ws = xmxsu∗ +wm(usu∗).

Multiply the second line by w∗ to obtain w∗ws = usu∗, so

[us, wt

s] −w∗(ws)[um, wt

m] = [w∗xsxm, (xmxsu∗)t].
Replace [us, wt

s] by [us, wt

s] −w∗(ws)[um, wt

m] to obtain us = w∗xsxm, ws = xmxsu∗, proving
(3.4). �

Example 3.5. Consider the space of 4 × 4 matrices x1 = Id4,x2 = E14,x3 = E13,x4 = E34. Take
x5 = 0, um = (0,0,0,1) and wm = (1,0,0,0)t . The tensor built from this data as in Proposition 3.3
does not satisfy the 111-condition, since x3 and x4 do not commute. Hence, it is not of minimal
border rank. However, this tensor does satisfy the A-End-closed equations (described in §2.1)
and Strassen’s equations (in all directions), and even the p = 1 Koszul flattenings. This shows
that 111-equations are indispensable in Theorem 1.6; they cannot be replaced by these more
classical equations.

3.3. Proof of Proposition 1.2. The 1A-generic case is covered by Proposition 3.2 together
with the description of the A-Strassen and A-End-closed equations for 1A-generic tensors which
was given in §2.1.

In the corank one case, Remark 3.4 observed that the 111-equations imply Strassen’s equations.
The End-closed equations are: Let α1, . . . , αm be a basis of A∗. Then for all α′, α′′ ∈ A∗,

(3.13) (T (α′)T (α1)∧m−1T (α′′)) ∧ T (α1) ∧⋯∧ T (αm) = 0 ∈ Λm+1(B⊗C).
Here, for Z ∈ B⊗C, Z∧m−1 denotes the induced element of Λm−1B⊗Λm−1C, which, up to choice
of volume forms (which does not effect the space of equations), is isomorphic to C∗⊗B∗, so(T (α′)T (α1)∧m−1T (α′′)) ∈ B⊗C. In bases Z∧m−1 is just the cofactor matrix of Z. (Aside: when
T is 1A-generic these correspond to Eα(T ) being closed under composition of endomorphisms.)
When T (α1) is of corank one, using the normal form (3.1) we see T (α′)T (α1)∧m−1T (α′′) equals
zero unless α′ = α′′ = αm in which case it equals wmum so the vanishing of (3.13) is implied by
Proposition 3.3(3).

Finally if the corank is greater than one, both Strassen’s equations and the End-closed equations
are trivial. �

4. Proof of Theorem 1.11

We prove Theorem 1.11 that AT
111

is indeed a unital subalgebra of End(A) ×End(B) ×End(C)
which is commutative for T concise. The key point is that the actions are linear with respect to
A, B, and C. We have (Id, Id, Id) ∈ AT

111
for any T .
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Lemma 4.1 (composition and independence of actions). Let T ∈ A⊗B⊗C. For all X,X ′ ∈
End(A) and Y ∈ End(B),

X ○A (X ′ ○A T ) = (XX ′) ○A T, and(4.1)

X ○A (Y ○B T ) = Y ○B (X ○A T ).(4.2)

The same holds for (A,B) replaced by (B,C) or (C,A).
Proof. Directly from the description in Lemma 3.1. �

Lemma 4.2 (commutativity). Let T ∈ A⊗B⊗C and suppose (X,Y,Z), (X ′, Y ′,Z ′) ∈ AT
111

. Then
XX ′ ○A T =X ′X ○A T and similarly for the other components. If T is concise, then XX ′ =X ′X,
Y Y ′ = Y ′Y and ZZ ′ = Z ′Z.

Proof. We will make use of compatibility to move the actions to independent positions and (4.2)
to conclude the commutativity, much like one proves that π2 in topology is commutative. Con-
cretely, Lemma 4.1 implies

XX ′ ○A T =X ○A (X ′ ○A T ) =X ○A (Y ′ ○B T ) = Y ′ ○B (X ○A T ) = Y ′ ○B (Z ○C T ), and
X ′X ○A T =X ′ ○A (X ○A T ) =X ′ ○A (Z ○C T ) = Z ○C (X ′ ○A T ) = Z ○C (Y ′ ○B T ).

Finally Y ′ ○B (Z ○C T ) = Z ○C (Y ′ ○B T ) by (4.2). If T is concise, then the equation (XX ′ −
X ′X) ○A T = 0 implies XX ′ −X ′X = 0 by the description in Lemma 3.1, so X and X ′ commute.
The commutativity of other factors follows similarly. �

Lemma 4.3 (closure under composition). Let T ∈ A⊗B⊗C and suppose (X,Y,Z), (X ′, Y ′,Z ′) ∈
AT

111
. Then (XX ′, Y Y ′,ZZ ′) ∈ AT

111
.

Proof. By Lemma 4.1

XX ′ ○A T =X ○A (X ′ ○A T ) =X ○A (Y ′ ○B T ) = Y ′ ○B (X ○A T ) = Y ′ ○B (Y ○B T ) = Y ′Y ○B T.
We conclude by applying Proposition 4.2 and obtain equality with Z ′Z ○C T similarly. �

Proof of Theorem 1.11. Commutativity follows from Lemma 4.2, the subalgebra assertion is
Lemma 4.3, and injectivity of projections follows from Lemma 3.1 and conciseness. �

Remark 4.4. Theorem 1.11 without the commutativity conclusion still holds for a non-concise
tensor T . An example with a noncommutative 111-algebra is ∑ri=1 ai⊗bi⊗ci, where r ≤m− 2. In
this case the 111-algebra contains a copy of End(Cm−r).
Example 4.5. If T is a 1A-generic 111-abundant tensor, then by Proposition 3.2 its 111-algebra
is isomorphic to Eα(T ). In particular, if T is the structure tensor of an algebra A, then AT

111
is

isomorphic to A.

Example 4.6. Consider the symmetric tensor F ∈ S3
C
5 ⊆ C5⊗C5⊗C5 corresponding to the cubic

form x3x
2

1
+x4x1x2 +x5x22, where, e.g., x3x

2

1
= 2(x3⊗x1⊗x1 +x1⊗x3⊗x1 +x1⊗x1⊗x3). This cubic

has vanishing Hessian, hence F is 1-degenerate. The triple intersection of the corresponding
tensor is ⟨F,x3

1
, x2

1
x2, x1x

2

2
, x3

2
⟩ and its 111-algebra is given by the triples (x,x,x) where

x ∈ ⟨Id, x1⊗α3, x2⊗α3 + x1⊗α4, x2⊗α4 + x1⊗α5, x2⊗α5⟩,
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where αj is the basis vector dual to xj . Since all compositions of basis elements other than Id

are zero, this 111-algebra is isomorphic to C[ε1, ε2, ε3, ε4]/(ε1, ε2, ε3, ε4)2.
Example 4.7. Consider a tensor in the normal form of Proposition 3.3. The projection of the
111-algebra to End(B) × End(C) can be extracted from the proof. In addition to (Id, Id) we
have:

Y0 = ( 0 0

um 0
) , Z0 = (0 wm

0 0
) ,

Ys = (xs 0

us 0
) , Zs = (xs ws

0 0
) .

Theorem 1.11 implies for matrices in End(C) that

(xsxt xswt
0 0

) = (xs ws
0 0

) ⋅ (xt wt
0 0

) = (xt wt
0 0

) ⋅ (xs ws
0 0

) = (xtxs xtws
0 0

)
which gives xswt = xtws for any 2 ≤ s, t ≤ m − 1. Considering matrices in End(B) we obtain
utxs = usxt for any 2 ≤ s, t ≤ m − 1. (Of course, these identities are also a consequence of
Proposition 3.3, but it is difficult to extract them directly from the Proposition.)

5. New obstructions to minimal border rank via the 111-algebra

In this section we characterize 111-abundant tensors in terms of an algebra equipped with a triple
of modules and a module map. We then exploit this extra structure to obtain new obstructions
to minimal border rank via deformation theory.

5.1. Characterization of tensors that are 111-abundant.

Definition 5.1. A tri-presented algebra is a commutative unital subalgebra A ⊆ End(A) ×
End(B) ×End(C).
For any concise tensor T its 111-algebra AT

111
is a tri-presented algebra. A tri-presented algebra

A naturally gives an A-module structure on A, B, C. For every A-module N the space N∗ is
also an A-module via, for any r ∈ A, n ∈N , and f ∈ N∗, (r ⋅f)(n) ∶= f(rn). (This indeed satisfies
r2 ⋅ (r1 ⋅ f) = (r2r1) ⋅ f because A is commutative.) In particular, the spaces A∗, B∗, C∗ are
A-modules. Explicitly, if r = (X,Y,Z) ∈ A and α ∈ A∗, then rα =Xt(α).
There is a canonical surjective map π∶A∗⊗B∗ → A∗⊗AB∗, defined by π(α⊗β) = α⊗Aβ and
extended linearly. For any homomorphism ϕ∶A∗⊗AB∗ → C of A-modules, we obtain a linear
map ϕ ○ π∶A∗⊗B∗ → C hence a tensor in A⊗B⊗C which we denote by Tϕ.

We need the following lemma, whose proof is left to the reader.

Lemma 5.2 (compatibility with flattenings). Let T ∈ A⊗B⊗C, X ∈ End(A), Z ∈ End(C) and
α ∈ A∗. Consider T (α) ∶ B∗ → C. Then

(Z ○C T )(α) = Z ⋅ T (α),(5.1)

T (Xt(α)) = (X ○A T )(α),(5.2)

and analogously for the other factors. �
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Proposition 5.3. Let T be a concise 111-abundant tensor. Then T is 1A-generic if and only if
the AT

111
-module A∗ is generated by a single element, i.e., is a cyclic module. More precisely, an

element α ∈ A∗ generates the AT
111

-module A∗ if and only if T (α) has maximal rank.

Proof. Take any α ∈ A∗ and r = (X,Y,Z) ∈ AT
111

. Using (5.1)-(5.2) we have

(5.3) T (rα) = T (Xt(α)) = (X ○A T )(α) = (Z ○C T )(α) = Z ⋅ T (α).
Suppose first that T is 1A-generic with T (α) of full rank. If r ≠ 0, then Z ≠ 0 by the description
in Lemma 3.1, so Z ⋅ T (α) is nonzero. This shows that the homomorphism AT

111
→ A∗ of AT

111
-

modules given by r ↦ rα is injective. Since dim AT
111
≥ m = dim A∗, this homomorphism is an

isomorphism and so A∗ ≃ AT
111

as AT
111

-modules.

Now suppose that A∗ is generated by an element α ∈ A∗. This means that for every α′ ∈ A∗ there
is an r = (X,Y,Z) ∈ AT

111
such that rα = α′. From (5.3) it follows that kerT (α) ⊆ kerT (α′).

This holds for every α′, hence kerT (α) is in the joint kernel of T (A∗). By conciseness this joint
kernel is zero, hence kerT (α) = 0 and T (α) has maximal rank. �

Theorem 5.4. Let T ∈ A⊗B⊗C and let A be a tri-presented algebra. Then A ⊆ AT
111

if and only
if the map T t

C ∶ A
∗⊗B∗ → C factors through π ∶ A∗⊗B∗ → A∗⊗AB∗ and induces an A-module

homomorphism ϕ∶A∗⊗AB∗ → C. If this holds, then T = Tϕ.

Proof. By the universal property of the tensor product over A, the map T t

C ∶ A
∗⊗B∗ → C factors

through π if and only if the bilinear map A∗ ×B∗ → C given by (α,β) ↦ T (α,β) is A-bilinear.
That is, for every r = (X,Y,Z) ∈ A, α ∈ A∗, and β ∈ B∗ one has T (rα,β) = T (α, rβ). By (5.2),
T (rα,β) = (X ○A T )(α,β) and T (α, rβ) = (Y ○B T )(α,β). It follows that the factorization
exists if and only if for every r = (X,Y,Z) ∈ A we have X ○A T = Y ○B T . Suppose that this
holds and consider the obtained map ϕ∶A∗⊗AB∗ → C. Thus for α ∈ A∗ and β ∈ B∗ we have
ϕ(α⊗Aβ) = T (α,β). The map ϕ is a homomorphism of A-modules if and only if for every
r = (X,Y,Z) ∈ A we have ϕ(rα⊗Aβ) = rϕ(α⊗Aβ). By (5.1), rϕ(α⊗Aβ) = (Z ○C T )(α,β) and
by (5.2), ϕ(rα⊗Aβ) = (X ○A T )(α,β). These are equal for all α, β if and only if X ○A T = Z ○C T .
The equality T = Tϕ follows directly from definition of Tϕ. �

Theorem 5.5 (characterization of concise 111-abundant tensors). A concise tensor that is 111-
abundant is isomorphic to a tensor Tϕ associated to a surjective homomorphism of A-modules

(5.4) ϕ∶N1⊗AN2 → N3,

where A is a commutative associative unital algebra, N1, N2, N3 are A-modules and dim N1 =
dim N2 = dim N3 =m ≤ dim A, and moreover for every n1 ∈ N1, n2 ∈ N2 the maps ϕ(n1⊗A−)∶N2 →
N3 and ϕ(−⊗An2)∶N1 → N3 are nonzero. Conversely, any such Tϕ is 111-abundant and concise.

The conditions ϕ(n1⊗A−) ≠ 0, ϕ(−⊗An2) ≠ 0 for any nonzero n1, n2 have appeared in the
literature. Bergman [7] calls ϕ nondegenerate if they are satisfied.

Proof. By Theorem 5.4 a concise tensor T that is 111-abundant is isomorphic to Tϕ where

A = AT
111

, N1 = A∗, N2 = B∗, N3 = C. Since T is concise, the homomorphism ϕ is onto and the
restrictions ϕ(α⊗A−), ϕ(−⊗Aβ) are nonzero for any nonzero α ∈ A∗, β ∈ B∗. Conversely, if we
take (5.4) and set A ∶= N∗

1
, B ∶= N∗

2
, C ∶= N3, then Tϕ is concise by the conditions on ϕ and by

Theorem 5.4, A ⊆ ATϕ
111

hence Tϕ is 111-abundant. �
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Example 5.6. By Proposition 5.3 we see that for a concise 1A-generic tensor T the tensor
product A∗⊗AB∗ simplifies to A⊗AB∗ ≃ B∗. The homomorphism ϕ∶B∗ → C is surjective, hence
an isomorphism of B∗ and C, so the tensor Tϕ becomes the multiplication tensor A⊗CC → C of
the A-module C. One can then choose a surjection S → A from a polynomial ring such that S≤1
maps isomorphically onto A. This shows how the results of this section generalize §2.2.

In the setting of Theorem 5.5, since T is concise it follows from Lemma 3.1 that the projections of
AT

111
to End(A), End(B), End(C) are one to one. This translates into the fact that no nonzero

element of AT
111

annihilates A, B or C. The same is then true for A∗, B∗, C∗.

5.2. Two new obstructions to minimal border rank.

Lemma 5.7. Let T ∈ Cm⊗Cm⊗Cm be concise, 111-sharp and of minimal border rank. Then
AT

111
is smoothable.

Proof. By 111-sharpness, the degeneration Tǫ → T from a minimal rank tensor induces a family
of triple intersection spaces, hence by semicontinuity it is enough to check for Tǫ of rank m. By
Example 4.5 each Tǫ has 111-algebra ∏mi=1C. Thus the 111-algebra of T is the limit of algebras
isomorphic to ∏mi=1C, hence smoothable. �

Recall from §2 that for m ≤ 7 every algebra is smoothable.

As in section §2.2 view AT
111

as a quotient of a fixed polynomial ring S. Then the AT
111

-modules
A, B, C become S-modules.

Lemma 5.8. Let T ∈ Cm⊗Cm⊗Cm be concise, 111-sharp and of minimal border rank. Then the
S-modules A, B, C lie in the principal component of the Quot scheme.

Proof. As in the proof above, the degeneration Tǫ → T from a minimal rank tensor induces a
family of ATǫ

111
and hence a family of S-modules Aǫ, Bǫ, Cǫ. These modules are semisimple when

Tǫ has minimal border rank by Example 2.1. �

Already for m = 4 there are S-modules outside the principal component [34, §6.1], [29].

Example 5.9. In [37, Example 5.3] the authors exhibit a 1A-generic, End-closed, commuting
tuple of seven 7×7-matrices that corresponds to a tensor T of border rank higher than minimal.
By Proposition 3.2 this tensor is 111-sharp. However, the associated module C is not in the
principal component, in fact it is a smooth point of another (elementary) component. This can
be verified using Białynicki-Birula decomposition, as in [34, Proposition 5.5]. The proof of non-
minimality of border rank in [37, Example 5.3] used different methods. We note that the tensor
associated to this tuple does not satisfy all p = 1 Koszul flattenings.

6. Conditions where tensors of bounded rank fail to be concise

Proposition 6.1. Let T ∈ C5⊗C5⊗C5 be such that the matrices in T (A∗) have the shape

⎛⎜⎜⎜⎜⎜⎝

0 0 0 ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎠
.



CONCISE TENSORS OF MINIMAL BORDER RANK 23

If T is concise, then T (C∗) contains a matrix of rank at least 4.

Proof. Write the elements of T (A∗) as matrices

Ki = ( 0 ⋆
ui ⋆

) ∈ Hom(B∗,C) for i = 1,2, . . . ,5

where ui ∈ C3. Suppose T is concise. Then the joint kernel of ⟨K1, . . . ,K5⟩ is zero, so u1, . . . , u5
span C

3. After a change of coordinates we may assume u1, u2, u3 are linearly independent while
u4 = 0, u5 = 0. Since K4 ≠ 0, choose a vector γ ∈ C∗ such that γ ⋅K4 ≠ 0. Choose ξ ∈ C such
that (γ5 + ξγ) ⋅K4 ≠ 0. Note that T (γ5) ∶ B∗ → A has matrix whose rows are the last rows of
K1, . . . ,K5. We claim that the matrix T (γ5 + ξγ)∶B∗ → A has rank at least four. Indeed, this
matrix can be written as

⎛⎜⎜⎜⎜⎜⎝

u1 ⋆ ⋆
u2 ⋆ ⋆
u3 ⋆ ⋆
0 (γ5 + ξγ) ⋅K4

0 ⋆ ⋆

⎞⎟⎟⎟⎟⎟⎠
.

This concludes the proof. �

Proposition 6.2. Let T ∈ A⊗B⊗C with m = 5 be a concise tensor. Then one of its associated
spaces of matrices contains a full rank or corank one matrix.

Proof. Suppose that T (A∗) is of bounded rank three. We use [4, Theorem A] and its notation,
in particular r = 3. By this theorem and conciseness, the matrices in the space T (A∗) have the
shape

⎛⎜⎝
⋆ ⋆ ⋆
⋆ Y 0

⋆ 0 0

⎞⎟⎠
where the starred part consists of p rows and q columns, for some p, q ≥ 0, and Y forms a
primitive space of bounded rank at most 3 − p − q. Furthermore, since r + 1 < m and r < 2 + 2,
by [4, Theorem A, “Moreover” part] we see that T (A∗) is not primitive itself, hence at least one
of p, q is positive. If just one is positive, say p, then by conciseness Y spans 5 − p rows and
bounded rank 3 − p, which again contradicts [4, Theorem A, “Moreover”]. If both are positive,
we have p = q = 1 and Y is of bounded rank one, so by [5, Lemma 2], up to coordinate change,
after transposing T (A∗) has the shape as in Proposition 6.2. �

Proposition 6.3. In the setting of Proposition 3.3, write T ′ = a1⊗x1 + ⋯ + am−1⊗xm−1 ∈
C
m−1⊗Cm−1⊗Cm−1 =∶ A′⊗C ′∗⊗C ′, where x1 = IdC′ . If T is 1-degenerate, then T ′ is 1C′∗ and

1C′ -degenerate.

Proof. Say T ′ is 1C′∗-generic with T ′(c′) of rank m− 1. Then T (c′ +λu∗) has rank m for almost
all λ ∈ C, contradicting 1-degeneracy. The 1C′ -generic case is similar. �

Corollary 6.4. In the setting of Proposition 6.3, the module C ′ associated to T ′(A′∗) via the
ADHM correspondence as in §2.2 cannot be generated by a single element. Similarly, the module
C ′
∗ associated to (T ′(A′∗))t cannot be generated by a single element.
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Proof. By Proposition 2.3 the module C ′ is generated by a single element if and only if T ′ is
1C′∗-generic. The claim follows from Proposition 6.3. The second assertion follows similarly
since T ′ is not 1C′ -generic. �

7. Proof of Theorem 1.6 in the 1-degenerate case and Theorem 1.7

Throughout this section T ∈ C5⊗C5⊗C5 is a concise 1-degenerate 111-abundant tensor.

We use the notation of Proposition 3.3 throughout this section.

We begin, in §7.1 with a few preliminary results. We then, in §7.2 prove a variant of the
m = 5 classification result under a more restricted notion of isomorphism and only require 111-
abundance. Then the m = 5 classification of corank one 111-abundant tensors follows easily in
§7.3 as does the orbit closure containment in §7.4. Finally we give two proofs that these tensors
are of minimal border rank in §7.5.

7.1. Preliminary results. We first classify admissible three dimensional spaces of 4×4 matrices⟨x2,x3,x4⟩ ⊆ End(C4). One could proceed by using the classification [50, §3] of abelian subspaces
of End(C4) and then impose the additional conditions of Proposition 3.3. We instead utilize ideas
from the ADHM correspondence to obtain a short, self-contained proof.

Proposition 7.1. Let ⟨x1 = Id4,x2,x3,x4⟩ ⊂ End(C4) be a 4-dimensional subspace spanned
by pairwise commuting matrices. Suppose there exist nonzero subspaces V,W ⊆ C

4 with V ⊕
W = C

4 which are preserved by x1,x2,x3,x4. Then either these exists a vector v ∈ C4 with⟨x1,x2,x3,x4⟩ ⋅ v = C4 or there exists a vector v∗ ∈ C4∗ with ⟨xt

1
,xt

2
,xt

3
,xt

4
⟩v∗ = C4∗.

Proof. For h = 1,2,3,4 the matrix xh is block diagonal with blocks x′h ∈ End(V ) and x′′h ∈

End(W ).
Suppose first that dim V = 2 = dim W . In this case we will prove that v exists. The matrices
x′h commute and commutative subalgebras of End(C2) are at most 2-dimensional and are, up

to a change of basis, spanned by IdC2 and either (0 1

0 0
) or (1 0

0 0
). In each of of the two cases,

applying the matrices to the vector (1,1)t yields the space C
2. Since the space ⟨x1,x2,x3,x4⟩ is

4-dimensional, it is, after a change of basis, a direct sum of two maximal subalgebras as above.
Thus applying ⟨x1,x2,x3,x4⟩ to the vector v = (1,1,1,1)t yields the whole space.

Suppose now that dim V = 3. If some x′h has at least two distinct eigenvalues, then consider the
generalized eigenspaces V1, V2 associated to them and suppose dim V1 = 1. By commutativity,
the subspaces V1, V2 are preserved by the action of every x′h, so the matrices xh also preserve
the subspaces W ⊕V1 and V2. This reduces us to the previous case. Hence, every x′h has a single
eigenvalue. Subtracting multiples of x1 from xs for s = 2,3,4, the x′s become nilpotent, hence up
to a change of basis in V , they have the form

x′s =
⎛⎜⎝
0 (x′s)12 (x′s)13
0 0 (x′s)23
0 0 0

⎞⎟⎠ .
The space ⟨x′

2
,x′

3
,x′

4
⟩ cannot be 3-dimensional, as it would fill the space of 3 × 3 upper trian-

gular matrices, which is non-commutative. So ⟨x′
2
,x′

3
,x′

4
⟩ is 2-dimensional and so some linear

combination of the matrices x2,x3,x4 is the identity on W and zero on V .
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We subdivide into four cases. First, if (x′s)12 ≠ 0 for some s and (x′t)23 ≠ 0 for some t ≠ s, then
change bases so (x′s)23 = 0 and take v = (0, p,1,1)t such that p(x′s)12 + (x′s)13 ≠ 0. Second, if the
above fails and (x′s)12 ≠ 0 and (x′s)23 ≠ 0 for some s, then there must be a t such that (x′t)13 ≠ 0
and all other entries are zero, so we may take v = (0,0,1,1)t . Third, if (x′s)12 = 0 for all s = 2,3,4,
then for dimensional reasons we have

⟨x′2,x′3,x′4⟩ = ⎛⎜⎝
0 0 ⋆
0 0 ⋆
0 0 0

⎞⎟⎠
and again v = (0,0,1,1)t is the required vector. Finally, if (x′s)23 = 0 for all s = 2,3,4, then
arguing as above v∗ = (1,0,0,1) is the required vector. �

We now prove a series of reductions that will lead to the proof of Theorem 1.7.

Proposition 7.2. Let m = 5 and T ∈ A⊗B⊗C be a concise, 1-degenerate, 111-abundant tensor
with T (A∗) of corank one. Then up to GL(A) ×GL(B) ×GL(C) action it has the form as in
Proposition 3.3 with

(7.1) xs = (0 χs
0 0

) , 2 ≤ s ≤ 4,

where the blocking is (2,2) × (2,2).
Proof. We apply Proposition 3.3. It remains to prove the form (7.1).

By Proposition 3.3(4) zero is an eigenvalue of every xs. Suppose some xs is not nilpotent, so has
at least two different eigenvalues. By commutativity, its generalized eigenspaces are preserved
by the action of x2,x3,x4, hence yield V and W as in Proposition 7.1 and a contradiction to
Corollary 6.4. We conclude that every xs is nilpotent.

We now prove that the codimension of ∑4

s=2 Imxs ⊆ C
′ is at least two. Suppose the codimension

is at most one and choose c ∈ C ′ such that ∑4

s=2 Imxs +Cc = C ′. Let A ⊂ End(C ′) be the unital
subalgebra generated by x2, x3, x4 and let W = A ⋅ c. The above equality can be rewritten as⟨x2,x3,x4⟩C ′+Cc = C ′, hence ⟨x2,x3,x4⟩C ′+W = C ′. We repeatedly substitute the last equality
into itself, obtaining

C ′ = ⟨x2,x3,x4⟩C ′ +W = (⟨x2,x3,x4⟩)2C ′ +W = . . . = (⟨x2,x3,x4⟩)10C ′ +W =W,
since x2,x3,x4 commute and satisfy x4

s = 0. This proves that C ′ = A ⋅ c, again yielding a
contradiction with Corollary 6.4.

Applying the above argument to xt

2
,xt

3
,xt

4
proves that joint kernel of x2,x3,x4 is at least two-

dimensional.

We now claim that ⋂4

s=2 ker(xs) ⊆ ∑4

s=2 Imxs. Suppose not and choose v ∈ C ′ that lies in the
joint kernel, but not in the image. Let W ⊆ C ′ be a subspace containing the image and such
that W ⊕ Cv = C ′. Then ⟨x2,x3,x4⟩W ⊆ ⟨x2,x3,x4⟩C ′ ⊆ W , hence V = Cv and W yield
a decomposition as in Proposition 7.1 and a contradiction. The containment ⋂4

s=2 ker(xs) ⊆
∑4

s=2 Imxs together with the dimension estimates yield the equality ⋂4

s=2 ker(xs) = ∑4

s=2 Imxs.
To obtain the form (7.1) it remains to choose a basis of C ′ so that the first two basis vectors
span ⋂4

s=2 ker(xs). �



26 JOACHIM JELISIEJEW, J. M. LANDSBERG, AND ARPAN PAL

7.2. Classification of 111-abundant tensors under restricted isomorphism. Refining
Proposition 7.2, we now prove the following classification.

Theorem 7.3. Let m = 5. Up to GL(A) × GL(B) × GL(C) action and swapping the B and
C factors, there are exactly seven concise 1-degenerate, 111-abundant tensors in A⊗B⊗C with
T (A∗) of corank one. To describe them explicitly, let

TM1 = a1⊗(b1⊗c1 + b2⊗c2 + b3⊗c3+ b4⊗c4)+a2⊗b3⊗c1+a3⊗b4⊗c1+a4⊗b4⊗c2+a5⊗(b5⊗c1+ b4⊗c5)
and

TM2 = a1⊗(b1⊗c1+b2⊗c2+b3⊗c3+b4⊗c4)+a2⊗(b3⊗c1−b4⊗c2)+a3⊗b4⊗c1+a4⊗b3⊗c2+a5⊗(b5⊗c1+b4⊗c5).
Then the tensors are

TM2 + a5⊗(b1⊗c2 − b3⊗c4)(TO58
)

TM2(TO57
)

TM1 + a5⊗(b5⊗c2 − b1⊗c2 + b3⊗c3)(T̃O57
)

TM1 + a5⊗b5⊗c2(T̃O56
)

TM1 + a5⊗b2⊗c2(TO56
)

TM1 + a5⊗b3⊗c2(TO55
)

TM1(TO54
)

These tensors are pairwise non-isomorphic, as we explain below. For a tensor T ∈ A⊗B⊗C its
annihilator in gl(A)×gl(B)×gl(C) is called its symmetry Lie algebra. The symmetry Lie algebra
intersected with gl(A) × gl(B) is called the AB-part etc. We list the dimensions of these Lie
algebras below.

A linear algebra computation (see, e.g., [19]) shows that the dimensions of the symmetry Lie
algebras are

case (TO58
) (TO57

) (T̃O57
) (T̃O56

) (TO56
) (TO55

) (TO54
)

full 16 17 17 18 18 19 20

AB-part 5 5 5 5 6 6 6

BC-part 5 6 5 6 5 6 6

CA-part 5 5 6 6 6 6 6

Proof of Theorem 7.3. We utilize Proposition 7.2 and its notation. By conciseness, the matrices
x2, x3, x4 are linearly independent, hence form a codimension one subspace of End(C2). We
utilize the perfect pairing on End(C2) given by (A,B)↦ Tr(AB), so that ⟨χ2, χ3, χ4⟩⊥ ⊆ End(C2)
is one-dimensional, spanned by a matrix P . Conjugation with an invertible 4 × 4 block diagonal
matrix with 2×2 blocks M , N maps χs to MχsN

−1 and P to NPM−1. Under such conjugation
the orbits are matrices of fixed rank, so after changing bases in ⟨a2, a3, a4⟩, we reduce to the
cases

P = (0 1

0 0
) χ2 = (1 0

0 0
) , χ3 = (0 1

0 0
) , χ4 = (0 0

0 1
) , and(M1)

P = (1 0

0 1
) χ2 = (1 0

0 −1) , χ3 = (0 1

0 0
) , χ4 = (0 0

1 0
) .(M2)
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In both cases the joint right kernel of our matrices is (∗,∗,0,0)t while the joint left kernel is(0,0,∗,∗), so w5 = (w5,1,w5,2,0,0)t and u5 = (0,0, u5,3 , u5,4).
7.2.1. Case (M2). In this case there is an involution, namely conjugation with

⎛⎜⎜⎜⎜⎜⎝

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
∈ GL5

that preserves P , and hence ⟨x2,x3,x4⟩, while it swaps w5,1 with w5,2 and u5,1 with u5,2. Using
this involution and rescaling c5, we assume w5,1 = 1. The matrix

( u5,3 u5,4
u5,3w5,2 u5,4w5,2

)
belongs to ⟨χ2, χ3, χ4⟩ by Proposition 3.3(3), so it is traceless. This forces u5,4 ≠ 0. Rescaling b5
we assume u5,4 = 1. The trace is now u5,3 +w5,2, so u5,3 = −w5,2. The condition (3.2) applied for
s = 2,3,4 gives linear conditions on the possible matrices x5 and jointly they imply that

(7.2) x5 =

⎛⎜⎜⎜⎝

p1 p2 ∗ ∗
p3 p4 ∗ ∗
0 0 p4 −w5,2(p1 + p5) p5
0 0 −p3 −w5,2(p6 − p1) p6

⎞⎟⎟⎟⎠
for arbitrary pi ∈ C and arbitrary starred entries. Using (3.4) with u∗ = (1,0,0,0)t and w∗ =(0,0,0,1), we may change coordinates to assume that the first row and last column of x5 are
zero, and subtracting a multiple of x4 from x5 we obtain further that the (3,2) entry of x5 is
zero, so

x5 =

⎛⎜⎜⎜⎝

0 0 0 0

p3 p4 0 0

0 0 p4 0

0 0 −p3 0

⎞⎟⎟⎟⎠
Subtracting p4X1 from X5 and then adding p4 times the last row (column) to the fourth row
(column) we arrive at

(7.3) x5 =

⎛⎜⎜⎜⎝

0 0 0 0

p3 0 0 0

0 0 0 0

0 0 −p3 0

⎞⎟⎟⎟⎠
for possibly different values of the parameter p3. Conjugating with the 5 × 5 block diagonal
matrix

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0

w5,2 1 0 0 0

0 0 1 0 0

0 0 w5,2 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
does not change P , hence ⟨x2,x3,x4⟩, and it does not change x5 as well, but it makes w5,2 = 0.
Thus we arrive at the case when w5 = (1,0,0,0)t , u5 = (0,0,0,1) and x5 is as in (7.3). There are
two subcases: either p3 = 0 or p3 ≠ 0. In the latter case, conjugation with the diagonal matrix
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with diagonal (1, p3,1, p3,1) does not change ⟨x2,x3,x4⟩ and it maps x5 to the same matrix but
with p3 = 1. In summary, in this case we obtain the types (TO57

) and (TO58
).

7.2.2. Case (M1). For every t ∈ C conjugation with

⎛⎜⎜⎜⎜⎜⎝

1 t 0 0 0

0 1 0 0 0

0 0 1 t 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
preserves ⟨x2,x3,x4⟩ and maps u5 to (0,0, u5,3, u5,4 − tu5,3) and w5 to (w5,1 + tw5,2,w5,2,0,0)t.
Taking t general, we obtain w5,1, u5,4 ≠ 0 and rescaling b5, c5 we obtain u5,4 = 1 = w5,1. Since
w5u5 ∈ ⟨x2,x3,x4⟩, this forces u5,3 = 0 or w5,2 = 0. Using (3.2) again, we obtain that

(7.4) x5 =

⎛⎜⎜⎜⎝

q1 ∗ ∗ ∗
w5,2(q1 − q3) q2 ∗ ∗

0 0 q3 ∗
0 0 u5,3(q4 − q2) q4

⎞⎟⎟⎟⎠
for arbitrary q1, q2, q3, q4 ∈ C and arbitrary starred entries. We normalize further. Transposing
(this is the unique point of the proof where we swap the B and C coordinates) and swapping 1

with 4 and 2 with 3 rows and columns (which is done by conjugation with appropriate permuta-
tion matrix) does not change the space ⟨x2,x3,x4⟩ or x1 and it maps u5, w5 to (0,0,w5,2,w5,1),(u5,4, u5,3,0,0)t. Using this operation if necessary, we may assume u5,3 = 0. By subtracting
multiples of u5, w5 and x2, x3, x4 we obtain

(7.5) x5 =

⎛⎜⎜⎜⎝

0 0 0 0

−q3w5,2 q2 q4 0

0 0 q3 0

0 0 0 0

⎞⎟⎟⎟⎠
Rescaling the second row and column we reduce to two cases:

w5,2 = 1(M1a)

w5,2 = 0(M1b)

Case (M1a). In this case we have w5 = (1,1,0,0)t and u5 = (0,0,0,1). We first add q4x2 to
x5 and subtract q4w5 from the fourth column. This sets q4 = 0 in (7.5). Next, we subtract
−q2X1 from X5 and then add q2u5 to the first column and q2w5 to the fourth row. This makes
q2 = 0 (and changes q3). Finally, if q3 is nonzero, we can rescale x5 by q−1

3
and rescale the fifth

row and column. This yields q3 = 1. In summary, we have two cases: (q2, q3, q4) = (0,1,0) and(q2, q3, q4) = (0,0,0). These are the types (T̃O56
) and (T̃O57

).

Case (M1b). In this case we have w5 = (1,0,0,0)t and u5 = (0,0,0,1).
Subtract −q3x1 from x5 and then add q3u5 to the first column and q3w5 to the fourth row. This
makes q3 = 0 (and changes q2).

Subcase q2 = 0: Then either q4 = 0 and we obtain type (TO54
) or we rescale X5 and the fifth row

and column to obtain q4 = 1. Here (q2, q3, q4) = (0,0,1). This is type (TO55
).

Subcase q2 ≠ 0: Then we rescale X5 and the fifth row and column to obtain q2 = 1. Subtract
q4 times the second column from the third and add q4 times the third row to the second. This



CONCISE TENSORS OF MINIMAL BORDER RANK 29

does not change x1, . . . , x4 and it changes x5 by making q4 = 0. Here (q2, q3, q4) = (1,0,0), this
is type (TO56

).

We have shown that there are at most seven isomorphism types up to GL(A)×GL(B)×GL(C)
action, while the dimensions of the Lie algebras and restricted Lie algebras show that they are
pairwise non-isomorphic. This concludes the proof of Theorem 7.3. �

7.3. Proof of Theorem 1.7.

Proof. We first prove that there are exactly five isomorphism types of concise 1-degenerate 111-
abundant up to action of GL5(C)×3 ⋊S3. By Proposition 6.2, after possibly permuting A, B,
C, the space T (A∗) has corank one. It is enough to prove that in the setup of Theorem 7.3 the
two pairs of tensors with the symmetry Lie algebras of the same dimension of are isomorphic.
Swapping the A and C coordinates of the tensor in case (TO56

) and rearranging rows, columns,

and matrices gives case (T̃O56
). Swapping the A and B coordinates of the tensor in case (T̃O57

)
and rearranging rows and columns, we obtain the tensor

a1(b1c1 + b2c2 + b3c3 + b4c4) + a2b3c2 + a3(b4c1 + b4c2) + a4(b3c1 − b4c2) + a5(b3c5 + b5c1 + b4c5)
The space of 2 × 2 matrices associated to this tensor is perpendicular to (1 0

1 −1) which has full

rank, hence this tensor is isomorphic to one of the (M2) cases. The dimension of the symmetry
Lie algebra shows that it is isomorphic to (TO57

). This concludes the proof that there are exactly
five isomorphism types.

7.4. Proof of the degenerations. Write T ☎T ′ if T degenerates to T ′ and T ≃ T ′ if T and T ′

lie in the same orbit of GL5(C)×3 ⋊S3. The above yields (TO56
) ≃ (T̃O56

) and (T̃O57
) ≃ (TO57

).
Varying the parameters in §7.2.1, §7.2.2, §7.2.2 we obtain degenerations which give

(TO58
)☎ (TO57

) ≃ (T̃O57
)☎ (T̃O56

) ≃ (TO56
)☎ (TO55

)☎ (TO54
),

which proves the required nesting. For example, in §7.2.2 we have a two-parameter family of
tensors parameterized by (q2, q4) ∈ C2. As explained in that subsection, their isomorphism types
are

q2 ≠ 0 q2 = 0, q4 ≠ 0 q2 = q4 = 0

(TO56
) (TO55

) (TO54
)

This exhibits the last two degenerations; the others are similar.

To complete the proof, we need to show that these tensors have minimal border rank. By
degenerations above, it is enough to show this for (TO58

). We give two proofs.

7.5. Two proofs that the tensors have minimal border rank.

7.5.1. Proof one: the tensor (TO58
) lies in the closure of minimal border rank 1A-generic tensors.

Our first approach is to prove that (TO58
) lies in the closure of the locus of 1A-generic concise

minimal border rank tensors. We do this a bit more generally, for all tensors in the case (M2).
By the discussion above every such tensor is isomorphic to one where x5 has the form (7.3) and
we will assume that our tensor T has this form for some p3 ∈ C.

Recall the notation from Proposition 3.3. Take u2 = 0, w2 = 0, u3 ∶= (0,0,−p3,0), wt

3
= (0, p3,0,0),

u4 = 0, w4 = 0. We see that usxm = 0, xmws = 0, and wsut = wtus for all s, t, so for every ǫ ∈ C∗
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we have a commuting quintuple

Id5, ( xs ws
usǫ 0

) s = 2,3,4, and (x5 w5ǫ
−1

u5 0
)

We check directly that the tuple is End-closed, hence by Theorem 1.4 it corresponds to a tensor
of minimal border rank. (Here we only use the m = 5 case of the theorem, which is significantly
easier than the m = 6 case.) Multiplying the matrices of this tuple from the right by the diagonal
matrix with entries 1,1,1,1, t and then taking the limit with t → 0 yields the tuple of matrices
corresponding to our initial tensor T .

While we have shown all (M2) cases are of minimal border rank, it can be useful for applications
to have an explicit border rank decomposition. What follows is one such:

7.5.2. Proof two: explicit proof of minimal border rank for (TO58
). For t ∈ C

∗, consider the
matrices

B1 =

⎛⎜⎜⎜⎜⎜⎝

0 0 1 1 0

0 0 −1 −1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
, B2 =

⎛⎜⎜⎜⎜⎜⎝

0 0 −1 1 0

0 0 −1 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
, B3 =

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 t 1 0 0

0 t2 t 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,B4 =

⎛⎜⎜⎜⎜⎜⎝

−t 0 0 1 0

0 0 0 0 0

0 0 0 0 0

t2 0 0 −t 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

B5 = (1,−t,0,−t, t2)t ⋅ (−t,0, t,1, t2) =
⎛⎜⎜⎜⎜⎜⎝

−t 0 t 1 t2

t2 0 −t2 −t −t3

0 0 0 0 0

t2 0 −t2 −t −t3

−t3 0 t3 t2 t4

⎞⎟⎟⎟⎟⎟⎠
The limit at t → 0 of this space of matrices is the required tuple. This concludes the proof of
Theorem 1.7. �

8. Proof (1)=(4) in Theorem 1.4

8.1. Preliminary remarks. Let T ∈ A⊗B⊗C = C
m⊗Cm⊗Cm be 1A-generic and satisfy the

A-Strassen equations. Let E ⊆ sl(C) be the associated m − 1-dimensional space of commuting
traceless matrices as in §2.2. Let C be the associated module and S the associated polynomial
ring, as in §2.2. By §2.2 the tensor T has minimal border rank if and only if the space E is a
limit of spaces of simultaneously diagonalizable matrices if and only if C is a limit of semisimple
modules.

The principal component of the Quot (resp. Hilbert) scheme is the closure of the set of semisimple
modules (resp. algebras). Similarly, the principal component of the space of commuting matrices
is the closure of the space of simultaneously diagonalizable matrices. A tensor T has minimal
border rank if and only if E lies in the principal component of the space of commuting matrices
if and only if C lies in the principal component of the Quot scheme.

Write Ann (C) = {s ∈ S ∣ s(C) = 0}. Let αi be a basis of A∗ with T (α1) of full rank and
Xi = T (αi)T (α1)−1 ∈ End(C), for 1 ≤ i ≤m. The algebra of matrices generated by Id,X2, . . . ,Xm

is isomorphic to S/Ann (C). The End-closed condition in the language of modules becomes
the requirement that the algebra of matrices has dimension (at most) m. The tensor T is
assumed to be A-concise, i.e., dim⟨Id,X2, . . . ,Xm⟩ = m, so the algebra is equal to this linear
span: XiXj ∈ ⟨Id =X1,X2, . . . ,Xm⟩.
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Our argument proceeds by examining the possible structures of C and S/Ann (C) and, in each
case, proving that C lies in the principal component. Let r be the minimal number of generators
of C.

In this section we introduce the additional index range

2 ≤ y, z, q ≤m.

When S/Ann (C) is local, i.e., there is a unique maximal ideal m, we consider the Hilbert function
HC(k) ∶= dim(mkC/mk+1C) and by Nakayama’s Lemma HC(0) = r. Similarly, we consider the

Hilbert function HS/Ann (C)(k) ∶= dim(mk/mk+1). Since the algebra is local, HS/Ann (C)(0) = 1.
Observe that if XyXzXw = 0 for all y, z,w, then Ann (C) contains S≥3, which implies S/Ann (C)
is local. When HS/Ann (C)(1) = k < m − 1, we may work with a polynomial ring in k variables,

S̃ = C[y1, . . . , yk].
We will use the following results, which significantly restrict the possible structure of C and
S/Ann (C).

(i) For a finite algebra A = ΠAt, with the At local, the algebra A can be generated by q

elements if and only if HAt(1) ≤ q for all t. From the geometric perspective, the number
of generators needed is the smallest dimension of an affine space the associated scheme
can be realized inside, and one just chooses the support of each At to be a different point
of Aq.

(ii) When the module C is generated by a single element (so we are in the Hilbert scheme),
and m ≤ 7, all such modules lie in the principal component [17].

(iii) By [34, Cor. 4.3], when m ≤ 10 and the algebra of matrices generated by Id,X2, . . . ,Xm is
generated by at most three generators, then the module lies in the principal component.
When S/Ann (C) is local, this happens when HS/Ann (C)(1) ≤ 3.

(iv) When m− 1 ≤ 6, if XyXz = 0 for all y, z, then the module lies in the principal component
by [34, Thm. 6.14]. This holds when S/Ann (C) is local with HS/Ann (C)(2) = 0.

(v) If XyXzXw = 0 for all y, z,w (i.e., HS/Ann (C)(3) = 0), dim∑ Im(XyXz) = 1 (i.e.,
HS/Ann (C)(2) = 1), and dim∩y,z ker(XyXz) = m − 1, then (X2, . . . ,Xm) deforms to a
tuple with a matrix having at least two eigenvalues. Explicitly, there is a normal form
so that

Xy =

⎛⎜⎜⎜⎜⎜⎝

0 0 Hy ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 Gy
0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
where X2

2
≠ 0 and all other products are zero. Then

Y ∶=

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 G2H2 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
commutes with all the Xi, and the deformation (to a not necessarily traceless tuple) is(X2 + λY,X3, . . . ,Xm) by [34, Lem. 6.13].
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We now show that all End-closed subspaces Ẽ = ⟨Id,E⟩ lie in the principal component when
m = 5,6 by, in each possible case, assuming the space is not in the principal component and
obtaining a contradiction.

8.2. Case m = 5.

8.2.1. Case: E contains an element with more than one eigenvalue, i.e., E is not nilpotent.
By [34, Lem. 3.12] this is equivalent to saying the algebra S/Ann (C) is a nontrivial product
of algebras ΠtAt. Since dim(S/Ann (C)) = 5, we have for each t that dim(At) ≤ 4 and thus
HAt(1) ≤ 3.Using (i), we see S/Ann (C) is generated by at most three elements, a contradiction
by (iii).

8.2.2. Case: all elements of E are nilpotent. In this case Ann (C) contains S≥(m−1)m because
any nilpotent m ×m matrix raised to the m-th power is zero and we have m − 1 commuting
matrices that we could multiply together. Thus S/Ann (C) is local and we can speak about
Hilbert functions. By (iii) we assume HS/Ann (C)(1) ≥ 4, so HS/Ann (C)(2) = 0. Thus for all z,w,
yzyw ∈ Ann (C) and we conclude by (iv).

8.3. Case m = 6. For non-local S/Ann (C), arguing as in §8.2.1 the only case is S/Ann (C) ≃
A1 ×A2 with dim A1 = 1 and HA2

(1) = 4, HA2
(2) = 0. Correspondingly the module C is a direct

sum of modules C
1
⊕C

2
, where A2 ≃ S/Ann (C

2
). By (iii) and (iv) the module C

2
lies in the

principal component and trivially so does C
1
. Hence C lies in the principal component.

We are reduced to the case S/Ann (C) is local. By (iii) we assume HS/Ann (C)(1) > 3. Moreover,
if HS/Ann (C)(1) = 5, we have HS/Ann (C)(2) = 0 and we conclude by (iv). Thus the unique Hilbert
function HS/Ann (C) left to consider is (1,4,1).
8.3.1. Case dim∑y,z Im(XyXz) = 1, i.e., HS/Ann (C)(2) = 1. Since for all y, z, XyXz lies in
the m dimensional space ⟨Id,X2, . . . ,Xm⟩, we must have dim(∩y,z ker(XyXz)) = m − 1 and
thus (v) applies. Let C(λ) denote C with this deformed module structure. The assumption that
X1Xy = XyX1 = 0 for 2 ≤ y ≤ m implies H1Ky = 0 and HyK1 = 0 which implies that C(λ) also
satisfies the End-closed condition. Since C(λ) is not supported at a point, it cannot have Hilbert
function (1,4,1) so it is in the principal component, and thus so is C = C(0).
8.3.2. Case dim∑y,z Im(XyXz) > 1. This hypothesis says HC(2) ≥ 2. Since HS/Ann (C)(3) = 0

also HC(3) = 0. We have HC(0) +HC(1) +HC(2) = 6. If HC(0) = 1 then (ii) applies, so assume
HC(0) ≥ 2. If HC(1) = 1, then a near trivial case of Macaulay’s growth bound for modules
[8, Cor. 3.5], says HC(2) < 2, so the Hilbert function HC is (2,2,2), and the minimal number
of generators of C is HC(0) = 2. Let F = Se1 ⊕ Se2 be a free S-module of rank two. Fix an
isomorphism C ≃ F /R, where R is the subspace generated by the relations.

We briefly recall the apolarity theory for modules from [34, §4.1]. Let S̃ = C[y1, . . . , y4] which we

may use instead of S because HS/Ann (C)(1) = 4. Let S̃∗ =⊕j Hom(S̃j,C) =∶ C[z1, . . . , z4] be the

dual polynomial ring. Let F ∗ ∶=⊕j Hom(Fj ,C) = S̃∗e∗1⊕ S̃∗e∗2 = C[z1, . . . , z4]e∗1⊕C[z1, . . . , z4]e∗2 .
The action of S̃ on F ∗ is the usual contraction action. In coordinates it is the “coefficientless”
differentiation: ydi (zuj ) = δijzu−dj when u ≥ d and is zero otherwise. The subspace R⊥ ⊆ F ∗ is an

S̃-submodule.

Consider a minimal set of generators of R⊥ ⊆ F ∗. The assumption HC(2) = 2 implies there are
two generators in degree two, write their leading terms as σ11e

∗
1
+ σ12e∗2 and σ21e

∗
1
+ σ22e∗2 , with

σuv ∈ S̃2. Then Ann (C) ∩ S̃≥2 = ⟨σ11, . . . , σ22⟩⊥ ∩ S̃≥2. But HS̃/Ann (C)(2) = 1, so all the σuv must



CONCISE TENSORS OF MINIMAL BORDER RANK 33

be a multiple of some σ and after changing bases we write the leading terms as σe∗
1
, σe∗

2
. We

see ⟨yiσe∗1 + . . . , yiσe∗2 + . . . ,1 ≤ i ≤ 4⟩ ⊆R⊥, where yi acts on S̃∗ by contraction and the “. . . ” are
lower order terms. Now HC(1) = 2 says this is a 2-dimensional space, i.e., that σ is a square.

Change coordinates so σ = z2
1
. Thus the generators of R⊥ include Q1 ∶= z21e

∗
1
+ ℓ11e∗1 + ℓ12e

∗
2
,Q2 ∶=

z2
1
e∗
2
+ ℓ21e∗1 + ℓ22e

∗
2

for some linear forms ℓuv. These two generators plus their contractions (by
y1, y

2

1
) span a six dimensional space, so these must be all the generators. Our module is thus

a degeneration of the module where the z1, ℓuv are all independent linear forms. Take a basis
of the module R⊥ ⊆ F ∗ as Q1,Q2, y1Q1, y1Q2, y

2

1
Q1, y

2

1
Q2. Then the matrix associated to the

action of y1 is

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and if we deform our module to a space where the linear forms z1, ℓuv are all independent and
change bases such that ℓ11 = y

∗
2
, ℓ12 = y

∗
3
, ℓ21 = y

∗
4
, ℓ22 = y

∗
5
, we may write our space of matrices

as

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 z1 0 z2 z3
0 0 0 z1 z4 z5
0 0 0 0 z1 0

0 0 0 0 0 z1
0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Using Macaulay2 VersalDeformations [33] we find that this tuple is a member of the follow-
ing family of tuples of commuting matrices parametrized by λ ∈ C. Their commutativity is
straightforward if tedious to verify by hand

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λ2z4 z1 −λz5 z2 z3
−λz1 0 −λz4 z1 z4 z5
−λ3z4 λ2z1 0 λ2z4 z1 −λz5

0 0 0 −λ2z5 λ(z2 − z4) λz3 + z1
0 0 0 0 −λ2z5 0

0 0 0 0 0 −λ2z5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here there are two eigenvalues, each with multiplicity three, so the deformed module is a direct
sum of two three dimensional modules, each of which thus has an associated algebra with at
most three generators and we conclude by (iii). �

9. Minimal cactus and smoothable rank

For a degree m zero-dimensional subscheme Spec(R) with an embedding Spec(R) ⊆ Seg(PA ×
PB ×PC) ⊆ P(A⊗B⊗C), its span ⟨Spec(R)⟩ is the zero set of I1(Spec(R)) ⊆ A∗⊗B∗⊗C∗, where
I1(Spec(R)) is the degree one component of the homogeneous ideal I of the embedded Spec(R).
We say that the embedding Spec(R) ⊆ Seg(PA ×PB × PC) is nondegenerate if its span projects
surjectively to PA, PB, and PC. For a nondegenerate embedding, the maps Spec(R) → PA,
Spec(R) → PB, Spec(R) → PC, induced by projections, are embeddings as well. If ⟨Spec(R)⟩
contains a concise tensor, then the embedding of Spec(R) is automatically nondegenerate.
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The cactus rank [12] of T ∈ A⊗B⊗C is the smallest r such that there exists a degree r zero-
dimensional subscheme Spec(R) ⊆ Seg(PA × PB × PC) ⊆ P(A⊗B⊗C) with [T ] ∈ ⟨Spec(R)⟩.
(Recall that the smoothable rank has the same definition except that one additionally requires
R to be smoothable.)

Given a degree ρ zero-dimensional scheme R, for each ϕ ∈ R∗, one gets a tensor Tϕ ∈ R∗⊗R∗⊗R∗ ≃
C
ρ⊗Cρ⊗Cρ defined by Tϕ(r1, r2, r3) ∶= ϕ(r1r2r3). Given any non-degenerate embedding Spec(R) ⊆

Seg(PA ×PB ×PC) ⊆ P(A⊗B⊗C), the space of tensors Tϕ is isomorphic to the space of tensors⟨Spec(R)⟩ as will be shown in the proof of Proposition 9.1 below.

In this section we show that the scheme (resp. smoothable scheme) Spec(R) which witnesses
that a tensor T ∈ A⊗B⊗C has minimal cactus (resp. smoothable) rank is unique, in fact, the
algebra R is isomorphic to AT

111
.

Proposition 9.1. Let Spec(R) be a degree m zero-dimensional subscheme and let T ∈ A⊗B⊗C.
The following are equivalent:

(1) There exists a nondegenerate embedding Spec(R) ⊆ Seg(PA × PB × PC) with T ∈⟨Spec(R)⟩, so in particular T has cactus rank at most m.

(2) there exists ϕ ∈ R∗ such that T is isomorphic to the tensor in R∗⊗R∗⊗R∗ given by the
trilinear map (r1, r2, r3)↦ ϕ(r1r2r3).

If T is concise and satisfies the above, then it is 1-generic and has cactus rank m.

Proof. We first show (1) implies (2). An embedding Spec(R) ⊆ PA with ⟨Spec(R)⟩ = PA is
induced from an embedding Spec(R) ⊆ A with ⟨Spec(R)⟩ = A, which in turn induces a vector
space isomorphism τa∶A∗ → R ≅ Sym(A∗)/IR,A as follows: let IR,A denote the ideal of Spec(R) ⊆
A, then τa(α) ∶= αmod IR,A. Hence, a nondegenerate embedding of Spec(R) induces a triple of
vector space isomorphisms τa∶A∗ → R, τb∶B∗ → R, τc∶C∗ → R.

More generally, for each (s, t, u), with s, t, u ≥ 1, the map

τs,t,u ∶ S
sA∗⊗StB∗⊗SuC∗ → SsA∗⊗StB∗⊗SuC∗/(IR,A⊗B⊗C)s,t,u

is a surjection onto R ≅ SsA∗⊗StB∗⊗SuC∗/(IR,A⊗B⊗C)s,t,u, and these maps are all compatible
with multiplication, in particular τ1,1,1(α⊗β⊗γ) = τa(α)τb(β)τc(γ). Then

⟨Spec(R)⟩ = (ker τ1,1,1)⊥ ⊆ (A∗⊗B∗⊗C∗)∗ = A⊗B⊗C.
By duality, the space (ker τ1,1,1)⊥ is the image of the map R∗ → A⊗B⊗C defined by requiring
that ϕ ∈ R∗ maps to the trilinear form (α,β, γ) ↦ ϕ(τa(α)τb(β)τc(γ)).
If T is the image of ϕ, then it is isomorphic to the trilinear map (r1, r2, r3) ↦ ϕ(r1r2r3) via
τ ta⊗τ

t

b⊗τ
t

c , proving (1) implies (2).

Assuming (2), choose vector space isomorphisms τa, τb, τc and define a map A∗⊗B∗⊗C∗ → R, by
α⊗β⊗γ ↦ τa(α)τb(β)τc(γ). (For readers familiar with border apolarity, the kernel of this map
is I111.) Then extend it to SsA∗⊗StB∗⊗SuC∗ by τa(α1⋯αs) = τa(α1)⋯τa(αi) and similarly.
This yields the required nondegenerate embedding of Spec(R). The tensor T ′ corresponding to(α,β, γ) ↦ ϕ(τa(α)τb(β)τc(γ)) is isomorphic to T and lies in ⟨Spec(R)⟩. This proves (1).

Finally, if T satisfies the above, then it is isomorphic to (r1, r2, r3)↦ ϕ(r1r2r3) for some ϕ. If T
is additionally concise, then for every r ∈ R there exists an r′ ∈ R such that ϕ(rr′) ≠ 0. Hence the
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map (r1, r2) ↦ ϕ(r1, r2) has full rank. But this map is ϕ(1R). This shows that T is 1-generic.
It has cactus rank at least m by conciseness and at most m by assumption. �

In particular, a concise tensor T ∈ Cm⊗Cm⊗Cm has minimal smoothable rank if there exists a
smoothable degree m algebra R satisfying the conditions of Proposition 9.1.

Theorem 9.2. Let T ∈ Cm⊗Cm⊗Cm be a concise tensor. The following are equivalent

(1) T has minimal smoothable rank,

(2) T is 1-generic, 111-sharp and its 111-algebra is smoothable and Gorenstein.

(3) T is 1-generic, 111-abundant and its 111-algebra is smoothable.

We emphasize that in Theorem 9.2 one does not need to find the smoothable scheme to show
the tensor has minimal smoothable rank, which makes the theorem effective by reducing the
question of determining minimal smoothable rank to proving smoothability of a given algebra.

Proof of Theorem 9.2. Suppose (1) holds and so there exists a smoothable algebra R and an
embedding of it into Seg(PA × PB × PC) with T ∈ ⟨Spec(R)⟩. By Proposition 9.1 T is 1-
generic and isomorphic to the tensor in the vector space R∗⊗R∗⊗R∗ given by the trilinear map(r1, r2, r3)↦ ϕ(r1r2r3) for some functional ϕ ∈ R∗, in particular T ∈ Hom(R⊗R⊗R,C). Suppose
that there exists a nonzero r ∈ R such that ϕ(Rr) = 0. Then for all r1, r2 ∈ R, (r1, r2, r) ↦ 0

so T is not concise. Hence no such r exists and so ϕ is nondegenerate. This shows that R is
Gorenstein.

For an element r ∈ R, the multiplication by r on the first position gives a map

µ(1)r ∶Hom(R⊗R⊗R,C)→ Hom(R⊗R⊗R,C)
and similarly we obtain µ

(2)
r and µ

(3)
r . Observe that for i = 1,2,3 and every r ∈ R the map

corresponding to the tensor µ
(i)
r (T ) is the composition of the multiplication R⊗R⊗R → R, the

multiplication by r map R → R and ϕ∶R → C. Therefore µ
(1)
r (T ) = µ(2)r (T ) = µ(3)r (T ). Moreover,

for any nonzero r we have µ
(i)
r (T ) ≠ 0 since ϕ is nondegenerate. This shows that ⟨µ(i)r (T ) ∣ r ∈ R⟩

is an m-dimensional subspace of AT
111
⋅ T ⊆ A⊗B⊗C.

Since T has minimal smoothable rank, it has minimal border rank so it is 111-abundant and by

Proposition 3.2 is it 111-sharp, so its 111-algebra is ⟨µ(i)r (T ) ∣ r ∈ R⟩, which is isomorphic to R.
This proves (1) implies (2). That (2) implies (3) is vacuous.

Suppose (3) holds and take R = AT
111

. Then T is 111-sharp by Proposition 3.2, which also implies
the tensor T is isomorphic to the multiplication tensor of R. The algebra R is Gorenstein as
T is 1-generic (see §2.5). Since R is Gorenstein, the R-module R∗ is isomorphic to R. Take
one such isomorphism Φ∶R → R∗ and let ϕ = Φ(1R). Then the composition R⊗R⊗R → R → C

can be rewritten as R⊗R → R → R∗, where the first map is the multiplication and the second
one sends r to rϕ; this second map is equal to Φ. Composing further with Φ−1 we obtain a
map R⊗R → R → R∗ → R which is simply the multiplication. All this shows that the tensor in
R∗⊗R∗⊗R∗ associated to (R,ϕ) is isomorphic to the multiplication tensor of R, hence to T . By
Proposition 9.1 and smoothability of R such a tensor has minimal smoothable rank. �
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Remark 9.3. There is a version of Theorem 9.2 without smoothability assumptions: a concise
tensor has minimal cactus rank if and only if it is 1-generic and 111-abundant with Gorenstein
111-algebra.
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