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Abstract: The Concrete-Pictorial-Abstract (CPA) approach, based on 

Bruner’s conception of the enactive, iconic and symbolic modes of 

representation, is a well-known instructional heuristic advocated by the 

Singapore Ministry of Education since early 1980’s.  Despite its ubiquity as a 

teaching strategy throughout the entire mathematics education community in 

Singapore, it is somewhat surprising to see a lack of an account of its 

theoretical roots. This paper is an attempt to contribute to this discussion on 

the CPA strategy and its potential role in continuing advancement of quality 

mathematics education. 
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Introduction 

The theories of instruction proposed by Bruner in his 1966 book Toward a 

Theory of Instruction have undoubtedly bequeathed a rich legacy to 

generations of educators in the domain of learning and instruction.  Amongst 

his voluminous contributions, one of the most well-known conception is that 

of “enactive-iconic-symbolic” modes of representation. This conception 

forms the foundation for a spectrum of instructional practices related to 

mathematics education, all bearing a conspicuous tripartite semblance to the 

Bruner’s model.  

 

One such adaptation of Bruner’s model is the Concrete-Representation-

Abstract (CRA) sequence.  The CRA sequence has been shown to be 

particularly effective with students who have difficulties with mathematics 

(Jordan, Miller, & Mercer, 1998; Sousa, 2008).  
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 The ‘Concrete’ segment of CRA, in particular, has been the theoretical basis 

for the use of manipulatives in learning mathematics (Reisman, 1982; Ross 

& Kurtz, 1993).  The CRA approach has also been employed to aid students 

with learning disabilities to learn mathematics; CRA has been reported to be 

effective in remediating deficits in basic mathematics computation (Morin & 

Miller, 1998), in the teaching of place value (Peterson, Mercer, & O’Shea, 

1998), fractions (Butler, Miller, Crehan, Babbit, & Pierce, 2003) and algebra 

(Maccinni & Ruhl, 2000; Witzel, Mercer, & Miller, 2003).  With regards to 

mathematics students (first and third graders), Fuchs, Fuchs, and Hollenback 

(2007) also advocate the use of the CRA sequence to teach place value, 

geometry, and fractions. 

 

In the practice of mathematics instruction in Singapore, Bruner’s enactive-

iconic-symbolic conception is at the heart of the Concrete-Pictorial-Abstract 

(CPA) approach. Since its inception in the early 1980’s, the CPA approach 

has remained a key instructional strategy advocated by the Singapore 

Ministry of Education. This is attested by its regular mention in official 

curricular documents, including the latest syllabus for implementation in 

2013: 

This [activity-based] approach is about learning by doing. It is 

particularly effective for teaching mathematical concepts and skills at 

primary and lower secondary levels, but is also effective at higher levels. 

Students engage in activities to explore and learn mathematical concepts 

and skills … . They could use manipulatives or other resources to 

construct meanings and understandings. From concrete manipulatives and 

experiences, students are guided to uncover abstract mathematical 

concepts or results.  … During the activity, students communicate and 

share their understanding using concrete and pictorial representations. 

The role of the teacher is that of a facilitator who guides students through 

the concrete, pictorial and abstract levels of understanding by providing 

appropriate scaffolding and feedback. (Ministry of Education, 2012, p. 

23, emphases added) 

 

Although CPA is now well-known within (and even outside) the Singapore 

mathematics education community, it is surprisingly difficult to find 

scholarly works related to its theoretical roots and actual classroom 

implementation in the literature. This paper is an attempt to contribute to this 

discussion on the CPA strategy. In particular, we attempt to trace the origins 
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of CPA and examine its influence over mathematics curriculum development 

and instruction in Singapore. 

Theoretical considerations 

First, this recommended instructional approach of starting with modes of 

learning that are more concrete to students and then gradually replacing the 

representations into forms that approximate formal mathematical symbols or 

language is not uncommon.  For example, this is the instructional strategy 

that is recommended by Ketterlin-Geller, Chard, and Fien (2008): “a 

gradated instructional sequence that proceeds from concrete to 

representational to abstract (CRA) benefits struggling students” (p. 35). 

   

In a recent study on using the CRA instruction sequence in teaching 

subtraction with regrouping to some low-achieving Grade 3 mathematics 

students, Flores (2010) reported that the students show improvement in 

fluency and confidence in doing arithmetic computations involving 

subtractions.  In addition, a number of other studies have provided evidence 

of positive effect of using CRA on low achievers in the area of fractions 

(Butler et al., 2003), word problems (Maccini & Hughes, 2000), simple 

linear functions (Witzel, 2003), and advanced linear functions (Witzel, 

Mercer, & Miller, 2003).  Indeed, the use of CRA approach to teaching 

mathematics concepts, especially at the elementary level has been proven to 

be effective. 

 

Despite the commonalities to these other ways of labelling the instructional 

sequence, it appears that certain features of CPA are somewhat unique to 

Singapore Mathematics education. Its uniqueness is not restricted to the C-P-

A as labels for the respective modes; it is also in its ubiquity throughout the 

entire mathematics education community in Singapore. CPA is a teaching 

strategy that is advocated by the Ministry of Education (Ministry of 

Education, 2012), embedded in textbooks used by schools (Fan, 2012), and 

taught in pre-service courses of mathematics teachers (e.g., Chua, 2010; 

Edge, 2006).  

 

A number of writers (e.g., Edge, 2006, Wong, 2010) attributed the 

theoretical roots of the CPA to Bruner’s (1966) “enactive”, “iconic”, and 
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“symbolic”. To answer the question about the “Singapore CPA” and 

“Bruner” link, we directed our inquiry to a source within the Ministry of 

Education. Kho Tek Hong is a consultant to the Mathematics Unit, 

Curriculum, Planning and Development Division. He oversaw the school 

mathematics syllabus formulations since the late 1970s and remains involved 

in an advisory role in recent syllabus revisions. In response to our enquiry, 

Kho (personal communication, 2012) replied and part of his response is 

reproduced here: 

Truly the CPA Approach was idealised from Bruner's … . [It was] 

researched and adopted by me at the initiation of the Primary 

Mathematics Project (PMP) in 1979 and 1980, and the CPA Approach 

was highlighted in the First Edition of the PMP's Primary Mathematics 

instructional materials first published in 1981. The approach was reported 

in Ministry of Education internal documents (not for circulation). 

Since CPA is acknowledged to be based on Bruner’s conceptions, we now 

turn to the latter for theoretical foundations. 

Examining Bruner’s Enactive-Iconic-Symbolic 

Perhaps a good point to start is to note that Bruner’s original project was far 

more ambitious than the enactive-iconic-symbolic that he is now more 

known for. He set forth to craft a “theory of instruction”—as revealed in the 

title of his 1966 book, and he began by making explicit the parameters which 

such a theory must address: (1) specify ways to help students develop a 

“predisposition towards learning” (p. 40), (2) specify ways to structure an 

intended body of knowledge for learners, (3) specify the most effective 

sequences to present teaching materials, and (4) specify the involvement of 

rewards and punishments. Enactive-iconic-symbolic played some parts (but 

not the whole) in (2) and (3) but none at all in (1) and (4).  Not wanting to 

discuss Bruner’s vision of a theory of instruction here, it suffices to remark 

that (4) fell out of fashion in recent times together with behaviourist theories 

and (1) is closely related to affect and remains a challenging area of intense 

research. That (2) and (3) survive in various forms (including CPA) may 

have to do with its relative simplicity—at least in the forms that are 

perpetrated—and thus suitability for dissemination in teacher professional 

development. 
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It is under point (2) on the structure of knowledge that Bruner (1966) 

introduced the enactive-iconic-symbolic as “modes of representation”: 

Any set of knowledge … can be represented in three ways: by a set of 

actions appropriate for achieving a certain result (enactive 

representation); by a set of summary images or graphics that stand for a 

concept without defining it fully (iconic representation); and a set of 

symbolic or logical propositions drawn from a symbolic system that is 

governed by rules or laws forming and transforming propositions 

(symbolic representation) (pp. 44-45). 

Quite clearly, using modern parlance, Bruner was not referring to 

representations as conceived in internal mental states; rather, he was 

interested in external representations of knowledge for the purpose of public 

discourse, and more particularly, in instructional settings. He was asserting 

that knowledge (including and especially for educative purposes) can be 

embodied in any one of these forms: action, visual image, or language-

symbolic. Far be it that Bruner was advocating that a unique representation 

of a concept exists under each of the modes. In fact, contrary to this, he 

noted that “[m]any subjects, such as mathematics, have alternative modes of 

representation” (p. 45).  

 

As part of his theory of instruction, the choice among multiple modes is 

dependent on other features of representation: economy and power. The 

former has to do with the amount of information needed to process the 

representation in order to comprehend the underlying knowledge; the latter 

refers to the potential of the representation in helping the learner go beyond 

what is couched on the surface of the representation to connect to deeper or 

related ideas. Bringing it closer to mathematics classroom instruction, 

Bruner’s theory of representations is part of his broader theory of instruction. 

In other words, he was positing modes of representations of mathematical 

ideas that teachers can bring into the classroom and how they can decide, 

based on notions such as economy and power, on the actual forms these 

modes can take for students’ learning. 

 

As to the more popular interpretation of Bruner’s method as moving from 

enactive to iconic to symbolic, he dealt with this matter under (3) on 

effective sequences: “If it is true that the usual course of intellectual 

development moves from enactive through iconic to symbolic representation 
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of the world, it is likely that an optimum sequence will progress in the same 

direction” (p. 49). 

 

Before proceeding, we propose to make a distinction here between the 

language of “mode” and the language of “stage”. Bruner uses these two 

terms and sometimes interchangeably to refer to each of the three constructs. 

For clarity of the readers, we use “mode” to refer to the representational 

form and “stage” to refer to the predominant mode used during the time 

sequence of instruction. 

 

Bruner moved closer to the specific domain of mathematics instruction in his 

illustration within the same book of how the sequence can be carried out in 

the teaching of solving quadratic equation. He described at length how the 

“enactive” stage could be carried out by getting students to work on algebra 

blocks (a three-dimensional form of algebra tiles) and then gradually guiding 

them “to an iconic representation … . Along the way, notation was 

developed and … converted into a properly symbolic system” (pp. 64-65, 

emphases added). Bruner’s “along the way” debunked a myth that seems 

commonly held within some sectors of the mathematics education 

community: that Bruner’s modes are distinct and separated chronologically.  

In his conception, elements of the “symbolic” mode, such as algebraic 

notations, are developed alongside the primarily enactive and iconic stages 

of instruction, leading towards a proficiency of operation within the 

symbolic system. The moving through the stages provides an overarching 

broad instructional flow, with careful attention given to developing notations 

of the symbolic system gradually across the changing stages and overlapping 

modes.  

 

Also, the goal of starting with “enactive” stage is not to remain merely at 

that mode; it is ultimately to get the students to fluency in the “Symbolic” 

mode. In the process, teachers are to help students “wean themselves from 

the perceptual embodiment to the symbolic notation” (p. 63). This point, to 

us, is significant as it avoids two extremes: being complacent merely with 

students’ comfort in enactive or iconic modes on one end; and, proceeding 

quickly through (or not at all) through the earlier stages to get to symbolic 

mode on the other. The former is perhaps more common among teachers 

working with mathematics ‘low-achievers’. The possible defence is that they 

are incapable of symbolic manipulations and thus working with less formal 
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representations can be considered, for them, as success. Bruner (1966), 

however, did not share this view: “For if a child is to deal with mathematical 

properties he will have to deal with symbols per se, else he will be limited to 

the narrow and rather trivial range of symbolism that can be given direct … 

visual embodiment” (p. 63).  We stand with Bruner on this, and add that 

stopping short of working primarily in the symbolic mode denies students of 

a wide range of rich and rewarding mathematical experiences. In fact, if 

students work purely in enactive and iconic modes over the long term, they 

can hardly be said to be doing mathematics; we contend, with others (e.g., 

Ma, 1999), that fluent operation within the symbolic domain is at the heart of 

the mathematics discipline. The other temptation for teachers to skip or 

move quickly through the earlier stages to ‘get to’ symbolic representations 

is also real. And the argument for it may seem compelling: if the final goal is 

to get students proficient with working purely in the symbolic system, why 

waste (so much) time teaching the other modes? Again, Bruner (1966) 

provided a balanced answer: 

For when the learner has a well-developed symbolic system, it may be 

possible to by-pass the first two stages. But one does so with the risk that 

the learner may not possess the imagery to fall back on when his symbolic 

transformations fail to achieve a goal in problem solving (p. 49). 

 

One inference from this is that, to Bruner, (i) while it is important for 

students to be able to work solely in the symbolic system, the symbolic 

mode of representation is not necessarily a ‘superior’ mode to, say, the 

iconic mode across all mathematical situations. He gave the context of 

problem solving as one example in which the imagery of a concept may 

provide a good alternative in attacking the problem. This implies that one’s 

inability to switch to a different mode limits one’s problem solving ability; 

(ii) familiarity with other modes allows students to “fall back”. We 

understand this to mean that if a student learns purely in the symbolic mode, 

in the event that he cannot recall its workings, he can then have something to 

“fall back” to in order to recover the meanings of the notations in the 

symbolic mode. There is no way to “fall back” if there is no history of 

meaningful learning in other modes of representation; (iii) the moving 

through the three modes in instruction theoretically mirrors the “usual course 

of intellectual development” (p. 49).  
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Nevertheless, Bruner’s point that “it may be possible to by-pass the first two 

stages” is not an insignificant statement. It is a reminder that students who 

are adept at the symbolic system should not be compelled to always start 

their learning at the earlier stages. Where the tools learnt in the other modes 

are not potentially powerful problem solving resources, these students 

should not be ‘forced’ to go through the full works of the three stages. 

Rather, an alternative learning trajectory that bypasses the earlier modes 

should be catered to these students.  

 

Today, stadial theories have gone out of fashion in favour of more complex 

views of instruction that take into account socio-cultural factors (Merttens, 

2012). Bruner’s enactive-iconic-symbolic is not spared from this effect. We 

recognize that teaching is a complex cultural activity that is not easily 

reducible to a context-free universal three-step method. But the aspects of 

Bruner’s modes and sequence that we reviewed does not claim to do that; it 

sets out what is to us a reasonable theory of external representations for use 

in teaching, without over-complexifying it to a point that renders it 

unworkable for dissemination; it recognises differences among students but 

sets up a broad sequence of stages that serves as a good rule of thumb for 

structuring instruction when introducing mathematics ideas/methods. Insofar 

as its theoretical assumptions are sound and can be easily translatable to 

classroom use, we think it remains a useful teaching heuristic for teachers’ 

reference. 

From Bruner to Singapore’s CPA 

There is quite clearly a one-to-one correspondence between Singapore’s 

Concrete-Pictorial-Abstract to Bruner’s Enactive-Iconic-Symbolic. The 

change in labels of each of the modes appears more an attempt at language 

simplification rather than conscious theory revision. The extract from the 

Ministry of Education syllabus document (Ministry of Education, 2012) at 

the beginning of this paper makes clear the official interpretation of 

“Concrete” as not restricted to “concrete manipulatives”, but also “concrete 

experiences”. The latter was further explained as comprising activities with 

suitable manipulatives. This view of “Concrete” is thus very much in line 

with Bruner’s “Enactive” which is also about mathematical knowledge as 

embodied in actions. Within the same extract, relatively little is mentioned 
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about “Pictorial” and “Abstract”. There is, nevertheless, a reference to 

“Pictorial” as “representations”, which aligns closely to Bruner’s “Iconic”; 

and the language of “guiding through” is in line with the sequential order of 

the three modes. We can then infer that “Abstract” is conceptually not far off 

from the language-symbolic emphasis of Bruner’s “Symbolic”. 

 

Another source of reference about what the official take on these terms are 

can be found in Singapore mathematics textbooks commissioned by the 

Ministry of Education, since CPA is said to be incorporated in these 

textbooks: 

The Primary Mathematics Project (PMP), led by Dr Kho Tek Hong, was 

tasked to produce instructional materials for the teaching and learning of 

primary mathematics with effective teaching approaches and professional 

development of teachers. The PMP instructional materials advocated the 

Concrete-Pictorial-Abstract Approach (Kho, Yeo, & Lee, 2009, p. 2). 

 

We reviewed a number of textbooks that arose from the work of the PMP 

(e.g. Curriculum Development Institute of Singapore, 1982; 1983). A typical 

chapter introduction of these textbooks follows this order: a ‘real-life’ setting 

that provides a context for a noteworthy situation or problem (e.g., a pie-

division problem), a visual representation of the situation or other related 

problems (e.g., representing pies by circles), and abstracting from visual 

forms to a symbolic form (e.g., working with numeric fractions). There is 

thus a sequence that mirrors closely the CPA stages. However, the 

“Concrete” as is presented in the textbooks appeared to have deviated from 

Bruner’s original conception of activity to taking the form of a mere 

description of an activity. In other words, the textbook writers appeared to 

have taken the liberty to broaden “Concrete” to include not just activity, but 

also a reading (or teacher-talk) about the activity.  

 

There appears then a difference between the notion of “Concrete” as used by 

the PMP writers in the early 1980s and the writers of the most recent 

syllabus document for implementation in 2013. If so, we surmised that, 

within the Ministry of Education, there could have been a change in thinking 

or emphasis about “Concrete” over the years (and recently converging to 

Bruner’s original conception). As it turned out, Kho confirmed this hunch 

(personal communication, 2012): 
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The significant change was the shift of emphasis from teaching to 

learning in the 1990s. Besides teaching aids, a wide range of learning 

manipulatives were introduced. The teacher's role is to provide 

appropriate learning experiences, including concrete experiences … to 

facilitate learning. Concrete experiences can take the form of activities, 

real-life context, or use of manipulatives. 

In tracing the Ministry of Education’s documents over the last three decades 

on CPA, we also notice that CPA as an instructional strategy was first 

introduced only to the Primary levels through the outcomes of the PMP in 

the early 1980s. The oldest source available dates back to 1990 (Ministry of 

Education, 1990b) in which CPA was also officially endorsed as a 

recommended teaching approach to the Lower Secondary levels. 

 

There is, however, one feature that appears to be different from Bruner: 

concrete, pictorial, and abstract are depicted in the Ministry of Education 

documents as “levels of understanding” (Ministry of Education, 1990a, p. 

10; Ministry of Education, 2012, p. 23). Bruner does not use the language of 

“levels”. His use of “stages” has more to do with instructional sequencing 

with respect to time rather than “levels of understanding”. The latter appears 

to go beyond the external representational forms into psychological modes 

of operation within learners. We think this association (intended or 

otherwise) to internal states of competence of students is perhaps a step too 

far. Psychological workings in, say, a problem solving situation involve 

complex working flexibly across different modes of representations, and not 

merely mental operation at a single level. Nevertheless, we agree (with 

Bruner too) that students capable of operating fluently at the Abstract mode 

possess mental tools that enable them to handle more sophisticated 

mathematical tasks. 

 

A final point about CPA is the potential ambiguity with the terms 

“Concrete” and “Abstract”. Part of the ambiguity has to do with the different 

definitions of these terms from different theoretical traditions. In some 

schools of thought (e.g., of the Piagetian tradition), “Concrete” tends to be 

associated more with objects rather than actions. Similarly, “Abstract” can 

be defined as the end result of the process of abstracting by comparing 

similarities (e.g., Skemp, 1986) rather than the Brunerian conception of 

operating in a symbolic system. A further complication is in the subjective 

nature of what is viewed as concrete or abstract. For example, a 
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mathematician will consider working with algebraic symbols in the 

quadratics “concrete” while the same activity would be seen as “abstract” to 

students not accustomed to the task. One implication of these ambiguities 

and subjectivities to mathematics instruction is that what is considered 

“concrete”, “pictorial”, and “abstract” for a particular body of mathematical 

knowledge is not a fixed universal; rather, teachers will need to calibrate the 

modes to suit the needs of their students. For this, the features of economy 

and power of representations that Bruner purported remain useful guidelines.  

 

So far, we have discussed Singapore CPA in its general characteristics. In 

the next section, we go into the specifics of how CPA can be utilised as a 

guiding heuristic in actual classroom mathematical instruction. In particular, 

we provide a description of our interpretation of CPA as it was applied in the 

design of a lesson on quadratic factorisation.  

CPA applied in actual lessons: An example 

The mathematics lesson was part of a project led by the first author that 

involved the application of CPA—including the principles of instruction and 

representations discussed in the earlier sections—in the context of teaching a 

Year Eight class in a Singapore secondary school (henceforth referred to as 

the project school). The details of the project are reported in Leong, Yap, 

Teo, Thilagam, Karen, Quek, & Tan (2010).  As the focus of this paper is 

not on that project, only a brief description is provided here. 

 

Discussions among teachers prior to the project were over the difficulty that 

students—particularly students who were mathematically-challenged—in the 

school faced when confronted with algebraic manipulation. The teachers 

reported that students made many mistakes in symbolic manipulations and it 

seemed that the students could not make sense of the basic rules and symbols 

of algebra. The goal of the project was thus to design lessons that will help 

students make sense of the algebra they do.  Seen through the lens of CPA, 

the project aimed to help students start with concrete representations of 

algebra and then connect it gradually to the symbolic form of formal algebra 

over the course of the lessons. The topic selected for the study was 

“factorisation involving quadratic polynomials” as this was agreed among 

the teachers to be the most challenging topic for their students. 
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Sixty students from the Secondary Two Normal (Academic) class were 

taught using the CPA approach.  In Singapore, pupils who have completed 

primary education are streamed into three ability streams, according to their 

performance in the national examination. The streams are known as Express, 

Normal (Academic), Normal (Technical) and the percentage of students in 

each of these streams are roughly 60, 25, and 15 respectively. These selected 

students were judged by their resident teachers to be among those who had 

the most difficulty with algebra. 

 

Guided by CPA, the connection between the concrete mode of representing 

factorisation to its more abstract algebraic form was carried out. We used the 

geometric analogy of factorisation as finding length/breadth of the rectangle 

given the area. To concretise this “forming of rectangle” stage, we 

introduced AlgeCards for a start.  AlgeCards are similar to Algebra tiles with 

the difference that “x
2
”, “x”, and “1” are imprinted on the cards to help 

students make clearer visual connections between the concrete and the 

symbolic modes. The purpose of using the AlgeCards is to help students 

actively carry out the “forming rectangle” as an essential part of factorisation 

in a concrete way. In line with the foregoing discussion in the earlier 

sections, we were mindful that students ought not to stay too comfortable 

with AlgeCards; rather, we wanted students to make entrance into 

factorisation using a representation that made sense to them but would 

subsequently progress to a method that approximates algebraic dexterity. 

Figure 1 shows the links among these modes of representation. “Rectangle 

Diagram” is a pictorial simplification of the concrete AlgeCards; and unlike 

the latter, it can be easily drawn and thus portable as a useable tool in paper-

and-pencil contexts, including paper-and-pencil test situations. 
  

Factorise AlgeCards Diagram Rectangle Diagram 

232  xx   
= )2)(1(  xx  

 

 

 

 

 

  

 

 

 

 

Figure 1. Linking AlgeCards to rectangle diagram and to the algebraic factorization. 
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The design of AlgeCards is similar to those employed by Bruner himself 

(Bruner, 1966, pp. 60-62). The co-existence of the written algebraic symbols 

with the concrete manipulatives provides a gradual build-up of the algebraic 

notations through the modes of representation and creates a physical passage 

to allow a gradual transition from the “Concrete” to the “Abstract”, with an 

explicit feature of “decontextualizing” or “fading away”. In our design, this 

is characterized by the following sequence of representations: AlgeCards 

(Concrete pieces suitable for manipulation) → Rectangle Diagram (Pictorial 

representation) → Quadratic expressions (Abstract symbols).  Such a 

gradual fading process has been hinted by Bruner (1966): 

  … by giving a child multiple embodiments of the same general idea 

expressed in a common notation we lead him to “empty” the concept of 

specific sensory properties until he is able to grasp its abstract properties 

(p. 65). 

Many proponents of concrete manipulatives have also made mention of this 

fading process; for instance, Goldstone & Son, 2005; Gravemeijer, 2002; 

Lehrer & Schauble, 2002; Lesh, 1979.  More recently, McNeil & Fyfe 

(2012) reported on the positive effects of fading on the transfer performance 

for a sample of undergraduates learning group theory.  

 

The duration of the fading process varied across students. Subsequent 

lessons were designed in such a way as to allow students to transit to using 

the Pictorial as the predominant mode gradually by introducing larger 

positive coefficients as a motivation. When students could operate 

comfortably with the Rectangle Diagram without first starting with the 

AlgeCards, then expressions with negative coefficients, such as x
2
 - 3x + 2, 

were given. For these items, the students were encouraged to use the 

Rectangle Diagram as a template to work out the factorisation instead of still 

thinking of the components as ‘negative areas’.  

 

Alongside the goal of helping students learn factorisation through the CPA 

heuristic, this project was also conceived as a Lesson Study enterprise. The 

school invited the first author into the group as a Knowledgeable Other. Led 

by the stages advocated by Lewis (2002), and Stepanek, Appel, Leong, 

Mangan, and Mitchell (2007), we used the common features of their Lesson 

Study model to guide the entire process: We met to discuss the difficulties 

students faced and identified the goals of the project; that was followed with 

more discussion meetings on the design of the module—as mentioned in the 
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earlier paragraphs; subsequently one teacher in the team carried out the 

teaching of the lessons.  Other teachers in the team sat in for the lessons, 

made disciplined observations, and shared in post-lesson meetings after each 

lesson.   

 

As the focus of this paper is a study on the roots and realisations of CPA in 

the Singapore mathematics curriculum, rigorous investigations into the effect 

of this CPA-based innovation in the participating classes will be the subject 

of another study. Suffice to mention here that the teachers who participated 

in the team shared that they learnt much both from the approach taken in the 

module as well as the observation of students’ work in class. Since this 

method of teaching the topic was first designed and carried out in 2009, it 

has been embedded as standard instructional practice in the project school: 

the teachers have continued to employ the CPA approach and the 

instructional materials—the full works of AlgeCards and the accompanying 

worksheets—for every Secondary Two Normal (Academic) cohorts since 

then.  

Regularising the CPA strategy in classrooms 

Despite strong emphasis at the policy level and actual examples of alignment 

to CPA in classroom teaching, there are anecdotal evidences that suggest 

that the common instructional approach in Singapore mathematics 

classrooms is mainly that of direct teaching of the “Abstract”—the rules, the 

symbols, and the question-specific techniques—without building up from 

“Concrete” and/or “Pictorial”. In this last section of the paper, we discuss the 

challenges of regularising CPA in Singapore classrooms. While we mention 

Singapore as the arena of research, insofar as some of these challenges are 

similarly encountered in other jurisdictions, we think the discussion would 

be of interest to a wider readership. 

 

It is well-known that teachers experience time pressure in attempting to 

complete the assigned syllabus within the constraints of the allocated time as 

stipulated in given teaching schedules (e.g., Assude, 2005; Leong & Chick, 

2011). Working regularly under such conditions of limited time to ‘cover 

topics’, there is a natural tendency to get to the main skills to teach for each 

topic in the most time-efficient way. This result in a quick convergence to 
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the rules and formulas that students are expected to learn, which means the 

bypassing of other modes of representation and proceeding straight to the 

‘Abstract’. Doing so, however, often also means a bypassing of students’ 

sense-making and hence the basis for fall back as discussed in the earlier 

sections. 

 

Despite realising that direct teaching of arbitrary rules compromises the 

strength in which the students grasp the underlying mathematical concepts, 

the time pressure challenge is so strong that teachers are unlikely to buy-in to 

CPA so long as it is perceived as (i) taking up an unrealistic amount of 

classroom time; and/or (ii) not of direct benefit to students in terms of test 

scores for the topic. We think that any genuine attempt to regularise CPA 

needs to take into consideration these concerns. 

 

We propose that a feasible way forward is to begin with designing 

exemplary instructional units where CPA can be easily trialled and where the 

results can be observed immediately. Doing so is an acknowledgement that 

(a) it is far too ambitious to implement CPA throughout the whole span of 

the syllabus at one go; (b) a “unit”—of about 4 to 6 hours of lesson time—is 

reasonable temporal space to test the time-workability of the CPA sequence 

and to observe its outcomes on students’ learning; and (c) CPA may not be 

appropriate for the teaching of some mathematics topics. As such, the focus 

should be on those mathematics units whose instructional development lends 

itself well to a CPA progression. 

 

Developing the CPA strategy over a unit of lessons also allows the gradual 

transition between stages to take place more seamlessly. Moreover, given the 

diversity among learners, the duration of 4-6 lessons provide the temporal 

latitude for different students to transit to the next predominant mode of 

representation at points they feel they are ready to. In contrast, ‘forcing’ the 

entire CPA progression within, say, a single lesson would not allow each 

mode to be developed to a point in which the sense-making takes root and 

where intermodal links can be meaningfully established, thus heightening 

the sense of failure of the CPA innovation; on the other hand, stretching the 

CPA development over a much longer time period beyond a “unit” would 

render it unrealistic from the point of view of keeping to the time allocations 

of the teaching schedule. 
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Beginning with unit design is also advantageous from the standpoint of 

teacher development. Where feasible, teachers can be involved in the design 

process. As such, they do not see themselves as mere ‘end-user’ of the CPA-

based design; rather, through active participation in the crafting of the unit 

sequence and instructional materials, they are not only given an opportunity 

to develop a more refined interpretation of CPA; they are also able to 

contribute to concretising its use in actual classroom instruction. 

 

Over time, if the unit design strategy can be sustained, we would have a 

collection of a number of CPA-based instructional units that are trialled, 

refined, and avowed by teachers to be workable in actual mathematics 

classrooms. It can then serve as a repository for other teachers who want to 

learn about the usefulness of the CPA heuristic to start their inquiry and 

subsequent adaptations for use in their classrooms. 
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