Bull. Aust. Math. Soc. 89 (2014), 252–258 doi:10.1017/S0004972713000361

CONCISENESS OF COPRIME COMMUTATORS IN FINITE GROUPS

CRISTINA ACCIARRI[™], PAVEL SHUMYATSKY and ANITHA THILLAISUNDARAM

(Received 5 March 2013; accepted 19 March 2013; first published online 18 July 2013)

Abstract

Let *G* be a finite group. We show that the order of the subgroup generated by coprime γ_k -commutators (respectively, δ_k -commutators) is bounded in terms of the size of the set of coprime γ_k -commutators (respectively, δ_k -commutators). This is in parallel with the classical theorem due to Turner-Smith that the words γ_k and δ_k are concise.

2010 *Mathematics subject classification*: primary 20D25; secondary 20F12. *Keywords and phrases*: commutators, concise words.

1. Introduction

Let F be the free group freely generated by x_1, \ldots, x_n . Any nonidentity element of F is called a group-word in the variables x_1, \ldots, x_n . Given a group-word, we think of it primarily as a function of n variables defined on any given group G. The verbal subgroup w(G) of G determined by w is the subgroup generated by the set G_w consisting of all values $w(g_1, \ldots, g_n)$, where g_1, \ldots, g_n are elements of G. A word w is said to be concise if, whenever G_w is finite for a group G, it always follows that w(G) is finite. More generally, a word w is said to be concise in a class of groups X if, whenever G_w is finite for a group $G \in X$, it always follows that w(G) is finite. In the 1960s P. Hall asked whether every word is concise but later Ivanov proved that this problem has a negative solution in its general form [6] (see also [9, page 439]). On the other hand, many important words are known to be concise. For instance, Turner-Smith [15] showed that the *lower central words* γ_k and the *derived words* δ_k are concise; here the words γ_k and δ_k are defined by the positions $\gamma_1 = \delta_0 = x_1$, $\gamma_{k+1} = [\gamma_k, x_{k+1}]$ and $\delta_{k+1} = [\delta_k, \delta_k]$. Wilson showed in [16] that the multilinear commutator words (outer commutator words) are concise. It was proved by Merzlyakov [8] that every word is concise in the class of linear groups.

The research of the first and second authors was supported by CNPq-Brazil.

^{© 2013} Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

In [3], a word w was called boundedly concise in a class of groups X if for every integer m there exists a number v = v(X, w, m) such that whenever $|G_w| \le m$ for a group $G \in X$ it always follows that $|w(G)| \le v$. Fernández-Alcober and Morigi [4] showed that every word which is concise in the class of all groups is boundedly concise. Moreover, they showed that whenever w is a multilinear commutator word having at most m values in a group G, one has $|w(G)| \le (m-1)^{(m-1)}$. Questions on conciseness of words in the class of residually finite groups have been tackled in [1]. It was shown that if w is a multilinear commutator word and q a prime-power, then the word w^q is concise in the class of residually finite groups; and if $w = \gamma_k$ is the kth lower central word and q a prime-power, then the word w^q is boundedly concise in the class of residually finite groups.

The concept of (bounded) conciseness can be applied in a much wider context. Suppose X is a class of groups and $\phi(G)$ is a subset of G for every group $G \in X$. One can ask whether the subgroup generated by $\phi(G)$ is finite whenever $\phi(G)$ is finite. In the present paper we show bounded conciseness of coprime commutators in finite groups.

The coprime commutators γ_k^* and δ_k^* were introduced in [13] as a tool to study properties of finite groups that can be expressed in terms of commutators of elements of coprime orders. Let G be a finite group. Every element of G is both a γ_1^* -commutator and a δ_0^* -commutator. Now let $k \ge 2$ and let X be the set of all elements of G that are powers of γ_{k-1}^* -commutators. An element g is a γ_k^* -commutator if there exist $a \in X$ and $b \in G$ such that g = [a, b] and (|a|, |b|) = 1. For $k \ge 1$ let Y be the set of all elements of G that are powers of δ_{k-1}^* -commutators. The element g is a δ_k^* -commutator if there exist $a, b \in Y$ such that g = [a, b] and (|a|, |b|) = 1. The subgroups of G generated by all γ_{k}^{*} . commutators and all δ_k^* -commutators will be denoted by $\gamma_k^*(G)$ and $\delta_k^*(G)$, respectively. One can easily see that if N is a normal subgroup of G and x an element whose image in G/N is a γ_k^* -commutator (respectively, a δ_k^* -commutator), then there exists a γ_k^* commutator $y \in G$ (respectively, a δ_k^* -commutator) such that $x \in yN$. It was shown in [13] that $\gamma_k^*(G) = 1$ if and only if G is nilpotent and $\delta_k^*(G) = 1$ if and only if the Fitting height of G is at most k. It follows that for every $k \ge 2$ the subgroup $\gamma_{k}^{*}(G)$ is precisely the last term of the lower central series of G (which is sometimes denoted by $\gamma_{\infty}(G)$) while for every $k \ge 1$ the subgroup $\delta_k^*(G)$ is precisely the last term of the lower central series of $\delta_{k-1}^*(G)$. In the present paper we prove the following results.

THEOREM 1.1. Let $k \ge 1$ and let G be a finite group in which the set of γ_k^* -commutators has size m. Then $|\gamma_k^*(G)|$ is m-bounded.

THEOREM 1.2. Let $k \ge 0$ and let G be a finite group in which the set of δ_k^* -commutators has size m. Then $|\delta_k^*(G)|$ is m-bounded.

We remark that the bounds for $|\gamma_k^*(G)|$ and $|\delta_k^*(G)|$ in the above results do not depend on *k*. Thus, we observe here the phenomenon that in [4] was dubbed 'uniform conciseness'. We make no attempts to provide explicit bounds for $|\gamma_k^*(G)|$ and $|\delta_k^*(G)|$ in Theorems 1.1 and 1.2. Throughout the paper we use the term *m*-bounded to mean that the bound is a function of *m*.

2. Preliminaries

We begin with a well-known result about coprime actions on finite groups. Recall that [K, H] is the subgroup generated by $\{[k, h] : k \in K, h \in H\}$, and $[K_{i}, H] = [[K_{i-1}, H], H]$ for $i \ge 2$.

LEMMA 2.1 [5, Lemma 4.29]. Let A act via automorphisms on G, where A and G are finite groups, and suppose that (|G|, |A|) = 1. Then [G, A, A] = [G, A].

For the following result from [14], recall that a subset *B* of a group *A* is *normal* if *B* is a union of conjugacy classes of *A*.

LEMMA 2.2. Let A be a group of automorphisms of a finite group G with (|A|, |G|) = 1. Suppose that B is a normal subset of A such that $A = \langle B \rangle$. Let $k \ge 1$ be an integer. Then [G, A] is generated by the subgroups of the form $[G, b_1, \ldots, b_k]$, where $b_1, \ldots, b_k \in B$.

The following is an elementary property of δ_k^* -commutators.

LEMMA 2.3. Let G be a finite group. For a nonnegative integer k,

$$\delta_k^*(\delta_1^*(G)) = \delta_{k+1}^*(G).$$

PROOF. We argue by induction. For k = 0, the result is obvious by the definition of δ_0^* -commutators.

Suppose the result holds for k - 1. So

$$\delta_{k-1}^*(\delta_1^*(G)) = \delta_k^*(G).$$

It was mentioned in the introduction that $\delta_{k+1}^*(G) = \gamma_{\infty}(\delta_k^*(G))$. By induction,

$$\delta_{k+1}^*(G) = \gamma_{\infty}(\delta_{k-1}^*(\delta_1^*(G))),$$

and viewing $\delta_1^*(G)$ as the group under consideration,

$$\gamma_{\infty}(\delta_{k-1}^*(\delta_1^*(G))) = \delta_k^*(\delta_1^*(G))$$

as required.

Here is a helpful observation that we will use in both of our main results. Recall that a Hall subgroup of a finite group is a subgroup whose order is coprime to its index. Also, a finite group *G* is metanilpotent if and only if $\gamma_{\infty}(G)$ is nilpotent.

LEMMA 2.4. Let G be a finite metanilpotent group and P a Sylow p-subgroup of $\gamma_{\infty}(G)$, and let H be a Hall p'-subgroup of G. Then P = [P, H].

PROOF. For simplicity, we write *K* for $\gamma_{\infty}(G)$. By passing to the quotient $G/O_{p'}(G)$, we may assume that P = K.

Let P_1 be a Sylow *p*-subgroup of *G*. So $G = P_1H$. Now P_1/P is normal in G/P as G/P is nilpotent, but also $P \le P_1$; hence, P_1 is normal in *G*. It follows that $K = [P_1, H]$, since in a nilpotent group all coprime elements commute. By Lemma 2.1, $[P_1, H, H] = [P_1, H] = P$, and so $P = [P_1, H] = [P, H]$.

In the proofs of our main results we often reduce to the following case.

LEMMA 2.5. Let *i* and *m* be positive integers. Let *P* be an abelian *p*-group acted on by a p'-group *A* such that

$$|\{[x, a_1, \ldots, a_i] : x \in P, a_1, \ldots, a_i \in A\}| = m.$$

Then $|[P_{i}A]| = 2^{m}$, so is m-bounded.

PROOF. We enumerate the set $\{[x, a_1, \dots, a_i] : x \in P, a_1, \dots, a_i \in A\}$ as $\{c_1, \dots, c_m\}$. As *P* is abelian,

$$[x, a_1, \dots, a_i]^l = [x^l, a_1, \dots, a_i]$$
(†)

for all $x \in P$, $a_1, \ldots, a_i \in A$, and a positive integer *l*.

Consider $g \in [P_i, A]$, which can be expressed as some product $c_1^{l_1} \cdots c_m^{l_m}$ for nonnegative integers l_1, \ldots, l_m . We claim that $l_1, \ldots, l_m \in \{0, 1\}$. For, if $l_j > 1$ with $j \in \{1, \ldots, m\}$, we know from (†) that $c_j^{l_j} \in \{c_1, \ldots, c_m\}$. We replace all such $c_j^{l_j}$ accordingly, so that g is now expressed as $c_1^{k_1} \ldots c_m^{k_m}$ with $k_1, \ldots, k_m \in \{0, 1\}$. Hence $|[P_i, A]| = 2^m$.

The well-known focal subgroup theorem [12, Corollary 10.34, page 255] states that if *G* is a finite group and *P* a Sylow *p*-subgroup of *G*, then $P \cap G'$ is generated by the set of commutators {[g, z] | $g \in G$, $z \in P$, [g, z] $\in P$ }. In particular, it follows that $P \cap G'$ can be generated by commutators lying in *P*. This observation led to the question on generation of Sylow subgroups of verbal subgroups of finite groups. More specifically, the following problem was addressed in [2].

Given a multilinear commutator word *w* and a Sylow *p*-subgroup *P* of a finite group *G*, is it true that $P \cap w(G)$ can be generated by *w*-values lying in *P*?

The answer to this is still unknown. The main result of [2] is that if *G* has order $p^a n$, where *n* is not divisible by *p*, then $P \cap w(G)$ is generated by *n*th powers of *w*-values. In the present paper we will require a result on generation of Sylow subgroups of $\delta_{\nu}^{*}(G)$.

LEMMA 2.6. Let $k \ge 0$ and let G be a finite soluble group of order p^an , where p is a prime and n is not divisible by p, and let P be a Sylow p-subgroup of G. Then $P \cap \delta_k^*(G)$ is generated by nth powers of δ_k^* -commutators lying in P.

It seems likely that Lemma 2.6 actually holds for all finite groups. In particular, the result in [2] was proved without the assumption that G is soluble. It seems though that proving Lemma 2.6 for arbitrary groups is a complicated task. Indeed, one of the tools used in [2] is the proof of the Ore conjecture by Liebeck *et al.* [7] that every element of any finite simple group is a commutator. Recently, it was conjectured in [13] that every element of a finite simple group is a commutator of elements of coprime orders. If this is confirmed, then extending Lemma 2.6 to arbitrary groups would be easy. However, the conjecture that every element of a finite simple group is a commutator of a finite simple group is a commutator of elements of coprime orders.

groups PSL(2, q) [10]. Thus, we prove Lemma 2.6 only for soluble groups, which is adequate for the purposes of the present paper.

Before we embark on the proof of Lemma 2.6, we note a key result from [2] that we will need.

LEMMA 2.7. Let G be a finite group, and let P be a Sylow p-subgroup of G. Assume that $N \leq L$ are two normal subgroups of G, and use bar notation in the quotient group G/N. Let X be a normal subset of G consisting of p-elements such that $\overline{P} \cap \overline{L} = \langle \overline{P} \cap \overline{X} \rangle$. Then $P \cap L = \langle P \cap X, P \cap N \rangle$.

We are now ready to prove Lemma 2.6.

PROOF. Let *G* be a counter-example of minimal order. Then $k \ge 1$.

By induction on the order of *G*, the lemma holds for every proper subgroup and every proper quotient of *G*. We observe that $\delta_1^*(G) < G$ since *G* is not perfect, and by Lemma 2.3, $\delta_{k+1}^*(G) = \delta_k^*(\delta_1^*(G))$. Since the result holds for $\delta_1^*(G)$, it follows that $P \cap \delta_{k+1}^*(G)$ is generated by *n*th powers of δ_k^* -commutators in *G*. Note that we made use of [2, Remark 3.2].

If $\delta_{k+1}^*(G) \neq 1$, by induction the result holds for $G/\delta_{k+1}^*(G)$. Combining this with the fact that $P \cap \delta_{k+1}^*(G)$ can be generated by *n*th powers of δ_k^* -commutators, we get a contradiction by Lemma 2.7. Hence $\delta_{k+1}^*(G) = 1$. Further $O_{p'}(G) = 1$ since *G* is a minimal counter-example. Therefore, $\delta_k^*(G) \subseteq P$, so $P \cap \delta_k^*(G)$ is generated by *n*th powers of δ_k^* -commutators lying in *P*. We have our required contradiction.

3. Proofs of the main results

We mention here a result of Schur and Wiegold. The much celebrated Schur theorem states that if *G* is a group with |G/Z(G)| finite, then |G'| is finite. It is implicit in the work of Schur that if |G/Z(G)| = m, then |G'| is *m*-bounded. However, Wiegold produced a shorter proof of this second statement, which also gives the best possible bound. See Robinson [11, pages 102–103] for details.

For the proof of Theorem 1.2, we require the following result from [13].

LEMMA 3.1. Let G be a finite group and let y_1, \ldots, y_k be δ_k^* -commutators in G. Suppose y_1, \ldots, y_k normalise a subgroup N such that $(|y_i|, |N|) = 1$ for every $i = 1, \ldots, k$. Then for every $x \in N$ the element $[x, y_1, \ldots, y_k]$ is a δ_{k+1}^* -commutator.

Now we are ready to begin.

PROOF OF THEOREM 1.1. Let X be the set of all γ_k^* -commutators. We wish to show that if |X| = m, then $|\gamma_k^*(G)|$ is *m*-bounded. For convenience we write K for $\langle X \rangle$. Of course, $K = \gamma_{\infty}(G)$.

The subgroup $C_G(X)$ has index at most m!, so $|K/Z(K)| \le m!$ too. By Schur, K' has m-bounded order. Therefore, by passing to the quotient, we may assume K' = 1, and so K is abelian with G metanilpotent.

It is enough to bound the order of each Sylow subgroup of K. We choose a Sylow p-subgroup P. By passing to the quotient $G/O_{p'}(G)$, we may assume K = P.

By Lemma 2.4, a Hall p'-subgroup H of G satisfies $P = [P_{k-1} H]$. We know that P is abelian and P is normal in PH.

We denote the set $\{[x, h_1, ..., h_{k-1}] : x \in P, h_1, ..., h_{k-1} \in H\}$ by \hat{X} .

For $x \in P$ and $h_1, \ldots, h_{i-1} \in H$, where $i \ge 2$, we note that $[x, h_1, \ldots, h_{i-1}]$ is a γ_i^* commutator. Therefore, $\hat{X} \subseteq X$, and $|\hat{X}| \le m$.

By Lemma 2.5, it follows that $|[P_{k-1} H]|$ is *m*-bounded. Appealing to Lemma 2.4, we conclude that |P| is *m*-bounded.

PROOF OF THEOREM 1.2. Let *X* be the set of δ_k^* -commutators in *G*. We wish to show that if |X| = m, then $|\delta_k^*(G)|$ is *m*-bounded. We recall that $\delta_k^*(G) = \gamma_{\infty}(\delta_{k-1}^*(G))$. For ease of notation we define $Q := \delta_{k-1}^*(G)$, and we write *K* for $\delta_k^*(G)$.

The subgroup $C_G(X)$ has index at most m! in G, so $|K/Z(K)| \le m!$ and as in the proof of Theorem 1.1, we may assume K' = 1. Hence K is assumed to be abelian with Q metanilpotent. In what follows, we now restrict to the group Q.

It is sufficient to show that the order of each Sylow subgroup of *K* is *m*-bounded. We choose *P* a Sylow *p*-subgroup of *K*. By passing to the quotient $G/O_{p'}(G)$, we may assume K = P.

By Lemma 2.4, a Hall p'-subgroup H of Q satisfies P = [P, H]. By Lemma 2.6, since H is generated by its Sylow subgroups, we have that H is generated by a normal subset B of powers of δ_{k-1}^* -commutators that are of p' order.

Lemma 2.2 now implies that [P, H] is generated by subgroups $[P, b_1, \ldots, b_k]$ for $b_1, \ldots, b_k \in B$. By Lemma 3.1, if $x \in P$, then $[x, b_1, \ldots, b_k]$ is a δ_k^* -commutator, and we deduce that $|[P, b_1, \ldots, b_k]|$ is *m*-bounded.

It follows that the number of generators of [P, H] is at most *m*, and, futhermore, the exponent of [P, H] is *m*-bounded. Hence, the finite abelian *p*-group P = [P, H] has *m*-bounded order.

References

- [1] C. Acciarri and P. Shumyatsky, 'On words that are concise in residually finite groups', *J. Pure. Appl. Algebra* (2013), to appear, arXiv:1212.0581[math.GR].
- [2] C. Acciarri, G. A. Fernández-Alcober and P. Shumyatsky, 'A focal subgroup theorem for outer commutator words', J. Group Theory 15 (2012), 397–405.
- [3] S. Brazil, A. Krasilnikov and P. Shumyatsky, 'Groups with bounded verbal conjugacy classes', J. Group Theory 9 (2006), 127–137.
- [4] G. A. Fernández-Alcober and M. Morigi, 'Outer commutator words are uniformly concise', J. Lond. Math. Soc. 82 (2010), 581–595.
- [5] I. M. Isaacs, *Finite Group Theory*, Graduate Studies in Mathematics, 92 (American Mathematical Society, Providence, RI, 2008).
- [6] S. V. Ivanov, 'P. Hall's conjecture on the finiteness of verbal subgroups', *Izv. Vyssh. Uchebn. Zaved. Mat.*(6) (1989), 60–70 (in Russian); translation in *Soviet Math. (Iz. VUZ)* 33(6) (1989), 59–70.
- [7] M. W. Liebeck, E. A. O'Brien, A. Shalev and P. H. Tiep, 'The Ore conjecture', J. Eur. Math. Soc. (JEMS) 12(4) (2010), 939–1008.
- [8] Ju. I. Merzlyakov, 'Verbal and marginal subgroups of linear groups', *Dokl. Akad. Nauk SSSR* 177 (1967), 1008–1011 (in Russian).

- [9] A. Yu. Ol'shanskii, *Geometry of Defining Relations in Groups*, Mathematics and its Applications, 70 (Soviet Series) (Kluwer Academic, Dordrecht, 1991).
- [10] M. A. Pellegrini and P. Shumyatsky, 'Coprime commutators in PSL(2, q)', Arch. Math. 99 (2012), 501–507.
- [11] D. J. S. Robinson, *Finiteness Conditions and Generalized Soluble Groups, Part 1*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62 (Springer, New York-Berlin, 1972).
- [12] J. S. Rose, A Course on Group Theory (Dover, New York, NY, 1994).
- [13] P. Shumyatsky, 'Commutators of elements of coprime orders in finite groups', *Forum Math.*, to appear.
- [14] P. Shumyatsky, 'On the exponent of a verbal subgroup in a finite group', J. Aust. Math. Soc., to appear.
- [15] R. F. Turner-Smith, 'Finiteness conditions for verbal subgroups', J. Lond. Math. Soc. 41 (1966), 166–176.
- [16] J. Wilson, 'On outer-commutator words', Canad. J. Math. 26 (1974), 608–620.

CRISTINA ACCIARRI, Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900, Brazil e-mail: acciarricristina@yahoo.it

PAVEL SHUMYATSKY, Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900, Brazil e-mail: pavel@unb.br

ANITHA THILLAISUNDARAM, Institut für Algebra und Geometrie, Mathematische Fakultät, Otto-von-Guericke-Universität Magdeburg, 39016 Magdeburg, Germany e-mail: anitha.t@cantab.net

258