The $10^{\text {th }}$ Conference on Computational Methods in Systems Biology

Concretizing the Process Hitting into Biological Regulatory Networks

Maxime FOLSCHETTE ${ }^{1,2}$
maxime.folschette@irccyn.ec-nantes.fr http://www.irccyn.ec-nantes.fr/~folschet/

Joint work with: Loïc PAULEVÉ ${ }^{3}$, Katsumi INOUE ${ }^{2}$, Morgan MAGNIN ${ }^{1}$, Olivier ROUX ${ }^{1}$
${ }^{1}$ MeForBio / IRCCyN / École Centrale de Nantes (Nantes, France) morgan.magnin@irccyn.ec-nantes.fr olivier.roux@irccyn.ec-nantes.fr
${ }^{2}$ Inoue Laboratory / NII / Sokendai University (Tokyo, Japan) ki@nii.ac.jp
${ }^{3}$ AMIB / LIX / École Polytechnique (Palaiseau, France) pauleve@lix.polytechnique.fr

AtlanSTIC sojourn financed by NII \& Centrale Initiatives

Context and Aims

Algebraic modeling to study complex dynamical biological systems:

Context and Aims

Algebraic modeling to study complex dynamical biological systems:

- Historical model: Biological Regulatory Network (René Thomas)
- New developed model: Process Hitting
\Rightarrow Allow efficient translation from Process Hitting to BRN

The Process Hitting modeling [PMR12-MSCS]

Sorts: components a, b, z

The Process Hitting modeling
 [PMR12-MSCS]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$

The Process Hitting modeling

[PMR12-MSCS]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{0}, b_{1}, z_{0}\right\rangle$

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{0}, b_{1}, z_{0}\right\rangle$
Actions: dynamics $\quad \underline{b_{1} \rightarrow z_{0}} z_{1}, a_{0} \rightarrow a_{0} \upharpoonright a_{1}, a_{1} \rightarrow z_{1} \upharpoonright z_{2}$

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{0}, b_{1}, z_{1}\right\rangle$
Actions: dynamics $b_{1} \rightarrow z_{0} \upharpoonright z_{1}, \underline{a_{0}} \rightarrow a_{0} \upharpoonright a_{1}, a_{1} \rightarrow z_{1} \upharpoonright z_{2}$

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{1}, b_{1}, z_{1}\right\rangle$
Actions: dynamics $\quad b_{1} \rightarrow z_{0} \upharpoonright z_{1}, a_{0} \rightarrow a_{0} \upharpoonright a_{1}, \underline{a_{1} \rightarrow z_{1} \upharpoonright z_{2}}$

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{1}, b_{1}, z_{2}\right\rangle$
Actions: dynamics $b_{1} \rightarrow z_{0} \upharpoonright z_{1}, a_{0} \rightarrow a_{0} \upharpoonright a_{1}, a_{1} \rightarrow z_{1} \upharpoonright z_{2}$

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$

The Process Hitting modeling
[PMR12-MSCS]

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$

The Process Hitting modeling [PMR12-MSCS]

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$ Solution: a cooperative sort $a b$

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$ Solution: a cooperative sort $a b$

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$ Solution: a cooperative sort $a b$

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$ Solution: a cooperative sort $a b$

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$
Solution: a cooperative sort $a b$
Constraint: each configuration is represented by one process $\left\langle a_{1}, b_{0}\right\rangle$

The Process Hitting modeling

[PMR12-MSCS]

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$
Solution: a cooperative sort $a b$
Constraint: each configuration is represented by one process $\left\langle a_{1}, b_{0}\right\rangle$

The Process Hitting modeling

[PMR12-MSCS]

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$
Solution: a cooperative sort $a b$
Constraint: each configuration is represented by one process $\left\langle a_{1}, b_{0}\right\rangle$

The Process Hitting modeling

[PMR12-MSCS]

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$
Solution: a cooperative sort $a b$
Constraint: each configuration is represented by one process $\left\langle a_{1}, b_{0}\right\rangle \Rightarrow a b_{10}$

The Process Hitting modeling

[PMR12-MSCS]

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$
Solution: a cooperative sort $a b$ to express $a_{1} \wedge b_{0}$
Constraint: each configuration is represented by one process $\left\langle a_{1}, b_{0}\right\rangle \Rightarrow a b_{10}$

The Process Hitting modeling

[PMR12-MSCS]

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$
Solution: a cooperative sort $a b$ to express $a_{1} \wedge b_{0}$
Constraint: each configuration is represented by one process $\left\langle a_{1}, b_{0}\right\rangle \Rightarrow a b_{10}$

The Process Hitting modeling

[PMR12-MSCS]

How to introduce some cooperation between sorts? $\quad a_{1} \wedge b_{0} \rightarrow z_{1} \upharpoonright z_{2}$
Solution: a cooperative sort $a b$ to express $a_{1} \wedge b_{0}$
Constraint: each configuration is represented by one process $\left\langle a_{1}, b_{0}\right\rangle \Rightarrow a b_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift

The Process Hitting modeling

[PMR12-MSCS]

The Process Hitting framework:

- Dynamic modeling with an atomistic point of view
- Efficient static analysis (fixed points, reachability)
- Possible extensions (stochasticity, priorities)
- Useful for the study of large biological models

Biological Regulatory Network

[RCB08]

Historical bio-informatics model for studying genes interactions Widely used and well-adapted to represent dynamic gene systems

Biological Regulatory Network

[RCB08]

Interaction Graph: structure of the system (genes \& interactions)

Biological Regulatory Network

Interaction Graph: structure of the system (genes \& interactions)
Nodes: genes
\rightarrow Name a, b, z
\rightarrow Possible values (levels of expression) $0 . .1,0 . .2$

Biological Regulatory Network

Interaction Graph: structure of the system (genes \& interactions)
Nodes: genes
\rightarrow Name a, b, z
\rightarrow Possible values (levels of expression) $0 . .1,0 . .2$
Edges: interactions
\rightarrow Threshold 1
\rightarrow Type (activation or inhibition) $+/-$

Biological Regulatory Network

[RCB08]

Parametrization: strength of the influences (evolution tendencies)

Biological Regulatory Network

Parametrization: strength of the influences (evolution tendencies)
Maps of tendencies for each gene
\rightarrow To any set of predecessors ω
\rightarrow Corresponds a parameter $k_{x, \omega}$

Biological Regulatory Network

[RCB08]

Parametrization: strength of the influences (evolution tendencies)
Maps of tendencies for each gene
\rightarrow To any set of predecessors ω
\rightarrow Corresponds a parameter $k_{x, \omega}$
" $k_{z,\{a\}}=[2 ; 2]$ " means: " z tends to $[2 ; 2]$ when $a \geq 1$ and $b<1$ "

Biological Regulatory Network

Parametrization: strength of the influences (evolution tendencies)
Maps of tendencies for each gene
\rightarrow To any set of predecessors ω
\rightarrow Corresponds a parameter $k_{x, \omega}$
" $k_{z,\{a\}}=[2 ; 2]$ " means: " z tends to 2 when $a=1$ and $b=0$ "

Biological Regulatory Network

[RCB08]

Parametrization: strength of the influences (evolution tendencies)
Maps of tendencies for each gene
\rightarrow To any set of predecessors ω
\rightarrow Corresponds a parameter $k_{x, \omega}$
" $k_{z,\{a\}}=[2 ; 2]$ " means: " z tends to 2 when $a=1$ and $b=0$ "

Biological Regulatory Network

[RCB08]

Parametrization: strength of the influences (evolution tendencies)
Maps of tendencies for each gene
\rightarrow To any set of predecessors ω
\rightarrow Corresponds a parameter $k_{x, \omega}$
" $k_{z,\{a\}}=[2 ; 2]$ " means: " z tends to 2 when $a=1$ and $b=0$ "

Biological Regulatory Network

[RCB08]

\rightarrow All needed information to run the model or study its dynamics:

- Build the State Graph
- Find reachability properties, fixed points, attractors
- Other properties...
\rightarrow Strengths: well adapted for the study of biological systems
\rightarrow Drawbacks: inherent complexity; needs the full specification of cooperations

Inferring a BRN with Thomas' parameters

Inferring a BRN with Thomas' parameters

Inferring a BRN with Thomas' parameters

Inferring the Interaction Graph

- Inputs: a Process Hitting model
- Output: An interaction graph with all information:
\rightarrow edges, signs and thresholds
- Difficulties: Process Hitting is more atomistic than BRNs
- Idea: Exhaustive search in all possible configurations

Inferring the Interaction Graph

- For each gene [z]

- For each gene $[z]$, consider one possible regulator [a]

Inferring the Interaction Graph

- For each gene $[z]$, consider one possible regulator $[a]$
- Consider a configuration of all other regulators [$\{b=0\}]$

Inferring the Interaction Graph

- For each gene $[z]$, consider one possible regulator [a]
- Consider a configuration of all other regulators [$\{b=0\}]$
- For each process of a

Inferring the Interaction Graph

- For each gene $[z]$, consider one possible regulator [a]
- Consider a configuration of all other regulators [$\{b=0\}]$
- For each process of a

Inferring the Interaction Graph

- For each gene [z], consider one possible regulator [a]
- Consider a configuration of all other regulators [$\{b=0\}$]
- For each process of a, determine the set of focal processes of z

Inferring the Interaction Graph

- For each gene [z], consider one possible regulator [a]
- Consider a configuration of all other regulators [$\{b=0\}$]
- For each process of a, determine the set of focal processes of z

Inferring the Interaction Graph

- For each gene [z], consider one possible regulator [a]
- Consider a configuration of all other regulators [$\{b=0\}$]
- For each process of a, determine the set of focal processes of z

Inferring the Interaction Graph

- For each gene [z], consider one possible regulator [a]
- Consider a configuration of all other regulators [$\{b=0\}$]
- For each process of a, determine the set of focal processes of z

Inferring the Interaction Graph

- For each gene [z], consider one possible regulator [a]
- Consider a configuration of all other regulators [$\{b=0\}$]
- For each process of a, determine the set of focal processes of z
- Comparing the sets of focal processes gives the influence

$$
\{b=0\} \rightarrow a_{0}<a_{1} \text { and }\left\{z_{0}\right\} \preccurlyeq\left\{z_{2}\right\} \Rightarrow \text { activation }(+) \& \text { threshold }=1
$$

Inferring the Interaction Graph

- For each gene $[z]$, consider one possible regulator [a]
- Consider a configuration of all other regulators $[\{b=1\}]$
- For each process of a, determine the set of focal processes of z
- Comparing the sets of focal processes gives the influence

$$
\{b=0\} \rightarrow a_{0}<a_{1} \text { and }\left\{z_{0}\right\} \preccurlyeq\left\{z_{2}\right\} \Rightarrow \text { activation }(+) \& \text { threshold }=1
$$

Inferring the Interaction Graph

- For each gene $[z]$, consider one possible regulator [a]
- Consider a configuration of all other regulators $[\{b=1\}]$
- For each process of a, determine the set of focal processes of z
- Comparing the sets of focal processes gives the influence

$$
\{b=0\} \rightarrow a_{0}<a_{1} \text { and }\left\{z_{0}\right\} \preccurlyeq\left\{z_{2}\right\} \Rightarrow \text { activation }(+) \& \text { threshold }=1
$$

Inferring the Interaction Graph

- For each gene $[z]$, consider one possible regulator [a]
- Consider a configuration of all other regulators $[\{b=1\}]$
- For each process of a, determine the set of focal processes of z
- Comparing the sets of focal processes gives the influence

$$
\{b=0\} \rightarrow a_{0}<a_{1} \text { and }\left\{z_{0}\right\} \preccurlyeq\left\{z_{2}\right\} \Rightarrow \text { activation }(+) \& \text { threshold }=1
$$

Inferring the Interaction Graph

- For each gene $[z]$, consider one possible regulator [a]
- Consider a configuration of all other regulators $[\{b=1\}]$
- For each process of a, determine the set of focal processes of z
- Comparing the sets of focal processes gives the influence

$$
\{b=0\} \rightarrow a_{0}<a_{1} \text { and }\left\{z_{0}\right\} \preccurlyeq\left\{z_{2}\right\} \Rightarrow \text { activation }(+) \& \text { threshold }=1
$$

$$
\{b=1\} \rightarrow a_{0}<a_{1} \text { and }\left\{z_{1}\right\}=\left\{z_{1}\right\} \Rightarrow \text { no influence }(\sim)
$$

Inferring the Interaction Graph

- For each gene $[z]$, consider one possible regulator [a]
- Consider a configuration of all other regulators [$\{b=1\}$]
- For each process of a, determine the set of focal processes of z
- Comparing the sets of focal processes gives the influence

$$
\begin{aligned}
& \{b=0\} \rightarrow a_{0}<a_{1} \text { and }\left\{z_{0}\right\} \preccurlyeq\left\{z_{2}\right\} \Rightarrow \text { activation }(+) \& \text { threshold }=1 \\
& \{b=1\} \rightarrow a_{0}<a_{1} \text { and }\left\{z_{1}\right\}=\left\{z_{1}\right\} \Rightarrow \text { no influence }(\sim)
\end{aligned}
$$

- If possible, determine the general influence of a on z

Inferring the Interaction Graph

- For each gene $[z]$, consider one possible regulator [a]
- Consider a configuration of all other regulators [$\{b=1\}$]
- For each process of a, determine the set of focal processes of z
- Comparing the sets of focal processes gives the influence

$$
\begin{aligned}
& \{b=0\} \rightarrow a_{0}<a_{1} \text { and }\left\{z_{0}\right\} \preccurlyeq\left\{z_{2}\right\} \Rightarrow \text { activation }(+) \& \text { threshold }=1 \\
& \{b=1\} \rightarrow a_{0}<a_{1} \text { and }\left\{z_{1}\right\}=\left\{z_{1}\right\} \Rightarrow \text { no influence }(\sim)
\end{aligned}
$$

- If possible, determine the general influence of a on z

Problematic cases:
$\left.\begin{array}{l}\rightarrow \text { No focal processes (cycle) } \\ \rightarrow \text { Opposite influences }(+\&-)\end{array}\right\} \Rightarrow$ Unsigned edge

Interaction Graph Inference

Implementation

Programming in ASP:

- Formal mathematical definitions \rightarrow ASP
- Use of aggregates (enumeration $=1$ active process per sort)

Interaction Graph Inference

Implementation

Programming in ASP:

- Formal mathematical definitions \rightarrow ASP
- Use of aggregates (enumeration $=1$ active process per sort)

Calling ASP:

- Pint (existing OCaml library) to read Process Hitting models
Free library + examples: http://processhitting.wordpress.com/
- OCaml to translate these models to an ASP description and parse the results
- Clingo to solve the description with the adequate program

Interaction Graph Inference

Results

Results: Very fast execution (personal laptop, 1.83 GHz dual-core) $<1 \mathrm{~s}$ for 20 \& 40 genes models [EGFR20 \& TCRSIG40]
$\simeq 13 \mathrm{~s}$ for a 94 genes model [TCRSIG94]
$\simeq 4 \mathrm{~min}$ for a 104 genes model [EGFR104]

Model name	Model specifications				IG inference	
	Sorts	CS*	Processes	Actions	Time	Edges
[EGFR20]	20	22	152	399	<1 s	50
[TCRSIG40]	40	14	156	301	<1 s	54
[TCRSIG94]	94	39	448	1124	$\simeq 13 \mathrm{~s}$	169
[EGFR104]	104	89	748	2356	$\simeq 4 \mathrm{~min}$	241

${ }^{*} \mathrm{CS}=$ Cooperative sorts

- [EGFR20]: Epidermal Growth Factor Receptor, by Özgür Sahin et al.
- [EGFR104]: Epidermal Growth Factor Receptor, by Regina Samaga et al.
- [TCRSIG40]: T-Cell Receptor Signaling, by Steffen Klamt et al.
- [TCRSIG94]: T-Cell Receptor Signaling, by Julio Saez-Rodriguez et al.

Inferring Parameters
 [PMR10-TCSB]

Inputs: The Process Hitting model and the related Interaction Graph Output: The Parametrization related to the Interaction Graph

Inputs: The Process Hitting model and the related Interaction Graph Output: The Parametrization related to the Interaction Graph

- For each gene $[z]$ and each configuration of resources $[\omega=\{a ; b\}]$

Inferring Parameters
[PMR10-TCSB]

Inputs: The Process Hitting model and the related Interaction Graph Output: The Parametrization related to the Interaction Graph

- For each gene $[z]$ and each configuration of resources $[\omega=\{a ; b\}]$
- Find the set of focal processes of the gene

Inferring Parameters
[PMR10-TCSB]

Inputs: The Process Hitting model and the related Interaction Graph Output: The Parametrization related to the Interaction Graph

- For each gene $[z]$ and each configuration of resources $[\omega=\{a ; b\}]$
- Find the set of focal processes of the gene $\left[\left\{z_{1}\right\}\right]$

Inferring Parameters
 [PMR10-TCSB]

Inputs: The Process Hitting model and the related Interaction Graph Output: The Parametrization related to the Interaction Graph

- For each gene $[z]$ and each configuration of resources $[\omega=\{a ; b\}]$
- Find the set of focal processes of the gene [\{ $\left.z_{1}\right\}$]
- Under some conditions, this set is the parameter: $k_{z,\{a, b\}}=[1 ; 1]$

Inferring Parameters
 [PMR10-TCSB]

Inputs: The Process Hitting model and the related Interaction Graph Output: The Parametrization related to the Interaction Graph

- For each gene $[z]$ and each configuration of resources $[\omega=\{a ; b\}]$
- Find the set of focal processes of the gene $\left[\left\{z_{1}\right\}\right]$
- Under some conditions, this set is the parameter: $k_{z,\{a, b\}}=[1 ; 1]$

Problematic cases:
\rightarrow Behavior cannot be represented as a BRN
\rightarrow Lack of cooperation (no focal processes)

Enumerating admissible Parametrizations

Inputs: The Process Hitting, the related Interaction Graph and the partially inferred Parametrization
Output: All admissible Parametrizations observing the dynamics

Enumerating admissible Parametrizations

Inputs: The Process Hitting, the related Interaction Graph and the partially inferred Parametrization
Output: All admissible Parametrizations observing the dynamics

- Incomplete cooperations may lead to a partial Parametrization $[\omega=\{a, b\}]$

Enumerating admissible Parametrizations

ω	$k_{z, \omega}$
\varnothing	$?$
$\{b\}$	$[0 ; 0]$
$\{a\}$	$[2 ; 2]$
$\{a ; b\}$	$?$

Inputs: The Process Hitting, the related Interaction Graph and the partially inferred Parametrization
Output: All admissible Parametrizations observing the dynamics

- Incomplete cooperations may lead to a partial Parametrization $[\omega=\{a, b\}]$
- Ambiguous cases may represent several dynamics

$$
\left[k_{z,\{a, b\}}=[0 ; 0] ?[0 ; 1] ?[1 ; 1] ?[1 ; 2] ?[2 ; 2] ?[0 ; 2] ?\right]
$$

Enumerating admissible Parametrizations

ω	$k_{z, \omega}$
\varnothing	$?$
$\{b\}$	$[0 ; 0]$
$\{a\}$	$[2 ; 2]$
$\{a ; b\}$	$?$

Inputs: The Process Hitting, the related Interaction Graph and the partially inferred Parametrization
Output: All admissible Parametrizations observing the dynamics

- Incomplete cooperations may lead to a partial Parametrization $[\omega=\{a, b\}]$
- Ambiguous cases may represent several dynamics

$$
\left[k_{z,\{a, b\}}=[0 ; 0] ?[0 ; 1] ?[1 ; 1] ?[1 ; 2] ?[2 ; 2] ?[0 ; 2] ?\right]
$$

\rightarrow Enumeration regarding:

- Biological constraints
- The dynamics of the Process Hitting

Parametrization Inference

Two steps:

- Parameters inference (partial)
- Admissible Parametrizations enumeration (total)

Parametrization Inference

Results

Two steps:

- Parameters inference (partial)
- Admissible Parametrizations enumeration (total)

Results:

- Very fast execution for parameters inference
$<$ 1s for the 20 \& 40 genes models [EGFR20 \& TCRSIG40]
$\simeq 1 \mathrm{~min} 30 \mathrm{~s}$ for the 104 genes models [EGFR104]
- Admissible Parametrizations enumeration

After one cooperation removal:
$\simeq 4 \mathrm{~s}$ to find 42 admissible Parametrizations [TCRSIG40]
$\simeq 20 \mathrm{~s}$ to find 129 admissible Parametrizations [EGFR20]
ASP is convenient to handle enumeration (cardinalities) and filter only admissible answers (constraints)

Summary \& Future work

- Inference of the complete Interaction Graph
\rightarrow Exhaustive approach to find the mutual influences
- Inference of the possibly partial Parametrization
\rightarrow Exhaustive approach to find the necessary parameters
- Enumerate all full \& admissible Parametrizations
\rightarrow Exhaustive approach to find only relevant answers
- Complexity: linear in the number of genes,
exponential in the number of regulators of one gene

Summary \& Future work

- Inference of the complete Interaction Graph
\rightarrow Exhaustive approach to find the mutual influences
- Inference of the possibly partial Parametrization
\rightarrow Exhaustive approach to find the necessary parameters
- Enumerate all full \& admissible Parametrizations
\rightarrow Exhaustive approach to find only relevant answers
- Complexity: linear in the number of genes,
exponential in the number of regulators of one gene
- Concretize into more expressive BRN representations
\rightarrow Tackle with unsigned edges (problematic cases)
\rightarrow Use multiplexes to decrease the size of Parametrizations
- Use projections to remove cooperative sorts
\rightarrow Make actions independent
\rightarrow Drop inference complexity?

Conclusion

Existing translation: René Thomas \rightsquigarrow Process Hitting New translation: Process Hitting \rightsquigarrow René Thomas
\rightarrow New formal link between the two models
\rightarrow More visibility to the Process Hitting

Conclusion

Existing translation: René Thomas \rightsquigarrow Process Hitting New translation: Process Hitting \rightsquigarrow René Thomas
\rightarrow New formal link between the two models
\rightarrow More visibility to the Process Hitting

Using ASP
\rightarrow Tackles with complexity/combinatorial explosion
\rightarrow Allows efficient exhaustive search \& enumeration

A multi-team topic

Inoue Laboratory (NII, Sokendai): Constraint Programming, Systems Biology MeForBio (IRCCyN, ÉCN): Formal Methods for Bioinformatics AMIB (LIX, Polytechnique): Algorithms and Models for Integrative Biology

Bibliography

[Paulevé11] Loïc Paulevé. PhD thesis: Modélisation, Simulation et Vérification des Grands Réseaux de Régulation Biologique, October 2011, Nantes, France
[PRM10-TCSB] Loïc Paulevé, Morgan Magnin, and Olivier Roux. Refining dynamics of gene regulatory networks in a stochastic π-calculus framework. In Corrado Priami, Ralph-Johan Back, Ion Petre, and Erik de Vink, editors: Transactions on Computational Systems Biology XIII, volume 6575 of Lecture Notes in Computer Science, 171-191. Springer Berlin/Heidelberg, 2011.
[PMR12-MSCS] Loïc Paulevé, Morgan Magnin, and Olivier Roux. Static analysis of biological regulatory networks dynamics using abstract interpretation. Mathematical Structures in Computer Science, in press, 2012.
[RCB08] Adrien Richard, Jean-Paul Comet, and Gilles Bernot. R. Thomas' logical method, 2008. Invited at Tutorials on modelling methods and tools: Modelling a genetic switch and Metabolic Networks, Spring School on Modelling Complex Biological Systems in the Context of Genomics.

Thank you

