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Abstract

Let G be a finite group. We show that the order of the subgroup generated by coprime γk-commutators
(respectively, δk-commutators) is bounded in terms of the size of the set of coprime γk-commutators
(respectively, δk-commutators). This is in parallel with the classical theorem due to Turner-Smith that the
words γk and δk are concise.
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1. Introduction

Let F be the free group freely generated by x1, . . . , xn. Any nonidentity element
of F is called a group-word in the variables x1, . . . , xn. Given a group-word, we
think of it primarily as a function of n variables defined on any given group G. The
verbal subgroup w(G) of G determined by w is the subgroup generated by the set Gw

consisting of all values w(g1, . . . , gn), where g1, . . . , gn are elements of G. A word w is
said to be concise if, whenever Gw is finite for a group G, it always follows that w(G) is
finite. More generally, a word w is said to be concise in a class of groupsX if, whenever
Gw is finite for a group G ∈ X, it always follows that w(G) is finite. In the 1960s P.
Hall asked whether every word is concise but later Ivanov proved that this problem
has a negative solution in its general form [6] (see also [9, page 439]). On the other
hand, many important words are known to be concise. For instance, Turner-Smith [15]
showed that the lower central words γk and the derived words δk are concise; here
the words γk and δk are defined by the positions γ1 = δ0 = x1, γk+1 = [γk, xk+1] and
δk+1 = [δk, δk]. Wilson showed in [16] that the multilinear commutator words (outer
commutator words) are concise. It was proved by Merzlyakov [8] that every word is
concise in the class of linear groups.

The research of the first and second authors was supported by CNPq-Brazil.
c© 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 $16.00

252

first published online 18 July 2013)

89 (2014), 252–258

https://doi.org/10.1017/S0004972713000361 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000361


In [3], a word w was called boundedly concise in a class of groups X if for every
integer m there exists a number ν = ν(X, w, m) such that whenever |Gw| ≤ m for a
group G ∈ X it always follows that |w(G)| ≤ ν. Fernández-Alcober and Morigi [4]
showed that every word which is concise in the class of all groups is boundedly
concise. Moreover, they showed that whenever w is a multilinear commutator word
having at most m values in a group G, one has |w(G)| ≤ (m − 1)(m−1). Questions on
conciseness of words in the class of residually finite groups have been tackled in [1].
It was shown that if w is a multilinear commutator word and q a prime-power, then
the word wq is concise in the class of residually finite groups; and if w = γk is the kth
lower central word and q a prime-power, then the word wq is boundedly concise in the
class of residually finite groups.

The concept of (bounded) conciseness can be applied in a much wider context.
Suppose X is a class of groups and φ(G) is a subset of G for every group G ∈ X. One
can ask whether the subgroup generated by φ(G) is finite whenever φ(G) is finite. In the
present paper we show bounded conciseness of coprime commutators in finite groups.

The coprime commutators γ∗k and δ∗k were introduced in [13] as a tool to study
properties of finite groups that can be expressed in terms of commutators of elements
of coprime orders. Let G be a finite group. Every element of G is both a γ∗1-commutator
and a δ∗0-commutator. Now let k ≥ 2 and let X be the set of all elements of G that are
powers of γ∗k−1-commutators. An element g is a γ∗k-commutator if there exist a ∈ X and
b ∈G such that g = [a, b] and (|a|, |b|) = 1. For k ≥ 1 let Y be the set of all elements of G
that are powers of δ∗k−1-commutators. The element g is a δ∗k-commutator if there exist
a, b ∈ Y such that g = [a, b] and (|a|, |b|) = 1. The subgroups of G generated by all γ∗k-
commutators and all δ∗k-commutators will be denoted by γ∗k(G) and δ∗k(G), respectively.
One can easily see that if N is a normal subgroup of G and x an element whose image
in G/N is a γ∗k-commutator (respectively, a δ∗k-commutator), then there exists a γ∗k-
commutator y ∈G (respectively, a δ∗k-commutator) such that x ∈ yN. It was shown
in [13] that γ∗k(G) = 1 if and only if G is nilpotent and δ∗k(G) = 1 if and only if the
Fitting height of G is at most k. It follows that for every k ≥ 2 the subgroup γ∗k(G) is
precisely the last term of the lower central series of G (which is sometimes denoted by
γ∞(G)) while for every k ≥ 1 the subgroup δ∗k(G) is precisely the last term of the lower
central series of δ∗k−1(G). In the present paper we prove the following results.

T 1.1. Let k ≥ 1 and let G be a finite group in which the set of γ∗k-commutators
has size m. Then |γ∗k(G)| is m-bounded.

T 1.2. Let k ≥ 0 and let G be a finite group in which the set of δ∗k-commutators
has size m. Then |δ∗k(G)| is m-bounded.

We remark that the bounds for |γ∗k(G)| and |δ∗k(G)| in the above results do not
depend on k. Thus, we observe here the phenomenon that in [4] was dubbed ‘uniform
conciseness’. We make no attempts to provide explicit bounds for |γ∗k(G)| and |δ∗k(G)|
in Theorems 1.1 and 1.2. Throughout the paper we use the term m-bounded to mean
that the bound is a function of m.

[2] Conciseness of coprime commutators in finite groups 253

https://doi.org/10.1017/S0004972713000361 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000361


2. Preliminaries

We begin with a well-known result about coprime actions on finite groups.
Recall that [K, H] is the subgroup generated by {[k, h] : k ∈ K, h ∈ H}, and [K,i H] =

[[K,i−1 H], H] for i ≥ 2.

L 2.1 [5, Lemma 4.29]. Let A act via automorphisms on G, where A and G are
finite groups, and suppose that (|G|, |A|) = 1. Then [G, A, A] = [G, A].

For the following result from [14], recall that a subset B of a group A is normal if B
is a union of conjugacy classes of A.

L 2.2. Let A be a group of automorphisms of a finite group G with (|A|, |G|) = 1.
Suppose that B is a normal subset of A such that A = 〈B〉. Let k ≥ 1 be an integer. Then
[G, A] is generated by the subgroups of the form [G, b1, . . . , bk], where b1, . . . , bk ∈ B.

The following is an elementary property of δ∗k-commutators.

L 2.3. Let G be a finite group. For a nonnegative integer k,

δ∗k(δ∗1(G)) = δ∗k+1(G).

P. We argue by induction. For k = 0, the result is obvious by the definition of
δ∗0-commutators.

Suppose the result holds for k − 1. So

δ∗k−1(δ∗1(G)) = δ∗k(G).

It was mentioned in the introduction that δ∗k+1(G) = γ∞(δ∗k(G)). By induction,

δ∗k+1(G) = γ∞(δ∗k−1(δ∗1(G))),

and viewing δ∗1(G) as the group under consideration,

γ∞(δ∗k−1(δ∗1(G))) = δ∗k(δ∗1(G)),

as required. �

Here is a helpful observation that we will use in both of our main results. Recall
that a Hall subgroup of a finite group is a subgroup whose order is coprime to its index.
Also, a finite group G is metanilpotent if and only if γ∞(G) is nilpotent.

L 2.4. Let G be a finite metanilpotent group and P a Sylow p-subgroup of γ∞(G),
and let H be a Hall p′-subgroup of G. Then P = [P, H].

P. For simplicity, we write K for γ∞(G). By passing to the quotient G/Op′(G), we
may assume that P = K.

Let P1 be a Sylow p-subgroup of G. So G = P1H. Now P1/P is normal in G/P
as G/P is nilpotent, but also P ≤ P1; hence, P1 is normal in G. It follows that
K = [P1, H], since in a nilpotent group all coprime elements commute. By Lemma 2.1,
[P1, H, H] = [P1, H] = P, and so P = [P1, H] = [P, H]. �
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In the proofs of our main results we often reduce to the following case.

L 2.5. Let i and m be positive integers. Let P be an abelian p-group acted on by
a p′-group A such that

|{[x, a1, . . . , ai] : x ∈ P, a1, . . . , ai ∈ A}| = m.

Then |[P,i A]| = 2m, so is m-bounded.

P. We enumerate the set {[x, a1, . . . , ai] : x ∈ P, a1, . . . , ai ∈ A} as {c1, . . . , cm}.
As P is abelian,

[x, a1, . . . , ai]l = [xl, a1, . . . , ai] (†)

for all x ∈ P, a1, . . . , ai ∈ A, and a positive integer l.
Consider g ∈ [P,i A], which can be expressed as some product cl1

1 · · · c
lm
m for

nonnegative integers l1, . . . , lm. We claim that l1, . . . , lm ∈ {0, 1}. For, if l j > 1 with

j ∈ {1, . . . , m}, we know from (†) that c
l j

j ∈ {c1, . . . , cm}. We replace all such c
l j

j

accordingly, so that g is now expressed as ck1
1 . . . ckm

m with k1, . . . , km ∈ {0, 1}. Hence
|[P,i A]| = 2m. �

The well-known focal subgroup theorem [12, Corollary 10.34, page 255] states
that if G is a finite group and P a Sylow p-subgroup of G, then P ∩G′ is generated
by the set of commutators {[g, z] | g ∈G, z ∈ P, [g, z] ∈ P}. In particular, it follows
that P ∩G′ can be generated by commutators lying in P. This observation led to the
question on generation of Sylow subgroups of verbal subgroups of finite groups. More
specifically, the following problem was addressed in [2].

Given a multilinear commutator word w and a Sylow p-subgroup P of a finite group
G, is it true that P ∩ w(G) can be generated by w-values lying in P?

The answer to this is still unknown. The main result of [2] is that if G has order pan,
where n is not divisible by p, then P ∩ w(G) is generated by nth powers of w-values. In
the present paper we will require a result on generation of Sylow subgroups of δ∗k(G).

L 2.6. Let k ≥ 0 and let G be a finite soluble group of order pan, where p is
a prime and n is not divisible by p, and let P be a Sylow p-subgroup of G. Then
P ∩ δ∗k(G) is generated by nth powers of δ∗k-commutators lying in P.

It seems likely that Lemma 2.6 actually holds for all finite groups. In particular, the
result in [2] was proved without the assumption that G is soluble. It seems though that
proving Lemma 2.6 for arbitrary groups is a complicated task. Indeed, one of the tools
used in [2] is the proof of the Ore conjecture by Liebeck et al. [7] that every element
of any finite simple group is a commutator. Recently, it was conjectured in [13] that
every element of a finite simple group is a commutator of elements of coprime orders.
If this is confirmed, then extending Lemma 2.6 to arbitrary groups would be easy.
However, the conjecture that every element of a finite simple group is a commutator
of elements of coprime orders is proved only for the alternating groups [13] and the
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groups PSL(2, q) [10]. Thus, we prove Lemma 2.6 only for soluble groups, which is
adequate for the purposes of the present paper.

Before we embark on the proof of Lemma 2.6, we note a key result from [2] that
we will need.

L 2.7. Let G be a finite group, and let P be a Sylow p-subgroup of G. Assume that
N ≤ L are two normal subgroups of G, and use bar notation in the quotient group G/N.
Let X be a normal subset of G consisting of p-elements such that P ∩ L = 〈P ∩ X〉.
Then P ∩ L = 〈P ∩ X, P ∩ N〉.

We are now ready to prove Lemma 2.6.

P. Let G be a counter-example of minimal order. Then k ≥ 1.
By induction on the order of G, the lemma holds for every proper subgroup and

every proper quotient of G. We observe that δ∗1(G) <G since G is not perfect, and
by Lemma 2.3, δ∗k+1(G) = δ∗k(δ∗1(G)). Since the result holds for δ∗1(G), it follows that
P ∩ δ∗k+1(G) is generated by nth powers of δ∗k-commutators in G. Note that we made
use of [2, Remark 3.2].

If δ∗k+1(G) , 1, by induction the result holds for G/δ∗k+1(G). Combining this with
the fact that P ∩ δ∗k+1(G) can be generated by nth powers of δ∗k-commutators, we get
a contradiction by Lemma 2.7. Hence δ∗k+1(G) = 1. Further Op′(G) = 1 since G is
a minimal counter-example. Therefore, δ∗k(G) ⊆ P, so P ∩ δ∗k(G) is generated by nth
powers of δ∗k-commutators lying in P. We have our required contradiction. �

3. Proofs of the main results

We mention here a result of Schur and Wiegold. The much celebrated Schur
theorem states that if G is a group with |G/Z(G)| finite, then |G′| is finite. It is implicit
in the work of Schur that if |G/Z(G)| = m, then |G′| is m-bounded. However, Wiegold
produced a shorter proof of this second statement, which also gives the best possible
bound. See Robinson [11, pages 102–103] for details.

For the proof of Theorem 1.2, we require the following result from [13].

L 3.1. Let G be a finite group and let y1, . . . , yk be δ∗k-commutators in G. Suppose
y1, . . . , yk normalise a subgroup N such that (|yi|, |N|) = 1 for every i = 1, . . . , k. Then
for every x ∈ N the element [x, y1, . . . , yk] is a δ∗k+1-commutator.

Now we are ready to begin.

P  T 1.1. Let X be the set of all γ∗k-commutators. We wish to show that
if |X| = m, then |γ∗k(G)| is m-bounded. For convenience we write K for 〈X〉. Of course,
K = γ∞(G).

The subgroup CG(X) has index at most m!, so |K/Z(K)| ≤ m! too. By Schur, K′ has
m-bounded order. Therefore, by passing to the quotient, we may assume K′ = 1, and
so K is abelian with G metanilpotent.

It is enough to bound the order of each Sylow subgroup of K. We choose a Sylow
p-subgroup P. By passing to the quotient G/Op′(G), we may assume K = P.
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By Lemma 2.4, a Hall p′-subgroup H of G satisfies P = [P,k−1 H]. We know that P
is abelian and P is normal in PH.

We denote the set {[x, h1, . . . , hk−1] : x ∈ P, h1, . . . , hk−1 ∈ H} by X̂.
For x ∈ P and h1, . . . , hi−1 ∈ H, where i ≥ 2, we note that [x, h1, . . . , hi−1] is a γ∗i -

commutator. Therefore, X̂ ⊆ X, and |X̂| ≤ m.
By Lemma 2.5, it follows that |[P,k−1 H]| is m-bounded. Appealing to Lemma 2.4,

we conclude that |P| is m-bounded. �

P  T 1.2. Let X be the set of δ∗k-commutators in G. We wish to show that
if |X| = m, then |δ∗k(G)| is m-bounded. We recall that δ∗k(G) = γ∞(δ∗k−1(G)). For ease of
notation we define Q := δ∗k−1(G), and we write K for δ∗k(G).

The subgroup CG(X) has index at most m! in G, so |K/Z(K)| ≤ m! and as in the proof
of Theorem 1.1, we may assume K′ = 1. Hence K is assumed to be abelian with Q
metanilpotent. In what follows, we now restrict to the group Q.

It is sufficient to show that the order of each Sylow subgroup of K is m-bounded.
We choose P a Sylow p-subgroup of K. By passing to the quotient G/Op′(G), we may
assume K = P.

By Lemma 2.4, a Hall p′-subgroup H of Q satisfies P = [P, H]. By Lemma 2.6,
since H is generated by its Sylow subgroups, we have that H is generated by a normal
subset B of powers of δ∗k−1-commutators that are of p′ order.

Lemma 2.2 now implies that [P, H] is generated by subgroups [P, b1, . . . , bk] for
b1, . . . , bk ∈ B. By Lemma 3.1, if x ∈ P, then [x, b1, . . . , bk] is a δ∗k-commutator, and
we deduce that |[P, b1, . . . , bk]| is m-bounded.

It follows that the number of generators of [P, H] is at most m, and, futhermore,
the exponent of [P, H] is m-bounded. Hence, the finite abelian p-group P = [P, H] has
m-bounded order. �
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