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Abstract

Recently, Long Short-Term Memory (LSTM) has become

a popular choice to model individual dynamics for single-

person action recognition due to its ability of modeling the

temporal information in various ranges of dynamic con-

texts. However, existing RNN models only focus on captur-

ing the temporal dynamics of the person-person interaction-

s by naively combining the activity dynamics of individuals

or modeling them as a whole. This neglects the inter-related

dynamics of how person-person interactions change over

time. To this end, we propose a novel Concurrence-Aware

Long Short-Term Sub-Memories (Co-LSTSM) to model the

long-term inter-related dynamics between two interacting

people on the bounding boxes covering people. Specifically,

for each frame, two sub-memory units store individual mo-

tion information, while a concurrent LSTM unit selectively

integrates and stores inter-related motion information be-

tween interacting people from these two sub-memory units

via a new co-memory cell. Experimental results on the BIT

and UT datasets show the superiority of Co-LSTSM com-

pared with the state-of-the-art methods.

1. Introduction

Person-person interaction (e.g., handshake, hug, etc), as

the basic unit in the human activity, is attracting much at-

tention in the computer vision and pattern recognition com-

munities [17, 16, 4, 31]. During a person-person interac-

tion process, there are usually two individual motions from

two interacting people respectively, some of which are con-

currently inter-related with each other (e.g., two interact-

ing people are stretching out hands in hug interaction). It
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Figure 1. Illustration of the proposed Co-LSTSM. For each frame,

two sub-memory units are developed to store individual motion

information, while a concurrent LSTM unit is developed to se-

lectively integrate and store inter-related motion information be-

tween interacting people from two sub-memory units via a new

co-memory cell πt (t = 1, 2, · · · ). Stacked concurrent LSTM

units are recurrent to capture inter-related dynamics between in-

teracting people over time.

has been proven that the concurrently inter-related motions

between interacting people are discriminative for recogniz-

ing the person-person interactions [4, 14]. In most cases

of person-person interaction, the concurrently inter-related

motions between two interacting people are either 1) quite

symmetrically similar to each other (e.g., two interacting

people are handshaking); or 2) not quite similar but are

strongly interacting to each other (e.g., person A kicks per-

son B, while person B retreats back).

There are mainly two types of solutions for person-

person interaction recognition. One solution (e.g., [17, 16,

4, 40]) is to extract the individual motion descriptors (e.g.,

spatio-temporal interest points [7]) from interacting people,

and then predict the class label of an interaction by infer-
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ring the coherence between two individual motions. How-

ever, this solution regards the person-person interactions as

two single-person actions, which ignores some inter-related

motion information and brings in some irrelevant individu-

al motion information. The other solution is to extract the

motion descriptors on the interactive regions, and then train

an interaction recognition model [14]. However, it is hard

to locate interactive region before close interacting.

Usually, the difference between person-person interac-

tions (e.g., boxing interaction and pat interaction) is sub-

tle [29, 4, 26], which brings in the challenge to recog-

nize person-person interaction. Recently, due to the pow-

erful ability of capturing the sequential motion information,

Recurrent Neural Networks (RNN) [36], especially Long

Short-Term Memory (LSTM) [11], has proven successful

on human action recognition tasks [8, 9, 34, 23, 12]. To well

address the problem of person-person interaction recogni-

tion, we aim to explore the long-term inter-related dynamics

between two interacting people by leveraging state-of-the-

art LSTM model. However, existing LSTM models only

modeling human individual dynamics independently do not

consider the concurrently inter-related dynamics between

interacting people. A naive way is to either 1) merge the

individual actions at preprocessing stage [13] (e.g., consid-

er interacting people as a whole); or 2) utilize two LSTM

networks to model the individual dynamics of each interact-

ing person respectively, and then fuse the output sequences

from two LSTM networks [12]. However, this neglects the

inter-related dynamics between interacting people of how

person-person interactions can change over time.

To this end, we propose a novel Concurrence-Aware

Long Short-Term Sub-Memories (Co-LSTSM) for person-

person interaction recognition by modeling the long-term

inter-related dynamics between two interacting people on

the bounding boxes covering people. It has the ability to

aggregate the inter-related memories from individual mem-

ories of interacting people over time, as shown in Figure 1.

Specifically, we present a novel concurrent LSTM unit con-

sisting of two sub-memory units that store the individual

motion information on the bounding box covering people

of each video frame. Following these two sub-memory

units, a new co-memory cell selectively integrates and s-

tores the memories from two sub-memory units to reveal

the concurrently inter-related motion information between

interacting people. Overall, two interacting people in each

frame are jointly modeled by a concurrent LSTM unit on the

bounding boxes covering people, which outputs the concur-

rently inter-related hidden representations between interact-

ing people rather than the individual hidden representations

from individual human. The stacked concurrent LSTM u-

nits are recurrent in a time sequence to capture the concur-

rently inter-related dynamics between two interacting peo-

ple over time. Extensive experiments on the widely-used

benchmarks well show the superior performance of the pro-

posed Co-LSTSM compared with the state-of-the-art meth-

ods and several baselines.

Our main contributions in this work are two-fold:

(1) We propose a novel Concurrence-Aware Long Short-

Term Memories (Co-LSTSM) to effectively address the

problem of person-person interaction recognition. (2) To

our best knowledge, our work is the first attempt in model-

ing concurrently long-term inter-related dynamics over time

between multiple motion objects by the variants of LSTM.

2. Related Work

2.1. Human Action Recognition

Human activity recognition aims to automatically under-

stand the activities performed by people [4, 2, 25], including

group-person interaction recognition (e.g., walking, queue-

ing, etc) [21, 28, 5, 33], person-object interaction recogni-

tion (e.g., some people are eating, while the other people are

riding a bike) [1, 2], and person-person interaction recogni-

tion [17, 16, 4, 31].

For group-person interaction recognition, one solution

used in [21, 28] is to exploit the spatial distribution of hu-

man activities and present the spatio-temporal descriptors

in capturing the spatial distribution of people. The other so-

lution used in [5, 24, 33] is to track all body parts in a video,

and then learn the holistic representations to estimate their

collective activities. In particular, instead of treating the two

problems (i.e., tracking multiple people and estimating their

collective activities) separately, Choi et al. [5] presented a

unified framework to simultaneously track people and esti-

mate their collective activities. Besides, Lan et al. [20, 21]

proposed to recognize the group-person activities by jointly

capturing the group activity, the individual human actions,

and the interactions among them.

For person-object interaction recognition, there are usu-

ally a number of concurrent individual activities (e.g., some

people are riding a bike) and group activities (e.g., some

people are walking together). To address this challenge,

Amer et al. [1] proposed a spatio-temporal AND-OR graph

to jointly model the activity parts, person-person spatio-

temporal relations, and person-object context, as well as

enable multi-target tracking. Subsequently, Amer et al. [2]

used a three-layered AND-OR graph to jointly model group

activities, individual actions, and participating objects. A

key point is that these methods require a multitude of detec-

tors at different levels.

For person-person interaction recognition, some repre-

sentative works [17, 16, 40] used several interactive phras-

es as the latent mid-level feature to infer the person-person

interaction from the human individual actions. Interactive

phrases incorporating rich human knowledge provide an ef-

fective way to represent person-person interactions. How-
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ever, the difference of some interactions (e.g., boxing and

pat) is too stable to be discriminated only by the interactive

phrases. Besides, some person-person interactions are com-

plex, which cannot be described well by a certain amount of

interactive phrases. Recently, Kong et al. [14] developed a

patch-aware latent SVM to recognize the interactions by in-

ferring the closely interactive regions between interacting

people. However, it is hard to capture the interactive re-

gions before close interacting. Moreover, Chang et al. [4]

proposed to extract features of each interacting person and

then learn an interaction matrix between interacting people.

2.2. RNNbased Action Recognition

As neural nets for handling sequential data with vari-

able length, RNN, especially LSTM, has been success-

fully applied to action recognition [41, 8, 9, 34, 23, 12].

Many RNN-based action recognition methods are embed-

ded the LSTM layer into Convolutional Neural Networks

(CNN) [8, 37, 13]. For example, Wu et al. [37] proposed

to train three types of CNNs equipped with LSTM to model

the spatial, short-term motion and audio clues correspond-

ing to the inputs of video frames, stacked optical flows, and

audio spectrogram, respectively. Besides, some skeleton-

based action recognition methods utilized RNN to model

the long-term contextual information of all skeletons. For

example. Du et al. [9] proposed a multilayer RNN frame-

work to feed the five body parts from human skeletons into

five subnets. As the number of layers increases, the rep-

resentations outputs from several subnets are hierarchically

fused to the inputs of the higher layers.

Some works aim to design the specific RNN architecture

for the different action recognition tasks [12, 41, 30]. For

example, in order to capture the co-occurrences of discrim-

inative joints, Zhu et al. [41] added a mixed-norm regular-

ization penalty to the deep LSTM networks. Moreover, the

authors proposed an internal dropout technique to c oper-

ate on the gates, cells, and output responses of the LSTM

nodes. To emphasize on the temporal change of motion in-

formation between two consecutive frames with the time,

Veeriah et al. [34] proposed a Differential RNN architec-

ture equipped with the Derivative of States between the L-

STM gates. Recently, Shahroudy et al. [30] proposed a Part-

aware LSTM that separates the memory cell into the several

sub-cells corresponding to the different body parts and ex-

plicitly models the dependencies over spatial and temporal

domains concurrently. Likewise, Liu et al. [23] also pro-

posed the similar LSTM architecture by pushing the tra-

ditional LSTM-based learning into temporal domains and

spatial domains simultaneously.

Unlike existing RNN-based action recognition works,

we consider the more challenging action recognition sce-

nario within person-person interactions. To capture the in-

teractive motion information rather than the individual mo-

tion information, the proposed Co-LSTSM explicitly mod-

els the concurrently inter-related dynamics between inter-

acting people. The most related works [13, 12] either com-

bine the individual dynamics of each person or treat the two

interacting people as a whole. To our best knowledge, our

work is the first time to model the concurrently long-term

inter-related dynamics over time between interacting peo-

ple by the LSTM-based model.

3. Preliminary: RNN for Individual Action

Given an input video clip {xt ∈ R
n|t = 1, · · · , T} with

the length T , RNN [36] models its dynamics through a se-

quence of hidden states {ht ∈ R
m|t = 1, · · · , T} with M

hidden units, which can be mapped to an output sequence

{zt ∈ R
k|t = 1, · · · , T} (k is the number of the classes of

actions), i.e.,

ht = φ(Whx · xt +Whh · ht−1 + bh); (1)

zt = φ(Wzh · ht + bz), (2)

where φ(·) denotes tanh(·), Wh∗ and Wz∗ are the weight

matrices, and b∗ is the bias vector. Finally, the output zt
at time step t can be solved by a softmax function, i.e.,

yt,l = exp(zt,l)/
∑

j=1

exp(zt,j), where the j-th element zt,j

denotes the encoding of the confidence score on the j-th

class action.

Due to the exponential decay in retaining the context in-

formation of video frames, Long Short-Term Memory [11],

a variant of RNN, provides a solution by allowing the net-

work to learn when to forget previous hidden states and

when to update hidden states given new information [8].

Usually, each LSTM unit contains a memory cell (denot-

ed by ct) storing the memory of the input sequence up to the

time step t. In order to store the memory w.r.t the motion

information in the long time, three types of gates (i.e., input

gate it, forget gate ft and output gate ot) are incorporated

into the LSTM unit to control what information would enter

and leave the memory cell over time [11], as follows,

it = σ(Wix · xt +Wih · ht−1 + bi); (3)

ft = σ(Wfx · xt +Wfh · ht−1 + bf ); (4)

ot = σ(Wox · xt +Woh · ht−1 + bo), (5)

where σ(·) is a sigmoid function; W∗x and W∗h are the

weight matrices; b∗ is the bias vector. In addition to three

gates, the memory cell ct can be expressed as

ct = fst ⊙ ct−1 + it ⊙ gt, (6)

where gt = φ(Wgx ·xt+Wgh ·ht−1+bg), and ⊙ denotes

the element-wise product. Finally, a hidden state ht at time

step t can be expressed as

ht = ot ⊙ φ(ct). (7)
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4. The Proposed Co-LSTSM

4.1. The Architecture

For person-person interaction recognition, each video

frame contain two concurrent individual actions from in-

teracting people, some of which are inter-related with each

other. Existing LSTM models targeting to singe-person ac-

tions cannot handle the person-person interactions well. As

mentioned before, we can roughly treat two interacting peo-

ple as a whole before training the LSTM network. However,

this solution will bring in some individual-special motion

information. Besides, we can also model the individual dy-

namics of each person by two LSTM networks respective-

ly, and then naively combine (e.g., concatenate or pool) the

output sequences from two LSTM networks into the final

representation. However, it is intuitive that this strategy los-

es some concurrently inter-related motion information be-

tween interacting people.

To this end, we propose a Concurrence-Aware Long

Short-Term Memories (Co-LSTSM) to capture the concur-

rently inter-related dynamics between interacting people

rather than the individual dynamics of each person. Our

key idea is to develop two sub-memory units to store the

individual motion information of each person respectively,

and a concurrent LSTM unit to selectively integrate and s-

tore the concurrently inter-related motion information be-

tween interacting people from the individual motion infor-

mation. Figure 2 illustrates the architecture of a concurrent

LSTM unit of the proposed Co-LSTSM. Overall, the con-

current LSTM unit at each time step consists of two spe-

cific sub-memory units, two cell gates, a common output

gate and a new co-memory cell. Specifically, these two

sub-memory units include their respective input gates, for-

get gates, memory cells. And the co-memory cell between

two sub-memory units selectively integrates the individual

motion information from two memory units and memorizes

the inter-related motion information.

Formally, {xa
t ∈ R

n|t = 1, · · · , T} and {xb
t ∈ R

n|t =
1, · · · , T} denote two sequences of two concurrent people,

respectively; iat , fat and cat denote the input gate, forget gate

and sub-memory cell in sub-memory unit 1 at time step t,
respectively; ibt , f bt and cbt denote the input gate, forget gate

and sub-memory cell in sub-memory unit 2 at time step t,
respectively. All of them can be expressed in the following

equations

ist = σ(Ws
ix · xs

t +Ws
ih · ht−1 + bs

i ), s ∈ {a, b}; (8)

fst = σ(Ws
fx · xs

t +Ws
fh · ht−1 + bs

f ), s ∈ {a, b}; (9)

gs
t = φ(Ws

gx · xs
t +Ws

gh · ht−1 + bs
g), s ∈ {a, b}; (10)

cst = fst ⊙ cst−1
+ ist ⊙ gs

t , s ∈ {a, b}, (11)

where W s
∗x and W s

∗h are the weight matrices, and b∗ is the

bias vector.
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Figure 2. Illustration of a concurrent LSTM unit in the proposed

Co-LSTSM. For the concurrent inputs xa

t and x
b

t at time step t, a

concurrent LSTM unit consists of two specific sub-memory units,

a common output gate ot, two new cell gates (i.e., πa

t and π
b

t ) and

a new co-memory cell ct. These two sub-memory units includes

the respective input gates (i.e., iat and i
b

t ), forget gates (i.e., fat and

f
b

t ), sub-memory cells (i.e., cat and c
b

t ). In particular, two sub-

memory cells (i.e., cat and c
b

t ) are jointly fed into the co-memory

cell ct, followed by the hidden representation ht.

Two cell gates πa
t and πb

t following the sub-memory unit

1 and the sub-memory unit 1 respectively aim to control

what memories from two sub-memory units enter and leave

at each time step. Unlike the traditional gates, the cell gate

πs
t (s ∈ {a, b}) is activated by a nonlinear function of two

inputs xa
t and xb

t and the past hidden state ht−1, i.e.,

πs
t = σ(Ws

πx · x
s
t +Wπh · ht−1 + bπ), s ∈ {a, b},

(12)

where s ∈ {a, b}, Wπ∗ are the weight matrices, and bπ
is the bias vector. Based on the consistent interaction-

s between two interacting people, these two cell gates πs
t

(s ∈ {a, b}) allow more concurrently inter-related mo-

tion information between interacting people to enter the co-

memory cell ct and contribute to one common hidden state.

In this work, the co-memory cell ct can be expressed as

ct = πa
t ⊙ cat + πb

t ⊙ cbt . (13)

In the concurrent LSTM unit, two sub-memory units

share a common output gate ot. The activation of the cell

gate ot is similar to the activation of the cell gate, i.e.,

ot = σ(Wox ·

[

xa
t

xb
t

]

+Woh · ht−1 + bo). (14)

Finally, a hidden state ht at time step t can be expressed as

ht = ot ⊙ φ(ct). (15)

Briefly, at time step t, the proposed Co-LSTSM model pro-

ceeds in the following order.
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• Compute input gates ist and forget gates fst by Eq (8)

and Eq (9), respectively;

• Update sub-memory cells cst by Eq (11);

• Compute cell gates πs
t by Eq (12);

• Compute co-memory gate ct by Eq (13);

• Compute output gate ot by Eq (14);

• Output ht by Eq (15).

4.2. Learning Algorithm

We employ a loss function to learn the model parameters

of Co-LSTSM by measuring the deviation between the tar-

get class lt and yt at time step t, i.e., ℓ(yt, lt)= − log yt,lt .

Both types of loss functions can be minimized by Back

Propagation Through Time (BPTT) algorithm [6], which

unfolds the Co-LSTSM model over several time steps and

then runs the back propagation algorithm to train the model.

specifically, LSTM usually uses the truncated BPTT to pre-

vent the back-propagation errors. The idea is that once the

back-propagated error leaves the LSTM unit or gates, it will

not be allowed to enter the LSTM unit again. Here, we also

do not allow the errors to re-enter the concurrent LSTM unit

once they leave the co-memory cell.

5. Experiments

5.1. Dataset

We conduct experiments to evaluate the performance of

the proposed Co-LSTSM by comparing with the state-of-

the-art methods and some baselines on the following two

widely-used benchmarks.

BIT dataset [16]. It consists of eight classes of human

interactions, i.e., bow, boxing, handshake, high-five, hug,

kick, pat, and push. In each class, there are 50 videos,

which are captured in real scenarios within the cluttered

backgrounds. For some videos, there are partially occlud-

ed bodies, moving objects, as well as devise appearances,

scales, poses, illuminations and viewpoints. Following the

setting in [17], 34 videos per class are randomly chosen as

training data and the remaining ones for testing.

UT dataset [29]. It consists of ten videos, each of which

contains six classes of human interactions, i.e., handshake,

hug, kick, point, punch and push. These videos are captured

with different scales and illuminations. The authors provide

the interaction labels for each frame. After extracting the

frames, we obtain 60 video clips in total, namely 10 video

clips per class. The leave-one-out cross validation training

strategy is adopted for the experiments, i.e., nine video clips

per class are used for training while the remaining one for

cross validation. Finally, averaged accuracy on 10 times is

reported as the final performance.

5.2. Implementation Details

In the preprocessing step, the bounding box correspond-

ing to each interacting person is detected and tracked over

all frames by an object detector [10] and object tracker [39].

Since some works validated that placing the LSTM network

on fc6 of CNN performs better than fc7 of CNN [8], we em-

ploy the pre-trained AlexNet model [19] to extract the two

types of fc6 features on two bounding boxes around two

concurrent people, respectively.

For BIT dataset and UT dataset, the length T of time

steps is set to 30 and 40, respectively. The sub-memory cell

nodes are set 2048 on both BIT and UT. The time steps of

each video clip in BIT dataset and UT dataset are set 30

and 40 respectively. We use Torch toolbox and Caffe as

the deep learning platform and a NVIDIA Tesla K20 GPU

to run the experiments. The learning rate, momentum and

decay rate are set 1 × 10−5, 0.9 and 0.95, respectively. We

plot the learning curve for training Co-LSTSM model on

BIT dataset and UT dataset in Figure 3. We can see that the

training of Co-LSTSM begins to converge after about 600
and 1300 epochs on the BIT dataset and the UT dataset,

respectively.

In experiments, three baselines are conducted to illus-

trate the novelty of the proposed Co-LSTSM.

• Person-box CNN. The pre-trained AlexNet model is

deployed on two bounding boxes around the two con-

current people at each time step respectively, where t-

wo fc6 features corresponding to two interacting peo-

ple are concatenated into a long vector. Then the con-

catenated features over all time steps are pooled into

a single feature. All features from each video clip are

trained and tested on the softmax classifier. This base-

line can illustrate the importance of deep features.

• One CNN+LSTM. This baseline treats two individual

actions as a whole. First, two bounding boxes corre-

sponding two interacting people at each time step are

merged into a bigger bounding box. Second, fc6 fea-

tures are extracted by AlexNet on this “bigger” bound-

ing box at each time step. Third, we use the fc6 fea-

tures at each time step as inputs to train a LSTM mod-

el. The model of this baseline is similar to Long-term

Recurrent Convolutional Networks (LRCN) [8].

• Two CNN+LSTM. This baseline models the individ-

ual dynamics of two people by two LSTM network-

s, respectively. First, AlexNet is deployed on the t-

wo bounding boxes around two interacting people at

each time step to extract fc6 features. Second, fc6 fea-

tures from two individuals are feed to one LSTM net-

works to capture the individual dynamics, respectively.

Third, the softmax scores output from these two LST-

M networks are fused. This idea of this baseline is the
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Method bow boxing handshake high-five hug kick pat push Average

Lan et al. [21] 81.25 75.00 81.25 87.50 87.50 81.25 81.25 81.25 82.03

Liu et al. [22] 100.00 75.00 81.25 87.50 93.75 87.50 75.00 75.00 84.37

Kong et al. [16] 81.25 81.25 81.25 93.75 93.75 81.25 81.25 87.50 85.16

Kong et al. [14] 87.50 81.25 87.50 81.25 87.50 81.25 87.50 87.50 85.38

Kong et al. [17] 93.75 87.50 93.75 93.75 93.75 87.50 87.50 87.50 90.63

Donahue et al. [8] 100.00 75.00 85.00 69.75 85.00 69.75 80.00 76.50 80.13

Ke et al. [13] - - - - - - - - 85.20

Person-box CNN 100.00 75.00 62.50 56.25 93.75 68.75 56.25 62.50 71.88

One CNN+LSTM 100.00 75.00 84.50 84.50 88.00 88.00 70.00 78.00 83.50

Two CNN+LSTM 100.00 79.00 84.50 84.50 94.75 88.00 80.50 90.00 87.66

Co-LSTSM 100.00 90.50 92.50 92.50 94.75 88.00 90.50 94.25 92.88

Table 1. Recognition accuracy (%) of different methods on the BIT dataset.
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Figure 3. Objective loss curve over training epochs.

same as Two-Stream Convolutional Networks [32].

5.3. Results on the BIT dataset

Comparison with baselines. Table 1 shows the recog-

nition accuracy of the proposed Co-LSTSM compared with

the baselines. As shown in this table, Co-LSTSM signifi-

cantly outperforms the baseline methods. We can see that

adding the temporal information by employing LSTM (i.e.,

“One CNN+LSTM”, and “Two CNN+LSTM”) improves

the performance of “Person-box CNN” without temporal

information. In particular, “Two CNN+LSTM” achieves the

higher accuracy than “One CNN+LSTM”. It is illustrated

that an single LSTM model can capture a single motioning

object better than multiple motioning objects.

Comparison with state-of-the-art methods. We al-

so compare Co-LSTSM with the state-of-the-art methods

for person-person interaction recognition, i.e., hand-crafted

spatio-temporal interest points [7] based methods of Lan et

al. [21], Liu et al. [22], and Kong et al. [16, 17, 14], ws

well as LSTM-based methods of Donahue et al. [8] and

Ke et al. [13]. Table 1 lists the experimental results, in

which some results are reported in [17, 14]. We can see

Co-LSTSM performs better than the comparative methods,

especially all LSTM-based methods, i.e., Donahue et al. [8]

and Ke et al. [13]. In particular, compared with the state-

of-the-art LSTM-based methods (i.e., Ke et al. [13] with

85.20%), Co-LSTSM has gained about 8% improvement.

5.4. Results on the UT dataset

Comparison with baselines. Table 2 shows the recog-

nition accuracy of the proposed Co-LSTSM compared with

the baselines. It is observed that Co-LSTSM performs con-

sistently better than all baselines. “One CNN+LSTM” and

“Two CNN+LSTM” considering the temporal information

performs better than “Person-box CNN” without temporal

information. In particular, “Two CNN+LSTM” achieves the

better performance than “One CNN+LSTM”.

Comparison with state-of-the-art methods. Co-

LSTSM is also compared with the state-of-the-art methods,

including some traditional methods (i.e., Ryoo et al. [29],

Yu et al. [38], Kong et al. [16, 17, 14], Raptis & Sigal [26],

Shariat & Pavlovic [31], and Zhang et al. [40]), deep learn-

ing method (i.e., Wang et al. [35]), as well as LSTM-based

methods (i.e., Ke et al. [13] and Donahue et al. [8]). The

comparison results are shown in Table 2. We can see that

Co-LSTSM also achieves the state-of-the-arts result, i.e.,

95.00% by Zhang et al. [40] and Wang et al. [35]. It is not-

ed that Wang et al. [35] adopted deep context features on

the event neighborhood, where the size of event neighbor-

hood need be manually defined in the preprocessing step;

Zhang et al. proposed a spatio-temporal phrase to capture

a certain number of local movements between interacting

people, where the number of local movements increases

when the interaction becomes complex. As new exploration

by leveraging LSTM model, the proposed Co-LSTSM per-

forms better than other LSTM-based methods, i.e., Don-

ahue et al. [8] and Ke et al. [13].

5.5. Evaluation on Human Interaction Prediction

In this work, we also evaluate the proposed Co-LSTSM

on human interaction prediction. Unlike person-person in-

teraction recognition, human interaction prediction is de-

fined to recognize an ongoing interaction activity before the

interaction is completely executed [13]. Due to the large

variations in appearance and the evolution of scenes, in-

teraction prediction at an early stage is a challenging task.
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Method handshake hug kick point punch push Average

Ryoo et al. [29] 75.00 87.50 62.50 50.00 75.00 75.00 70.80

Yu et al. [38] 100.00 65.00 100.00 85.00 75.00 75.00 83.33

Ryoo [27] 80.00 90.00 90.00 80.00 90.00 80.00 85.00

Kong et al. [16] 80.00 80.00 100.00 90.00 90.00 90.00 88.33

Kong et al. [17] 100.00 90.00 100.00 80.00 90.00 90.00 91.67

Kong et al. [14] 90.00 100.00 90.00 100.00 90.00 90.00 93.33

Raptis & Sigal [26] 100.00 100.00 90.00 100.00 80.00 90.00 93.30

Shariat & Pavlovic [31] - - - - - - 91.57

Zhang et al. [40] 100.00 100.00 100.00 90.00 90.00 90.00 95.00

Donahue et al. [8] 90.00 80.00 90.00 80.00 90.00 80.00 85.00

Ke et al. [13] - - - - - - 93.33

Wang et al. [35] - - - - - - 95.00

Person-box CNN 90.00 80.00 80.00 80.00 80.00 80.00 81.67

One CNN+LSTM 90.00 80.00 90.00 80.00 90.00 80.00 85.00

TWo CNN+LSTM 100.00 100.00 90.00 80.00 90.00 80.00 90.00

Co-LSTSM 100.00 100.00 90.00 100.00 90.00 90.00 95.00

Table 2. Recognition accuracy (%) of different methods on the UT dataset.

Following experimental setting in [13, 15], a testing video

clip is divided into 10 incomplete action executions by us-

ing 10 observation ratios (i.e., from 0 to 1 with a step size

of 0.1), which represent the increasing amount of sequen-

tial data with time. For example, given a testing video clip

with the length T , a prediction accuracy under an observa-

tion ratio of 0.3 denotes that the accuracy is tested with the

first length 0.3×T frames. When the observation ratio is 1,

namely the entire video clip is used, Co-LSTSM acts as the

person-person interaction recognition model.

The comparative methods includes Dynamic Bag-of-

Words (DBoW) [27], Sparse Coding (SC) [3], Sparse Cod-

ing with Mixture of training video Segments (MSSC) [3],

Multiple Temporal Scales based on SVM (MTSSVM) [18],

Max-Margin Action Prediction Machine (MMAPM) [15],

Long-term Recurrent Convolutional Networks (LRCN) [8],

and Spatial-Structural-Temporal Feature Learning (SST-

FL) [13]. The comparison results on the BIT dataset with

different observation ratios are listed in Figure 4. Over-

all, Co-LSTSM outperforms all comparative methods for

all observation ratios. Specifically, we can see that 1) the

improvement of Co-LSTSM is more significant when the

observation ratio is 0.6; 2) the accuracy of Co-LSTSM in-

creases rapidly when the observation ratio is 0.5, which il-

lustrates the close interaction is happening; and 3) the ac-

curacy of Co-LSTSM becomes stable when the observation

ratio is 0.7, which illustrates the close interaction is ending.

6. Conclusions and Future Work
In this work, for person-person interaction recognition,

we propose a novel Concurrence-Aware Long Short-Term

Sub-Memories (Co-LSTSM) to aggregate the interactive

motions between interacting people over time. Specifical-
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Figure 4. Performance of human interaction prediction on BIT.

ly, interacting people at each time step are jointly modeled

by a novel concurrent LSTM unit, which captures the con-

currently inter-related motion information from two sub-

memory units. Experimental results on person-person inter-

action recognition and prediction have demonstrated the su-

perior performance of the proposed Co-LSTSM compared

with the state-of-the-art methods. In future, we will extend

Co-LSTSM for addressing the problem of complex group

collective activity analysis.
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