
Chapter 13
Conclusions and Future Lines of Inquiry
in Mathematical Modelling Research
in Education

Jill P. Brown and Toshikazu Ikeda

Abstract This final chapter overviews the 12 contributions to themonograph, organ-
ising this along the lines of inquiry suggested by Stillman. Contributors share under-
standing of mathematical modelling as solving real-world problems. The value and
purposes of implementingmodelling varies, in part due to local curricula. Theoretical
underpinnings of the research include prescriptive modelling, modelling cycles, and
modelling competencies. The challenges of engaging in modelling see empirical
foci on modellers, teachers, and tasks whilst acknowledging interactions between
these. Other important areas of the field, where researchers need to focus in the
future include research with experienced student modellers, research on experienced
teachers of modelling, and successful mathematisation by modellers.

Keywords Modelling tasks · Teachers of modelling · Prescriptive modelling ·
Affordances

13.1 Mathematical Modelling: What Lines of Inquiry?

Defining the bounds of research reported in this monograph is important. This
includes the shared understanding by authors as to what mathematical modelling
is. Modelling occurs when teachers, students, mathematicians, and others attempt to
describe some aspect of the real-world in mathematical terms in order to understand
something better or take or recommend actions (e.g. Blum 2015; Blum et al. 2007).
All authors in this volume view the real-world as important throughout engagement
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in mathematical modelling, as the task solver is aware that any solution that does not
make sense in the real-world is no solution at all. The real-world may take a back
seat to the mathematical world at times, however, it is never entirely absent (e.g. Julie
and Mudaly 2007).

Understanding how chapter authors define mathematical modelling in this book
is clear. However, this is not always the case in research reporting, as articulated
by Brown in her chapter discussing the multiple varied meanings of context, task
context, and real-world task context—all critical to reading and doing research about
mathematical modelling and applications. Brown’s study was of research reported
in general mathematics education research, however, even within the modelling
community, we should not assume others have the same understanding or defini-
tions as ourselves, or even assume there is only one interpretation of these. In other
words, the mathematical modelling research community must be scholarly in both
our work and the reporting of this.

The need for a shared understanding of modelling by authors extends to other key
terms but it is impacted by the value placed on modelling and its place in various
curricula around the world. The value of mathematical modelling and applications
should be clear to all. An explicit articulation of this can be found in the statement
by Blum et al. (2007) that “nearly all questions and problems in mathematics edu-
cation, that is questions and problems concerning human learning and the teaching
of mathematics, influence and are influenced by relations between mathematics and
some aspects of the real world” [emphasis added] (p. xii). However, there is still
much variation as to whether this importance is recognised by curriculum writers
and included in school curricula, and, where included—if this is implemented by
teachers.

In Germany, Maaß (2016) reports that mathematical modelling is part of the
national standards of mathematics education. Hankeln, Adamek and Greefrath (this
volume) note that the German national standards, include the expectation that stu-
dents translate real situations to mathematical problems, solve the mathematical
problem, and interpret and check the results in terms of the real-world situation. This
has meant professional learning on various aspects of mathematical modelling is
available and textbooks include some modelling tasks. Maaß notes that many teach-
ers, but not necessarily the majority of teachers, include mathematical modelling as
part of their teaching repertoire.

In contrast, the framework of the Japanese mathematics curriculum is based on
pure mathematics. Mathematical modelling has been given some emphasis and it is
more emphasized in the next curriculum to be introduced from 2020. Some teachers
implement aspects of mathematical modelling in their daily classroom teaching.
However, there are difficulties related to incorporating mathematical modelling into
a curriculum based on pure mathematics (Ikeda 2015). Namely, it is not explicitly
described in the national curriculum at which grade and with what content teachers
might introduce mathematical modelling.

Blomhøj reports that in the Danish secondary school systems, modelling, whilst
included in the curriculum, is not “really integrated, in the curriculum” in practice.
Fulton et al. report that modelling is rarely part of the US primary school curriculum
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even though it has come into the high school curriculum. Caron’s chapter considers
the feasibility of introducing modelling into the school curriculum in Canada, so we
can infer it is currently absent, or scant, in some Canadian states. Similarly, grade
11 students in the study by Ortega, Puig and Albarracín, had no previous experience
with modelling, so we infer, modelling is either absent from the Spanish curriculum,
or present but not implemented. Similarly, the study in Israel by Zubi, Peled, and
Yarden was introducing primary students to modelling tasks, so we infer this is not
the norm.

One reason for the limited focus on mathematical modelling may be due to its
high cognitive demand (Stillman et al. 2009). This is the nature of mathematical
modelling as students make sense of the messy real-world and simplify this in order
to bring it into the mathematical world in a way that can be managed and solved.
In addition, the complex nature of modelling often sees students working in groups.
Collaborative groupwork can enhance opportunities for successful solution of a given
task, however, students need to learn how towork in groups, and do so collaboratively.
If this is not a normal classroom practice, then an additional challenge exists as
students learn to work collaboratively during modelling.

On the one hand, there are issues related to the value of mathematical modelling
and its place in curricula documents, and the challenges for students in working
together to solve such tasks. On the other hand, there exist issues related to teachers,
their belief that modelling is an important part of mathematics, and being prepared
to implement modelling tasks with students and face the challenges involved. As
with students, the distance between the usual classroom practices implemented by
the teacher and those required when modelling, increases the level of challenge for
the teacher. Blum (2015, p. 83) gives insight into this distance when he laments,

generally speaking, thewell-knownfindings on qualitymathematics teaching hold, of course,
also for teaching mathematics in the context of relations to the real world. This seems self-
evident but is ignored in classrooms around the world every day a million times.

Whilst this situation continues to be the case, the distance between the normal or usual
classroom teaching and learning environment—for both teacher and students—and
that necessitated by engagement in mathematical modelling increases the challenge
of implementation by the teacher and successful solving by students.

13.1.1 Goal, or Purpose, of Mathematical Modelling

The goal of implementing modelling varies across the studies reported. Consistent
with all chapters in this monograph, Ortega et al. take the stance that all mathematical
modelling involves translating from reality to the mathematical world and back,
“where reality is taken to be the rest of theworld other than themathematical domain”
(Ortega et al. 2019, p. 162). Caron focusses on the need to live in the real-world as she
argues strongly that if curriculawere organised around habits of mind students, future
professionals, and citizens in general would be better prepared for life in today’s
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complex world. By habits of mind, she follows Cuoco et al.’s (1996) construct of
“being comfortable with ill-posed and fuzzy problems … to look for and develop
new ways of describing situations” (p. 373) and hence be more prepared to deal with
decisions associated with problems in the world today.

Many have discussed the dual purposes of teaching “modelling as a vehicle”
(Julie and Mudaly 2007, p. 503) to learn mathematics and modelling as content in
its own right (e.g., Galbraith et al. 2010). Blomhøj argues that both are important
and proposes ways to support teachers integrating modelling in secondary teaching
practices. He noted teachers’ difficulty was how to connect the students’ modelling
to understanding the mathematical knowledge in the curriculum. Czocher argues
there has been an increased emphasis on mathematical modelling in curricula, and
suggests the shift has been toward the modelling as content approach, although
much emphasis is still on the former. Given that Julie (2002) noted “it is during the
engagement with mathematical modelling as content that windows of opportunities
are opened for dealing with relevance relevantly” (p. 8, emphasis added), this is a
concern. Julie (2002) noted that teachers tend to prefer modelling as vehicle as the
relevance to current teaching and learning mathematical content is more obvious.
Sadly, development of learners as problem solvers andmathematicalmodellers seems
less important. It appears teachers are still challenged in situations where different
solution paths are followed by different students (Tan and Ang 2013). Teachers need
to accept that real-world problems are likely to have multiple possible solutions and
approaches to reaching these solutions (Blum 2015). Along these lines, Fulton et al.
consider how communities of practice support teachers in being ready to respond to
multiple student ideas.

Several authors focused on task development with Czocher noting that when this
is part of a planned learning trajectory the task must have intended solutions which
can be problematic when the intention is modelling as content. Ortega et al. took a
modelling as vehicle approachwith a teaching experiment focussed on learning about
linear and quadratic functions. Whilst context was important, they found students
tended to use prior knowledge when interpretation was required, rather than the
functions they had found to mathematise the real phenomenon.

Caron describes multiple specific habits of mind students should be developing,
including thinking of change analytically, thinking of systems in terms of flows, algo-
rithmic and iterativeways of thinking,modelling interactions as inflows and outflows,
and use of functions as building blocks for modelling. This is in contrast to modelling
with functions via curve fitting and or regression which, she argues, along with Doerr
et al. (2017) and Galbraith (2007), allow only a restricted understanding of the real-
world situation being investigated. Brown (2015b) concurs noting “the enactment of
multiple Data Display-ability simultaneously with multiple Function View-ability
has the greatest potential in the model finding phase” (p. 437) and provides visual
representations of both the data and model simultaneously, allowing modellers to
keep the real and mathematical worlds at the forefront of their minds. The purpose of
modelling, argues Caron, is not only to support students in understanding and inte-
grating mathematical ideas but also “as a goal in itself of mathematics education”
(Caron 2019, p. 83), that is, modelling as content.
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Mathematical modelling plays an important role within social-critical research of
mathematics education as a result of the relationship to the real world. The socio-
critical perspective accounts for all participants’ situations and backgrounds and
aims to position learners as independent decision makers and critical users of infor-
mation. Araújo’s goal for mathematical modelling in her chapter is quite different.
She presents initial steps toward a framework based on the notion of a mutually
dependent dialectic relationship between practice and research. Relationships might
be between practice and research, researcher and teacher, or student and research
participant. Such a framework is a valuable contribution to socio-critical research
specifically and modelling research more generally.

13.2 Theoretical Lines of Inquiry

In the opening chapter, Stillman (2019) discusses four theoretical lines of inquiry. The
three local lines of inquiry, that is, those particular to mathematical modelling, are
prescriptive modelling, modelling frameworks or modelling cycles, and modelling
competence. The general line of inquiry discussed is anticipatory metacognition.
Further research involving all three local lines of inquiry arose in this book and are
discussed here. Anticipatory metacognition was not part of research reported and
will be discussed along with other future lines of inquiry in the concluding section
of this chapter.

13.2.1 Prescriptive Modelling

Meyer (1984) clearly defines mathematical modelling, models and mathematical
models, with mathematical modelling being “an attempt to describe some part of the
real world in mathematical terms…an endeavour as old as antiquity but as modern
as tomorrow’s newspaper” (p. 1). Meyer (1984) writes of different types of models,
“a descriptive model, which tells how something works, and a prescriptive model,
which tells the ideal way for it to work” (p. 60). He notes that prescriptive models
are also known as optimisation or normative models. The difference is related to the
purpose of use. A prescriptive model “is a tool for human decision making” (p. 61)
whilst a descriptive model describes what is going on, and often “can be turned into
a prescriptive one” (p. 61).

The example Meyer (1984) uses involves the manager of a retail store selling 20
soccer balls each day needing to know: How frequently, and what number of balls
should be ordered from the supply factory. The descriptive model is presented in
terms of an algebraic representation of a yearly cost function, C(x), with variables, r,
the rate the soccer balls are sold per day, s, the storage cost (of as yet unsold balls), k,
the ordering cost (e.g. time of staff involved in ordering process), and x, the number
of soccer balls per order (assuming each order is for an identical number of soccer
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Fig. 13.1 a Descriptive model b specific model c mathematical ‘best’ d allowing actions

balls). The model can be used to find the cost per year for any combination of values
of the variables. Thus, the model can be used to describe the yearly cost for any such
situation (i.e. a descriptive model). In a given store, the first three variables may be
assumed to be fixed hence a specific cost function can be found and represented,
using several methods although a graphical representation should be the simplest. A
visual inspection of the graph will show if the optimal value occurs at an endpoint
of the domain or at a local turning point. The mathematical values then need to
be interpreted as an integer number of balls and verified if that many can be both
delivered and stored and thus is a solution to the real-world problem. The model is
thus prescriptive as the task solver is expected to make recommendations as to what
is best in terms of the number of soccer balls per order and frequency of orders.
Figure 13.1 shows how digital technology can be used to (a) represent the general
function or descriptive model, (b) find the algebraic and graphical representations
of a situation given known parameter values, (c) find the mathematical best and (d)
additionally use the graphical representation to begin to interpret what is best in the
real world—this might include considering a range of possible values for the ball
order, thus allowing other real-world considerations.

Davis (1991) argued we can distinguish at least three interrelated goals of applied
mathematics, description, prediction, and prescription or “what is, what will be, what
therefore to do” (p. 6). He elaborates with descriptions related to planetary motion
and population predictions. Prescriptions, he argues require actions such as acting
to stop smoking given statistical evidence or prescribing the fuel tank volume for a
plane designed to fly non-stop from Copenhagen to Singapore. Davis is clear on the
intertwining of these goals for modelling and our need to attend to all. Niss (2015)
has reminded us of the need for an increased emphasis on prescriptive modelling
(see Chap. 1).

Several examples of these types of modelling with their related purposes of use
appear in the chapters. The Yellowstone Game Task (Caron), Morning Shower and
100 metre Sprint (Blomhøj) involved descriptive modelling as the intention was to
describe the situation or context under investigation. Similarly, theWater Usage Task
used by Fulton et al., aimed to describe how much water is used in making a pizza is
descriptive. Czocher’s Letter Carrier task could be described as prescriptive as the
aim was to determine the best route for the mail deliverer to follow. One task used
by Zubi et al. with grade five students involved prescriptive modelling as the task
involves recommending the best three volleyball teams using 15 players. Stender’s
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Traffic Task required solvers to recommend whether to construct a roundabout or
traffic lights at a given intersection and this is prescriptive.

Whilst no chapter authors referred specifically to descriptive versus prescriptive
modelling, analysis of the tasks used and the purposes of their use in the research
reported, shows both types were present and the majority, but not all, modelling tasks
would be classified as involving descriptive models or descriptive modelling. This
may be an artefact of the contexts investigated, the grade level of the modellers, the
approach tomodelling as vehiclemore so than as content, limited previousmodelling
experience of the modellers, or a combination of these.

13.2.2 Modelling Frameworks and Modelling Cycles

Modelling cycles featured in the chapters of Blomhøj, Hankeln et al., Shahbari and
Tabach, and Stender. These were used as an analytical tool by Shahbari and Tabach,
and Blomhøj and as a structure for the research plan of Hankeln et al. and Stender.
Themodelling cycle acted as a structure for assessment tool development byHankeln
et al., in their research onmodelling sub-competencies. Blomhøj reports that teachers
use the modelling cycle as a tool for planning modelling activities. The modelling
cycle was used as a structure for using heuristic strategies as strategic intervention
in the study of Stender. Teachers in the study by Blomhøj used the modelling cycle
as a means to analyse student work.

As an analytical tool, Shahbari and Tabach mapped pre- and post-intervention
teacher observation reports of students engaged in modelling to the modelling cycle
of Blum and Leiß (2005). The intervention saw the teachers work on four mod-
elling tasks themselves. Post-intervention, teachers were more observant of mod-
elling activity. There was however, a large number of future teachers still at the
lowest of three classification levels, that is, failing to describe the majority of mod-
elling activity undertaken by student modellers. More attention was given by future
and in-service teachers to the finalmodelling cycle, perhaps, initially underestimating
its critical role in students getting to the final solution.

13.2.3 Modelling Competence and Competencies

Building on work in the field (e.g. Kaiser and Brand 2015), Hankeln et al. focus
on modelling competence, described by Blomhøj and Højgaard Jensen as “some-
one’s insightful readiness to act in response to the challenges of a given situation
(2007, p. 47). Hankeln et al. note that whilst their focus is on the sub-competencies,
simplifying, mathematising, interpreting, and validating (Maaß 2006), “their mere
existence is not sufficient” (Hankeln et al. 2019, p. 145). The focus of Hankeln et al.
was to determine if these sub-competencies can be measured as separate dimensions
or not.
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Hankeln et al. present four sample tasks, one for each sub-competency, with a
focus on geometric modelling. Analysis of each item is presented including selected
incorrect responses and the success rate. Their research included 44 grade 9 classes
and over 3000 completed tests. The thoroughness of this research is evident in the
development and trialing of the items, compilation into test booklets, implementation
and development of coding manuals for consistency of analysis. The findings by
Hankeln et al. indicate that their statistical analysis shows it is possible to measure
individual sub-competencies, at least with regards to geometric modelling situations
relevant to grade 9 students.

13.3 Empirical Lines of Inquiry

In this section, following Stillman, lines of inquiry in the chapters that focus on the
modeller, the task, and the teacher will be overviewed. Naturally, these are inter-
twined. A fourth and fifth line of inquiry, on the affordances of Technology-Rich
Teaching and Learning Environments for modelling, and verification and validation
concludes the section.

13.3.1 Focus on the Modeller

Fulton et al. note that in a country where modelling is rarely included in the primary
school curriculum, teachers have an important role to play if modelling is to become
integral to the mathematical learning of students. They recognise as challenging that
primary mathematics teachers need support if modelling in primary schools is to
become more widespread. Part of the support is of the teacher as modeller as Fulton
at al. (and many others in the modelling community) opine that to teach modelling,
one must first engage in modelling oneself.

13.3.1.1 Impact of Modelling on Learning

Zubi et al. focus on underachieving students in grade 5 in an Israeli school. They
argue the role of the teacher, and expectations of students vary from classroom to
classroom. In particular, in classes with perceived capable students, the expectation
is on higher order thinking, but the converse is true in classrooms with low achiev-
ing students. Consequently Zubi et al. argue that low achievement is a result of the
learning environment. Their study involved weekly modelling tasks, with the learn-
ing environment during the study contrasting with the norm. During the modelling
sessions, students were expected to work in mixed ability groups on increasingly
complex tasks. The chapter describes Sami, as typical of the low achieving students
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in this class, and his progress with regard to modelling competencies, mathematical
knowledge, and participation in the group as they solved the tasks.

Teacher actions impacted on Sami’s initial change of behaviour and motivation
towards mathematics. Following the first task (where Sami decided to leave the
mathematical work to more capable others), the teacher questioned the validity of
the solutions. At this point, Sami, confidently and excitedly, shared that he had in fact
proposed realistic considerations to his group but they ignored him. Subsequently
all groups requested that they revisit their task solution. One can surmise, this was
the first time Sami felt as if he had control over the direction of his own learning.
Sami took an increasingly more active role in his group, from contributing realistic
considerations, to actively organising his group, contributing mathematical ideas
toward his group’s model and finally to being dominant in organising his group,
setting up a mathematical model and documenting the solution.

All low achieving students increased their mathematical knowledge of the content
covered in the regular lessons during the study, whereas in a control class, taught
by the same teacher, the low achieving students showed minimal development. The
extended engagement of students with relevant real-world problems, that they were
expected to solve in groups, and knowing that the solution was not predetermined by
the teacher, allowed Sami and his peers, not only to develop modelling competencies
and collaborative group work expertise, but also to view mathematics differently. It
appears the expectations as to the role of the learner as modeller impacted on their
engagement and motivation to learn in the regular classroom. Zubi et al. suggest that
the introduction of, and student experience with, sustained modelling activity can
also influence learning beyond modelling.

13.3.2 Focus on Teachers of Modelling

The teacher featured in the chapters by Caron, Czocher, Fulton et al., Ortega et al.,
Shahbari and Tabach, and Stender who all saw the teacher’s role as critical. The
focus included teacher knowledge about modelling (Fulton et al., Shahbari and
Tabach), teacher knowledge of implementing modelling tasks (Fulton et al.), inter-
actions between the teacher and modellers (Ortega et al., Stender) and expectations
of teachers (Czocher).

Shahbari and Tabach recognised that teachers tend to lack knowledge about mod-
elling, have limited experience inmodelling, and teachingmodelling. Similar to Zubi
et al. and Fulton et al., the participants in the study of Shahbari and Tabach engaged
in modelling activity themselves and undertook additional professional learning cen-
tred around watching and re-watching a video of a group of grade 6 students engaged
in a modelling task. A second interaction with the video occurred after working on
four modelling activities themselves. After each viewing of the video, the partici-
pants independently wrote a report of their observations. This activity enabled most
teachers to become more alert to modelling occurring in student activity.
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Ortega et al. note the important role the teacher plays in supporting student engage-
ment in, and reflection on, decisions related to technology use and mathematical
modelling and the interactions between these. Stender also focuses on the role of the
(future) teacher, with the intention of providing minimal intervention, or adaptive
intervention for students during modelling. These interventions aimed at providing
minimal help to maximise student learning and problem solving. Intervention levels
include motivational support, strategic help, and content related strategic help and
should be used in this order—from least to most support. In addition, six heuristic
problem-solving strategies that can be used, differentially, when solving a particular
modelling task were also considered as appropriate strategic interventions.

Stender found the strategic intervention of asking studentmodellers to “explain the
work already done” (Stender 2019, p. 209) was very powerful as it was easy to imple-
ment, provided opportunity to diagnose students’ immediate needs, and provided
an opportunity for student modellers to reflect on progress. Teacher interventions
for substantive modelling tasks should be prepared, rather than be in-the-moment
according to Stender. To do this, teachers need to solve the task prior to task imple-
mentation to identify potential barriers during the task as well as possible strategic
interventions.

Fulton et al. had primary teachers engage in a week-long intensive professional
learning program, participating in the process of mathematical modelling and then,
reflecting from the perspectives of a student learning tomodel and as a teacher, teach-
ing others tomodel, the first feeding forward to the second. Four features ofmodelling
were in focus: the openness at all stages of themodelling cycle and grapplingwith this
idea as a norm; posing problems, not just solving someone else’s problem and under-
standing that modelling begins with the real-world context rather than the real-world
problem; making choices about what mathematics to use in solving the problem as
posed; and looking back at various stages of the solution to revisit ideas and consider
revising the solution. Professional learning included teachers developing amodelling
task, anticipating potential solution approaches; implementing the taskwith their stu-
dents; and finally revisiting the task. Fulton et al. found that teachers engaging with
modelling tasks themselves, resulted in the development of mathematical communi-
ties of practice which were supportive of subsequent collaborative task development
and implementation. Caron also argued that collaboration between teachers could be
productive, although she was suggesting cross-discipline collaboration, for example
between mathematics and science teachers to design real-world problems.

Fulton et al. found the teachers in their study responded to the view of modelling
as real-world problem solving and worked together in communities of practice to
develop and implement mathematical modelling tasks addressing problems that mat-
tered to students. Relevance, engagement, and access (i.e. tasks allowing all learners
to participate in the task solution) were present in tasks designed and implemented
by the teachers. The teacher participants clearly saw the power of mathematical
modelling, and correctly believed their students could use mathematics to success-
fully solve relevant real-world problems. Moreover, modelling was seen as provid-
ing opportunities to promote mathematical thinking, encourage perseverance, and
increase student engagement with mathematics. Most importantly, the solution path
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followed by the teacher must be bracketed when the task is implemented (see Blum
2015). Blum and Borromeo Ferri (2009) refer to the “teacher’s own favourite solu-
tion” (p. 53) and note that, all too often teachers, consciously or not, direct students
toward this solution.

Drawing on empirical findings, Blum (2015, p. 83) sees individual solutions as an
element for teaching and learningmathematicalmodelling and applications. Unpack-
ing what Blum means by this, it is not-as may appear on the surface-that students
work individually, nor favour the teacher solutions. Rather, Blum is arguing for the
need for the teacher to actively encourage multiple solutions to any given task and
that this be considered the norm by students.

13.3.3 Focus on Modelling Task

Focusing on task development, Czocher noted that any solution depends on particular
assumptions. Different assumptions may lead to a different focus and/or a different
solution method which may not be what the teacher intended. A critical aspect of
mathematical modelling is, that the modeller makes decisions, for example, consid-
ering some, but not all real-world aspects in one’s initial solution, describing how to
interpret terms such as ‘best’. Such mathematical thinking naturally leads to diverse
solutions, but the task must be presented in such a way as to allow this.

Blomhøj also focused on task design as he worked with teachers and teacher edu-
cators to support mathematical modelling in Danish secondary schools. His intention
was to allow modelling as both vehicle and content and the contexts used were very
familiar to the task solvers. For the Yellowstone Game Task, Canadian educators and
mathematicians worked on modelling a real-life ecosystem (Caron 2019). Groups
worked together to try to represent the situations and or solve the problem as to why
a recent significant increase in the bear population had occurred. This task was seen
as important as multiple paths and multiple solutions could be, and were, found.

Fulton et al. determined four features wrestling with openness in modelling, pos-
ing problems, making choices through a creative process, and revisiting ideas and
solutions (Fulton et al. 2019), as critical to modelling activity and hence task design.
The first of these relates to the reality of the messy real-world and the need for mod-
ellers to grapple with this in order to make sense of the situation and determine a
possible way forward. Problem posing relates to the expectation that teachers and
students should pose modelling problems. Making choices focused on the modeller
needing to decide the solution path and what mathematics might be needed, noting
all too often the mathematics expected to be used in primary school is explicitly con-
veyed to the learners, whereas the making choices focus was more likely to generate
multiple paths and solutions. The final feature highlights that a first solution may not
be a real solution to the problem, so modellers should not consider the first answer
as meaning, problem solved.
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Blomhøj presents two modelling situations suitable for secondary students. The
Morning Shower Task sees students makes observations, collect data, and produce
a poster communicating these. Digital technologies can be used to represent the
data collected numerically and graphically to support communication of key ideas
related to the mathematical function obtained and the real situation it represents. The
emphasis of Blomhøj is certainly inclusive of the development of mathematical ideas
(modelling as vehicle and as content). The 100 m Sprint Task saw students collecting
data about a real-world situation and focused on understanding speed as the rate
of change of distance over time. Digital technology use provided opportunities for
multiple representations of the situation which could then be analysed and may lead
to a deeper understanding of themathematical concepts, or at least insight for students
when these concepts are formally part of their mathematical learning.

Czocher used four tasks in her study of eight secondary school students and four
university students, from several US states. Her tasks, the Letter Carrier Problem,
the (human) Cell Problem, the Water Lilies Problem, and the Empire State Building
Problem, ranged in degree of closeness to the real-world and level of complexity
involved. Authenticity in Czocher’s study, using actor-orientated theory, is based
on the degree of alignment between task context and the task solver’s lived experi-
ence. Consequently, task solvers are expected to use their own knowledge and make
assumptions when solving a modelling task.

There was a strong emphasis on tasks allowing multiple pathways and solutions.
Fulton et al. provided explicit criteria for task selection and design as appropriate to
mathematical modelling. In contrast, Blomhøj saw any real-world context as provid-
ing opportunities to engage with both the real-world and the mathematical world, to
develop understanding of both and the links between them. Czocher took an alter-
native approach as she tried to ascertain what solution was in the mind of the task
setter and contrasted this with actual student solutions.

13.3.4 Affordances of Technology-Rich Teaching
and Learning Environments

It is well known that digital technologies play an important role in mathematical
modelling. Galbraith et al. (2007) described the “use of technology as central…and
its integration with mathematics within the modelling process as creating essential
challenges about which we need to know much more” (p. 130). This approach to
digital technology usewhenmodelling is taken up byOrtega et al. They acknowledge
that use of digital technology to model provides opportunities to transform under-
standing. However, affordances of the environment including the technologies need
to be perceived and acted upon (Brown 2015a) for this to occur.

Use of technology, its potential and ubiquitous nature should impact on the com-
plexity of real-world contexts and modelling tasks explored by students of today. For
several types of digital technology discussed, Caron highlights both the affordances
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and obstacles identified. By affordances she is following Gibson (1979) who made
up the term to describe “the complementarity of the animal [i.e. the human] and the
environment” (p. 127) and the definition used in Brown’s research (2015a) on affor-
dances in technology-rich teaching and learning environments as “the opportunity
for interactivity between the user (the actor) and the technology (the object or the
artefact) for some specific purpose” (p. 113) (see also Brown and Stillman 2014;
Frejd and Ärlebäck 2017).

In the study reported by Ortega et al. the focus turns to capturing data using
technological devices and identifying how decisions made by grade 11 students
during mathematisation affect interpretation. Students in this study used multiple
digital technologies. One class investigated the phenomenon of a bouncing ball using
an iPad and an application allowing the motion to be video recorded and graphed
after the user set the scale and origin of a coordinate system. The data collected (i.e.
points on the image) are specified by the user. The data were exported to a second
app allowing coordinate pairs to be plotted, regression analysis undertaken, and the
subsequent functionmodel graphed simultaneously with the data plot.With regard to
the regression model, students were able to test multiple function types and ascertain
which model best fitted the data.

A second class investigated the phenomenon of a spring’s motion as marbles
were added to a cup hanging from the spring. Again, video was captured using
the iPad but then the data were exported to an app that did not perform regression
analysis. In this class, students had to make additional decisions, regarding the type
of function to use and subsequently to determine parameter values of that function.
Post experiment, students in both classes used a graphing calculator app as desired
to answer interpretation and validation questions. Galbraith (2007) would certainly
see the use of technology in the second class as going “beyond the low hanging fruit”
(p. 79) of “modelling as curve fitting” (p. 81) as students were expected to keep in
mind the real world and its relationship to the mathematical model.

Students in the study by Ortega et al. did not perceive the affordances of the
environment with regard to reference-point set-ability or understand the impact this
has on the data collected, model determined and interpretation of that model and its
outputs. However, given there is no evidence the students had previously used the
technologies involved nor engaged in modelling, this is hardly surprising. Of course,
the conception that a function’s parameters are explicitly related to the location of
the origin and scale factor of the imposed axial system critical in modelling is also
an important aspect of pure mathematics that upper secondary students should be
aware of.

Caron explored uses of system dynamics software (e.g. Stella) allowing the devel-
opment of experimenting, tinkering, and qualitative analysis of problem situations
such as the spread of viruses and social policies. Depending on the level ofmathemat-
ics of the student modellers, Stella can be perceived as black box technology if the
software uses mathematical analysis techniques, such as integration, not yet under-
stood by the students. However, affordances here include experiment-ability and
tinker-ability as student modellers with technology have the opportunity to develop
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or engage in these ways of mathematical thinking about complex situations. Both
could be seen as part of what a mathematician might do before model generation.

Caron also explored cellular automata, that is a digital array of cells where the
behaviour of an individual cell is determined by the cells surrounding it and their
state in the previous generation. A local focus at the individual cell level over time
allows insight into the global system behaviour. Such discrete models of dynamic
systems can model situations including wildfires and spread of infections. The tech-
nology could involve a spreadsheet or online simulator. The affordances here are local
behaviour predict-ability and global behaviour predict-ability with recursion being
a key mathematical idea that could be introduced and understood as student mod-
ellers explore the way such systems evolve. Greefrath and Siller (2017) recommend
“the uses of simulations that naturally link modelling with the use of digital tools”
(p. 537). See also Frejd and Ärlebäck (2017) who used simulation to investigate a
pandemic.

Agent-based models (e.g. NetLogo) are described by Caron as allowing mod-
ellers to investigate behaviour of an individual in a system and of the system itself.
The behaviour of a nesting pelican and the colony it is a part of would be typ-
ical examples of this phenomenon. Predator-prey models can be utilised to ask
and answer questions related to each of the necessary elements of the system. The
affordances of such an environment allow modellers to engage in reasoning at the
agent-based (individual-within-system behaviour reason-ability) and aggregate level
(system behaviour reason-ability). The latter focusses on the rate of change of the
populations within the system (Jacobson and Wilensky 2006).

There is no doubt the use of technologies in mathematical modelling results in
higher order thinking needing to be undertaken by students with multiple decisions
being made. From amodelling perspective, the more decisions made by students, the
more mathematical thinking they engage in, and the greater their connection is to the
real-world situation they are usingmathematics to explore. As Ortega et al. conclude,
students need more experiences in decision making in mathematical modelling and
technology use and critically the interactions between these, as discussed previously
by Galbraith et al. (2007).

13.3.5 Verification and Validation

Verification and validation are an area of modelling that needs to receive further
empirical inquiry and attention (Czocher et al. 2018). In the study by Zubi et al.
it was the teacher who initially questioned the validity of the students’ solutions.
None of the grade 5 student groups had taken the real-world into account as they
proposed solutions to their first of a series of modelling tasks. This questioning by the
teacher, and subsequent class discussion was the catalyst for change. From that point
on, students increasingly valued the real-world as they searched for more authentic
solutions.
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Model interpretation and validation were also a focus of Ortega et al. They found
students had little experience in interpreting mathematics results in terms of reality
(e.g. a negative height, or height of zero, predicted in the ball dropping experiment).
In the spring experiment, students failed to notice, or account for the spring length
changing. Ortega et al. found that rather than learning from observation of real data,
students tended to revert to prior understandings even when these were inconsis-
tent with their experimental activity (e.g. not setting the ground as a reference point
but assuming this was the case when interpreting their model). In addition, students
seemed not to be aware that the sign of a ‘distance’ is related to how and where it is
measured. This resonates with the students in Czocher’s study who, rather than make
simplifying assumptions, maintained complexity of the situation under investigation.
Both results suggest the need for increased student experiences with mathematical
modelling and all themathematical activity contained therein (e.g. simplifying,math-
ematising, interpreting, validating, verifying).

Caron also explored the idea that as solutions to real-world problems, and the
mathematical techniques used to solve these, often involve approximations, both
verification and validation are critical. Caron draws on the work of Roache (1998)
to describe verification as ensuring “that the error has been controlled and that the
equations have been solved correctly” (Caron 2019, p. 97) whereas validation relates
to “external consistency, that is, ensuring the model and its associated solution ade-
quately represent the situation”. Caron argues that verification and validation are not
typically part of mathematics teacher experience or expertise and this needs to be
addressed.

Hankeln et al. in their research identifyValidating as amodelling sub-competency.
Their use of the term includes competencies for verifying a solution, critically reflect-
ing on that solution and assumptions specified and the model selected. They argue
this was the most difficult sub-competency to construct items to assess. The sim-
plicity of these items belies the difficulty the researchers had in developing them but
needs to be noted if using in teacher professional learning. Teachers in the study of
Shahbari and Tabach gave the least amount of attention to validating processes when
observing and interpreting students’ modelling activity. These authors suggest this
lack of attention to validating is, following Blum and Borromeo Ferri (2009), a result
of this mathematical activity more typically being undertaken by the teacher in the
normal classroom environment.

13.4 Future Lines of Inquiry

Future lines of inquiry for research inmodelling, arising from the foregoing chapters,
includemore researchwith experiencedmodellers, the impact of teachers positioning
themselves as modellers, strategic interventions by teachers during modelling, sub-
competencies, anticipatory metacognition, and verification and validation.

Students in the study by Ortega et al. had no previous modelling experience, and
other than in Germany (i.e. in the work by Hankeln et al. and Stender) this was
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typical. It is clear we need more research with students experienced in modelling as
they engage with modelling tasks. Of course, this is not possible if curricula and or
teachers do not value modelling and hence students are not engaged in mathematical
modelling regularly.

One continuing line of inquiry should focus on the impact of teachers solvingmod-
elling tasks themselves before implementing these. Concurrent with undertaking this
modelling, teachers must consider what blockages, difficulties, and challenges (Still-
man et al. 2010) students might face when solving the task themselves. Interventions
can be planned specific to the task, particularly following Stender, those intended
to keep the student modellers doing all or most of the modelling and mathematical
work. Following Vygotsky (1978), the interventions should relate to the Zone of
Proximal Development of the task solver(s) and be strategic. In the first instance,
if the intention is, as described by Blum and Borromeo Ferri (2009), to minimise
teacher input and maximise student independence, teachers should consider strate-
gic interventions “which give hints to students on a meta-level” (p. 52). This would
include teacher responses such as: Can you imagine the situation?What is your aim?
What else do you need to know? What does this (interim) result mean in terms of
the real situation?

The work of Hankeln et al. regarding the possibilities of measuring individual
sub-competencies should certainly be extended by themselves and other researchers
to include non-geometric modelling situations and other grade levels of students.
It would be beneficial to see studies of these same students engaged in complete
modelling tasks as well.

Research is clearly needed with respect to teaching and learning approaches
focused on issues related to students’ mathematising successfully with both novice
and experiencedmodellers. In 2010,Niss proposed the construct ‘implemented antic-
ipation’ theorising as to the cognitive and metacognitive processes whereby student
modellers foreshadow what might be useful mathematically in progressing a given
problem, making decisions and implementing actions to bring what was anticipated
to fruition. This is central to students being able to model (Stillman et al. 2015).

Subsequently, Stillman and Brown (2012) have found evidence of two aspects
of anticipated implementation from classroom data. Furthermore, unsuccessful
attempts atmathematisationswere related to student’s inability to use relevantmathe-
matical knowledge in the modelling context rather than lack of mathematical knowl-
edge, an application-oriented view of mathematics or persistence. In a following
analysis modelling attempts when students were participating in an extra-curricular
modelling event, Stillman and Brown (2014) found evidence of further aspects of
implemented anticipation and that, again, unsuccessful modelling attempts could be
explained using Niss’ enablers of successful mathematisation. They suggest delib-
erately scaffolding the process of implemented anticipation as a “means of gaining
a resolution of the long-standing issues of problem formulation and specification
and their successful mathematisation” (Stillman et al. 2015). There is now a current
research project investigating this further (see Geiger et al. 2018) with Year 10–11
students. This is most definitely a fruitful line of inquiry for others as well.
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Finally, verification and validation should be considered as an important line of
inquiry for future research. Clearly, both are important in modelling, but challenging
to implement, teach, and research. They also need to be clearly defined (see Czocher
et al. 2018). This is not currently the case, as the terms are often used without
definition or interchangeably. Furtherwork along this line of inquiry is recommended.

13.5 Conclusion

In conclusion, this bookhas indeedpresented a broad spectrumof valuable research in
the field of mathematical modelling and applications in education through extended
contributions by a small selection of presenters at ICME-13 in Topic StudyGroup 21:
Mathematical Applications and Modelling in the Teaching and Learning of Mathe-
matics. Issues related tomathematical applications andmodelling in the teaching and
learning of mathematics have continued to grow in interest from previous Interna-
tional Congresses onMathematical Education. This is a very broad field both in terms
of educational level range, from elementary school to tertiary education, and from
the perspective of mathematical content and processes involved. The Topic Study
Group thus attracted and catered for a breadth of participants through the plenaries
and individual talks which addressed several theoretical issues and/or reported on
diverse empirical studies. To unify this diversity, 15 authors or groups of authors
were selected by the editors of this book and invited to start with their presentation
and extend into a chapter but to link to the overarching theme of Lines of Inquiry in
MathematicalModelling Research in Education as had been elaborated and exempli-
fied in the opening plenary by Stillman. Twelve chapters remained after the extensive
review process.

The chapters covered a wide variety of educational levels from elementary and
primary school students (Fulton et al., Zubi et al.) to secondary (Blomhøj, Hankeln
et al., Ortega et al.), and tertiary students (Araújo, Caron, Czocher) as well as pre-
service and in-service development of their teachers (Blomhøj, Fulton et al., Shahbari
and Tabach, Stender). Research on the teaching and learning of modelling provides a
theoretical basis (e.g. conceptualisation of modelling competencies: Hankeln et al.)
for the design and investigation of many different ways of implementing and orga-
nizing mathematical modelling in classrooms across these levels with the aim of
developing student modelling competencies and, or, to support student learning of
mathematics. The latter purpose is also informed by more general research in mathe-
matics education (e.g. learning difficulties in conceptual and procedural development
or learning trajectories for particular mathematical concepts).

The chapters in this book contribute to several lines of inquiry in researching
or theorising with respect to teaching, learning, and assessing of modelling. Caron
explored the approaches of mathematicians, mathematics teachers, and mathematics
educators to solving complex dynamical systems (e.g. ecological systems) with a
view to introducing such systems in school and university mathematics programs.
Czocher analysed solutions of secondary and tertiary students to compare their solu-
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tions with that intended by the task setter. She found students were reluctant to
simplify the situation as they saw this as creating a less authentic problem, not
realising this is a critical component of task solving. She argues strongly that solu-
tions other than the solution intended by the task setter in providing opportunities to
address curriculum objectives, or those using mathematics not matching the curricu-
lum being taught, must not be considered incorrect. Acknowledging the challenge
of implementing modelling tasks at primary school, Fulton et al. investigated how
this promoted meaningful task development by teachers and meaningful mathemat-
ical discourse by students. Hankeln et al. designed test items (multiple choice and
short answer) for grade 9 geometric modelling ideas and showed these can be used
to separately assess the modelling sub-competencies of simplifying, mathematising,
interpreting, and validating. Ortega et al. explored how the available digital tools
influenced grade 11 students’ mathematisations when solving two functions-based
tasks modelling physical phenomenon taking the stance of modelling as vehicle to
enhance understanding about functions. Shahbari and Tabach investigated the impact
of pre- and in-service teachers’ engagement withmodelling tasks themselves on their
capacity to notice the complexity of modelling occurring when observing students
engaged in modelling activity. Zubi et al. explored how a focus on development of
modelling competencies by low achieving students led to improved mathematical
understanding outside that focused on in the modelling tasks. This increase in math-
ematical understanding was, at least in part, a result of the changed expectations the
young learners developed as active participants in the learning process.

In many cases researcher and pedagogical practice take place concurrently par-
ticularly if the researcher is also the teacher in the research study. Araújo’s chapter
addresses the dual role of researcher and educator in this setting from a socio-critical
perspective in order to present her initial steps towards a framework for a dialectical
relationship between pedagogical practice and research. Although clearly of appli-
cation in mathematics education and educational research more generally, such a
framework is particularly pertinent to mathematical modelling educational research
given that mathematical modelling strongly depends on the situation of the learner
which is not always the case in other parts of mathematics education. Other chapters
addressed more general issues that inform the teaching and learning of mathematics
throughmathematical applications andmodelling such asmeanings of key terms such
as context, task context, and real-world used by researchers in journal publications
(Brown), and intervention strategies when managing modelling by others (Sten-
der). Blomhøj argues that to ensure modelling and applications are fully integrated
into secondary mathematics classrooms, modelling must be seen and understood as a
didactical means for supporting students’ learning of mathematics not just to develop
students’ modelling competency. In order to do this he makes the case that there is a
need for the development of tools that allow teachers to make better use of theories
of learning of mathematical concepts and develop the pedagogical foresight to view
modelling activities in this way.

Most lines of inquiry explored in the research represented here need further
research as has been discussed in this chapter. Other major areas, not the subject
of chapters in the book, include metacognition and modelling, affect and modelling,



13 Conclusions and Future Lines of Inquiry in Mathematical … 251

and the relationship of mathematical literacy to modelling. Each of these should be
the subject of future research lines of inquiry.
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