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Abstract Secure multi-party computation (MPC) allows a set of parties to jointly compute
a function on their private inputs, and reveals nothing but the output of the function. In the
last decade, MPC has rapidly moved from a purely theoretical study to an object of practical
interest, with a growing interest in practical applications such as privacy-preserving machine
learning (PPML). In this paper, we comprehensively survey existing work on concretely
efficient MPC protocols with both semi-honest and malicious security, in both dishonest-
majority and honest-majority settings. We focus on considering the notion of security with
abort, meaning that corrupted parties could prevent honest parties from receiving output
after they receive output. We present high-level ideas of the basic and key approaches for
designing different styles of MPC protocols and the crucial building blocks of MPC. For
MPC applications, we compare the known PPML protocols built on MPC, and describe the
efficiency of private inference and training for the state-of-the-art PPML protocols. Further-
more, we summarize several challenges and open problems to break though the efficiency of
MPC protocols as well as some interesting future work that is worth being addressed. This
survey aims to provide the recent development and key approaches of MPC to researchers,
who are interested in knowing, improving, and applying concretely efficient MPC protocols.
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1 Introduction

Secure multi-party computation (MPC) allows a set of parties to jointly compute a function on their
private inputs without revealing anything but the output of the function. Specifically, MPC allows n
parties to jointly compute the following function:

(y1, . . . , yn)← f(x1, . . . , xn),

where every party Pi holds an input xi, obtains an output yi, and can learn nothing except for (xi, yi, f),
and function f is often modeled as a Boolean or arithmetic circuit. MPC is a foundation of cryptography,
and is also a core technology to protect privacy of data for cooperative computing in the big data era.
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In the late 1980s, it was shown that MPC protocols for any function can be constructed [1–6], which
demonstrates the feasibility of MPC. However, significant improvements are necessary to make MPC
sufficiently efficient to be used in practice. In the last decade, MPC has been developed from a theoretical
field to a practical one, and is starting to see real-life deployments. A series of open-sourced libraries
for MPC (e.g., ABY [7], EMP-toolkit [8], FRESCO [9], JIFF [10], MP-SPDZ [11], MPyC [12], SCALE-
MAMBA [13], Bogdanov et al. [14], and TinyGable [15]) have been developed, and further promote the
applications and deployment of MPC. We refer the reader to [16, 17] for more MPC libraries and the
comparison of known libraries. Many applications can be built upon MPC to protect the privacy of data,
including machine learning (see, e.g., [18–31] and references therein), federated learning (see, e.g., [32–
36]), data mining [37–40], auction [41–43], genomic analysis [44–46], securing databases (see [47] and
references therein), and blockchain [48–53]. In addition, some techniques underlying MPC protocols can
also be used to construct non-interactive zero-knowledge (ZK) proofs [54–61] based on the MPC-in-the-
head paradigm, scalable ZK proofs [62–71], threshold cryptography (see [72–79] and references therein),
and private set intersection (PSI) (see, e.g., [80–85]).

Secure multi-party computation guarantees privacy (meaning that the protocol reveals nothing but
the output) and correctness (meaning that the correct function is computed), among others (e.g., inde-
pendence of inputs, meaning that a party cannot choose its input as a function of the other parties’
inputs). The security properties must be guaranteed in the presence of adversarial behaviors. We mainly
consider two classic adversaries:

• Semi-honest: Semi-honest adversaries (a.k.a., passive adversaries) follow the protocol specification
but may try to learn more than allowed from the protocol transcript;

• Malicious: Malicious adversaries (a.k.a., active adversaries) can run an arbitrary attack strategy
in its attempt to break the protocol.

According to the maximum number t of corrupted parties, there are typically two settings considered
in the literature: dishonest majority (n/2 ≤ t < n, particularly we often adopt t = n− 1) and honest
majority (t < n/2), where n is the total number of parties. In addition to the basic properties (privacy
and correctness), some applications might further require fairness meaning that if one party obtains
output then so do all, or guaranteed output delivery (GOD) meaning that all parties always receive
output. To obtain better efficiency, we often consider a relaxed security notion, called security with
abort, which allows corrupted parties to prevent honest parties from receiving output after the corrupted
parties received their output. This security notion is standard in the dishonest-majority setting, as not all
functions can be computed fairly without an honest majority [86]. We focus on considering the notion of
security with abort and the static adversary that determines the set of corrupted parties at the onset of
protocol, which allows to achieve the best efficiency. In this paper, we mainly consider concretely efficient
MPC protocols, and ignore the MPC protocols that have a good asymptotic complexity or optimal round
complexity, but their concrete efficiency is very low.

There are two main approaches for designing MPC protocols [87]: (1) the secret-sharing approach
(followed by [2–4]) that makes the parties interact for every non-linear gate of the circuit, and has a low
communication bandwidth but a number of rounds linear to the circuit depth; (2) the garbled-circuit
approach (followed by [1, 6]) that lets the parties construct an encrypted version of the circuit allowing to
be computed only once, and has a constant number of rounds but a large communication bandwidth. In
general, the secret-sharing approach is more suitable for low-latency networks such as local area network
(LAN), while the garbled-circuit approach will perform better in high-latency networks such as wide area
network (WAN).

There are a lot of concretely efficient MPC protocols that have been proposed, and these MPC
protocols give a different trade-off in terms of security and efficiency. Thus, it is not easy to make the
best choice of MPC protocols in concrete applications for non-experts. In addition, many techniques have
been developed for MPC, which makes it difficult for new researchers to understand the techniques in a
short period. Through this survey, we aim to help the researchers, who are interested in MPC, rapidly
understand the recent development and some basic/key ideas of concretely efficient MPC protocols, and
be able to make a better choice in terms of applying MPC protocols.
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1.1 Our contribution

In this paper, we comprehensively survey the known work on concretely efficient MPC protocols with
both semi-honest and malicious security. This survey not only covers the work in the dishonest-majority
setting, but also concerns on the recent development in the honest-majority setting. Our survey involves
not only secret-sharing based MPC but also garbled-circuit based MPC. We present the basic approaches
for designing concretely efficient MPC protocols, and give the high-level ideas for the key techniques
underlying these MPC protocols. In particular, we give a uniform framework and view of MPC protocols
based on additive, Shamir, and replicated secret sharings. We also provide a high-level view of the recent
approach with sublinear communication to design correlated oblivious transfer (COT) that is a crucial
building block for dishonest-majority MPC. In addition, we describe one important application of MPC
(i.e., privacy-preserving machine learning, or PPML in short), and summarize the known PPML protocols
in terms of functionality, security, techniques and neural-network architectures as well as discussing
several key techniques for designing concretely efficient PPML protocols. Furthermore, we propose several
challenges and interesting open problems to break through the efficiency of differently flavored MPC
protocols, and also present some future work that need to be addressed for developing or deploying MPC.

Comparison with other MPC surveys. Recently, Lindell [88] presented a short MPC survey, which
gives an overview of the security of MPC, a summarization of MPC feasible results, an honest-majority
MPC framework based on Shamir secret sharing, two specific MPC protocols (i.e., PSI and threshold
RSA), a very short overview of dishonest-majority MPC, and several application examples of MPC. This
survey focuses on the notion and security of MPC and how MPC is being currently used, and does not
involve the recent development of MPC protocols which is addressed by our survey. Besides, Orsini [89]
gave a survey for only SPDZ-style MPC protocols in the dishonest-majority malicious setting. Compared
to the two surveys [88, 89], our survey is more comprehensive, presents an important MPC application
(i.e., PPML) and also gives interesting future work for MPC.

1.2 Organization

In Section 2, we define the necessary notation to be used in the subsequent main body, and then describe
the security and communication models for MPC and give a sketch of several basic building blocks of
MPC. We describe the development and the key techniques for MPC based on secret sharings (resp.,
garbled circuits) in Section 3 (resp., Section 4). We present the crucial building blocks for dishonest-
majority MPC in Section 5. In Section 6, we summarize the protocols that apply MPC to realize private
inference and training of machine learning, as well as several key techniques for PPML applications.
Finally, we conclude this survey, and propose open problems and future work for MPC.

2 Preliminaries

2.1 Notation

We use κ and ρ to denote the computational and statistical security parameters, respectively. In the
known MPC implementations, we often adopt κ = 128 and ρ = 40, where sometimes we also consider
ρ = 64 or ρ = 80. For two integers a, b with a < b, we denote by [a, b] the set {a, . . . , b} and by [a, b) the set
{a, . . . , b−1}. We use x← S to denote sampling x uniformly at random from set S and x← D to denote
sampling x according to distribution D. For bit-string x, we use lsb(x) to denote the least significant bit
of x. For row vector x, we use xi to denote the ith component of x with x1 the first entry, and denote
by HW(x) the Hamming weight of x (i.e., the number of non-zero entries in vector x). For two families
of distributions X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write X

c
≈ Y if X and Y are computationally

indistinguishable.
We use F to denote a finite field defined by a prime or a power of prime, and denote by |F| the size

of field F. In particular, we often consider a binary field F = F2 and an arithmetic field F = Fp for a
large prime p. Let K be a field extension of F of degree k. We fix some monic, irreducible polynomial
f(X) of degree k and write K ∼= F[X]/f(X). Then, we can denote every element y ∈ K by a polynomial
y0 + y1 · X + · · · + yk−1 · Xk−1 over F, and view y as a vector (y0, y1, . . . , yk−1) ∈ Fk. When we write
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arithmetic expressions involving both elements of F and elements of K, it means that values in F are
viewed as polynomials lying in K with only constant terms. Specifically, we use F2κ to denote the degree-
κ extension field of F2. In the context of MPC for Boolean circuits, we often use {0, 1}κ, Fκ2 and F2κ

interchangeably, and thus addition in Fκ2 or F2κ corresponds to XOR in {0, 1}κ.
Most of the known MPC protocols model a function as a circuit. Specifically, circuit C over an arbi-

trary field F is defined by a set of input wires and output wires along with a list of gates of the form
(α, β, γ, T ), where α, β are the indices of the input wires of the gate, γ is the index of the output
wire of the gate, and T ∈ {ADD,MULT} is the type of the gate. If F = F2, then C is a Boolean
circuit with ADD = ⊕ and MULT = ∧. Otherwise, C is an arithmetic circuit where ADD/MULT cor-
responds to addition/multiplication in field F. We let |C| denote the number of MULT gates in the
circuit.

We will use n and t to denote the number of total parties and the number of corrupted parties
respectively, unless otherwise specified. Sometimes, we call t as the corruption threshold.

2.2 Security and communication models

Security model. All security properties for MPC can be formalized in an Ideal/Real paradigm [90, 91],
which provides a modular way to prove security. The real-world execution where the parties interact with
semi-honest/malicious adversary A and execute a protocol Π is compared to the ideal-world execution
where the parties interact with a simulator S and an ideal functionality F. In the ideal word, F plays the
role of an incorruptible trusted party, and captures the security of MPC protocols. We use P1, . . . , Pn to
denote n parties running a protocol. In the multi-party setting (i.e., n > 2), we often consider a rushing
adversary A, meaning that A is allowed to receive its incoming messages in a round before it sends its
outgoing message. If the adversary is allowed to be computationally unbounded, the protocol is said to be
information-theoretically secure. If the adversary is bounded to (non-uniform) probabilistic polynomial
time (PPT), the protocol satisfies the computational security.

The known MPC protocols mainly use two types of simulation models: stand-alone setting [91, 92] and
universal composability (UC) [90]. Compared to stand-alone model, UC model additionally involves an
environment Z which can determine the inputs of honest parties and receive the outputs from the honest
parties. This may make security proofs of MPC protocols somewhat more complex. While stand-alone
model only guarantees the security under the sequential composition, UC model has the property that
the protocols maintain their security, even though running concurrently with other (in)secure protocols.
According to the result from [93], we obtain that any MPC protocol in the stand-alone model, which is
proven secure with a black-box straight-line simulator and has the property the inputs of all parties are
fixed before the protocol execution begins (referred as to start synchronization or input availability), is
also secure under concurrent composition.

Communication model. The default method of communication for MPC is authenticated channel,
which can be implemented in practice using the known standard techniques. In the multi-party setting,
all parties are also connected via point-to-point channels, and sometimes need also a broadcast channel. A
broadcast channel can be efficiently implemented using a standard 2-round echo-broadcast protocol [94],
as we only consider security with abort. The communication overhead of this broadcast protocol can
be significantly improved by letting all parties send the hash outputs of received messages and aborting
if an inconsistent hash value is detected. Sometimes, the parties need to communicate over a private
channel, meaning that the messages sent over such channel are kept confidential and authenticated. As
such, private channel can be established using the standard techniques.

2.3 Oblivious transfer and oblivious linear-function evaluation

Informally, oblivious transfer (OT) [95, 96] involves two parties where a sender inputs two messages
(m0,m1) and a receiver inputs a choice bit b, and allows the receiver to obtain mb while keeping b
secret against the sender and m1−b confidential against the receiver. We use an OT extension protocol to
generate a large number of OT correlations (see Section 5). Oblivious linear-function evaluation (OLE)
is an arithmetic generalization of OT to a large field F, and is a special case of oblivious polynomial
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evaluation introduced in [97]. Specifically, OLE is a two-party protocol between a sender and a receiver,
where the sender inputs u, v ∈ F, and the receiver inputs x ∈ F and obtains an output y = u · x+ v ∈ F.
We discuss the development of OT/OLE and their variants in Section 5.

2.4 Commitment and coin-tossing

Commitment. In the dishonest-majority setting, MPC protocols often need a commitment scheme to
commit a value while keeping it secret (the hiding property), and then to open the value while keeping it
consistent with the one that has been committed (the binding property). To achieve high efficiency, the
commitment scheme is often constructed in the random-oracle model by defining Commit(x) = H(x, r),
where x is a message, r is a randomness, and H : {0, 1}∗ → {0, 1}2κ is a cryptographic hash function
modeled as a random oracle.

Coin-tossing. A lot of MPC protocols with malicious security require the parties to generate mul-
tiple public randomness by executing a coin-tossing protocol, while guaranteeing that no malicious
parties can control the randomness or make them deviate from uniform distribution. In the dishonest-
majority setting, the coin-tossing protocol is constructed by that (1) every party Pi commits a
random seed si and then opens the seed; (2) every party computes s :=

⊕
i∈[n] si and then gen-

erates the public randomness with s and a pseudorandom generator (PRG) modeled as a random
oracle. In the honest-majority setting, the coin-tossing protocol is constructed in a totally different
way. Specifically, all parties generate multiple random shares, and then open these shares as the pub-
lic randomness, where random shares can be generated very efficiently when a majority of parties are
honest.

3 MPC protocols based on secret sharings

Based on the secret-sharing approach, the concretely efficient MPC protocols enable the parties to
send small messages per non-linear gate, but has a number of rounds linear to the depth of the
circuit being computed. For now, concretely efficient MPC protocols mainly adopt three kinds of
linear secret-sharing schemes (LSSSs): additive secret sharing, Shamir secret sharing [98], and repli-
cated secret sharing (a.k.a., CNF secret sharing) [99, 100], where additive secret sharing is mainly
used for MPC protocols in the dishonest-majority setting, while Shamir and replicated secret shar-
ings are adopted for honest-majority MPC protocols. We first recall the constructions of these LSSSs
in a uniform view. To achieve malicious security, additive secret sharing needs to be equipped with
information-theoretic message authentication codes (IT-MACs), and thus we define two types of IT-
MACs used in MPC with dishonest majority. Note that IT-MACs are unnecessary for Shamir/replicated
secret sharing in the honest-majority setting. Then, based on LSSSs, we describe how to con-
struct semi-honest MPC protocols with a uniform structure. Finally, we present how to transform
semi-honest MPC protocols to maliciously secure MPC protocols using the state-of-the-art checking
techniques.

3.1 Linear secret-sharing schemes

All the three kinds of LSSSs used in MPC are (n, t)-threshold secret sharing schemes, which enable
n parties to share secret x among the parties, such that no subset of t parties can obtain any infor-
mation on secret x, while any subset of t + 1 parties can reconstruct secret x. Additive secret sharing
can only be made for t = n − 1, while Shamir/replicated secret sharing allows any t < n (we often
adopt t < n/2 for honest-majority MPC). The three kinds of LSSSs are defined over a field F. While
additive/replicated secret sharing allows an any-sized field (including F2), Shamir secret sharing requires
|F| > n. Below, we describe the constructions of these LSSSs and the useful procedures for designing MPC
protocols.

• Share(x): For x ∈ F, a dealer generates n shares x1, . . . , xn. By [x], we denote the sharing of x.
(a) Additive secret sharing: This is the simplest LSSS as far as we know. To share a value x ∈ F,

the dealer samples xi ← F for i ∈ [1, n] such that
∑
i∈[1,n] x

i = x, and sends xi to Pi.
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(b) Shamir secret sharing: Let α1, . . . , αn ∈ F be n distinct non-zero elements (e.g., αi = i for
i ∈ [1, n]). The dealer samples a random polynomial f(X) of degree t over F such that f(0) = x,
and then sends xi = f(αi) to Pi. Shamir secret sharing is mainly used for a large n in the
honest-majority MPC protocols.

(c) Replicated secret sharing: The dealer samples xT ← F for T ∈ T such that
∑
T∈T x

T = x, where
T consists of all sets of t parties. Every party Pi obtains shares xT for all T ∈ T subject to
i /∈ T . In general, the total number of shares is

(
n
t

)
and every party stores

(
n−1
t

)
shares, which

can become very large as n and t grow. Therefore, we mainly use replicated secret sharing when
n is small. For example, if n = 3 and t = 1, then the dealer samples x1, x2, x3 ← F such that
x1 + x2 + x3 = x, and then sends (x2, x3) to P1, (x1, x3) to P2 and (x1, x2) to P3.

Note that the shares for replicated/Shamir secret sharing need to be sent over a private chan-
nel, but this may be not necessary for additive secret sharing in most cases. In MPC protocols,
either a party Pi acts as a dealer if it knows secret x, or the computation of a dealer is per-
formed distributedly by a protocol if no one knows x. In the computational setting, we can
use the pseudo-random secret sharing (PRSS) approach [99] to reduce the communication cost
that distributes the shares of Shamir and replicated sharings. For example, to generate a degree-
t Shamir sharing [x]t, the dealer can send a random seed si to Pi who computes xi with si
and a pseudo-random generator PRG for each i ∈ [1, t]. Then, the dealer sends xt+1, . . . , xn to
Pt+1, . . . , Pn, respectively, such that (x1, . . . , xt+1) defines a degree-t polynomial f with f(0) = x
and xi = f(αi) for i ∈ [t + 2, n]. Since the seeds s1, . . . , st can be reused for multiple Shamir
sharings, the communication to send the seeds could be ignored. Besides, based on the PRSS
technique [99], we can convert a random replicated sharing into a random Shamir sharing with
a small communication to distribute the seeds. This technique is only suitable for a small num-
ber of parties, as the number of random seeds is

(
n
t

)
and grows exponentially with the number of

parties.

• Reconstruct([x], i): This procedure enables only Pi to obtain secret x. When any t+ 1 shares of [x]
are sent to Pi over a private channel, secret x can be reconstructed by Pi as follows:
(a) Additive secret sharing: Given {xj}j 6=i from all other parties, Pi computes x :=

∑
i∈[1,n] x

i.
(b) Shamir secret sharing: Secret x can be reconstructed using Lagrange interpolation. Without

loss of generality, we assume that Pi gets shares x1, . . . , xt+1. Then Pi can compute x :=∑
i∈[1,t+1] δi(0) · xi, where δi(X) =

∏
j∈[1,t+1],j 6=i(X − αj)/(αi − αj) is a degree-t polynomial.

(c) Replicated secret sharing: Given xT for all T ∈ T with i ∈ T , Pi computes x :=
∑
T∈T x

T .
Specifically, for (n, t) = (3, 1), after receiving xi from one party, Pi computes x := x1 +x2 +x3.

• Open([x]): This procedure allows all parties to know x. This is easy to be realized by executing
Reconstruct([x], i) for i ∈ [1, n], where a private channel is unnecessary.
• Linear combination: Given public coefficients c1, . . . , c`, c ∈ F, all parties can compute locally

[y] :=
∑
h∈[1,`] ch · [xh] + c such that y =

∑
h∈[1,`] ch · xh + c as follows:

(a) Additive secret sharing: For i 6= 1, Pi computes yi :=
∑
h∈[1,`] ch · xih where xih is Pi’s share of

xh. Party P1 computes y1 :=
∑
h∈[1,`] ch · x1

h + c.
(b) Shamir secret sharing: For i ∈ [1, n], Pi computes yi :=

∑
h∈[1,`] ch · xih + c.

(c) Replicated secret sharing: Fix a set T1 ∈ T . For i ∈ T1, Pi computes yT :=
∑
h∈[1,`] ch · xTh + c

for all T ∈ T subject to i /∈ T where xTh is the Pi’s share of xh. For i ∈ [1, n], i /∈ T1, Pi
computes yT :=

∑
h∈[1,`] ch · xTh for all T ∈ T with i /∈ T . In particular, when n = 3 and t = 1,

yi =
∑
h∈[1,`] ch · xih if i 6= 1 and yi =

∑
h∈[1,`] ch · xih + c otherwise, where Pi gets {yj}j 6=i.

The LSSSs defined as above guarantee perfect privacy in the presence of malicious adversaries, but
only provide correctness against semi-honest adversaries. To achieve malicious security for the case of
t < n/2, we need to modify the Reconstruct procedure as follows:

• Reconstruct([x], i): When all shares of [x] are sent to Pi over a private channel, Pi can reconstruct
secret x as follows:
(a) Shamir secret sharing: After receiving all shares x1, . . . , xn of [x], Pi can compute a polynomial

f(X) :=
∑
j∈[1,t+1] δj(X) · xj , where δj(X) =

∏
k∈[1,t+1],k 6=j

X−αk
αj−αk is a degree-t polynomial.
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Then, for j ∈ [1, n]\[1, t + 1], Pi computes f(αj) and checks that xj = f(αj). If the check
fails, Pi aborts; otherwise, it computes x := f(0). If the check passes, then all shares are
computed from a unique polynomial f(X). We know that t + 1 shares of n shares are correct
from honest parties, and uniquely determine the polynomial f(X). Therefore, x reconstructed
by Pi is correct, if Pi does not abort.
If multiple secret values need to be reconstructed, then we can optimize the communication
similarly using a cryptographic hash function. In particular, Pj for all j ∈ [1, n]\[1, t + 1] send
the hash values of their shares to Pi, and then Pi computes their shares using polynomial
interpolation and checks whether these hash values are correct.

(b) Replicated secret sharing: For the sake of simplicity, we focus on the case that only one party
of three parties allows to be corrupted (i.e., n = 3 and t = 1). For other honest-majority cases,
this procedure can be done similarly.
Concretely, Pi−1 sends xi(i−1) to Pi and Pi+1 sends xi(i+1) to Pi, where the subscript indexes are
computed module 3. Then Pi checks that xi(i−1) = xi(i+1). If the check fails, Pi aborts; otherwise,
it defines xi := xi(i−1) and computes x := x1 + x2 + x3. Since either Pi−1 or Pi+1 is honest, the
equality check can guarantee that share xi is correct, and thus the secret x reconstructed by Pi
is correct.
If [x1], . . . , [x`] need to be reconstructed, then we can further reduce the communication of
this procedure using a cryptographic hash function H : {0, 1}∗ → {0, 1}κ [101]. In particular,
Pi−1 sends xi1, . . . , x

i
` to Pi, while Pi+1 sends τ := H(x̃i1, . . . , x̃

i
`) to Pi. Then, Pi checks τ =

H(xi1, . . . , x
i
`). If the check fails, Pi aborts; otherwise, it computes xh := x1

h+x2
h+x3

h for h ∈ [1, `].
If Pi−1 is honest, then it is clear that Pi will obtain the correct secrets. Otherwise (i.e., Pi+1

is honest), if there exists some h ∈ [1, `] such that xih 6= x̃ih, then Pi will abort except with
probability negl(κ), based on the second pre-image resistance of H.

For additive secret sharing, we need to equip it with IT-MACs to guarantee the security of pro-
cedures Reconstruct and Open in the presence of malicious adversaries, which is shown in the next
subsection.

3.2 Information-theoretic message authentication codes

In the dishonest-majority setting, MPC protocols can use additive secret sharing to execute the circuit
evaluation privately [4, 102]. This is sufficient for semi-honest security. Nevertheless, in the malicious
setting, IT-MACs need to be introduced to guarantee the correctness of secret values [103, 104]. Currently,
there are two-style IT-MACs that are used in MPC protocols: BDOZ-style [105] and SPDZ-style [103].
While the original IT-MACs are defined over a single large field, it is easy to extend them so that values
are defined over an any-sized field F and authentication is done over a large extension field K, which is
described as follows:

• BDOZ-style IT-MACs [105]: Sample a global key (a.k.a. MAC key) ∆ ← K. For a message
x ∈ F, sample a local key K← K, and define an MAC on x as M = K + x ·∆, where (x,M) is held
by a party PA and (K,∆) is produced by the other party PB.
If a malicious PA forges an MAC M′ on x′ 6= x such that M′ = K + x′ · ∆, then PA learns ∆ =
(M−M′)/(x− x′), which occurs with probability 1/|K| as ∆ is perfectly hidden.
• SPDZ-style IT-MACs [103]: Sample a global key ∆← K. For a message x ∈ F, the MAC on x

is defined as M = x ·∆. Note that every party holds the additive shares of ∆ and M, and no party
knows the key ∆ and the MAC M (see below for details). The security analysis is similar to that of
BDOZ-style IT-MACs.

It is easy to see that SPDZ-style IT-MACs are more compact than BDOZ-style IT-MACs. Never-
theless, when applying to MPC, it is incomparable for the IT-MACs of two styles. While BDOZ-style
IT-MACs are more suitable to be used in constant-round MPC protocols based on distributed gar-
bling [106–111], SPDZ-style IT-MACs are mainly adopted to transform the semi-honest GMW protocol [4]
into efficient MPC protocols with malicious security.

Given the above IT-MACs, we can define authenticated secret sharing (i.e., additive secret sharing
with IT-MACs authentication) as follows:
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• Initialize: For each i ∈ [1, n], a dealer samples ∆i ← K, and sends ∆i to Pi. For SPDZ-style IT-
MACs, the dealer also computes ∆ :=

∑
i∈[1,n] ∆i, where ∆i is the Pi’s share of ∆ and can be also

written as ∆i in this case.
• Share(x): For x ∈ F, the dealer generates n random additive shares x1, . . . , xn ∈ F such that∑

i∈[1,n] x
i = x, where xi is the Pi’s share. Then, the dealer computes their MAC tags as follows:

(a) BDOZ-style: Each share xi is authenticated independently by n− 1 different parties. In par-
ticular, for each j 6= i, sample Kj [xi] ← K and compute Mj [xi] := Kj [xi] + xi ·∆j . Then send(
xi, {(Mj [xi],Ki[xj ])}j 6=i

)
to every party Pi.

(b) SPDZ-style: Compute M := x · ∆, and then sample uniform MAC shares M1, . . . ,Mn such
that

∑
i∈[1,n] M

i = x ·∆, i.e.,
∑
i∈[1,n] M

i = (
∑
i∈[1,n] x

i) · (
∑
i∈[1,n] ∆i).

By [[x]], we denote the authenticated sharing of x.
• Reconstruct([[x1]], . . . , [[x`]], i): This procedure enables only Pi to obtain secrets x1, . . . , x` for some
` ∈ N by executing as follows:
(a) BDOZ-style: Let H : {0, 1}∗ → {0, 1}κ be a hash function modeled as a random oracle. For

each j 6= i, Pj computes τj := H(Mi[x
j
1], . . . ,Mi[x

j
` ]), and then sends (xj1, . . . , x

j
` , τj) to Pi over

a private channel. Then, for j 6= i, Pi checks that τj = H(Ki[x
j
1] + xj1 ·∆i, . . . ,Ki[x

j
` ] + xj` ·∆i)

holds. The soundness error is bounded by (n− 1)/|K|+ (n− 1)/2κ based on the analysis [112].
Following the work [112], we can define H(m1, . . . ,m`) =

⊕
i∈[1,`] F (mi) and use the fixed-key

AES to instantiate F , where the computation of fixed-key AES is blazing fast given hardware-
instruction support.

(b) SPDZ-style: Let [[r]] be a random authenticated share. Every party sends its shares on
[[x1]], . . . , [[x`]], [[r]] to Pi over a private channel, and then Pi can reconstruct x1, . . . , x` and
r. All parties run a coin-tossing protocol to generate uniform elements χ1, . . . , χ` ∈ K, and
compute [[y]] :=

∑
h∈[1,`] χh · [[xh]] + [[r]]. Then Pi computes y :=

∑
h∈[1,`] χh · xh + r and sends

it to all other parties. For each j 6= i, Pj sends σj := M(y)j − y ·∆j to Pi. Then Pi computes
σi := M(y)i − y ·∆i and checks that

∑
h∈[1,n] σ

h = 0.
• Open([[x1]], . . . , [[x`]]): This procedure allows all parties to get x1, . . . , x`.

(a) BDOZ-style: This is easy to be realized by executing Reconstruct([[x1]], . . . , [[x`]], i) for i ∈ [1, n],
where a private channel is unnecessary.

(b) SPDZ-style: Every party broadcasts its shares on [[x1]], . . . , [[x`]] to all other parties, and then
computes the values x1, . . . , x`. To verify the correctness of x1, . . . , x`, all parties execute the
following batch-check procedure:
(i) All parties execute a coin-tossing protocol to sample uniformly random χ1, . . . , χ` ∈ K.
(ii) The parties compute [[y]] :=

∑
h∈[1,`] χh · [[xh]].

(iii) Every party Pi computes σi := M(y)i − y ·∆i, and then commit σi to all other parties.
(iv) Every party Pi opens σi to all other parties.
(v) Every party Pi checks that

∑
h∈[1,n] σ

h = 0.

For MPC protocols in the dishonest-majority setting, the dealer is realized distributedly by executing
a protocol, where global key ∆i is sampled uniformly at random by party Pi. Note that authenticated
shares (i.e., additive secret sharing equipped with IT-MACs) are still additively homomorphic, as IT-
MACs are additively homomorphic. That is, given public coefficients c1, . . . , c`, c ∈ F, all parties can
compute locally [[y]] :=

∑
h∈[1,`] ch · [[xh]] + c. Authenticated shares of both styles are able to be generated

using COT or its arithmetic generalization vector oblivious linear-function evaluation (VOLE), which are
discussed in Section 5.

3.3 Semi-honest protocols

In the semi-honest setting, we use a simple framework to unify the state-of-art concretely efficient MPC
protocols, including 1) the GMW protocol [4] with optimizations [102, 113–115] based on additive secret
sharing; 2) the BGW protocol [2] with optimizations [116–119] based on Shamir secret sharing; and 3) the
secure three-party computation (3PC) protocol [87] based on replicated secret sharing. Here, for MPC
based on replicated secret sharing, we focus on the three-party case for the sake of simplicity.
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Figure 1. Framework for semi-honest MPC protocols based on the secret-sharing approach in both dishonest-majority and
honest-majority settings

While the original GMW protocol only considers Boolean circuits, we easily extend it to arithmetic
circuits over any finite field F [120]. Similarly, while the state-of-the-art 3PC protocol [87] with semi-
honest security in the honest-majority setting focuses on the case of Boolean circuits, it is easy to extend
this protocol to work over any finite field F [101]. Toward more parties (e.g., the number of parties
is n = 4 or n = 5), MPC protocols based on replicated secret sharing can be constructed efficiently
(see, e.g., [124–126]). In the presence of semi-honest adversaries, the GMW-like protocols and the MPC
protocols based on replicated secret sharing can be straightforwardly extended to work over a ring such as
Z2k for k = 32 or k = 64. Furthermore, the BGW-like protocols based on Shamir secret sharing can also
work over a general ring (see, e.g., [127]). While integer computations modulo Z2k are more natural for
modern computers, and may be useful for simplifying implementations and applications such as machine
learning (ML), we focus on the case of finite fields for the sake of simplicity.

Below, we present the framework for secret-sharing-based MPC protocols in the semi-honest setting,
which is shown in Figure 1. Specifically, the inputs are shared secretly among all parties, and then
the circuit is evaluated layer-by-layer where all gates in a layer can be computed in parallel, and thus
the communication round is linear to the depth of the circuit. Finally, the output of every party is
reconstructed. While addition gates are free without any communication, the main cost of MPC protocols
is to compute multiplication gates by executing a semi-honest multiplication protocol Πsemi

Mult. For LSSSs
of different kinds, Πsemi

Mult is constructed in a different way. We sketch three classical constructions of Πsemi
Mult

corresponding to three kinds of secret sharings in Figure 2, where the protocols are divided into two
phases: the preprocessing phase where the circuit and input are unknown and the online phase where the
circuit and input are known to all parties.

Toward additive secret sharing, the state-of-the-art protocol adopts Beaver multiplication triples [121]
to perform the multiplication of two secret values. In particular, a random Beaver triple ([a], [b], [c])
with c = a · b ∈ F is generated in the preprocessing phase, and then is consumed to compute one
multiplication using the Beaver technique in the online phase. If F = F2, then Beaver triples can be
computed by OT extension protocols; otherwise, they are able to be computed using OLE protocols.
Recently, Mouchet et al. [128] also used the multi-party homomorphic encryption (MHE) scheme to
generate Beaver triples with semi-honest security in the dishonest-majority setting. When the Beaver
technique requires two elements per multiplication gate per party in the online phase, the communication
can be further reduced to one element per multiplication gate per party using the technique underlying the
Turbospeedz protocol [129]. In particular, the function-dependent preprocessing phase is introduced where
the circuit is known but the input is still unknown, and circuit-dependent Beaver triples are generated
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Figure 2. Semi-honest multiplication protocols based on secret sharings of different types

in this phase. Then, in the online phase, public values (i.e., the values obtained by masking actual
values with random values) are computed by the parties, and the multiplication is performed with public
values and circuit-dependent Beaver triples. We describe the GMW protocol with this optimization as
follows:

(1) Consider (Λw, [λw]) as the additive secret sharing on a wire w, where Λw = zw + λw ∈ F is a
public value, zw is the actual value on w and λw is a random element. Here, [λw] can be generated
by having every party share a random value to other parties and then sum all its shares as the
resulting share of λw in the preprocessing phase.

(2) For each wire w associated with Pi’s input xw, Pi sends Λw = xw + λw to all parties who define
(Λw, [λw]) as the sharing on wire w.

(3) For each addition gate (α, β, γ,ADD) with input sharings (Λα, [λα]) and (Λβ , [λβ ]), the parties
locally compute Λγ = Λα + Λβ ∈ F and [λγ ] = [λα] + [λβ ], where [λγ ] can be computed in the
function-dependent preprocessing phase.

(4) For each multiplication gate (α, β, γ,MULT) with input sharings (Λα, [λα]) and (Λβ , [λβ ]), all
parties generate a random sharing [λαβ ] with λαβ = λα · λβ ∈ F by running a semi-honest
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OT/OLE protocol with inputs [λα], [λβ ] in the function-dependent preprocessing phase. Then,
the parties compute

[Λγ ] := Λα · Λβ − Λα · [λβ ]− Λβ · [λα] + [λαβ ] + [λγ ],

where [λγ ] is a random sharing generated by the parties in the preprocessing phase. The parties
execute Open([Λγ ]) to obtain Λγ , and define (Λγ , [λγ ]) as the sharing on the output wire γ.

The GMW protocol based on the multiplication protocol Πsemi
Mult shown in Figure 2 supports the cor-

ruption threshold t = n− 1 with n the number of total parties. If we allow n/2 ≤ t < n− 1 (that is still
in the dishonest-majority setting), we can use the TinyKeys approach [114] to improve the efficiency of
protocol Πsemi

Mult over a binary field. Specifically, for the number of honest parties h > 1, e.g., (h = 6, n = 20)
or (h = 120, n = 400), Hazay et al. [114] used the IKNP OT extension protocol [113, 130] with short
keys to generate Beaver multiplication triples. The basic idea is that the combination of the short keys
of h honest parties will have a large entropy, although the short key of an honest party has only a low
entropy. The TinyKeys approach can also be extended to the malicious setting using IT-MACs with short
keys [131].

Due to the recent development of PCG-style OT extension protocols [132–134], these protocols outper-
form the IKNP-style OT extension protocols [113, 130, 135, 136], and have the sublinear communication
compared to the linear communication of the IKNP-style protocols (see Section 5 for more details). In
this case, the efficiency improvement using the TinyKeys approach seems to be significantly smaller, if the
recent PCG-style (instead of IKNP-style) OT extension protocols are adopted to construct the protocol
Πsemi

Mult.
For Shamir secret sharing, if the number of parties is small (particularly n ≤ 5), the state-of-the-

art multiplication protocol is the GRR protocol [117] using the degree-reduction approach. The GRR
protocol works by letting every party locally multiply its shares of the inputs [x], [y], share the result
to all other parties (allowing the degree of the polynomial to be reduced from 2t to t), and then locally
compute a linear combination of shares as its share of the output [z]. If the number of parties is larger
(e.g., n > 5), we mainly adopt the Damg̊ard–Nielsen (DN) protocol [116] to realize the multiplication of
two secret values. The original DN protocol [116] described in Figure 2 is information-theoretically secure,
and needs six elements of communication per multiplication gate per party. In the information-theoretic
setting, the communication cost of the DN protocol was first improved by Goyal et al. [119, 137] from 6
elements to 5.5 elements using a simple technique. Recently, the communication of the DN protocol was
further improved to 4 elements per multiplication gate per party by Goyal et al. [118]. Inspired by the
technique [119, 137], they first modify the original DN protocol [116] shown in Figure 2 to make Pking

send a random degree-t Shamir sharing [ε]t (instead of ε) to all other parties and then all parties compute
[z]t := [ε]t − [r]t locally. Their crucial observation is that when Pking is an honest party, the corrupted
parties only receive random elements from Pking in this case. This holds even if the corrupted parties
know the whole double sharings ([r]t, [r]2t), since they only receive t shares that are uniformly random
and independent of secret z = x · y. Therefore, we can split the tasks of computing multiplication gates
as Pking into all parties rather than a fixed party in the original DN protocol. In particular, when we
need to compute n multiplication gates, we let every party behave as Pking for one multiplication gate. If
Pking is a corrupted party, we still need a pair of random double sharings. If Pking is an honest party, the
double sharings do not need to be random. This means that we only need to generate t pairs of random
double sharings for n multiplication gates in the preprocessing phase. In the computation setting, we can
use the pseudorandom secret sharing approach [99] to further reduce the communication cost, which has
been used in previous honest-majority MPC protocols such as [101, 138–140]. For example, the state-
of-the-art DN-style protocol [118] can be optimized to two elements per multiplication gate per party
using a pseudo-random generator (PRG). In addition, Goyal et al. [118] also proposed a combination
of the improved DN multiplication and Beaver triple multiplication to reduce the round complexity
by a factor of 2, at the cost of that the communication cost is additionally increased by 0.5 elements
per multiplication gate per party. Recently, Abspoel et al. [141] used regenerating codes to construct a
single-round multiplication protocol at the cost of increasing the communication complexity by a factor
O(n/ log n), where the regenerating property [142] of Shamir secret sharing requires that the number of
parties n is large and the DN multiplication protocol needs about two rounds.

As for replicated secret sharing in the 3PC setting, the state-of-the-art protocol [87, 101] is simple and
needs to send only one element per multiplication gate per party. In particular, shares of z = x · y can
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be computed by every party locally. Then, every party needs to use a random 0-sharing to randomize its
share of z, and then sends the result to another party. The random 0-sharing [r] is easy to be computed by
having every party Pi send a uniform key ki to Pi+1 for i ∈ [1, 3] and compute ri := F (ki−1, id)−F (ki, id)
using the two keys that it holds where id is an identifier. While Shamir secret sharing is suitable for a
large number of parties, replicated secret sharing is mainly used for a small number of parties (e.g., the
number of parties n ∈ {3, 4, 5, 7, 9}). In addition, Keller et al. [143] showed that the 3PC protocol [87]
can be generalized to a general Q2 access structure, which was further improved in [144] to eliminate the
restriction of replicated secret sharing (i.e., requiring an exponentially-large number of shares for a large
number of parties).

3.4 Maliciously secure protocols

The MPC protocols based on secret sharings described in the previous subsection guarantee security in
the presence of semi-honest adversaries. To achieve malicious security, some checking procedures need to
be added. The underlying techniques to assure security against malicious adversaries are different between
dishonest-majority MPC and honest-majority MPC. For example, MPC in the dishonest-majority setting
needs IT-MACs to authenticate values shared among all parties, but this is unnecessary for MPC with
honest majority. Thus, we present the development for maliciously secure MPC in two different settings.

Dishonest majority. Goldreich, Micali and Wigderson (GMW) [4] proposed a general compiler to con-
vert a semi-honest MPC protocol into a maliciously secure MPC protocol for the same computational
task. However, this compiler is non-black-box using the generic zero-knowledge proofs to prove the cor-
rectness of computation in each step, and thus is not concretely efficient. Later, Ishai, Prabhakaran and
Sahai (IPS) [145] proposed a black-box compiler, where an inner MPC protocol with semi-honest security
computes a circuit in the OT-hybrid model, and an outer MPC protocol with malicious security in the
honest-majority setting is used to guarantee the security of the whole MPC protocol in the presence of
malicious adversaries. The IPS compiler was improved in [123] for multi-party setting, and was further
optimized in [54, 146] for two-party setting. However, the concrete efficiency for the maliciously secure
MPC protocols based on the IPS compiler is still not sufficiently high. Recently, based on the IPS frame-
work, Hazay et al. [147] proposed a new compiler using two-level sharings where the outer level is Shamir
secret sharing or algebraic geometric (AG) secret sharing [148], and the inner level is additive secret
sharing. Their compiler allows an arbitrary-sized field with constant communication overhead over the
semi-honest GMW protocol [4], but the concrete efficiency is still low.

In the dishonest-majority setting, concretely efficient MPC protocols based on IT-MACs have the
smallest overhead to achieve malicious security. Using IT-MACs, we can transform the semi-honest GMW
protocol shown in Figure 1 to a maliciously secure protocol in the following way:

• Replacing all additive secret sharings with authenticated secret sharings defined in Section 3.2.
• For each wire w associated with Pi’s input xw, the parties generate a random authenticated share

[[rw]] in the preprocessing phase, and then Pi broadcasts Λw := xw − rw to all parties who compute
[[xw]] := [[rw]] + Λw.

• Replacing the semi-honest multiplication protocol Πsemi
Mult with a maliciously secure protocol Πmali

Mult.

We can also use the Beaver technique [121] to construct protocol Πmali
Mult in the following steps:

• Preprocessing phase: All parties generate a random authenticated triple ([[a]], [[b]], [[c]]) with c =
a · b ∈ F. The generation of authenticated triples can be divided into two steps: 1) computing
authenticated shares by executing a correlated OT (COT) or vector OLE (VOLE) protocol with
malicious security, where the notion of COT and VOLE can be found in Section 5; 2) generating
faulty authenticated triples with authenticated shares and then checking the correctness of these
faulty authenticated triples. In the first step, all parties execute a maliciously secure COT/VOLE
protocol in a pairwise way, and then run a consistency-check procedure to check the consistency
of shares and global keys among multiple executions. The state-of-the-art consistency check adopts
the random linear combination approach (see, e.g., [43, 104, 106, 108, 110]), and requires a very
small communication overhead. For the second step, multiple approaches can be used for different
applications (see below).
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• Online phase: This phase is similar to the semi-honest protocol shown in Figure 2, except
that authenticated shares are involved and the corresponding open procedure described in Sec-
tion 3.2 is used. Similarly, the communication in this phase can be further improved from
2 elements per multiplication gate per party to only one element, using the technique in
Turbospeedz [129].

When the Turbospeedz technique [129] and the batch-check technique shown in Section 3.2 are used,
the online phase of the maliciously secure GMW-like protocols [103, 104] has the optimal communica-
tion cost without sacrificing the security. Most of MPC studies focus on improving the efficiency of the
preprocessing phase. Particularly, generating authenticated triples is the efficiency bottleneck. For the
generation of authenticated triples, we consider two cases: 1) large fields (i.e., |F| ≥ 2ρ) and 2) binary
fields (i.e., F = F2). Note that the techniques for binary fields are able to be used in other cases of small
fields (e.g., F28).

For the case of large fields, the SPDZ framework [103, 149] is the state-of-the-art protocol in the
dishonest-majority malicious setting. The original SPDZ protocol [103, 149] uses the depth-1 homo-
morphic encryption (HE) scheme (i.e., the underlying HE scheme could support one multiplication) to
generate authenticated triples in the preprocessing phase, and can evaluate the circuit fast in the online
phase. Later, Keller et al. [43] proposed a SPDZ-style protocol called as MASCOT, which uses the OT
extension protocol [136] and Gilboa multiplication idea [150] to generate authenticated triples more effi-
ciently. Subsequently, based on additively homomorphic encryption [151] and lattice-based zero-knowledge
proofs, Keller et al. [152] presented an optimized SPDZ-style protocol referred to as Overdrive, which sig-
nificantly improves the communication to generate authenticated triples. Overdrive includes two versions:
LowGear for a small number of parties and HighGear for a large number of parties. The performance of
HighGear is further improved by Baum et al. [153] via optimizing the underlying zero-knowledge protocol.
In these SPDZ protocols, the underlying technique for checking the correctness of faulty authenticated
triples is the so-called “sacrifice” technique. The improved sacrifice technique [43] works as follows:

• Let ([[a]], [[b]], [[c]]) and ([[â]], [[b]], [[ĉ]]) be two faulty authenticated triples held by parties P1, . . . , Pn.
The parties execute the following procedure to check the correctness of the first triple ([[a]], [[b]], [[c]])
by sacrificing the second triple ([[â]], [[b]], [[ĉ]]).
(a) Run a coint-tossing protocol to sample a uniformly random element r ∈ F.
(b) Compute [[ε]] := r · [[a]]− [[â]] locally.
(c) Execute Open([[ε]]) to obtain ε.
(d) Compute [[σ]] := r · [[c]]− [[ĉ]]− ε · [[b]] locally.
(e) Run CheckZero([[σ]]) to verify that σ = 0, where CheckZero is the same as Open defined in

Section 3.2, except that the values to be opened are 0 and thus are unnecessary to be sent.
• When ` faulty authenticated triples need to be checked for some integer `, the randomness r can

be reused for all ` checking procedures, and the procedures Open and CheckZero can be done in a
batch (see Section 3.2).

• If c = a · b+ e for some adversarially chosen error e and e 6= 0, then we have the following:

σ = r · c− ĉ− ε · b
= r · (a · b+ e)− ĉ− (r · a− â) · b
= r · e− ê,

where ê = ĉ − â · b is another error introduced by the adversary. If e 6= 0, the probability that
σ = r · e − ê is equal to 0 is 1/|F|, as r is sampled uniformly at random after e, ê have been
determined. Therefore, the checking procedure described as above requires F to be a large field. We
can also repeat the checking procedure t times to support a small field F, where |F|t ≥ 2ρ and t = ρ
if F = F2. However, this will require a large computation and communication overhead.

Recently, Chen et al. [154] integrated the depth-2 HE scheme [155, 156] into the SPDZ framework
to improve the efficiency of SPDZ protocols for computing matrix multiplication and two-dimensional
convolution. For other general functions, it is not clear whether their approach can achieve a better
efficiency, due to the larger parameters for HE.

While the semi-honest GMW protocol over a field can be straightforwardly extended to ring Z2k , this is
not easy for SPDZ-style protocols with malicious security. Cramer et al. [157] proposed the first concretely
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efficient MPC protocol over a ring Z2k in the SPDZ framework (named as SPDZ2k), using IT-MACs over
two different rings where the secret values are in Z2k and the MAC tags are in Z2k+s . Their protocol
SPDZ2k uses the MASCOT idea to generate authenticated triples, but needs more communication than
MASCOT [43]. Later, Damg̊ard et al. [158] implemented SPDZ2k , designed new protocols for equality
test, comparison, and truncation over ring Z2k , and demonstrated that these operations in the ML domain
using SPDZ2k are more efficient than the field-based SPDZ-style protocols [43, 152]. Subsequently, two
improved MPC protocols based on the SPDZ2k idea have also been proposed [159, 160].

Recently, Boyle et al. [161] proposed several new protocols to generate Beaver multiplication triples
and authenticated triples in the PCG framework based on a new variant of the ring-LPN assumption. They
use distributed point function (DPF) and the sparse feature of the noise in ring-LPN to generate Beaver
triples in the semi-honest two-party setting with a small communication. Using the programmability
of PCG [162], the semi-honest protocol for producing Beaver triples in the two-party setting can be
easy to be extended to the multi-party setting. Based on the construction of SPDZ-style authenticated
shares, Boyle et al. [161] also extended the semi-honest protocol to generate authenticated triples in the
two-party malicious setting. The maliciously secure protocol has a communication that is two orders of
magnitude smaller than Overdrive. While the communication efficiency is attractive, it is worth further
reducing the computational cost to make the PCG approach more practical. Boyle et al. [161] also gave a
candidate construction for generating authenticated triples in the multi-party setting using the three-party
DPF [163], but its concrete efficiency is very low.

For the case of binary field (i.e., F = F2), we mainly consider two types of MPC protocols in
the malicious setting: TinyOT-style [104, 106–110, 164, 165] and MiniMAC-style [164, 166–169]. In
particular, the sub-protocols for generating authenticated triples underlying in the TinyOT-style pro-
tocols can be used to design constant-round MPC protocols with malicious security [106–110]. These
TinyOT-style protocols adopt the BDOZ-style IT-MACs [105] to authenticate bits, and use the buck-
eting approach to eliminate the possible leakage of shares due to the selective-failure attack, where
the adversary can guess a bit share of an honest party with probability 1/2 but will be caught with
the same probability. MiniMAC [168] aims to solve the problem that SPDZ [103] has a large commu-
nication overhead for binary field F2 (particularly the communication is blown up by a factor of ρ).
Specifically, MiniMAC adopts a batch authentication idea: if k instances of the same Boolean circuit
need to be computed at once, one can bundle these computations together and view them as the com-
putation of a single Boolean circuit over a large ring Fk, where the addition and multiplication over
Fk are component-wise. In MiniMAC, an IT-MAC on message x ∈ Fk is defined as C(x) ∗ ∆ where
∆ ∈ Fk, C is a linear error-correcting code with a large minimum distance and ∗ is the component-
wise product. MiniMAC-style MPC protocols [164, 166–169] also work for layered Boolean circuits where
the gates of a Boolean circuit are partitioned into ordered layers and a layer only consists of gates of
the same type. The recent MiniMAC-style protocol [166] adopts an algebraic tool called reverse multi-
plication friendly embedding (RMFE) [170] that is originally proposed for honest-majority MPC, and
obtains a lower communication cost. Besides, for small fields, TinyTable-style protocols [112, 171, 172]
are proposed and very suitable for secure AES or 3DES evaluation using the one-time truth table
approach.

Honest majority. In the malicious setting, we only need to check the correctness of multiplication
gates, as addition gates are computed locally and always correct. In 2017, Lindell and Nof [101] observed
that the semi-honest DN protocol [116] has guaranteed the privacy of secret values in the presence of
malicious adversaries, and allows the adversary to introduce an additive error in the output, i.e., for
two sharings [x], [y], the DN protocol will output a sharing [z] with z = x · y + d where d is an additive
error. This observation also holds for the GRR protocol [117] and the multiplication protocol based on
replicated secret sharing [87]. They adopt the Beaver triples and the random-linear-combination approach
to check the correctness of multiplication gates, which introduces a relatively large overhead compared
to the semi-honest protocol. Subsequently, Chida et al. [138] proposed a different approach to verify the
correctness of multiplication gates, where the semi-honest multiplication protocol is executed twice and
then the parties check the correctness of a multiplication gates using another related multiplication triple.
Their MPC protocol still introduces twice the communication overhead compared to the semi-honest DN
protocol. Concurrently, Nordholt and Veeningen [140] also achieved the twice communication overhead.
The studies [101, 138] mainly consider the case of large fields, and also present the correctness check
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Table 1. Comparison of honest-majority MPC protocols based on Shamir secret sharing

Semi-honest MPC Comm. per mult. gate per party Maliciously secure MPC Comm. overhead

[116] 6 elements (2.5 elements) [101] 7×
[119, 137] 5.5 elements (2.5 elements) [138, 140] 2×
[118] 4 elements (2 elements) [125, 137] 1 + o(1) ×

Note: We compare the communication cost for evaluating a single arithmetic circuit. We use “Comm.” to denote communication

and “mult.” to denote multiplication. If the values are in parenthesis “()”, then they represent the communication costs in the

computational setting using the PRSS approach, otherwise they denote the communication costs in the information-theoretic

setting.

for small fields by repeating the verification procedure which will introduce an large overhead. In the
three-party setting, Furukawa et al. [173] and Araki et al. [174] converted the semi-honest protocol for
Boolean circuits [87] to maliciously secure protocols using the “Cut-and-Choose” approach, which will
introduce a overhead of O(ρ/ logN) where N is the number of multiplication gates. This overhead is
smaller than the natural repeat approach, but is not optimal.

The MPC protocols described as above allow the corruption threshold t < n/2 where n is the number
of parties. If t < n/3 is allowed, the MPC protocol with malicious security can be constructed at essentially
the same cost as the best-known semi-honest protocol [139], i.e., the overhead to achieve malicious security
is 1 and optimal. Their approach is as follows: 1) for two Shamir sharings [x]t and [y]t, the parties can
locally compute the Shamir sharing of [z]2t with z = x · y; 2) when t < n/3, the opening of [z]2t can be
guaranteed to be correct; 3) [z]2t can be used to check the correctness of [z]t that is obtained by running
the semi-honest DN protocol. If t < n/2, there are two recent techniques to achieve malicious security
with an overhead of 1 over the best-known semi-honest protocol.

Specifically, one can use the distributed zero-knowledge proof with sublinear communication [124] to
verify the correctness of multiplication gates. Firstly, Boneh et al. [124] used such zero-knowledge proofs
and a variant of the DN protocol with replicated secret sharing to construct a maliciously secure MPC
protocol for constant number of parties. At the first time, their approach obtains 1 bit per AND gate
per party in terms of the amortized communication cost for the 3PC protocol about Boolean circuits.
Their verification protocol requires O(n

√
N +n) field elements per party of communication and constant

rounds using the Fiat–Shamir heuristic, where n is the number of parties. In the three-party setting, the
concrete efficiency of the 3PC protocol by Boneh et al. [124] is significantly improved in [175], which
achieves the best efficiency for now. Recently, Boyle et al. [125] used the distributed zero-knowledge proof
in a new way, and constructed an MPC protocol with an optimal overhead over the best-known semi-
honest protocol for an arbitrary number of parties. Their approach uses a new insight where for any secret
sharing of a value x, we can simultaneously view shares of x as a sharing of each secret share xi itself.
Their verification protocol [125] for checking multiplication triples needs communication of O(n logN+n)
field elements per party and constant rounds.

Building on the technique [124] of distributed zero-knowledge proofs, Goyal et al. [119, 137] proposed
another verification technique for multiplication gates to achieve malicious security with an overhead of
1, and requires O(logN) rounds and communication of (n logN + n) field elements per party for the
verification protocol.

They used a key observation that the semi-honest DN protocol can compute the inner-product of two
vectors with the same communication cost [138], and adopted a recursive idea to perform the verification
of multiplication gates. Concretely, their verification technique works as follows:

(1) Given N = |C| multiplication triples {([xi], [yi], [zi])}i∈[1,N ] to be verified, where these tuples are
computed using the semi-honest DN protocol, parties P1, . . . , Pn use a random-linear-combination
approach with a uniformly random r to compute the following vectors:

[x] := ([x1], r · [x2], . . . , rN−1 · [xN ])
[y] := ([y1], [y2], . . . , [yN ])

[z] :=
∑

i∈[1,N ]

ri−1 · [zi].

The verification of multiplication triples is reduced to verify whether z = x · y for ([x], [y], [z]).
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(2) Let k be a compression parameter. The parties transform the original tuple of dimension N into
a new tuple of dimension N/k. Rewrite [x] and [y] as follows:

[x] = ([a1], [a2], . . . , [ak])
[y] = ([b1], [b2], . . . , [bk]),

where {ai,bi}i∈[1,k] are vectors of dimension N/k. For i ∈ [1, k− 1], the parties execute the semi-
honest DN protocol with inner-product extension to compute [ci] with ci = 〈ai,bi〉. Then, they set
[ck] = [z]−

∑
i∈[1,k−1][ci]. Now, the parties need to verify the correctness of ([ai], [bi], [ci]) for i ∈

[1, k]. This can be done in a batch using the batch-wise multiplication verification technique [140,
176] to compress the verification of k inner-product tuples into one check of a single inner-product
tuple of dimension m/k.

(3) The parties repeat the second step logkN times so that only a single multiplication triple needs
to be checked. This final check can be performed using the randomization and opening approach.

The verification technique by Goyal et al. [119, 137] is originally described for Shamir secret shar-
ing, and can also work for replicated secret sharing as the state-of-the-art semi-honest multiplication
protocol [87, 101] has the same communication cost for computing inner-product of two vectors.

Both of the state-of-the-art verification techniques [125, 137] are based on the technique underly-
ing the distributed zero-knowledge proofs [124]. Both techniques can obtain the same communication
complexity, but has a different round complexity where the technique [119] requires O(logN) of rounds
and the technique [125] has constant rounds. In terms of concrete communication efficiency, the verifi-
cation protocol of multiplication gates by Goyal et al. [137] is slightly better than the protocol by Boyle
et al. [125].

In Table 1, we compare the communication cost of several known honest-majority MPC protocols
based on Shamir secret sharing for evaluating a single arithmetic circuit, where the left part compares
the communication cost of semi-honest MPC protocols and the right part compares the communication
overhead of maliciously secure MPC protocols over semi-honest protocols. For a large number of parties,
the honest-majority MPC protocols as described above adopt Shamir secret sharing as the underlying
LSSS, and thus require O(n log n) bits per multiplication gate of communication complexity for evaluating
a single Boolean circuit, as Shamir secret sharing requires that the size of field F is greater than the
number n of parties. Recently, based on RMFE [170], Polychroniadou and Song [177] combined Shamir
secret sharing with additive secret sharing to reduce the communication complexity to O(n) bits per
multiplication gate.

Two recent studies [178, 179] designed large-scale MPC protocols, which scale practically to hundreds
of thousands of parties. Such MPC protocols are interesting for applications that a large number of parties
participate in the protocol execution. For example, in privacy-preserving federated learning, thousands
of low-resource devices are desired to train a ML model on their collective data. Additionally, when
the number of parties is larger, the honest-majority assumption will become more believable. While the
honest-majority MPC protocols [101, 116, 118, 119, 125, 137–139] have a total communication complexity
O(n|C|), both concretely efficient MPC protocols [178, 179] adopt packed secret sharing [180] to obtain
the total communication complexity O(|C|), where n is the number of parties and |C| is the size of the
circuit to be computed. While the work by Gordon et al. [179] has the total computation complexity
O(log n · |C|) for any polynomial-sized circuit, the work by Beck et al. [178] obtains the total computation
complexity O(|C|) for highly repetitive circuits (e.g., ML training algorithms). Packed secret sharing is
an important tool that has been used to obtain the total communication complexity Õ(|C|) for SIMD
circuits1 [181–183], and is a generalization of Shamir secret sharing that defines as follows:

• Let n be the number of parties and k be the number of secrets that are packed in a single sharing.
Let α1, . . . , αn, β1, . . . , βk be n+ k distinct non-zero elements over a field F.

• A degree-d packed Shamir sharing of secret vector x = (x1, . . . , xk) ∈ Fk is a vector (y1, . . . , yn),
which satisfies that there exists a polynomial f(·) ∈ F[X] of degree d, such that for each i ∈ [1, k],
f(βi) = xi and for all i ∈ [1, n], f(αi) = yi. Party Pi obtains the ith share yi.

1 SIMD circuits are arithmetic circuits that simultaneously evaluate multiple copies of the same circuit on
different inputs.
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Figure 3. Semi-honest Yao’s 2PC protocol

• To reconstruct the packed secret vector x, at least d + 1 shares are needed and it can be done by
Lagrange interpolation. For a random degree-d packed Shamir sharing of x, any d − k + 1 shares
are independent of secret x. Thus, for corruption threshold t, we have d ≤ t+ k − 1.

Recently, Goyal et al. [184] constructed a large-scale MPC protocol, which achieves the total commu-
nication complexity O(|C|) for a single circuit evaluation, using Hall’s Marriage Theorem. In the malicious
setting, the MPC protocol by Goyal et al. [184] can achieve an overhead of 1 over the semi-honest protocol
using the verification technique [119], while the overhead for other recent MPC protocols [178, 179] is
more than twice. Since no implementation is provided, the concrete efficiency of their MPC protocol is
not clear. All the recent large-scale MPC protocols [178, 179, 184] require that the number of corrupted
parties t ≤ n(1/2− ε) for 0 < ε < 1/2. Besides, Gordon et al. [179] suggested to use the SPDZ technique
and a committee of t+ 1 parties to design the online protocol, which is usable to reduce the online com-
munication cost as only t+ 1 parties instead of n parties run the online protocol. Concurrently, Escudero
and Dalskov [185] improved the online communication cost of honest-majority MPC protocols using the
Turbospeedz technique and the committee idea, and obtained the minimal online communication (i.e.,
one field element per multiplication gate per party).

4 Constant-round MPC based on garbled circuits

For now, known concretely efficient constant-round MPC protocols are constructed based on garbled
circuits that are encrypted versions of circuits and can be computed only once. We first consider semi-
honest protocols, and then show how they are compiled to maliciously secure MPC protocols.

4.1 Semi-honest protocols

4.1.1 Secure two-party computation

The first constant-round secure two-party computation (2PC) protocol was proposed by Yao [6], and
achieves semi-honest security. The Yao’s 2PC protocol adopts garbled circuit (GC) and OT as the building
blocks. Specifically, using a garbling scheme, a garbler PA is able to generate a garbled circuit GC, an
encoding information e and a decoding information d.

Then, an evaluator PB can evaluate GC with e, and then obtains the output bits according to d. The
garbling scheme enables PB to obtain a function output, but does not reveal any other information on
the input to PB. We refer the reader to [186, 187] for the formal definition of garbling schemes. Roughly,
Yao’s 2PC protocol with semi-honest security is described in Figure 3.
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The 2PC protocol can be further optimized using the precomputing OT idea [188], where a random
oblivious transfer (ROT) protocol is run in the preprocessing phase, and transform ROT to standard
OT with chosen choice bits in the online phase. Besides, a GC can be sent in a pipelined way (i.e.,
garbled rows for a batch of gates are computed and communicated, and then these are done for the next
batch of gates) [189], which allows the GC implementation to scale to an unlimited number of gates
using a nearly constant memory. Subsequent studies focus on optimizing the Yao’s 2PC protocol in two
aspects: improving the construction of GCs and designing more efficient OT extension protocols. Below,
we describe the development of GCs, and postpone that of OT extension to Section 5.

Garbled circuits. The first GC construction was introduced by Yao [6] in 1986, but its formal description
and security proof was first presented by Lindell and Pinkas until 2004 [190]. The original Yao GC
construction requires 8κ bits per gate. The communication cost can be reduced to 4κ bits per gate using
the “point-permute” technique [1, 191], where the actual bit zw on each wire w is masked by a random
bit (a.k.a., permute bit) λw, and the resulting public value Λw = zw ⊕ λw ∈ {0, 1} allows to be known
by the evaluator. In this case, the decoding information d can be defined as the wire masks λw for all
circuit-output wires w. The garbled row reduction (GRR) technique [192] is able to further reduce the
communication to 3κ bits per gate, where a garbled row is always defined as zero by specially setting
the 0-labels. Later, Pinkas et al. [193] used the polynomial-interpolation approach to further reduce the
communication to 2κ bits per gate, where the technique is called 4-to-2 GRR compared to the 4-to-3
GRR technique [192]. In 2008, Kolesnikov and Schneider [194] proposed the free-XOR technique that
enables XOR gates in the circuit to be garbled with no communication. In particular, the garbler sets
Lw,1 = Lw,0 ⊕ ∆ for each wire w where ∆ is a fixed offset (a.k.a., global key). For each XOR gate
(α, β, γ,⊕), the garbler also sets Lγ,0 = Lα,0 ⊕ Lβ,0 and λγ = λα ⊕ λβ . Given the public-value and label
pairs (Λα, Lα,Λα) and (Λβ , Lβ,Λβ ) on the input wires, the evaluator can compute locally the public value

Λγ := (zα ⊕ zβ)⊕ λγ = (Λα ⊕ λα)⊕ (Λβ ⊕ λβ)⊕ λγ = Λα ⊕ Λβ

and the label

Lγ,Λγ := Lγ,0⊕Λγ ·∆ = (Lα,0⊕ Lβ,0)⊕ (Λα⊕Λβ) ·∆ = (Lα,0⊕Λα ·∆)⊕ (Lβ,0⊕Λβ ·∆) = Lα,Λα ⊕ Lβ,Λβ

on the output wire γ. While the 4-to-2 GRR technique [193] is not compatible with free XOR, the earlier
4-to-3 GRR technique [192] keeps compatible with free XOR. Afterward, Zahur, Rosulek, and Evans [195]
improved the GC construction to 2κ bits per AND gate while keeping the XOR gates for free. The main
idea behind their construction is to break an AND gate into two half gates for which the evaluator knows
one input (i.e., a public value). We review the half-gate construction as follows:

• Construction of GCs: The garbler computes a garbled row for an AND gate (α, β, γ,∧) as below:

Gγ,0 :=H(Lα,0, γ)⊕ H(Lα,1, γ)⊕ λβ ·∆,
Gγ,1 :=H(Lβ,0, γ)⊕ H(Lβ,1, γ)⊕ Lα,0 ⊕ λα ·∆.

The garbler also computes the 0-label on the output wire γ as:

Lγ,0 := H(Lα,0, γ)⊕ H(Lβ,0, γ)⊕ (λα · λβ ⊕ λγ)∆.

• Evaluation of circuits: For any AND gate (α, β, γ,∧), given (Λα, Lα,Λα) and (Λβ , Lβ,Λβ ), the
evaluator can evaluate the label on the output wire γ as follows:

Eval(Λα,Λβ , Lα,Λα , Lβ,Λβ ) : = H(Lα,Λα , γ)⊕ H(Lβ,Λβ , γ)⊕ Λα ·Gγ,0 ⊕ Λβ · (Gγ,1 ⊕ Lα,Λα)
= H(Lα,0, γ)⊕ H(Lβ,0, γ)⊕ (Λα · Λβ ⊕ Λα · λβ ⊕ Λβ · λα) ·∆
= H(Lα,0, γ)⊕ H(Lβ,0, γ)⊕ ((Λα ⊕ λα) · (Λβ ⊕ λβ)⊕ λα · λβ) ·∆
= H(Lα,0, γ)⊕ H(Lβ,0, γ)⊕ (Λγ ⊕ λα · λβ ⊕ λγ) ·∆
= Lγ,0 ⊕ Λγ ·∆ = Lγ,Λγ .

If the garbler sets lsb(∆) = 1, then lsb(Lw,Λw) = lsb(Lw,0 ⊕ Λw · ∆) = lsb(Lw,0) ⊕ Λw for every
wire w. Thus, the garbler can send lsb(Lw,0) for the output wire w of each AND gate to the
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Table 2. Comparison of concretely efficient garbling schemes

Garbling schemes Size of one GCa Calls to function H per gate Assumption

(κ bits per gate) Garbler Evaluator

AND XOR AND XOR AND XOR

Unoptimized textbook Yao [6, 190] 8 8 4 4 2.5 2.5 PRFb

Yao with point-permute [1, 191] 4 4 4 4 1 1 PRF

4-to-3 GRR [192] 3 3 4 4 1 1 PRF
4-to-2 GRR [193] 2 2 4 4 1 1 PRF

Free XOR [194] 3 0 4 0 1 0 Circular CRHF

Flexible XOR [200] 2 {0, 1, 2} 4 {0, 2, 4} 1 {0, 1, 2} Circular CRHF
Half gates [195] 2 0 4 0 2 0 Circular CRHF

Fast 4-to-2 GRR [201] 2 1 4 3 2 1.5 PRF

Slicing and dicing [199] 1.5 0 ≤ 6 0 ≤ 3 0 Circular CRHF

aFor GC size, a small constant additive term (i.e., 5 bits) is ignored for [199].
bWe use PRF to denote pseudo-random function.

evaluator. Then, the evaluator can compute Λγ = lsb(Lγ,Λγ )⊕lsb(Lγ,0). Actually, the communication
of bit lsb(Lw,0) for each AND gate can be omitted, if we define a label Lw,zw corresponding to the
actual bit zw instead of the public value Λw for every wire w and set λw = lsb(Lw,0), and thus
Λw = lsb(Lw,zw) = lsb(Lw,0 ⊕ zw ·∆) = λw ⊕ zw.
For every circuit-output wire w, the garbler can send the wire mask λw ∈ {0, 1} to the evaluator,
who can compute the output bit zw := Λw ⊕ λw.

For security, it is unnecessary to model H as a random oracle, and instead is sufficient to require
that H satisfies the notion of circular correlated robustness hash function (circular CRHF) [196]. In
this case, we can use a random permutation such as a fixed-key AES to implement CRHFs [197, 198].
Given the hardware-instruction support, the computational efficiency of GCs can be significantly
improved [197, 198]. This makes the efficiency bottleneck for GCs become the size of garbled circuits.

Zahur et al. [195] proved a lower bound of 2κ bits per AND gate in a model of linear garbling,
which models the labels as a whole. Recently, Rosulek and Roy [199] broke through the half gates’ lower
bound by introducing a new technique called slicing and dicing, while keeping fully compatible with the
free-XOR technique. In particular, they improved the communication cost of GCs to 1.5κ + 5 bits per
AND gate, when the computation is slightly more than half gates. In terms of techniques, they slice the
garbled labels into two halves, and introduce more linear combinations to increase the linear-algebraic
dimension in which the garbling scheme can operate. Besides, they also add some random control bits
into the construction of GCs, where the control bits determine the linear combinations of labels and
garbled ciphertexts, and are outside of the linear garbling model. However, the state-of-the-art garbling
scheme [199] is more complex and involves many linear-algebraic operations. It may be a challenging
task to give a simple description of their garbling scheme, i.e., describe the garbling scheme as the clean
composition of some simpler components similar to the half-gate construction.

In Table 2, we summarize the communication and computation costs of the known efficient garbling
schemes by following the comparison table shown in [199], where the flexible-XOR technique [200] and
fast 4-to-2 GRR technique [201] are also compared. Our survey only considers the garbling schemes
on Boolean circuits, which allows to obtain the minimal size of garbled circuits. We refer the reader
to [202–205] for garbling arithmetic circuits.

4.1.2 Secure multi-party computation

In the multi-party setting, constant-round MPC has to deal with the case that multiple parties collude
to cheat an honest party. Therefore, we cannot let only one party construct garbled circuits, and instead
make all parties jointly construct a garbled circuit in a distributed manner. We use distributed garbling
schemes to generate multi-party garbled circuits. The first distributed garbling scheme was introduced by
Beaver, Micali, and Rogaway [1] in 1990. Based on the distributed garbling, they presented a constant-
round MPC protocol in the dishonest-majority setting, but this protocol has a very low concrete efficiency.
In the semi-honest setting, we focus on the case of all-but-one corruption (i.e., n−1 out of n parties allow
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to be corrupted). We describe several work that construct more efficient constant-round MPC protocols
in the honest-majority malicious setting in Section 4.2.

Surprisingly, in the dishonest-majority setting, the BMR garbling was first optimized until 2016 using
the free-XOR technique [206]. Based on the optimized BMR garbled circuits, they proposed an efficient
constant-round MPC protocol with semi-honest security. In particular, their improved BMR garbled
circuit [206] is defined as follows:

• Every party Pi with i ∈ [1, n] has the following secret values:
(a) A global key ∆i ∈ {0, 1}κ.
(b) For each wire w in the circuit, a share of a mask bit λw ∈ {0, 1}.
(c) For each wire w, two garbled labels Liw,0, L

i
w,1 ∈ {0, 1}

κ such that Liw,0 ⊕ Liw,1 = ∆i.
• For each AND gate (α, β, γ,∧), for each u, v ∈ {0, 1}, all parties jointly compute the following:

Gjγ,u,v :=

 ⊕
i∈[1,n]

H(Liα,u, L
i
β,v, γ‖j)

⊕ Ljγ,0 ⊕
(
(u⊕ λα) · (v ⊕ λβ)⊕ λγ)

)
·∆j .

The multi-party garbled circuit consists of (G1
γ,u,v, . . . , G

n
γ,u,v) for the output wire γ of each AND

gate and each u, v ∈ {0, 1}.

While the BMR garbled circuit is symmetric that allows every party to evaluate the circuit, Wang,
Ranellucci and Katz [109] proposed an asymmetric distributed garbling which only allows one party (e.g.,
P1) to evaluate the circuit. The WRK garbled circuit is defined as follows:

• Every party Pi holds the same secret values as in the BMR garbled circuits.
• For each gate (α, β, γ, T ) and u, v ∈ {0, 1}, let rγ,u,v = (u ⊕ λα) · (v ⊕ λβ) ⊕ λγ , and riγ,u,v be the
i-th share of rγ,u,v. Every pair of parties (Pi, Pj) hold the additive shares Ki[rjγ,u,v] and Mi[rjγ,u,v]
of rjγ,u,v ·∆i, such that Ki[rjγ,u,v]⊕Mi[rjγ,u,v] = rjγ,u,v ·∆i.

• For each i 6= 1, for each AND gate (α, β, γ,∧) and u, v ∈ {0, 1}, Pi computes the following:

H(Liα,u, L
i
β,v, γ)⊕

{Mj [riγ,u,v]
}
j 6=i , L

i
γ,u,v ⊕

(⊕
j 6=i

Ki[rjγ,u,v]
)
⊕ riγ,u,v ·∆i

 ,

where the output length of H is nκ bits, while its output length is κ bits in the BMR garbled circuit.

Recently, Yang et al. [110] partially used the half-gate technique to further reduce the size of the
WRK garbled circuit from 4n|C|κ bits to (4n− 6)|C|κ bits. The size of the BMR garbled circuit is 4n|C|κ
bits, and is larger than the WRK garbled circuit. The MPC protocols based on BMR garbled circuits will
have 1–2 less online rounds than those based on WRK garbled circuits, if all parties obtain the output.
The constant-round MPC protocols based on distributed garbling achieve optimal online communication
cost. The main task for improving constant-round MPC is to reduce the communication cost in the
preprocessing phase, while keeping the computation fast. However, the known constant-round MPC
protocols that are concretely efficient has O(n2) computation complexity in the online phase. For a large
number of parties, this becomes expensive. In 2017, Ben-Efraim et al. [207] constructed a constant-round
MPC protocol in the BMR framework, which achieves the computation complexity of O(1) in the online
phase. This was done using key-homomorphic pseudorandom functions that can be constructed under the
DDH/LWE assumption. Their protocol in the online phase is more efficient than the state-of-the-art semi-
honest MPC protocol [206] with O(n2) computation complexity when the number of parties is at least
100. However, their approach is not compatible with the free-XOR optimization [194], which will introduce
a large overhead in the preprocessing phase. Recently, Ben-Efraim et al. [208] used an encryption scheme
that is both key-homomorphic and message-homomorphic based on the LPN assumption to construct a
BMR-like garbled circuit that is compatible with free-XOR. Their LPN-based technique can obtain faster
online computation when n ≥ 100, but requires a rather expensive preprocessing phase. If the number
of honest parties is relaxed to h = n/c for some constant 1 < c < n, the preprocessing phase can be
accelerated significantly using the techniques in [106, 109].
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4.2 Maliciously secure protocols

In the malicious setting, we first consider the two-party case, and then discuss the multi-party case in
the dishonest-majority and honest-majority settings, respectively.

4.2.1 Secure two-party computation

For constant-round 2PC protocols, before 2017, one popular approach for designing maliciously secure
protocols is to use the “Cut-and-Choose” (C&C) technique. There are two different flavors to use such
technique. The first one is the circuit-level C&C approach that was introduced by Lindell and Pinkas [209]
and optimized in [210–224], where many garbled circuits are prepared, a random subset of them are
opened and verified, and the remaining unchecked circuits are evaluated. In the single-execution setting
where a circuit is computed at once on an input, ρ garbled circuits need to be prepared for statistical
security 2−ρ and the most efficient 2PC protocol in this setting is by Wang et al. [224]. In the amortized
setting where the same circuit is evaluated multiple times on different inputs, only O(ρ/ log τ) garbled
circuits need to be prepared for amortizing over τ executions, and the best-known 2PC protocol in
this setting is by Rindal and Rosulek [221]. The second one is the gate-level C&C approach that was
introduced by Nielsen and Orlandi [225] and called LEGO, where a lot of individual garbled AND gates are
prepared, a random subset of them are opened and verified, and the remaining unchecked garbled gates are
soldered to a garbled fault tolerant circuit using the XOR-homomorphic commitments. Subsequently, the
LEGO protocol was optimized in [226–231]. Compared to the circuit-level C&C approach, the gate-level
C&C approach has a lower asymptotic complexity O(ρ/ log |C|) and supports the function-independent
preprocessing where both circuit and input are unknown (where such preprocessing is not supported by
the circuit-level C&C approach), but is less efficient in the amortized setting and has also lower efficiency
for some functions in the single-execution setting.

In 2017, the milestone work by Wang, Ranellucci and Katz [108] proposed the authenticated garbling
approach to construct highly-efficient 2PC protocols, where a single “authenticated” garbled circuit is
constructed and transmitted. Their approach works in the following framework:

(1) Function-independent preprocessing phase: The parties run the TinyOT-like protocol to
generate random authenticated bit shares and authenticated AND triples based on the BDOZ-style
IT-MACs, where authenticated shares can be produced by executing the OT extension protocol.
An authenticated AND triple is defined as ([[a]], [[b]], [[c]]) with a, b, c ∈ {0, 1} and c = a ∧ b.

(2) Function-dependent preprocessing phase: In this phase in which the circuit is known, the
parties generate an authenticated garbled circuit in a distributed way. In the process of gener-
ating authenticated garbled circuits, the key observation is that we can use the same global key
for garbled circuits and authenticated shares, and thus the MAC tags and local keys involved
in authenticated shares are naturally set as the shares to be used for constructing garbled
circuits.

(3) Online phase: The party P1 evaluates the circuit and obtains the output.

Wang et al. [108] proposed and adopted the WRK garbled circuit, and thus only one party P1 can eval-
uate the circuit. Concurrently, a similar approach is proposed by Hazay, Scholl, and Soria-Vazquez [106]
based on the BMR garbled circuit. Later, Katz et al. [107] significantly optimized the 2PC protocol
by 1) applying the half-gate technique into distributed garbling, and 2) improving the communication
and computation of the TinyOT-like protocol. The 2PC protocol [107] can generate a garbled circuit
with 2κ + 1 bits per AND gate in the preprocessing phase, and performs the circuit authentication
separately in a batch in the online phase. For now, the state-of-the-art approach for maliciously secure
2PC is to adopt the distributed garbling approach [106–108], and is significantly outperform both C&C
approaches. An interesting future work is to further reduce the size of distributed garbled circuits by
Katz et al. [107].

4.2.2 Secure multi-party computation

Dishonest majority. For constant-round MPC protocols tolerating all-but-one malicious corruption,
several studies [232–234] adopt the cut-and-choose approach or the combination approach of BMR and
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SPDZ to construct MPC protocols. However, their concrete efficiency is very low. In this setting, the
best-known MPC protocols [106, 109–111] follow the distributed garbling framework [106, 108] based on
TinyOT-like protocols. These MPC protocols have the same structure as that of 2PC protocols [107, 108],
but need to execute a consistency-check procedure to check the consistency of shares or global keys
among multiple executions. Recently, Poddar et al. [235] applied the constant-round MPC protocol [109]
with malicious security to build a system called Senate that allows n parties to collaboratively run
analytical SQL queries while keeping individual data private. The state-of-the-art constant-round MPC
protocol with malicious security was proposed by Yang et al. [110], and can be used to further improve
the performance of the above application. While the half-gate optimization is totally applied in the
construction of distributed garbling in the two-party setting [107], this is only done partially in the
multi-party setting [110]. It is a challenge to totally apply the half-gate technique (or even the recent
slicing-and-dicing technique [199]) to multi-party garbled circuits.

Honest majority. In the honest-majority setting, constant-round MPC protocols can be constructed
based on replicated secret sharing using less communication and computation (see, e.g, [236–239]). In the
three-party setting with at most one malicious corruption, Mohassel et al. [239] proposed the currently
most efficient 3PC protocol with three rounds by constructing a single Yao-style garbled circuit, where
the maliciously secure 3PC protocol has the essentially same cost as the semi-honest Yao’s 2PC protocol.
Concurrently, Ishai et al. [238] constructed a two-round 3PC protocol while three garbled circuits need to
be sent. In the four-party setting with at most one malicious corruption, the state-of-the-art protocol was
proposed by Byali et al. [236], and has five rounds of communication and needs to send a single Yao-style
garbled circuit. This protocol can achieve the stronger security property, i.e., GOD. In the five-party
setting with at most two malicious corruptions, Chandran et al. [237] presented the best-known MPC
protocol with 8 rounds of communication. They adopted the BMR garbled circuit to prevent collusion, and
proposed a attested OT primitive to make the whole MPC protocol only rely on symmetric-key primitives
without the need of OT protocols. In terms of communication cost, their maliciously secure protocol
requires 60% less communication than the semi-honest MPC protocol with dishonest majority [206], and
its semi-honest variant needs 8× less communication. Their construction [237] can be also extended to
n parties with the corruption threshold t ≤

√
n. Later, building upon the work [237], secure five-party

computation (5PC) with fairness or GOD was also constructed in [240] with a small overhead over the
5PC protocol [237] satisfying security with abort.

5 Oblivious transfer and oblivious linear-function evaluation

In this section, we describe the recent development and techniques of oblivious transfer (OT) and its
important variants (i.e., random OT and correlated OT). Furthermore, we present the arithmetic gener-
alization of OT called oblivious linear-function evaluation (OLE) and its key variant (i.e., vector OLE).
While OT is mainly used in MPC protocols for Boolean circuits, OLE is mainly applied in MPC proto-
cols for arithmetic circuits. In this survey, we mainly review the state-of-the-art techniques to construct
(correlated) OT, and give a concise overview of the techniques to design (vector) OLE. Note that OLE
has the same importance as OT. Additionally, vector OLE can be designed in the same framework as
correlated OT for the state-of-art technique based on learning parity with noise (LPN). We note that
homomorphic encryption (HE) is a key technique to generate (vector) OLE correlations, although it is
not described in detail in this section. The recent techniques based on LPN variants allow to obtain
sublinear communication complexity, compared to linear communication complexity based on HE.

5.1 Oblivious transfer

Oblivious transfer (OT) [95, 96] is a fundamental cryptographic primitive between a sender S and a
receiver R, which enables R to obtain only one of the two input messages of S, while S learns nothing
on the R’s choice bit. It can be used to construct not only the Yao’s 2PC protocol but also a lot of
other MPC protocols with both semi-honest and malicious security. In addition, OT can also be used to
design a lot of cryptographic protocols of other kinds. OT protocols can be constructed from different
cryptographic assumptions, including decisional Diffie–Hellman (DDH) [241–245], computational Diffie–
Hellman (CDH) [244, 246–248], learning with errors (LWE) [242, 245, 249–251], learning parity with
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noise (LPN) [247] and commutative supersingular isogeny Diffie–Hellman (CSIDH) [252]. However, when
a large number of OT correlations need to be generated (particularly for MPC applications), these OT
protocols based on public key operations are very expensive. To deal with this problem, Beaver [253]
introduced the notion of OT extension, in which a small number of base OTs are extended efficiently to a
large number of OTs (even any polynomial number of OTs) using fast operations. The first OT extension
protocol by Beaver [253] uses the pseudorandom generator (PRG) in a non-black-box way, and thus is
only theoretically interesting. For now, concretely efficient OT extension protocols are divided into two
styles: one based on the IKNP framework [130] and the other in the PCG framework [162, 254]. While the
IKNP-style protocols adopt the symmetric-key primitive PRG to perform extension and support chosen
choice bits, the PCG-style protocols utilize the sparse feature of the noise in the LPN problem [255] to
realize extension and only allow random choice bits.2 OT extension of both styles adopts the following
structure from weak OTs to standard OTs:

Correlated OT (COT) ⇒ Random OT (ROT) ⇒ OT,

where COT requires two messages (m0,m1) of the sender satisfying the fixed correlation (i.e., m0⊕m1 =
∆ for a fixed string ∆), ROT only allows to output two uniformly random messages, and OT allows to
input arbitrary two messages. Both transformations (i.e., COT ⇒ ROT and ROT ⇒ OT) are standard
and recalled as follows:

• COT ⇒ ROT: Given a CRHF H : {0, 1}2κ → {0, 1}κ and a COT correlation (K[b], (b,M[b]))
with M[b] = K[b] ⊕ b · ∆, where K[b],∆ ∈ {0, 1}κ are two random strings held by the sender
and b ∈ {0, 1},M[b] ∈ {0, 1}κ are held by the receiver, a ROT correlation ((r0, r1), (b, rb)) can be
computed without any interaction as below:

r0 := H(K[b], i), r1 := H(K[b]⊕∆, i), rb := H(M[b], i),

where i is an index associated with the COT correlation. While the index i can be omitted in the
semi-honest setting, it is necessary for malicious security [198].

• ROT ⇒ OT: Given a ROT correlation ((r0, r1), (b, rb)) where the sender obtains two random
strings r0, r1 and the receiver gets a choice bit b and the string rb, a standard OT correlation
((m0,m1), (b,mb)) can be constructed using the “one-time padding” technique as follows:
– The sender sends τ0 = m0 ⊕ r0 and τ1 = m1 ⊕ r1 to the receiver, who computes mb = τb ⊕ rb.

Therefore, we can focus on designing concretely efficient COT protocols, and then transform them
to standard OT protocols. In addition, COT protocols are able to be used to generate BDOZ-style
authenticated shares using the TinyOT-like protocols [104, 106–110] as well as SPDZ-style authenticated
shares using the bit-decomposition idea [43, 150]. For GCs with free-XOR, the garbled labels for every
wire in the circuit satisfy the COT correlation, and thus can be transmitted obliviously from a garbler
to a evaluator using a COT protocol, i.e., COT can also be straightforwardly used in MPC protocols.

The semi-honest IKNP protocol [130] (improved in [113]) works roughly as follows: 1) execute a base-
OT protocol (relying on public-key operations) to generate κ ROT correlations in the setup phase, by
switching the role of the sender and receiver and then 2) extend κ ROT correlations to a large number
of COT correlations in the extension phase, using PRG and switching column vectors into row vectors.
The extended phase can be executed iteratively to generate an unlimited number of COT correlations,
when using the same setup phase [113]. Later, the IKNP-style OT extension protocols with malicious
security were proposed in [135, 136]. Using the random-linear-combination approach, the maliciously
secure protocol by Keller, Orsini, and Scholl [136] achieves the best efficiency in the IKNP framework,
and has the communication cost matching that of the best-known semi-honest protocol [113]. While the
IKNP-style OT extension protocols enjoy fast computation, they require linear communication cost (i.e.,
κ bits per COT correlation).

Another style of OT extension protocols lies in the pseudorandom correlation generator (PCG) frame-
work [162, 254].3 In general, the PCG-style OT extension protocols [132, 134, 162, 256] are able to generate

2 We note that OTs with random choice bits can be transformed into OTs with chosen choice bits at the cost
of additionally communicating 1 bit per OT, using the precomputing OT technique [188].

3 PCG allows two parties to generate two short correlated seeds in the setup phase and then use the seeds to
produce a long correlated randomness such as COT correlations without any communication.
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COT correlations with sublinear communication (i.e., Õ(
√
N) for producing N COT correlations), but

need more computation than IKNP-style protocols. To simplify the following description, we now give an
informal definition of COT in a vector form. Specifically, sender S obtains a uniform global key ∆ ∈ F2κ

and a random vector v ∈ FN2κ , while receiver R holds a uniform choice-bit vector u ∈ FN2 and a vector
w ∈ FN2κ such that w = v + ∆ · u.

For both semi-honest and malicious security, the state-of-the-art PCG-style COT protocols [132, 134]
are constructed in the following three layers:

(1) SPCOT: Construct a single-point COT (SPCOT) protocol, a variant of COT where the Hamming
weight of the choice-bit vector u is exactly 1 (i.e., HW(u) = 1). We can use a point α ∈ [1, N ] to
represent the location of the single non-zero entry, meaning that uα = 1 and ui = 0 for i 6= α. We
can construct the SPCOT protocol using the following approach:
• Semi-honest security: The best-known SPCOT protocol [132] in the semi-honest setting

adopts the designing idea of the puncturable pseudorandom function (PPRF) construction
based on the GGM tree [257].4 In particular, a PPRF is a special pseudorandom function F ,
which can generate a normal key k and a punctured key k{α} for an input α, such that k can
be used to evaluate F at each point, and k{α} allows to evaluate F at every point except for α
without leaking any information about F (k, α) [258, 259].
Using the binary-tree structure of GGM-PPRF, sender S can transmit k{α} to the receiver R
without knowing any information on α, by executing the OT protocol logN times in parallel. We
refer the reader to [132, 260] for details. Using key k, S can compute vector v as vi := F (k, i) ∈
F2κ for i ∈ [1, N ]. With k{α}, R is able to compute wi := F (k, i) ∈ F2κ for i 6= α. To define value
wα, S could send τ = ∆ +

∑
i∈[1,N ] vi ∈ F2κ to R, who can compute wα := τ +

∑
i6=α wi. Since

wi = vi for each i ∈ [1, N ], i 6= α, we have that wα = τ+
∑
i 6=α wi = ∆+

∑
i∈[1,N ] vi+

∑
i6=α vi =

vα+∆, where addition is performed over binary field F2κ . Therefore, we obtain that w = v+∆·u
holds, where R defines u as uα = 1 and ui = 0 for i 6= α.
• Malicious security: The above SPCOT protocol allows a malicious sender S to send incorrect

messages in the OT protocol executions, so that the punctured key obtained by receiver R does
not correspond to the punctured point α. The deviation of the outputs of two parties can be
detected by the receiver by executing a consistency-check procedure. The high-level idea for the
state-of-the-art consistency check [134] is as follows:
(a) From v + w = ∆ · u, we apply a random linear combination defined by uniformly random

coefficients χ1, . . . , χN ∈ F2κ sampled by R into two sides of the equation. According to
uα = 1 and ui = 0 for i 6= α, we obtain the following result:∑

i∈[1,N ]

χi · vi +
∑

i∈[1,N ]

χi · wi = χα ·∆.

(b) Using the approach underlying the MASCOT protocol [43], S and R can compute the
additive shares of χα ·∆:

Y + Z = χα ·∆,

where it needs extra κ COT correlations.
(c) Combining two equations, we have the following:

V :=
∑

i∈[1,N ]

χi · vi + Y

=
∑

i∈[1,N ]

χi · wi + Z := W.

The remaining task is to check V = W by running an equality-test protocol. Since V and
W are unnecessary to be kept secret, the equality-test protocol can be constructed in a
highly efficient manner using a cryptographic hash function [69, 134].

4 Concurrently, Schoppmann et al. [260] used the same approach to design an arithmetic variant of SPCOT.
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(2) MPCOT: Construct a multi-point COT (MPCOT) protocol, a variant of COT with HW(u) = t
for a parameter t > 1. Based on the SPCOT protocol, an MPCOT protocol can be constructed in
a fairly straightforward way:
• Given the length N of MPCOT vectors, two parties S and R can execute the SPCOT protocol
t times with each the outputting length N/t. Then, for i ∈ [1, t], S obtains vi ∈ FN/t2κ , and R

gets wi ∈ FN/t2κ and ui ∈ FN/t2 with HW(ui) = 1. Sender S defines v := (v1, . . . ,vt) ∈ FN2κ ,
and receiver R sets w := (w1, . . . ,wt) ∈ FN2κ and u := (u1, . . . ,ut) ∈ FN2 where HW(u) =∑
i∈[1,t] HW(ui) = t.

• The MPCOT protocol described as above needs t logN/t OT correlations to execute the SPCOT
sub-protocol. These OT correlations (thousands of OT correlations for concrete parameters
t,N [132, 134]) can be generated using the IKNP-style OT extension protocol [113, 136].
For malicious security, extra tκ COT correlations are required. This can be optimized to
κ COT correlations by combining t consistency checks into a single check (see [134] for
details).

• In the malicious setting, a malicious sender S may use different ∆ in the t SPCOT protocol
executions. Thus, we need a consistency-check procedure to guarantee the consistency of ∆. The
state-of-the-art consistency check [134] guarantees the consistency of ∆ for free, as the SPCOT
correlations are always assured to use the same ∆ as the extra κ COT correlations, which have
guaranteed the consistency of ∆.

(3) COT from LPN: This procedure extends MPCOT correlations to COT correlations with uniform
choice bits, based on the LPN assumption. For both semi-honest and malicious security, this
procedure is the same, and only involves local computation.
• Based on the MPCOT protocol, two parties S and R can generate a length-N MPCOT vector

(s, (r, e)) such that r = s + ∆ · e ∈ FN2κ . Here, we can view e ∈ FN2 as the noise vector of an
LPN problem, such that e is divided into t consecutive sub-vectors of length N/t where each
sub-vector has a single non-zero entry at a random position. Such distribution is called as a
regular noise distribution. As analyzed and observed in previous work [114, 132, 162, 254, 261],
no known attack exploits a regular noise distribution, and performs significantly better than a
uniform noise distribution where e is a uniform vector such that HW(e) = t.
• Based on LPN assumptions of two different flavors, S and R can generate COT correlations in

the following two ways:
(a) Dual LPN: Informally, the dual-LPN assumption with a regular noise distribution Dt

states that:
e ·H

c
≈ u,

where e ← Dt, H ∈ FN×n2 is a matrix created by a code generation algorithm, u ∈ Fn2 is
a uniform vector and N = c · n for a compression parameter c > 1 (e.g., c = 2 or 4). The
dual-LPN assumption is also known as the regular syndrome decoding (RSD) assumption,
which is introduced in [261] as the assumption underlying the security of the candidate fast
syndrome-based (FSB) hash function for the SHA-3 competition.
Given an MPCOT vector (s, (r, e)), S and R output a COT vector (v, (u,w)) as follows:

v = s ·H ∈ Fn2κ , u = e ·H ∈ Fn2 , w = r ·H ∈ Fn2κ .

(b) Primal LPN: Informally, the primal-LPN assumption with a regular noise distribution Dt
states that:

a ·A + e
c
≈ u,

where a ← Fk2 is a uniform vector, A ∈ Fk×n2 is a matrix created by a code generation
algorithm, e← Dt, u ∈ Fn2 is a uniform vector and k < n.
In this case, two parties S and R additionally need a length-k COT vector (b, (a, c)) such
that c = b + ∆ · a ∈ Fk2κ and a ∈ Fk2 is a uniform vector. Then, given an MPCOT vector
(s, (r, e)), S and R can output vector v and two vectors (u,w), respectively, as follows:

v = b ·A + s ∈ Fn2κ , u = a ·A + e ∈ Fn2 , w = c ·A + r ∈ Fn2κ .
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Figure 4. Structure of the PCG-based COT protocols. When κ = 128, we need to use public-key operations to compute 128

base ROT correlations based on the DDH, CDH, or LWE assumptions. We can use the IKNP-style OT extension protocol
to generate COT correlations in an order of magnitude 103 − 104, and then extend them to COT correlations in an order

of magnitude 105 − 107 (or even more) based on the LPN assumption

In general, the COT protocol based on dual LPN enjoys a lower communication but has a slower
computation, while that based on primal LPN enjoys a faster computation but has a higher
communication.
• Bootstrapped iterations: To generate an unlimited number of COT correlations, two parties

can execute the COT protocol iteratively in a bootstrapped mode. In particular, let M be the
number of all setup COT correlations to execute the whole COT protocol, where M = t log N

t
for dual LPN and M = k+ t log n

t for primal LPN in the semi-honest setting, and M is further
increased by κ for malicious security. Every iteration produces n COT correlations using the
setup COT correlations, and outputs n −M COT correlations where the remaining M COT
correlations are stored and bootstrapped as the refreshed setup COT correlations to be used in
the next iteration. In the first iteration, M setup COT correlations can be generated using the
IKNP-style OT extension protocol [113, 136]. When a huge number of COT correlations are
required and many iterations are executed, the setup cost for generating setup COT correlations
in the first iteration can be amortized to negligible.

In Figure 4, we present the structure of the PCG-based COT protocol described as above. According
to the best-known implementations, the IKNP-style protocols are highly efficient to compute thousands
of COT correlations, and the PCG-style protocols will be more efficient if millions of COT correlations
are required even if the network bandwidth is large enough.

Recently, Rindal et al. [133] proposed a new variant of the dual-LPN assumption, using a structured
and sparse matrix H generated a new LDPC code. When applying the new dual-LPN problem into the
semi-honest COT protocol by Boyle et al. [132], they showed that the COT protocol based on dual LPN
can simultaneously achieve lower communication and faster computation than the best-known COT
protocol based on primal LPN [134], as the new structured LPDC codes [133] support fast encoding
operation. Based on the new dual-LPN assumption [133], the COT protocol [132] could even obtain 37%
less computation than the best-known IKNP-style protocol [113]. However, the efficiency gain builds upon
an aggressive dual-LPN problem based on heuristically designed linear codes. Rindal et al. [133] analyzed
two key properties of the underlying linear codes (including large minimum distance) under the linear
test framework to establish a degree of confidence about the hardness of the new dual-LPN problem.
More analyses on the new dual-LPN problem are encouraged to establish more confidence on the security
of their COT protocol. When applying the state-of-the-art consistency check by Yang et al. [134] into
the semi-honest COT protocol [132] based on the new dual-LPN assumption [133], we can obtain the
currently most efficient COT protocol with malicious security. This consistency check along with the
check technique by Boyle et al. [132] allows the malicious sender to guess some positions of non-zero
entries of noise vector e in a selective failure manner, i.e., an incorrect guess will be caught. This means
that the adversary is allowed to query (on average) one-bit information on the noise vector. In this case,
it is worth analyzing whether the current parameter selection of the underlying LPN assumptions has
already been sufficient to achieve the κ-bit security level (e.g., κ = 128).

Recently, Boyle et al. [256] proposed the notion of pseudorandom correlation function (PCF), and gave
an efficient PCF construction for generating COT correlations under a variable-density variant of the LPN
assumption (VDLPN). While PCG only allows to generate a fixed length of correlated randomness (e.g.,
COT) in an all at once way and does not support the stateful incremental evaluation enabled by PRG
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in a ”stream-cipher” mode, PCF can produce correlated randomness on-the-fly and offer the ability to
securely generate virtually unbounded number of correlated randomness. In particular, PCF allows two
parties to generate two short correlated keys k0 and k1 in the setup phase, and then use the keys to
compute COT correlations on-the-fly, i.e., vi = PCF(k0, xi) and (ui, wi) = PCF(k1, xi) for a uniform
string xi such that wi = vi + ∆ · ui where ∆ can be involved in key k0. Boyle et al. [256] only presented
the semi-honest construction to distribute the short keys for computing COT correlations, which may
have an efficiency advantage than the PCG approach when the number N of resulting COT correlations
is very huge (e.g., N ≈ 248 or even larger).

5.2 Oblivious linear-function evaluation

OLE. Oblivious linear-function evaluation (OLE) is an arithmetic generalization of OT, and is particu-
larly useful for designing MPC protocols for arithmetic circuits over large fields [120, 146, 262–264]. In
particular, OLE directly gives a two-party additive sharing of the multiplication of two secret values.
Therefore, by a pairwise OLE protocol execution, we can use OLE to generate Beaver multiplication
triples without authentication in the multi-party setting. OLE can be constructed using OT extension
and Gilboa multiplication approach [43, 150], and has a cheap computation cost but a much high commu-
nication cost. There exists a standard approach to design OLE using additively homomorphic encryption
(AHE) based on RLWE, which has been used in Overdrive [152] and the recent work [265], where a
receiver R sends Enc(x) to sender S, and then S computes Enc(y) = u ·Enc(x) + v and sends it to R who
decrypts to obtain y = u ·x+ v ∈ F for a large field F. Here, the AHE needs to satisfy the circuit privacy
property. In addition, OLE can also be constructed from somewhat homomorphic encryption [103, 149],
but will require a larger communication. Without relying on homomorphic encryption, OLE is also able
to be built directly from Ring-LWE [266, 267]. Besides, we can also construct OLE protocols from OT and
noisy Reed-Solomon encodings [97, 264, 268], or Paillier encryption [269]. Among all the OLE protocols,
the protocols [152, 265] based on AHE obtain the best communication efficiency, and the protocol [266]
from RLWE has the optimal one round of communication.

Recently, Boyle et al. [162] proposed an OLE construction based directly on LPN, which has very
lower communication cost than the above OLE protocols but needs the computational cost of at least
O(N2) for generating N OLE correlations. Later, they [161] solved the computational problem using a
variant of the ring-LPN assumption, and constructed an OLE protocol for computing a large number
of OLE correlations. This OLE protocol has very lower communication cost than the protocols based
on RLWE, and provides a computational complexity of Õ(N). Their PCG approach based on ring-
LPN is a nice approach to generate a large number of OLE correlations (e.g., N = 220). For a small
number of OLE correlations, the approaches based on RLWE may be better. Based on ring-LPN, the
resulting OLE correlations are random (i.e., u, v, x ∈ F are uniformly random), but are sufficient to
design MPC protocols where only random multiplication triples need to be generated in the preprocessing
phase.
VOLE. Vector oblivious linear-function evaluation (VOLE) is an arithmetic generalization of COT to a
large field and defined as follows:

• A sender holds a uniform global key ∆ ∈ F.
• For each VOLE execution, the sender obtains a vector v ∈ FN , and a receiver gets two vectors

w,u ∈ FN , such that w = v + ∆ · u.

We have a standard transformation from COT to OT using CRHFs [130]. This is not the case for
VOLE and OLE, as the underlying field F is large and the sender cannot enumerate all possible val-
ues w.r.t. x ∈ F. Similar to OLE, VOLE can be built based on OT extension [43] or AHE [152, 265],
where the latter has a lower communication. The VOLE protocols [152, 265] based on AHE have the
communication complexity linear to the output length of VOLE. Based on the LPN assumption, the
PCG approach [254] can construct VOLE protocols with sublinear communication, and is the most
promising approach to produce a large number of VOLE correlations (e.g., N ≥ 105). Subsequently,
this approach was further optimized in [69, 132–134, 162, 256, 260]. The efficiency and security com-
parisons among these VOLE protocols based on LPN is similar to the COT case shown in the previous
subsection.
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The state-of-the-art VOLE protocols [69, 133] adopt the same framework as the best-known COT
protocols [133, 134] based on dual-LPN or primal-LPN, except that an additional VOLE correlation needs
to be generated in a single-point VOLE protocol execution as the single non-zero element is uniform in
large field F rather than equal to 1. Additionally, for VOLE, we need to use the LPN assumption over
a large field F instead of F2. We are able to use the VOLE protocols [152, 265] based on AHE to
generate the VOLE correlations in the setup phase. Besides, we can use the PCF approach to generate
VOLE correlations under the VDLPN assumption [256], and may have an efficiency advantage than
the PCG approach if the number of resulting VOLE correlations is very huge. Similar to the case of
COT, we can use the state-of-the-art consistency check [69, 134] to construct maliciously secure VOLE
protocols.

6 MPC application to machine learning

Recent advances in machine learning (ML) have driven a lot of real-life applications, such as healthcare,
financial risk analysis, facial recognition, image and video analysis for self-driving cars, recommendation
systems, text translation, voice assistants, image classification, etc. The level of accuracy as required is
high for mission-critical applications (e.g., healthcare). Accuracy is mainly governed by two factors: 1)
the large amount of computing power that is demanded to train deep learning models; 2) the variance in
datasets, which comes from collecting data from multiple diverse sources and is generally infeasible for a
single company to achieve.

Toward this, multiple companies (e.g., Microsoft, Amazon, Google) provide with machine learning as
a service (MLaaS), which works in the following two different ways:

• Inference: A company offers a trained ML model, and a customer is able to query a feature input
to obtain the inference result.

• Training: Multiple companies work together to train a high accuracy model using their datasets.

In the first scenario, companies want to keep the ML model secret as it may take a lot of money to
train a model, and customers wish to protect the privacy of their inputs where the input information
may be sensitive such as personal health data or faces. In the second scenario, companies would not be
willing to share their data since data are proprietary information of a company and these companies may
be competitive, and are prohibited from sharing client information due to privacy laws. Here, we say that
an ML model is kept secret, meaning that the model parameters are hidden, but the model structure
(e.g., which functions are used) is still known. It is a challenge to protect the privacy of model structure
while keeping PPML concretely efficient.

Therefore, to address the above privacy concerns in ML applications, privacy-preserving machine
learning (PPML) is highly desirable, and has emerged as a flourishing research area. In particular, PPML
allows ML computations over private data, while ensuring the privacy of the data. Due to the privacy-
protection requirement, PPML makes the already compute-intensive ML algorithms more demanding in
terms of high computation power and large communication cost. However, many everyday users have
no such computation and communication capacities to execute PPML. Thus, it may be economical and
convenient for users to securely outsource an ML task to a set of powerful and specialized cloud servers in
a pay-per-use manner, where the security is guaranteed if at most t servers of n servers collude to cheat
(either t < n or t < n/2 depending on the concrete MPC protocols used). In this case, the inference and
training can be realized in the following way:

• Outsourcing inference: A company may host its trained ML model in a secret-shared way to n
(untrusted) servers. A customer can secretly share its feature input among the same n servers. The
servers can compute an inference result in a shared fashion and return the result to the customer.

• Outsourcing training: Multiple companies can secretly share their datasets to a set of (untrusted)
servers, who cooperatively train a common model on their joint datasets while keeping their
individual dataset private.

MPC is one of key techniques to realize PPML, and is the most promising approach to perform
PPML in the above outsourced computation setting based on secret sharings. A series of PPML proto-
cols have been built upon MPC techniques. We can partition these PPML protocols into two categories:
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Table 3. Comparison of various PPML protocols

PPML Capability Threat Model Techniques Neural

Inference Training Semi-honest Malicious Networks

2PC SecureML [24]
√ √ √

HE/GC/ASS From [24]
2PC MiniONN [277]

√ √
HE/GC/ASS From [24, 277]

2PC GAZELLE [20]
√ √

HE/GC/ASS From [24, 277]

2PC EzPC [278]
√ √

GC/ASS From [24, 277]
2PC XONN [29]

√ √
GC/ASS VGG-16 [279]

2PC QUOTIENT [18]
√ √ √

OT/GC/ASS From [18]

2PC MP2ML [280]
√ √

HE/GC/ASS CryptoNets [281]
2PC CrypTFlow2 [28]

√ √
HE/OT/ASS DenseNet-121 [282]

2PC Delphi [22]
√ √

HE/GC/ASS VGG-16 [279]

2PC QuantizedNN [283]
√ √

Abort HE/OT/ASS MobileNets [284]
2PC SIRNN [27]

√ √
OT/ASS Heads [285]

3PC Chameleon [286]
√ √

GC/ASS AlexNet [287]

3PC ABY3 [23]
√ √ √

GC/ASS From [24, 277]
3PC ASTRA [288]

√ √ √
Abort ASS/RSS From [24]

3PC SecureNN [289]
√ √ √

ASS From [24, 277]
3PC BLAZE [26]

√ √ √
Fairness ASS/RSS From [24]

3PC QuantizedNN [283]
√ √

Abort RSS MobileNets [284]

3PC CrypTFlow [21]
√ √

ASS DenseNet-121 [282]
3PC SWIFT [290]

√ √ √
GOD ASS/RSS VGG-16 [279]

3PC CryptGPU [31]
√ √ √

RSS ResNet-152 [291]

3PC Falcon [292]
√ √ √

Abort RSS VGG-16 [279]

4PC FLASH [293]
√ √ √

GOD ASS/RSS From [24]

4PC SWIFT [290]
√ √ √

GOD ASS/RSS VGG-16 [279]

4PC Trident [19]
√ √ √

Fairness GC/ASS/RSS From [24]
4PC Tetrad [294]

√ √ √
GOD GC/ASS/RSS VGG-16 [279]

Note: All protocols for secure three-party/four-party computation (i.e., 3PC/4PC) tolerate one corruption, and thus belong to

the honest-majority setting. For malicious adversaries, “Abort”, “Fairness”, and “GOD” denote the PPML protocols that achieve

security with abort, fairness, and guaranteed output delivery, respectively. For the underlying LSSS, we use “ASS” and “RSS” to

denote the additive secret sharing and the replicated secret sharing, respectively. If a PPML protocol supports multiple neural-

network architectures, we only describe the one with largest parameters for private ML inference.

one is in the dishonest-majority setting, and the other is in the honest-majority setting. We sur-
veyed the known PPML protocols based on MPC, and compare them in Table 3. All PPML protocols
shown in Table 3 along with other PPML protocols [30, 34, 270–276] are customized in the following
ways:

• Based on the known MPC protocols, improve the ML algorithms to make them more MPC-friendly.
• According to the definitions of ML algorithms, tailor the known MPC protocols.

These customized PPML protocols can obtain high efficiency for specific learning tasks. Recently,
Zheng et al. [35] designed a platform for privacy-preserving training and inference of generic ML tasks,
which supports new neural-network architectures but has a lower efficiency.

In the dishonest-majority setting, the PPML protocols focus on the two-party case, except for two
protocols Helen [36] and Cerebro [35]. Both Helen and Cerebro implemented the inference and training
of ML algorithms among 4 parties and 2–12 parties, respectively, and allow the adversary to be semi-
honest or malicious. For 12 parties tolerating 11 semi-honest corruptions, the recent PPML protocol
Cerebro [35] can perform an inference of the decision tree with 12 layers in average time about 20 s. In
the semi-honest setting with six parties, Cerebro can implement the logistic regression training in about
16 minutes, and the linear regression training in about 100 s. According to the experimental results in
Cerebro [35], the maliciously secure PPML protocol is 61–3300× slower than the semi-honest version.
In the multi-party setting with dishonest majority, the model for ML inference is small, and the dataset
and neural-network architecture for ML training is also small. More efficiency optimizations need to be
exploited to support larger datasets and models. The maliciously secure protocols need to be further
improved to reduce the overhead over the semi-honest protocols. Now, we turn our attention to the
two-party case. Most of the two-party PPML protocols consider the semi-honest adversaries. The only
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exception is QuantizedNN [283], which uses SPDZ2k [157, 158] and Overdrive [152] to design maliciously
secure protocols, where SPDZ2k and Overdrive have been implemented in the MP-SPDZ library [17].
Their maliciously secure protocol [283] is roughly 3–9× slower than the semi-honest protocol. In the semi-
honest two-party setting, most of PPML protocols focus on ML inference except for SecureML [24] and
QUOTIENT [18]. Nevertheless, SecureML and QUOTIENT only implemented the small dataset MNIST
that has 60,000 training samples and 10 different classes. For two-party ML inference with semi-honest
security, the state-of-the-art PPML protocol CrypTFlow2 [28] is able to perform private inference over
complex deep neural networks (DNNs) like ResNet-50 (50 layers, 23.5 million parameters) and DenseNet-
121 (121 layers, 8.5 million parameters), which can be trained over a large-scale dataset ImageNet that
contains more than 1,000,000 training samples and 1000 different classes. Their implementation [28] needs
about 546 s and 32 GB of communication for ResNet-50, and 463 s and 35 GB of communication for
DenseNet-121. In the two-party setting, it seems to have been highly efficient for ML inference with
semi-honest security, but the ML inference against malicious adversaries and the ML training still have
a low efficiency, which needs to be addressed in the future work.

In the honest-majority setting, the known PPML protocols only consider the three-party and four-
party cases tolerate one corruption. In this setting, we can achieve a relatively high efficiency for private
inference and training. By accelerating semi-honest 3PC with GPU, CryptGPU [31] can perform one
private inference over the ImageNet-scale ResNet-50 (resp., ResNet-152) using 9.3 s and 3.1 GB of com-
munication (resp., 25.8 s and 6.6 GB of communication). The private training implemented by CryptGPU
is able to support VGG-16 (16 layers, 138 million parameters), which is trained over a Tiny ImageNet
dataset that contains 100,000 training samples and more than 200 different classes. Their implementation
reports the running time and communication for a single iteration of private training, which are 13.9 s
and 7.6 GB respectively. For malicious security, the best-known PPML protocol Falcon [292] can run
a private inference over a neural-network VGG-16 trained with Tiny ImageNet using 12.1 s of running
time and 0.4 GB of communication. However, Falcon with malicious security takes over 3 years and about
1012 TB of communication to train a VGG-16 model over the Tiny ImageNet dataset. When a majority
of parties are honest, multiple PPML protocols can also achieve stronger security property than security
with abort (i.e., fairness and GOD) using a small overhead. In this case, the PPML protocols in the
four-party setting have a better performance than those in the three-party setting, but require a stronger
assumption about the number of honest parties. Among these PPML protocols achieving fairness or GOD,
Tetrad [294] has the best efficiency for now. Particularly, Tetrad takes 183 s and 35 GB of communica-
tion to train a VGG-16 model over a small dataset CIFAR-10 that includes 50,000 training samples and
10 different classes. Overall, in the three-party/four-party setting, private inference has been practical
and can scale to complex models and large datasets, even in the presence of malicious adversaries. In
the same setting, private training provides a high efficiency and supports a moderate-sized dataset for
semi-honest security, but has a very low efficiency for malicious security. Besides, it will be an interest-
ing future work to design honest-majority PPML protocols with at least five parties and two corrupted
parties.

For ML applications, we need to handle multiple different-type functions. For example, in DNNs,
we need to compute Matrix Multiplication, Convolution etc., for linear layers, and ReLU, Max Pooling,
Sigmoid, SoftMax etc., for non-linear layers. Therefore, we need to construct mixed-mode MPC protocols,
which support both arithmetic circuits and Boolean circuits and allow to convert between arithmetic
and Boolean circuits. Additionally, for division operations or a function represented as a circuit that
has a large depth, we may need to use the garbled circuit approach to achieve better efficiency. In
the dishonest-majority setting, the ABY-like protocols [7, 25] developed the techniques to realize the
conversion among arithmetic sharing, Boolean sharing and Yao’s GCs in the presence of semi-honest
adversaries. The ABY-like protocols focus on the case that the circuit evaluation is executed between two
parties. In the multi-party setting, the recent work [295] proposes the semi-honest protocols to support
arithmetic sharing, Boolean sharing, Yao’s GCs, and conversions between any two represents. However,
their protocols need a trusted party to distribute all correlated randomness among the parties evaluating
the circuits, which makes the protocols have a weaker security guarantee. For malicious security, the
conversion between distributed garbled circuits and SPDZ-style authenticated sharings can be realized
using the doubly authenticated bits (daBits) technique [158, 296–298] or the more efficient extended
daBits (edaBits) technique [299]. Specifically, a daBit consists of a pair of random sharings ([r]2, [r]M ),
where r ∈ {0, 1} and either M = p for a prime p or M = 2k. The daBits technique was first presented
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by Rotaru and Wood [298] for the case of M = p. Then, the performance was further improved for
the case of M = p in [296, 297, 299], and daBits over a ring Z2k were also shown in [158, 299], where
the known implementation [296] takes about 11.8 KB for generating one daBit with a large prime p
and can generate about 2150 daBits per second in the two-party malicious setting. The state-of-the-art
edaBits protocol [299] adopts the “Cut-and-Bucketing” technique to check the consistency of values in
two different domains, where an edaBit consists of a set of random sharings ([rm−1]2, . . . , [r0]2) in the
binary domain and a sharing [r]M in the arithmetic domain, such that r =

∑
i∈[0,m) ri · 2i mod M . In

the two-party malicious setting, the edaBits approach will reduce the communication cost by a factor
of 2× for implementing comparison of 63-bit integers, compared to the daBits technique [299]. The
“Cut-and-Bucketing” technique for malicious security leads to at least a factor of 3 overhead over the
semi-honest protocol. It is an interesting open problem to construct a concretely efficient edaBits protocol
with malicious security, which achieves an overhead of 2 or even smaller. In the honest-majority setting,
the protocols against malicious adversaries, which allow to convert between the arithmetic, Boolean,
and garbling worlds, can be constructed more efficiently [19, 294], where the techniques underlying the
constant-round MPC protocols (e.g., [236, 239]) can be used and adapted.

On the other hand, the recent studies by Boyle et al. [300, 301] proposed a new approach to construct
mixed-mode MPC protocols based on function secret sharing (FSS), which is useful for ML applications
with optimal online communication and round complexity. Their FSS approach supports arithmetic
operations that are mixed with non-arithmetic operations. In particular, for a non-arithmetic function
g such as ReLU, two parties can obtain two succinct FSS keys to evaluate function gr(x) = g(x +
r) where r is a randomness shared by the parties. In general, the FSS-based approach requires more
communication in the preprocessing phase than the GC or GMW approach, unless the FSS keys are
distributed by a trusted dealer, or the input length is relatively small. This naturally leaves a future work
to reduce the preprocessing cost for distributing the FSS keys by a concretely efficient 2PC protocol.
For online communication cost and rounds, the FSS-based approach outperforms the GC and GMW
approaches. Their FSS-based approach can be also secure against malicious adversaries [300]. For now,
Boyle et al. [300, 301] only proposed efficient constructions for functions including comparison (e.g., ReLU),
splines (e.g., used in sigmoid), bit-decomposition, zero test, and arithmetic/logical shifts. There are still
many functions used in ML and scientific computation (e.g., exponentiation, tanh, and reciprocal of square
root), whose concretely efficient FSS-based 2PC protocols are unknown. Besides, Boyle et al. [300, 301]
only gave two-party constructions. It is an interesting future work to construct concretely efficient FSS-
based MPC protocols with optimal online communication and rounds for multiple parties (i.e., n ≥ 3).
While prior work uses a uniform bitwidth for the whole ML inference, the recent work by Rathee et al. [27]
proposed the mixed bitwidths approach, i.e., operating in low bitwidths and going to high bitwidths only
when necessary. They designed new protocols to switch between bitwidths and operations on values of
differing bitwidths. Their approach is interesting and able to obtain better efficiency. While the work [27]
only considers private ML inference in the two-party setting, it is worth further developing the mixed
bitwidths approach to private ML training and the multi-party setting.

7 Conclusion and future work

We have described the (recent) development of concretely efficient MPC protocols along with the key tech-
niques underlying these MPC protocols. Particularly, we present the high-level ideas in the recent MPC
protocols and OT/OLE protocols. As an example of MPC applications, we discuss privacy-preserving
machine learning, and summarize related work as well as conversion and FSS-based techniques. It is
desired that this survey will help new researchers (who are interesting for MPC) understand the recent
development of concretely efficient MPC rapidly, and to preliminarily understand some key techniques
as a starting point of MPC study.

To deploy MPC on a large scale, standardization is a necessary step. Nevertheless, this is not an easy
task, as there exists many different kinds of MPC protocols that have different advantages in terms of
security and efficiency. Besides, there are many techniques and different assumptions that are used in
the design of MPC. These make the MPC standardization procedure becomes hard. Of course, we can
first standardize a batch of MPC protocols in the same setting, and then standardize the next batch in
the other setting. When standardization is a long-time procedure and needs to take a large amount of
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financial resources, this approach is very expensive. Furthermore, how to keep compatibility of multiple
MPC protocols in different standardization procedures is a problem. All of these need to be addressed
and solved in the future work. Recently, ISO is preparing the standardization process for MPC based on
secret sharing [302]. Besides, NIST will standardize multi-party threshold cryptography in the future [303],
where MPC is a key technique to realize AES encryption/decryption, EdDSA signing, the distributed
key-generation of RSA, etc. NIST also intends to accompany the progress of emerging technologies in the
area of privacy enhancing cryptography [304], which includes MPC, ZK, HE, etc.

We have summarized some open problems and future work in the previous sections. In the following,
we conclude this work by further listing several open problems and future work for concretely efficient
MPC protocols.

• Constant-round 2PC: The recent break-through work by Rosulek and Roy [199] reduced the size
of garbled circuits from 2κ bits per AND gate to 3κ/2+5 bits per AND gate. A natural open problem
is whether one can do better, e.g., about 4κ/3 bits per AND gate while keeping compatibility with
free-XOR and high computational efficiency. If this seems to be impossible, one can attempt to
prove that ≈ 3κ/2 bits per AND gate is optimal in a more inclusive model than the linear garbling
model in [195]. When the work [199] focuses on the semi-honest adversary, another open problem
is to extend the slicing-and-dicing technique in [199] to two-party distributed garbling that can be
used to design maliciously secure 2PC protocols by combining with BDOZ-style IT-MACs.

• Constant-round MPC: We conclude three future work for designing constant-round MPC.
(a) Dishonest majority for garbling: For multi-party distributed garbling based on only symmetric

primitives, the state-of-the-art technique by Yang et al. [110] achieves (4n−6)|C|κ bits in terms
of the size of a garbled circuit. It is a challenging task to further reduce it to about 2n|C|κ bits
based on still symmetric primitives. In other words, is it possible to totally apply the half-gate
technique to multi-party distributed garbling?

(b) Dishonest majority for AND triples: Currently, we use a TinyOT-like protocol to generate
authenticated AND triples, which requires an overhead of at least 3 to achieve malicious secu-
rity over the corresponding semi-honest protocol, where the overhead is from the usage of the
bucketing technique. It is an interesting open problem that designs an authenticated-AND-triple
protocol achieving an overhead of 2 (or even smaller) using a novel technique.

(c) Honest majority: If the number of parties n > 5, Chandran et al. [237] presented a constant-
round MPC protocol with corruption threshold t ≤

√
n. It is an interesting future work that

constructing a constant-round concrete-efficient MPC protocol tolerating t < n/2 corrupted
parties when n > 5.

• SPDZ: The efficiency bottleneck for SPDZ-style protocols is to generate authenticated triples over
a large field. The state-of-the-art protocol [161] based on a variant of the ring-LPN assumption
obtains a relatively low communication complexity, which is two orders of magnitude smaller than
Overdrive [152]. However, this protocol has a computation complexity of O(N logN) for encoding
(while fast Fourier transform (FFT) is used) which is large for large N , where N is the number of
resulting authenticated triples. An important future work is to reduce the computation complexity
while keeping small communication complexity for the ring-LPN-based protocol.
• LPN variants for MPC: COT and OLE as well as their variants are key building blocks for

MPC in the dishonest-majority setting. To design the COT and (V)OLE protocols with low com-
munication, several LPN variants have already been proposed, including LPN with a regular noise
distribution [114, 132], LPN with static leakage [132], ring-LPN with reducible polynomials and a
regular noise distribution [161]. An important future work is to further analyze the LPN variants
proposed in the MPC context, which allows to establish more confidence on the hardness of these
LPN problems.
• Large-scale MPC with honest majority: For honest-majority MPC in the malicious setting,

several recent work [178, 179, 184] designed large-scale MPC protocols, which scales practically to
hundreds of thousands of parties. However, their concrete efficiency is still not high. Constructing
large-scale maliciously secure MPC protocols with higher concrete efficiency as well as giving an
efficient implementation scaling to thousands of parties will be an interesting future work.
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[267] Branco P, Döttling N and Mateus P. Two-round oblivious linear evaluation from learning with errors. Cryptology
ePrint Archive, Report 2020/635, 2020. https://eprint.iacr.org/2020/635.

[268] Ghosh S, Nielsen JB and Nilges T. Maliciously secure oblivious linear function evaluation with constant overhead. In:
Takagi T and Peyrin T (eds.). ASIACRYPT 2017, art I, volume 10624 of LNCS. Heidelberg: Springer, 2017, 629–59.

[269] Chase M, Dodis Y and Ishai Y et al. Reusable non-interactive secure computation. In: Boldyreva A and Micciancio
D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 462–488.

[270] Abspoel M, Escudero D and Volgushev N. Secure training of decision trees with continuous attributes. Proc Priv
Enhancing Technol 2020; 2021: 167–87.

[271] Adams S, Choudhary C and De Cock M et al. Privacy-preserving training of tree ensembles over continuous data.
Cryptology ePrint Archive, Report 2021/754, 2021. https://eprint.iacr.org/2021/754.

[272] Attrapadung N, Hamada K and Ikarashi D et al. Adam in private: Secure and fast training of deep neural networks
with adaptive moment estimation. Cryptology ePrint Archive, Report 2021/736, 2021. https://eprint.iacr.org/2021/
736.

[273] Braun L, Demmler D and Schneider T et al. MOTION – A framework for mixed-protocol multi-party computation.
Cryptology ePrint Archive, Report 2020/1137, 2020. https://eprint.iacr.org/2020/1137.

[274] Knott B, Venkataraman S and Hannun A et al. CrypTen: secure multi-party computation meets machine learning.
In: Proceedings of the NeurIPS Workshop on Privacy-Preserving Machine Learning, 2020.

Page 41 of 43

https://eprint.iacr.org/2021/682
https://eprint.iacr.org/2020/1291
https://eprint.iacr.org/2020/819
https://eprint.iacr.org/2020/819
https://eprint.iacr.org/2020/1012
https://eprint.iacr.org/2020/1417
http://eprint.iacr.org/2003/230
https://eprint.iacr.org/2020/685
https://eprint.iacr.org/2020/635
https://eprint.iacr.org/2021/754
https://eprint.iacr.org/2021/736
https://eprint.iacr.org/2021/736
https://eprint.iacr.org/2020/1137


Security and Safety, Vol. 1, 2021001

[275] Nikolaenko V, Weinsberg U and Ioannidis S et al. Privacy-preserving ridge regression on hundreds of millions of
records. In: 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2013, 334–48.

[276] Wang Q, Ma Q and Li J et al. Enable Dynamic Parameters Combination to Boost Linear Convolutional Neural
Network for Sensitive Data Inference. Cryptology ePrint Archive, Report 2020/961, 2020. https://eprint.iacr.org/
2020/961.

[277] Liu J, Juuti M and Lu Y et al. Oblivious neural network predictions via MiniONN transformations. In: Thuraisingham
BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 619–31.

[278] Chandran N, Gupta D and Rastogi A et al. EzPC: Programmable and efficient secure two-party computation for
machine learning. In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P), 2019, 496–511.

[279] Simonyan K and Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition, 2015. https:
//arxiv.org/pdf/1409.1556.pdf

[280] Boemer F, Cammarota R and Demmler D et al. MP2ML: A mixed-protocol machine learning framework for private
inference. In: Proceedings of the 15th International Conference on Availability, Reliability and Security – ARES’20.
ACM, 2020.

[281] Dowlin N, Gilad-Bachrach R and Laine K et al. CryptoNets: Applying neural networks to encrypted data with
high throughput and accuracy. In: Proceedings of the 33rd International Conference on International Conference on
Machine Learning - ICML’16, 2016, 201–210. https://JMLR.org.

[282] Huang G, Liu Z and Van Der Maaten L et al. Densely connected convolutional networks. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, 2261–69.

[283] Dalskov A, Escudero D and Keller M. Secure evaluation of quantized neural networks. Proc Priv Enh Technol 2020;
2020: 355–75.

[284] Howard AG, Zhu M and Chen B et al. MobileNets: Efficient convolutional neural networks for mobile vision
applications, 2017.

[285] Spagnolo F, Perri S and Frustaci F et al. Energy-efficient architecture for CNNs inference on heterogeneous FPGA.
J Low Power Electron Appl 2020; 10: 1.

[286] Riazi M S, Weinert C and Tkachenko O et al. Chameleon: a hybrid secure computation framework for machine
learning applications. In: Kim J, Ahn G-J, Kim S, Kim Y, López J and Kim T (eds.). ASIACCS 18. ACM Press,
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