
Concurrency and Availability as Dual Properties

of Replicated Atomic Data

MAURICE HERLIHY

Carnegie Mellon University, Pittsburgh, Pennsylvania

Abstract. A replicated data object is a typed object that is stored redundantly at multiple locations in a
distributed system. Each of the object’s operations has a set of quorums, which are sets of sites whose
cooperation is needed to execute that operation. A quorum assignment associates each operation with
its set of quorums. An operation’s quorums determine its availability, and the constraints governing an
object’s quorum assignments determine the range of availability properties realizable by replication.

In this paper, the restrictions on quorum assignment imposed by three kinds of atomicity mechanisms
found in the literature are analyzed: (1) serial schemes, in which replication and atomicity are
implemented independently at different levels in the system, (2) static schemes, in which the transaction
serialization order is predetermined, and (3) hybrid schemes in which the serialization order emerges
dynamically.

The following results are derived: (1) Although serial schemes place the strongest restrictions on
concurrency, they place the weakest restrictions on availability. (2) Although hybrid and static mecha-
nisms place incomparable restrictions on concurrency, hybrid mechanisms place weaker restrictions on
availability. (3) Bounding the maximum depth of transaction nesting strengthens restrictions on
concurrency for all classes, but weakens restrictions on availability for hybrid schemes only. Concurrency
and availability are best considered as dual properties: A complete analysis of an atomicity mechanism
should take both into account.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management-distributed
memories; D.4.3 [Operating Systems]: File Systems Management-distributed Jile systems; D.4.5
[Operating Systems]: Reliability; H.2.4 [Database Management]: Systems-concurrency, distributed
systems

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Quorum consensus, replication

1. Introduction

Mechanisms for implementing atomicity in distributed systems fall into several
broad categories, depending on how the serialization order for transactions is
chosen. The serialization order may be predetermined, as in multiversion time-
stamping schemes (e.g., [35, 36, 41]), or it may be chosen dynamically, as in

A preliminary version of this paper appeared in Proceedings of the 4th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (Minaki, Ont., Canada, Aug. 5-7). ACM, New
York, 1985, pp. 102-l 10.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 4976, monitored by the Air Force Avionics Laboratory under Contract F336 15-84-K- 1520.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

Author’s present address: Digital Equipment Corporation, Cambridge Research Lab, One Kendall
Square, Cambridge, MA 02 139.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 0004-541 l/90/0400-0257 $01.50

Journal of the Association for Computing Machinery, Vol. 31. No. 2. April 1990. pp. 257-278.

258 MAURICE HERLIHY

two-phase locking schemes (e.g., [15, 29, 371) and in hybrid schemes employing
both locking and timestamp-like mechanisms (e.g., [3, 6, 10, 121).

This paper proposes a new criterion for evaluating these approaches: the con-
straints they impose on the availability of replicated data. Our analysis of availa-
bility is based on quorum consensus replication [24, 281. A replicated object is a
typed object that is stored redundantly at multiple locations in a distributed system.
Each of the object’s operations has a set of quorums, which are sets of sites whose
cooperation is needed to execute that operation. A quorum assignment associates
each operation with its set of quorums. An operation’s quorums determine its
availability, and the constraints governing an object’s quorum assignments deter-
mine the range of availability properties realizable by replication. An analysis of
the object’s type specification yields a set of constraints on quorum assignment
necessary and sufficient to ensure the correctness of the replicated implementation.
Quorum consensus replication systematically exploits type-specific properties of
data to support better availability and concurrency than conventional methods in
which operations are classified only as reads or writes.

Our analysis of atomicity mechanisms is based on the notion of a focal atomicity
property [44]. Each class of mechanisms is identified with a local property of objects
that sufftces to ensure the atomicity of a system encompassing multiple objects.
We consider three distinct local atomicity properties, as follows:

-Serial atomicity models replication methods in which concurrency control is
handled by an independent underlying atomicity mechanism.

-Static atomicity encompasses the timestamping mechanisms cited above.
-Hybrid atomicity encompasses the locking and hybrid mechanisms.

If P, and P2 are local atomicity properties, we say that P, places weaker
restrictions on concurrency than P2 if each interleaving permitted by P2 is also
permitted by P,. The left-hand-side of Figure 1 compares the restrictions on
concurrency imposed by these properties. Static and hybrid atomicity place incom-
parable restrictions on concurrency: Each permits interleavings the other does not.
Serial atomicity places the strongest restrictions on concurrency: Each interleaving
permitted by serial atomicity is permitted by the others, but not vice-versa.

As discussed in Section 3, each local atomicity property induces a set of
restrictions on quorum assignment. We say that P, places weaker restrictions on
availability than P2 if each quorum assignment permitted by PZ is also permitted
by P,. This paper compares the restrictions on availability imposed by the three
local atomicity properties listed above, presenting the following results:

(1) Although serial atomicity places stronger restrictions on concurrency than
static or hybrid atomicity, it places weaker restrictions on availability
(Figure 1).

(2) Although static and hybrid atomicity place incomparable restrictions on con-
currency, hybrid atomicity places weaker restrictions on availability (Figure 1).

(3) Transaction nesting can affect availability. Under hybrid atomicity, restrictions
on availability can be relaxed by bounding the maximum depth of transaction
nesting: the smaller the bound, the larger the set of permissible quorum
assignments (Figure 2). By contrast, quorum assignments for static and serial
atomicity are unaffected by transaction nesting.

These results illustrate the complex relation between the availability and concur-
rency supported by various local atomicity properties. Availability and concurrency
are neither completely independent nor completely dependent: One cannot always

Dual Properties of Replicated Atomic Data 259

Hybrid

Static

0 0
FIG. 1. Concurrency (L) vs. Availability (R).

D 1 Leve

2 Level

c n Level /

Cl Leve
. .

\ 2 Level /

FIG. 2. Hybrid Atomicity: Concurrency (L) vs. Availability (R) for Nested Transaction.

minimize the restrictions on both, but strengthening the restrictions on one does
not necessarily weaken the restrictions on the other. Instead, availability and
concurrency are best considered as complementary properties, and a complete
analysis of an atomicity property should take both into account.

The restrictions on availability analyzed in this paper are those necessary to
realize the complete set of interleavings permitted by each local atomicity property.
In practice, these restrictions are likely to be conservative, since practical schedulers
typically admit only a subset of the schedules permitted by the system-wide local
atomicity property (cf. [34, 351). Nevertheless, a thorough understanding of this
limiting case is a necessary step in understanding the entire range of trade-offs,
which in turn is helpful for evaluating the alternative atomicity properties. Choosing
the local atomicity property around which a distributed system will be organized
is an important design decision; the property must be established in advance,
perhaps before the demands of the application domain are fully understood, and
once made, it is difftcult to change.

Section 2 summarizes related work, Section 3 describes our terminology and
assumptions, and Section 4 compares how the local atomicity properties support
replication. Section 5 concludes with a discussion.

2. Related Work

The notion that replication should not affect an object’s functional specification is
known as one-copy serializability [4]. Early replication methods for tiles [1,421 did

260 MAURICE HERLIHY

not preserve one-copy serializability, nor do more recent replication methods for
directories [8, 161. Henceforth, we consider only techniques that preserve one-copy
serializability.

Replication methods for files that tolerate site crashes include SDD-1 [20], the
Available Copies algorithm [5], Circus [111, and ISIS [7]. Methods that also tolerate
network partitions and timing anomalies include those proposed by Gifford [171,
Eager and Sevcik [131, Skeen et al. [39], and by El-Abbadi and Toueg [141.

The replication method considered in this paper differs from the methods cited
above in two important respects. First, rather than classifying operations only as
reads and writes, our method systematically exploits type-specific properties of the
data to provide more effective replication. Second, rather than using distinct
mechanisms for replication and concurrency control, our method integrates both
functions in a single mechanism. Although independent methods are simpler,
integrated methods support better concurrency.

A quorum-consensus replication method for directories has been proposed by
Bloch et al. [9]. The quorum-consensus file replication methods of Gifford and
Eager and Sevcik can be generalized to exploit type information [25, 261. The
replication method considered here is a slight generalization of the author’s
consensus scheduling method [22], which is described in more detail below.

Goldman and Lynch [181 give a formal proof of Gifford’s quorum consensus
method, showing that its correctness is independent of the underlying atomicity
mechanism. This paper adds a new perspective to that result: Although Gifford’s
original algorithm can be understood by considering replica management and
concurrency control independently, a complete understanding of the range of
availability and concurrency realizable by more general quorum consensus algo-
rithms requires considering both properties together.

Formal models for nested transaction systems have been proposed by Lynch
[31], Lynch and Merritt [32], and Beet-i et al. [2]. The notion of a local atomicity
property, as well as the particular properties investigated here, are due to Weihl
[44]. Our treatment here borrows from each of these works.

3. Model

3.1 OBJECTS AND HISTORIES. The basic containers for data are called objects.
Each object has a type, which defines a set of possible states and a set of primitive
operations that provide the only means to create and manipulate objects of that
type. For example, a File might provide Read and Write operations, and a first-in-
first-out (FIFO) Queue might provide Enq and Deq operations.

In the absence of failures and concurrency, a computation is modeled as a
history, which is a sequence of object-operation pairs. Histories are denoted by
lower-case letters (g, h). An operation is written as op(args*)/term(res*), where x
is an object name, op is an operation name, args* a sequence of argument values,
term a termination condition, and res* a sequence of results. We use “Ok” for
normal termination. For example, the following is a history of a queue object q:

q WWOk()
q End y)lW >
q De@)/Ok(x)

An object subhistory, h] x (h at x), is the subsequence of object-operation pairs
whose object names are x. Each object has a serial spec&ation, which defines a

Dual Prop&ties of Replicated Atomic Data 261

set of legal histories for that object. For example, the serial specification for a FIFO
queue would permit all and only those histories in which items are enqueued and
dequeued in FIFO order. A history h involving multiple objects is legal if each
object subhistory h] x lies within the serial specification for x. The object name is
often omitted when it is clear from context.

3.2 TRANSACTIONSANDSCHEDULES. A distributed system consists of multiple
computers (called sites) that communicate through a network. Distributed systems
are typically subject to two kinds of faults: site crashes and network partitions. A
crash renders a site’s data temporarily or permanently inaccessible, while a network
partition prevents functioning sites from communicating. A failure is detected
when a site that has sent a message fails to receive a response after a certain
duration. The absence of a response may indicate that the original message was
lost, that the reply was lost, that the recipient has crashed, or simply that the
recipient is slow to respond.

A widely accepted approach to ensuring consistency in the presence of crashes
and network partitions is to make the activities that manage the data atomic.
Atomicity encompasses two properties: serializability and recoverability. Seriali-
zability [34] means that the execution of one activity never appears to overlap (or
contain) the execution of another, while recoverability means that the overall effect
of an activity is all-or-nothing: It either succeeds completely, or it has no effect.
Atomic activities are called transactions. A transaction’s effects become permanent
when it commits, its effects are discarded if it aborts, and a transaction that has
not committed or aborted is active. Well-known atomic commitment protocols
(e.g., [19, 381) can be used to ensure the recoverability of distributed transactions.

Instead of treating transactions as monolithic entities, it is often useful to provide
hierarchically structured nested transactions or subtransactions [33, 361. A sub-
transaction’s commit is dependent on that of its parent; aborting the parent will
undo a committed child’s effects. A transaction’s effects become permanent only
when it commits at the top level.

Our transaction model is essentially that of Lynch [3 I], extended to encompass
typed objects. Let TRANS denote the domain of transactions. Transactions have a
predelined tree structure, with a distinguished transaction U as the root. It is
convenient to provide each transaction with a countably infinite set of children.
For a transaction P distinct from U, let parent(P) denote P’s unique parent, ant(P)
and desc(P) P’s ancestors and descendants (which include P), proper-ant(P) and
proper-desc(P) P’s proper ancestors and descendants (which do not include P). Let
lca(P, Q) denote the least common ancestor of P and Q, and laa(P) the least active
ancestor of P. Siblings is the set ((P, Q) E TRANS~) parent(P) = parent(Q)]. Children
of the root are called top-level transactions.

A schedule is a sequence of steps of the form: (X p P), (x commit P), or
(x abort P), where x is an object, p an operation, and P a transaction. Schedules
are denoted by upper-case letters (G, H). If H is a schedule and x an object name,
H (x is the subschedule of H consisting of steps whose object names are x. If P is
a transaction and S a set of transactions, H] P and H] S are defined analogously.
The object name is often omitted when it is clear from context. A transaction P
appears in H if H I P is nonempty.

When a transaction commits or aborts, news of the event propagates asynchro-
nously through the system. A schedule’s commit and abort steps represent the
arrival of such news at an object (or a component of that object if it is replicated).

262 MAURICE HERLIHY

A schedule H is well formed if it satisfies the following properties:

-No transaction executes an operation after it commits.
-No transaction both commits and aborts.
-No transaction commits until all its children that appear in H have either

committed or aborted.
-A transaction P is a leaftransaction in H if no proper descendant of P appears

in H. Operations may be associated with leaf transactions only.

The first three conditions reflect the generally accepted semantics of transactions,
and the last condition simplifies later definitions. Henceforth, all schedules are
assumed to be well formed.

Let committed(H) be the set of transactions that have taken commit steps in H,
and let aborted(H) be the set of transactions having an ancestor that has taken an
abort step in H. Let active(H) be the set of transactions not in committed(H) or
aborted(H). Transaction Q has committed to P in H if

ant(Q) tl proper-desc(lca(P, Q)) C committed(H).

Informally, if Q is committed to P, then if the effects of P become permanent, so
will the effects of Q.

A commit set S for a schedule H is any set of transactions that might eventually
commit to the root transaction U:

-UES,
-P E S + P 4 aborted(H),
-PESA QEanc(P)-QES,and
-P E S A P = parent(R) A R E committed(H) + R E S

Recall that operations may be executed only by leaf transactions. Let R be a
relation on transactions appearing in H. If R partially (or totally) orders sets
of active and committed siblings in H, then R induces a partial (total) order R’
on active and committed leaf transactions in H: (P, Q) E R’ if there exist P’ E
ant(P) A Q’ E ant(Q) such that (P’, Q’) E R.

Definition 1. A relation P G siblings is a linearizing order [3 l] if it totally
orders each set of siblings.

To keep our notation from becoming cumbersome, we will not always distinguish
between a linearizing order on transactions and the induced total order on leaf
transactions.

Let L be a linearizing order for H. H is serializable in the order L if the history
constructed by reordering H’s object-operation pairs in the induced order L’ is
legal. A schedule is serializable if it is serializable in some linearizing order. Let
perm(H) be the subschedule of H associated with the transactions that have
committed to the root transaction U. H is atomic if perm(H) is serializable, and H
is on-line atomic if H 1 S is serializable for every commit set S of H. Informally,
on-line atomicity captures the assumption that objects have no advance knowledge
of which transactions will eventually commit.

A concurrent specification is a set of schedules for an object. A concurrent
specification is atomic if all its schedules are on-line atomic. All concurrent
specifications considered in this paper are assumed to be atomic and prefix-closed:
if H is in a specification, so is every prefix of H.

H is not necessarily atomic just because H 1 x is atomic for all objects x. A
property P is a local atomicity property [43, 441 if H is atomic provided that each

Dual Properties of Replicated Atomic Data 263

H 1 x is atomic and satisfies P. If a system-wide local atomicity property is agreed
on in advance, then objects can be implemented independently subject only to the
constraint that each implementation satisfies the system’s local atomicity property.
This paper compares and evaluates alternative local atomicity properties.

Our basic tool for showing that a property is a local atomicity property is the
following lemma (cf. Lemma 3-2 in [44]).

LEMMA 2. If L is a linearizing order such that each H 1 x is serializable in the
order L, then H itself is serializable in the order L.

PROOF. Let ser(H, L) denote the history constructed by reordering the object-
operation pairs of H in the order L. For all x, the history ser(H Ix, L) =
ser(H, L) 1 x is legal; hence, ser(H, L) is legal, thus H is serializable in the
order L. El

3.3 QUORUM CONSENSUS REPLICATION. In this section we review quorum
consensus replication. Informally, a replicated object is implemented by two kinds
of modules: repositories and front-ends. Repositories provide long-term storage for
the object’s state, while front-ends carry out operations for clients. Different objects
may have different sets of repositories. Because front-ends can be replicated to an
arbitrary extent, perhaps placing one at each client’s site, the availability of a
replicated object is dominated by the availability of its repositories. Internally, a
repository’s state is represented as a log, which is a sequence of entries, where an
entry is the timestamped record of an operation. (In practice, logs can usually be
replaced by more compact data structures [2 1, 241.) A client executes an operation
by sending an invocation to a front-end. The front-end merges the logs from an
initial quorum of repositories to construct a view. It chooses a response consistent
with the view, appends the new entry to the view, and writes out the updated view
to a final quorum of repositories. A quorum for an operation is any set of
repositories that includes both an initial and a final quorum. As discussed elsewhere
[24], front-ends executing concurrent operations synchronize through short-term
locks at repositories.

Formally, we model a replicated object by a nondeterminstic consensus sched-
uling automaton that accepts certain schedules. We use the following primitive
domains: REPOS is the set of repositories, TRANS the set of transaction identifiers,
OP the set of operations, and TIMESTAMP a totally ordered set with the order type
of the natural numbers. X + Y denotes the set of partial maps from X to Y. If f is
a partial map from X to Y, x E X, and y E Y, let f [x + ~1 denote the function
identical to f except at x, which is mapped to y. We use the following de-
rived domains: STEP = (OP U “Commit” U “Abort”) x TRANS is the set of steps,
QUORUM= 2”” the set of quorums, and a log is a partial map with a finite domain
from timestamps to steps: LOG = TIMESTAMP + STEP. Two logs L and M are
coherent if they agree for every timestamp where they are both defined. The merge
operation U is defined on pairs of coherent logs by

(L U M)(t) = if L(t) is defined, then L(t), else M(t).

Every log corresponds to a schedule in the obvious way. For brevity, we
sometimes refer to a log L in place of its schedule, for example, “L
is atomic” instead of “the schedule represented by L is atomic.”

A consensus scheduling automaton has the following state components:

State: REPOS --, LOG

Clock: TIMESTAMP

Visited: TRANS + 2”“”

264 MAURICE HERLIHl

Clock models a system of logical clocks, state(R) is the log at R, and visited(P)
is the set of repositories that participated in a quorum for an operation of P.
(Because front-ends’ individual accesses to repositories are serialized by short-term
locks, it is not necessary to model front-ends explicitly.) If S is a set of repositories,
define State(S) to be the result of merging logs from repositories in S. (Because
each step is given a unique timestamp, logs at distinct repositories are always
coherent, thus State(S) is well defined.)

The automaton’s state transition relation is defined using the following sets.

-A concurrent specification Concur,
-Initial: OP + 2Q”oR”M, and
-Final: OP + 2Q”oR”.

Initial and Final define an initiallfinal quorum intersection relation:

IFQ = ((q, p) (IQ E Initial(q) A FQ E Final(p) + IQ rl FQ # 0J.

The automaton’s transitions are characterized by pre- and postconditions. In
postconditions, primed component names denote new values, and unprimed names
denote old values. Any state component not mentioned in a postcondition is left
unchanged.

For an operation step (q Q), there must exist an initial quorum IQ E Initial(q)
and a final quorum FQ E Final(Q) such that

Precondition:

State(IQ) . (q Q) is in Concur.

Postcondition:

For all R in FQ,
State’(R) = (State(R) U State(IQ))[Clock * (qQ)]

Clock’ > Clock
Visited’ = Visited[Q 4 Visited(Q) U IQ U FQ]

To accept (q Q), the schedule constructed by merging the logs from an initial
quorum and appending the new step must be permitted by the object’s concurrent
specification. When the step is complete, the extended log is merged with the logs
at a final quorum, the clock is advanced, and the transaction’s set of visited
repositories is updated.

Commit and abort steps have initial and final quorums just like operations. All
repositories visited by Q form a quorum for (commit Q), and any visited repository
is a quorum for (abort Q) . This convention mirrors the assumptions underlying
the standard commitment protocols ([19, 381) which permit any site visited by a
transaction to abort unilaterally, as long as the commitment protocol is not in
progress. For Q to commit

Precondition:

For all R in Visited(Q), (abort Q) B State(R).

Postcondition:

Visited’ = Visited[parent(Q) + Visited(parent(Q)) U Visited(Q)]
For all R in Visited(Q), State’(R) = State(R)[Clock + (commit Q)]
Clock’ > Clock

Dual Properties of Replicated Atomic Data 265

This postcondition states that if Q commits, its set of visited repositories is
merged with its parent’s, and a “commit record” is appended to the log of each
repository visited.

For Q to abort:

Precondition:

For some R in Visited(Q), (commit Q) 4 State(R).

Postcondition:

For some R in Visited(Q), State’(R) = State(R)[Clock + (abort Q)]
Clock’ > Clock

Let H be a schedule, G a subschedule (i.e., subsequence) of H, and D a binary
relation between operations.

Definition 3. G is a D-closed subschedule of H if whenever G contains a step
(q Q) of H it also contains every earlier step (p P) such that (q, p) E D.

Definition 4. A subschedule G of H is a D-view of H for q if G is D-closed, and
if it includes every (p P) in H such that (q, p) E D.

Definition 5. A relation D between operations is a dependency relation for the
concurrent specification Concur if for all operations q, all transactions Q, and all
schedules G and H in Concur,

G . (qQ) E Concur 4 H . (qQ) E Concur,

whenever G is a D-view of H for q.

A relation D is a minimal dependency relation if no D’ C D is a dependency
relation.

The notion of dependency provides a necessary and sufficient condition for a
quorum assignment to be correct.

THEOREM 6. Every schedule accepted by a quorum consensus automaton is in
Concur fthe initial/final quorum intersection relation IFQ is a dependency relation
for Concur. Moreover, given a relation IFQ that is not a dependency relation, there
exists a consensus scheduling automaton with initiallfnal quorum intersection
relation IFQ that accepts a schedule not in Concur.

This theorem is proved elsewhere [22]. That proof makes two assumptions that
differ from those made here: (1) dependency is defined between invocations and
operations rather than between operations, and (2) transactions are single-level
rather than nested. Neither difference affects the proof in any substantial way. If
dependency is defined between invocations and operations, then fewer messages
are needed to implement consensus scheduling, but some flexibility in quorum
assignment is lost. Here we have chosen generality over efficiency. The structure
of the automaton and the notion of atomic dependency are also essentially
independent of the depth of transaction nesting. The automaton treats all steps as
uninterpreted symbols, merging logs from an initial quorum, checking the specili-
cation, and writing the updated view to a final quorum. The constraints on quorum
assignment are derived from the specification itself, independently of whether the
specification is interpreted as encompassing serial histories [24], schedules with
single-level transactions [22], or schedules with nested transactions, as here. It is

266 MAURICE HERLIHY

also worth noting that the definition of dependency and the correctness proof make
no assumptions about the nature of the well-formedness conditions.

The requirement that the initial/final quorum intersection relation be a depen-
dency relation characterizes the range of legal quorum assignments for an object,
and indirectly characterizes the range of availability properties realizable by quorum
consensus replication. Availability is more directly characterized by the following
relation:

Definition 7. An object’s quorum intersection relation is the symmetric closure
of its initial/final quorum intersection relation.

Informally, (p, q) E Q if every quorum for p must intersect every quorum for q
in every correct quorum assignment. If the quorum for p is made smaller (making
p more available), then the quorum for q must be made larger (making q less
available). Two distinct initial/final quorum intersection relations may induce the
same quorum intersection relation; their respective sets of quorum assignments
will have different patterns of message traffic, but identical levels of availability.

4. Serial, Static, and Hybrid Atomicity

4.1 LOCAL ATOMICITY PROPERTIES. Most replication methods in the literature
treat replication and concurrency control as distinct problems. At the higher level,
the replication method reconstructs the object’s state from its distributed compo-
nents without concern for concurrency and failures. At the lower level, a standard
concurrency control mechanism serializes uninterpreted accesses to repositories.
Examples of concurrency control mechanisms that would generate such behavior
include Moss’ hybrid atomic two-phase locking scheme [331 (if each access acquires
an exclusive lock), and Reed’s static atomic multiversion timestamp scheme [36]
(if each access is treated as a combination read and write).

Definition 8. Let H be a schedule, and let P and Q be sibling transactions.
Define the relation precedes(H) C siblings: (P, Q) E precedes(H) if a transaction
is desc(Q) executes an operation after P commits.

Informally, if P precedes Q, then Q may have observed that P committed. A
schedule H is serial if precedes(H) is a linearizing order on active and committed
transactions.

Definition 9. A schedule His serial atomic if, for each object X, perm(H] x) is
serial and serializable in the order precedes(H 1 x). H is on-line serial atomic if, for
all commit sets S, H] x] S is serial and serializable in the same order.

Since each H 1 x is serializable in the linearizing order precedes(H] x),
Lemma 2 implies that serial atomicity is a local atomicity property.

THEOREM 10. If each H 1 x is serial atomic, then H is atomic.

Let Serial(T) denote the largest prefix-closed set of on-line serial atomic schedules
for the data type T. We define a serial consensus scheduling automaton to be a
consensus scheduling automaton with concurrent specification Serial(T) and one
additional well-formedness constraint: all input schedules are serial. Informally,
this definition is intended to capture the notion that serialization is enforced by an
independent lower-level mechanism, but that serial atomicity is enforced by the
replication method. A dependency relation for such an automaton is called a serial
dependency relation [24]. Let Serial*(T) denote the associated set of quorum
intersection relations.

Dual Properties of Replicated Atomic Data 267

Static atomicity [44] encompasses multiversion timestamping techniques [25,
35,36,4 l] in which each transaction chooses a timestamp when it begins execution,
and transactions must remain serializable in timestamp order.

The domain of timestamps is a set with the order type of the natural numbers.

Definition 11. A timestamp ordering on transactions is a map from transactions
to natural numbers whose restrictions to sets of siblings are bijective (i.e., one-to-
one and onto).

We often use “ts” to denote both a map and the linearizing order it induces.
Let ts be a fixed timestamp ordering.

DeJinition 12. A schedule H is static atomic if pet-m(H) is serializable in the
order ts. H is on-line static atomic if H] S is serializable in the order ts for every
commit set S of H.

Since each H] x is serializable in the linearizing order ts, Lemma 2 implies that
static atomicity is a local atomicity property:

THEOREM 13. If each H 1 x is static atomic, then H is atomic.

Let Static(T, ts) denote the largest prefix-closed set of on-line static atomic
schedules for the data type T, where transactions are ordered by ts, and let
Static*(T, ts) be the corresponding set of quorum intersection relations. We now
show that the concurrency and availability permitted by static atomicity is inde-
pendent of the particular choice of timestamp ordering.

LEMMA 14. If ts and ts’ are distinct timestamp orders, then Static(T, ts) and
Static(T, ts’) are identical up to renaming of transactions.

PROOF. Let H be a schedule in Static(T, ts), and define 4: TRANS + TRANS so
that 4(Q) = ts’-‘(ts(Q)), which is a bijective map carrying each set of siblings
to itself. Let H ’ be the schedule constructed by replacing each transaction Q
in H with 4(Q). It is easy to check that if S’ is a commit set of H ‘, then
S = {4-‘(Q)] Q E S’) is a commit set of H. The serialization of H’ 1 S’ in
the order ts’ is identical to the serialization of H I S in the order ts. Since H
is in Static(T, ts), all such serializations are legal, implying that H’ is in
Static(T, ts ’). • i

A similar argument shows that Static*(T, ts) is identical to Static*(T, ts’).
Henceforth, we omit explicit mention of ts except when necessary.

Hybrid atomicity [44] encompasses techniques in which transactions’ serializa-
tion orders are determined dynamically as they commit.’ Hybrid atomic techniques
encompass two-phase locking protocols (e.g., [15, 29, 371) and protocols that
combine locking with timestamp-like mechanisms (e.g., [3, 6, 10, 12, 22, 27]).*

Definition 15. As before, let ts be a timestamp ordering. For a schedule H, let
ts(H) be ts restricted to committed(H).

Definition 16. A schedule H is hybrid atomic if precedes(H) G ts, and perm(H)
is serializable in the order ts(H). Let known(H) be ts(H) U precedes(H). His on-
line hybrid atomic if for every commit set S of H, H I S is serializable in every
linearizing order L such that known(H) C L.

’ Weihl’s original formulation of hybrid atomicity [43] included a distinct serialization mechanism for
read-only transactions, a distinction we do not make here.
’ Techniques that use locking without timestamps satisfy a restricted form of hybrid atomicity called
strong dynamic atomicity [44] whose availability properties are analyzed elsewhere [23].

268 MAURICE HERLIHY

Since precedes(H) G ts, known(H) partially orders sets of siblings. The on-line
condition captures the requirement that the scheduler cannot know in advance
how active transactions will be ordered when and if they commit, thus it
must ensure that any linearizing order compatible with known(H) yields a legal
serialization.

Since each H 1 x is serializable in the linearizing order ts, Lemma 2 implies that
hybrid atomicity is a local atomicity property:

THEOREM 17. If H 1 x is hybrid atomic for all x, then H is atomic.

Let Hybrid(T, ts), Hybrid*(T, ts), and hybrid dependency relation be defined by
analogy to the static atomic case. An argument almost identical to that used for
Lemma 14 yields:

LEMMA 18. If ts and ts’ are distinct timestamp orders, then Hybrid(T, ts) and
Hybrid(T, ts ’) are identical up to renaming of transactions.

We omit explicit mention of ts except when necessary. The hybrid serialization
of a schedule H is a serialization of H 1 S in an order consistent with known(H),
for some commit set S of H. H is in Hybrid(T) if and only if all its hybrid
serializations are legal.

4.2 PRELIMINARY LEMMAS. To quantify over the local atomicity properties
used in this paper, we use Local(T) to stand for any one of Serial(T), Static(T), or
Hybrid(T), and similarly for Local*(T), local dependency relation, and local
serialization.

Let G and H be schedules in Local(T), Q a transaction, and q an operation.

Dejnition 19. G is a false D-view of H for q in Local(T) if G is a D-view of H
for q, G . (q Q) is in Local(T), but H . (q Q) is not. By Definition 5, D is a
dependency relation for Local(T) if and only if it has no false views.

We often omit mention of Local(T) when it is clear from context.

LEMMA 20. If D is not a dependency relation for Local(T), then Local(T)
includes schedules G and H such that G is a false D-view of H for some operation
q and G is missing exactly one operation step of H.

PROOF. We first remark that if G is a false D-view of H for q missing a single
step, then the missing step must be an operation step, not a commit or abort step,
because otherwise every local serialization of H . (q Q) would also be a local
serialization of G . (q Q), implying that every local serialization of H . (q Q) is
legal, a contradiction.

Since D is not a dependency relation for Local(T), there exists a false D-view G
of H for some operation q. Suppose G is missing k steps of H. Consider the
sequence of schedules (Hi 1 i = 0, . . . , k], where Ho = G, Hk = H, and Hi+, is
constructed from Hi by restoring its earliest missing step.

G . (q Q) is in Local(T) but H . (q Q) is not, so there is some index i such
thatHi* (qQ)isinLocal(T)butHi+l . (qQ)isnot.LetGo. (pP) . G1. (rR)
be the shortest prefix of Hi+, . (qQ) not in Local(T), where (p P) is the operation
step inserted in Hi to produce Hi+ ,. The schedule GO . G, . (r R) is in Local(T)
as a prefix of Hi, Go + (p P) . G, is in Local(T) by construction, but GO . (p P) .
G, . (rR) is not. Because Hi is a D-closed subschedule of Hi+, , GO . G, is a false
D-view of GO . (pP) . G, for r, proving the lemma.

Dual Properties of Replicated Atomic Data 269

4.3 COMPARISONS. Although serial atomicity places the strongest restrictions
on concurrency of any local atomicity property considered here, we now show that
it places the weakest restrictions on availability. This flexibility arises because any
quorum assignment that does not guarantee serial atomicity also does not guarantee
any other local atomicity property.

THEOREM 21. Local*(T) G Serial*(T).

PROOF. We show that every local dependency relation is a serial dependency
relation; thus, any quorum intersection relation that ensures local atomicity also
ensures serial atomicity.

Suppose not. Pick a relation D that is a local dependency relation but not a serial
dependency relation. Because D is not a serial dependency relation, there exists
an operation q, a transaction Q, and serial schedules G, H, G ’ = G . (q Q), and
H ’ = H . (q Q), such that G is a false D-view of H for q. Because H ’ is serial
atomic, precedes(H ’) partially orders sets of siblings. If we choose a timestamp
order ts compatible with the precedence order, so that precedes(H ’) C ts(H ’),
then G, H, and G ’ are in Local(T) (i.e., in Hybrid(T) or Static(T)), G is a D-view
of H for q, but H ’ is not in Local(T), thus D fails to satisfy Definition 5 and
cannot be a local dependency relation, a contradiction. 0

Serial*(T) thus provides an “upper bound” on flexibility of quorum assignment
for these local atomicity properties. We now show that static atomicity provides a
corresponding “lower bound.” We start with some definitions and lemmas.

Definition 22. The relation Ds between invocations and operations is defined
as follows: (q, p) E Ds if there exist histories h,, hz, and h3 such that h, . h2 . hx is
legal, and either:

(1) h, . p . hS . h3 and h, . hZ . q . h3 are legal, but h, . p . hZ . q . h3 is illegal,
or

(2) h, . q . hZ . hs and h, . hZ . p . h3 are legal, but h, . q + hl e p . hs is illegal.

We now show that Ds is a local dependency relation by deriving a contradiction
from the assumption that a false Ds-view exists for some operation.

LEMMA 23. Ds is a local dependency relation.

PROOF. Suppose not. Let G be a false Ds-view of H for an operation q.
By Lemma 20, we may assume G is missing a single operation step (p P). For
brevity, we consider only the case where the illegal static serialization of H . (q Q)
has the form h, . p . hZ . q . h3. The histories h, . hZ . h3, h, . p . hZ . h3, and
h, . hZ . q . h3 are legal as static serializations of G, H, and G . (q Q), implying
that (q, p) E Ds (Definition 22; Property I), which contradicts the assumption
that G is a Ds-view of H for q. 0

We now show that Ds is the unique minimal static dependency relation by
showing that any relation D that does not include Ds has a false D-view in Static(r).

LEMMA 24. Every static dependency relation contains Ds.

PROOF. Let D be a relation that does not contain Ds. D fails to satisfy either
Property (1) or (2) of Definition 22. For brevity, we consider only Property (1). If
h is a history, let (h A) denote the schedule in which each object-operation pair
in h is associated with transaction A. Let hl, hZ, h3, p, and q be histories and

270 MAURICE HERLIHY

operations satisfying Property (I) of Definition 22, let A, B, C, D, and E be
transactions such that ts orders A before B before C before D before E, and let N
be the following schedule:

h,A
commit A

hz C
commit C

hE
commit E

PB

Let G be the schedule that includes all but the last step. By construction, G and
G . (q D) are in Static(7’) but H . (q D) is not, thus G is a false D-view of H for
q (Definition 19), and D cannot be a static dependency relation.

From Lemmas 23 and 24, and the observation that Ds is symmetric:

COROLLARY 25. Ds is the unique minimal element of Static*(T).

THEOREM 26. Static*(T) c Local*(T).

Theorems 2 I and 26 give us the following hierarchy of restrictions on availability:

Static*(T) C Hybrid*(T) !Z Serial*(T). (1)

Since Hybrid(T) and Static(T) are typically incomparable, this result illustrates
our claim that analyzing restrictions on availability permits comparisons that
analyzing restrictions on concurrency does not.

4.4 EXAMPLES. We now present examples of data types for which the inclusions
in Hierarchy (1) are strict.

Example 27. There exists a T such that Serial*(T) $Z Hybrid*(T).

A DoubleBuffer consists of a producer buffer and a consumer buffer, each capable
of holding a single item. The object is initialized with a default item in each buffer.
The data type provides

Produce =Operation(Item)
Transfer=Operation()

Consume = Operation() Returns (Item)

Produce copies an item into the producer buffer, Transfer copies the item
currently in the producer buffer to the consumer buffer, and Consume returns a
copy of the item currently in the consumer buffer. DoubleBuffer has two distinct
minimal quorum intersection relations, Q, and Q2, shown in Figures 3 and 4.3 As
discussed in more detail elsewhere [24], Produce entries can appear in the view
constructed for a Consume either because the quorums for Produce and Consume
intersect directly, or because they intersect indirectly through Transfer.

Hybrid*(DoubleBuffer), however, has only one minimal element, shown in
Figure 5. To see why Q1 is not in Hybrid*(DoubleBuffer), let H be the following

3 Q, and Q2 are not minimal serial dependency relations, although they are the symmetric closures of
minimal relations.

Dual Properties of Replicated Atomic Data 271

Produce Transfer Consume

Produce X

Transfer X X

Consume X

FIG. 3. First Minimal Element of Serial*
(DoubleBuffer).

Produce Transfer Consume

Produce X

Transfer X

Consume X X

FIG. 4. Second Minimal Element of Serial*
(DoubleBuffer).

Produce Transfer Consume

Produce X X

Transfer X X

Consume X X

FIG. 5. Minimal Element of Hybrid* (DoubleBuffer).

schedule,

Produce(x)/Ok() A
Transfer()/Ok() A

Commit A
Transfer()/Ok() C

Consume()/Ok(x) D

and let G be the subschedule consisting of all but the last step. G is a Q,-view of H
for Produce; G, H, and G . (Produce(y)/Ok() B) are in Hybrid(DoubleBuffer);
H . (Produce(y)/Ok() B) is not in Hybrid(DoubleBuffer), however, because an
illegal serialization results if transactions are serialized in the order A, B, C, and D,
it follows that G is a false Q,-view of H for Produce; hence, Q, is not a hybrid
dependency relation for DoubleBuffer, nor is it in Hybrid*(DoubleBuffer). Revers-
ing the order of the last two steps in H yields a false Q2-view for Produce, illustrating
that Qz is not in Hybrid*(DoubleBuffer).

Example 27 illustrates our claim that concurrency and availability are not
independent properties. For a DoubleBuffer replicated among yt identical reposi-
tories, Serial*(DoubleBuffer) permits y1 distinct quorum assignments. The range of
quorum assignments for a DoubleBuffer replicated among five identical repositories
is shown in Figure 6. Each column represents an alternative quorum assignment,
and an entry of y1 indicates that any y1 out of five repositories constitutes a quorum
for the operation. The quorum assignment in the first column favors the availability
of Consume and Produce, while the last column favors Produce and Transfer.

272 MAURICE HERLIHY

FIG. 6. Quorum Assignments for 5-Site Serial
Atomic DoubleBuffer.

m

By contrast, Hybrid*(DoubleBuffer) permits only one quorum assignment: All
operations require majority quorums. In this example, increasing concurrency
reduces the range of permissible quorum assignments.

Example 28. There exists a T such that Hybrid*(T) $Z Static*(T).

A Prom is a container for an item. When a Prom is created, it is initialized with
a default value, and its contents can be overwritten, but not read. Once the Prom
has been sealed, its contents can be read but not written. Prom provides three
operations:

Write = Operation(item)

stores a new item in the Prom. A Write may occur only if the Prom has not been
sealed.

Read =Operation() Returns(item)

returns the item in the Prom. A Read may occur only if the Prom has been sealed.

Seal= Operation()

enables Reads and disables Writes. It has no effect if the Prom has already been
sealed.

Corollary 25 implies that the unique minimal element of Static*(Prom) is the
relation Ds shown in Figure 7. We now argue that the relation DH in Figure 8 is a
hybrid dependency relation for Prom. Since it is symmetric, it is also an element
of Hybrid*(Prom). Because no Write operation can follow a Seal in any hybrid
serialization:

PROPERTY 29. Zf H . (Write(x)/Ok() Q) is in Hybrid(Prom), then H includes
no Seal operations executed by active or committed transactions.

Because every Read operation must follow a Seal in every hybrid serialization:

PROPERTY 30. Zf H . (Read()/Ok(x) Q) is in Hybrid(Prom), then H includes
a Seal operation executed by an active or committed transaction.

If D, is not a hybrid dependency relation, then by Lemma 20, some operation
q has a false D,-view G of H missing a single operation step (p P). Moreover,
since Ds is in Hybrid*(T) by Theorem 26, G cannot be a Ds-view of H for q. The
rest is a case analysis on possible values for q. For brevity, assume that H includes
no abort steps.

-Since every DH-view of H for Seal is also a Ds-view, q cannot be Seal.
-If q is Read, then p must be Write, and H has the form Gr a (Write(x)/Ok() P)

. GZ. By Property 29, G, includes no Seal operations. By Property 30, G must
include a Seal; hence, G2 must include a Seal. But Seal and Write are related by
DH , contradicting the assumption that G is DH-closed.

-If q is Write, then p must be Read, and H has the form G, . (Read()/Ok(x) P)
. Gz. Because G is in Hybrid(Prom), Property 29 implies that G,, and hence G,
includes a Seal operation. Because G . (q Q) is in Hybrid(T), however, Property
30 implies that G does not include a Seal operation, a contradiction.

Dual Properties of Replicated Atomic Data 273

i FIG. 7. Ds in Static*(Prom).

Write Seal Read

Write X
FIG. 8. DH in Hybrid*(Prom).

Seal X X

Read X

mi
FIG. 9 Quorum Assignments for 5-Site Hybrid
Atomic Prom.

Static*(Prom) requires Read and Write quorums to intersect, while Hy-
brid*(Prom) does not. These additional restrictions translate directly into restric-
tions on availability, as illustrated by Figure 9. Each column shows a quorum
assignment for a hybrid atomic Prom replicated among five identical repositories.
The quorum assignments shown in the first two columns, however, do
not guarantee static atomicity. This result suggests that hybrid atomicity is
more promising than static atomicity in distributed systems where availability
is important.

Example 3 1. There exists a T such that Serial*(T) P Hybrid*(T) q
Static*(T).

A CrossProduct is constructed from a DoubleBuffer and a Prom. The object’s
set of operations is the union of the DoubleBuffer and Prom operations, and a
CrossProduct history is legal if the subsequence of DoubleBuffer operations is a
legal DoubleBuffer history, and the subsequence of Prom operations is a legal Prom
history. Since DoubleBuffer operations do not interact with Prom operations,
Local*(CrossProduct) = Local*(DoubleBuffer) U Local*(Prom).

4.5 BOUNDED TRANSACTION NESTING. Nested transactions enhance concur-
rency by permitting a transaction to be decomposed into parallel subtransactions.
Nested transactions also facilitate fault-tolerance, since a subtransaction can be
aborted without aborting its parent. Nevertheless, we show here that under hybrid
atomicity, single-level transaction systems place fewer restrictions on availability
than nested transaction systems. Moreover, in systems in which the depth of
transaction nesting is bounded, restrictions on availability tighten as the maximum
depth of transaction nesting increases. The restrictions on availability induced by
serial and static atomicity are insensitive to transaction nesting.

A transaction’s depth of nesting is defined as follows: the root transaction has
depth 0, and every other transaction’s depth is one greater than its parent’s. Let
Hybrid,(T) be the subset of Hybrid(T) consisting of schedules in which no

274 MAURICE HERLIHY

transaction’s depth exceeds n. The bounded-depth hybrid atomic concurrent spec-
ifications for T form a strict infinite hierarchy with respect to concurrency:

Hybrid,(T) C Hybridz(T) C . . . C Hybrid(T).

The greater the maximum depth of transaction nesting, the greater the set of
permissible interleavings.

LEMMA 32. Any dependency relation for Hybrid,,+,(T) is also a dependency
relation for Hybrid,,(T).

PROOF. We show that if D is not a dependency relation for Hybrid,(T), then it
is not a dependency relation for Hybrid,(T). Suppose not. Let G be a false D-view
of H for q in Hybridn(T), but not in Hybrid,+,(T). By Definition 19, there exists
a transaction Q such that G . (q Q) is in Hybrid,(T), while H . (q Q) is in
Hybrid,+ 1 (T) but not in Hybrid,(T). Since H . (q Q) is in Hybrid,,, (T) but not
in Hybrid,(T), some transaction is nested to depth n + 1. Since His in Hybrid,(T),
that transaction must be Q, but since G . (q Q) is in Hybrid,(T), it cannot be Q,
a contradiction. El

It follows that the bounded-depth hybrid atomic specifications for T also form
an infinite hierarchy with respect to availability.

Hybrid*(T) G - - - C Hybrid:(T) C Hybrid:(T). (2)

Here, however, the ordering of the hierarchy is reversed: the greater the maximum
depth of transaction nesting, the smaller the set of permissible quorum assignments.
In this section, we give an example showing that this hierarchy is strict.

To show the inclusions in Eq. (2) are strict, we need the following lemma.

LEMMA 33. Ifoperation p precedes operation q in every history of T, and (pP)
and (qQ) are operation steps of a schedule H in Hybrid(T), where P and Q are
in active(H) u committed(H), then laa(P) E anc(laa(Q)).

PROOF. First note that ((pP), (qQ)) E known(H), because otherwise
known(H) could be extended to a linearizing order serializing q before p, contra-
dicting our assumption about T. If ((p P), (q Q)) E known(H), then there ex-
ists siblings P’ E ant(P) and Q’ E ant(Q) such (P’, Q’) E known(H). By Dell-
nition 16, P’ must be committed; hence, laa(P) E proper-anc(P’). If lca(P,
Q) E committed(H), then laa(P) = laa(Q); otherwise, laa(P) = Ica(P, Q) E
anc(laa(Q)). Cl

Let t, be the tree shown in Figure 10 whose nodes are labeled with operations.
(Here, left(i) and Right(i) are shorthand for Left()/OK(i) and Right()/Ok(i).)
A partial preorder traversal oft, is defined as follows:

(1) Visit the root.
(2) Perform a partial preorder traversal on the subtrees rooted at zero, one, or both

of the root’s children.

The history generated by a partial preorder traversal is the history constructed
by concatenating the nodes oft, in the order visited.

Definition 34. The serial specification Tree, consists of all histories generated
by partial preorder traversals of t, except for the “forbidden” history:

Left(n) . Left(n - 1) Left(O) . Right(O) Right(n - 1) . Right(n),

generated by the complete left-to-right preorder traversal.

Dual Properties of Replicated Atomic Data 275

Left(n) Right(n)

Left(n-1) Right(n-1)

Left(O) Right(O)

FIG. 10. The Tree T,

Note that these serial specifications are partial: responses are undefined for
certain invocations.

Let D be the quorum intersection relation encompassing all pairs of operations
except (Right(O), Left (0)) and (Left(O), Right(O)).

LEMMA 35. D is not in Hybrid,*+,(Tree,,).

PROOF. Construct a transaction tree isomorphic to t,, where transaction L,
corresponds to Left(i) and Ri corresponds to Right(i), for 0 I i 5 rz. Let H be the
following schedule,

Left(n) L,
Right(n) R,

Left(1) Ll
Right(1) RI
Le ft(0) LO

and let G be the prefix of H that omits the last step. G is a false D-view of H
for Right(O), since G, H, and G . (Right(O) R,) are in Hybrid,+, (Tree,),
but H . (Right(O) R,) is not, since the forbidden history is one of its hybrid
serializations. 0

Example 36. Hybrid$(Tree,) $Z Hybrid:, , (Tree,).

We show that D is in Hybrid$(Tree,) but not Hybrid,*+, (Tree,) by showing that
if G is a false D-view of H for some operation, then H includes a transaction nested
deeper than n.

Since D is not a dependency relation for Hybrid,+,(Tree,) (Lemma 35) there
exist G, H, and q such that G is a false D-view of H for q. Let Lj and Ri be the
transactions that, respectively, executed Left(i) and Right(i) in these schedules.
Because Lemma 20 makes no assumptions about the depth of transaction nesting,
we may assume G is missing exactly one step (p P) of H. Since Right(O) and

276 MAURICE HERLIHY

Left(O) are the only operations not related by D, either q = Right(O) and p =
Left(O), or vice-versa. Moreover, since G is D-closed, H has the form G . (pP).

H . (q Q) can fail to be in Tree, in two ways: (1) it may have a hybrid
serialization that is not a partial preorder traversal of t,,, or (2) it may have the
forbidden history as a hybrid serialization. We claim the first case is impossible.
The illegal serialization of H . (q Q) induces legal serializations of G . (pP) and
G . (qQ) that must have the form h, . Left(l) . p . h2 and h, . Left(l) . q . hl,
since every traversal visits Left(1) immediately before Left(O) or Right(O). Because
Left(1) appears only once in H, the illegal serialization of H . (q Q) must have the
form h, . Left(l) . p . q a hZ or h, . Left(1) . q . p . hZ, each of which is a partial
preorder traversal of t,.

We now show that if H . (q Q) has the forbidden history as a serialization,
then some transaction is nested to a depth greater than n. Step 1 is to show that
laa(Li) = lca(Li, &), for i > 0. Since Left(i) precedes Right(O) in every history
in Tree,, laa(Li) E anc(laa(R,,)) by Lemma 33. Because R0 is active, laa(Li) =
lca(&, &).

Step 2 is to show that laa(Li+r) E anc(Ri). Since Left(i + 1) precedes Right(i) in
every history in Tree,, laa(Li+l) E anc(laa(Ri)) by Lemma 33; hence, laa(Li+l) E
aIlC(Ri).

Step 3 is to show that laa(Li) @ anc(Ri), for i > 0. Suppose otherwise. Since
laa(L;) = lca(Li, &) by Step 1, there exist L,! E anc(LJ, R(E anc(Ri), and R6 E

anc(RO) such that parent = parent(R,!) = parent = lca(Li, Ro), and Lr is
committed. Because Left(i) precedes Right(O) in every serialization, (LI, RA) E

known(H), but because the forbidden history is a hybrid serialization of H, (RI,

L,!) @ known(H) and (RI, RA) B known(H). There are two cases to consider;
each leads to a contradiction. First, if lca(Li, Ri) E proper-desc(laa(Li, Ro)), then
L,! = Rl and (RI, Rh) E known(H), ruling out the forbidden history as a hybrid
serialization. Second, if lca(Li, Ri) = lca(Li, R,), then L,! # RI, and the ordering
Li < Ri < RO is compatible with known(H), an order that does not correspond to
any partial preorder traversal oft,.

The final step is to show that laa(Li) E proper-desc(laa(Li+r)). By Lemma 33,
laa(Li) E desc(laa(Li+l)). Laa(Li+l) is an ancestor of Ri (Step 2) and laa(Li) is not
(Step 3); therefore, laa(Li) and laa(Li+l) are distinct. Since laa(L,) has depth at
least 1, laa(L,) has depth at least n + 1.

Static atomicity is insensitive to depth of transaction nesting: Static,*,,(T) =
Static:(T) = Static*(7). This result follows from the proof of Lemma 24, which
actually shows a slightly stronger result: if D does not contain Ds, then D is not a
dependency relation for Static, (7).

5. Conclusions

Atomicity in a decentralized distributed system is ensured by choosing a local
atomicity property that every atomic object must satisfy. For example, the Swallow
distributed data storage system is based on static atomicity [41], Argus [30], and
TABS [40] are based on dynamic atomicity, and Avalon [28] is based on hybrid
atomicity. Choosing such a local atomicity property is a design decision of critical
importance, since the decision must be taken in advance, and once made, it is
difficult to change. An inappropriate choice may place unnecessary restrictions on
the availability and concurrency realizable within the system.

This paper has introduced a new criterion for evaluating local atomicity prop-
erties: the constraints they impose on availability. In particular, our results suggest

Dual Properties of Replicated Atomic Data 277

that hybrid atomicity is more promising than static atomicity as a foundation for
highly available and highly concurrent distributed systems. Much work remains to
be done in this area, however, since our analysis does not address such issues as
implementation techniques or language support.

REFERENCES

1. ALSBERG, P. A., AND DAY, J. D. A principle for resilient sharing of distributed resources. In
Proceedings of the 2nd Annual Conference on Software Engineering (Oct.). IEEE Press, Washington,
D.C., 1976, pp. 627-644.

2. BEERI, C., BERNSTEIN, P. A., AND GOODMAN, N. A model for concurrency in nest transaction
systems. Tech. Rep. TR-86-03. Wang Institute, Tyngsboro, Mass., Mar. 1986.

3. BERNSTEIN, P. A., AND GOODMAN, N. Concurrency control in distributed database systems. ACM
Comput. Surv. 13,2 (June 1981), 185-221.

4. BERNSTEIN, P. A., AND GOODMAN, N. The failure and recovery problem for replicated databases.
In Proceedings of the 2nd Annual Symposium on Principles of Distributed Computing (Montreal,
Que., Canada, Aug. 17-19). ACM, New York, 1983, pp. 114-122.

5. BERNSTEIN, P. A., AND GOODMAN, N. An algorithm for concurrency control and recovery in
replicated distributed databases. ACM Trans. Datab. Syst. 9, 4 (Dec. 1984), 596-6 15.

6. BERNSTEIN, P. A., GOODMAN, N., AND LAI, M. Y. Two-part proof schema for database concurrency
control. In Proceedings of the 5th Berkeley Workshop on Distributed Data Management and
Computer Networks, (Feb.). Lawrence Berkeley Laboratory, Berkeley, Calif., 198 1, pp. 7 l-84.

7. BIRMAN, K. P. Replication and fault-tolerance in the ISIS system. In Proceedings of the 10th
Symposium on Operating Systems Principles (Orcas Island, Wash., Dec. l-4). ACM, New York,
1985, pp. 79-86.

8. BIRRELL, A. D., LEVIN, R., NEEDHAM, R., AND SCHROEDER, M. Grapevine: An exercise in
distributed computing. Commun. ACM 25,4 (Apr. 1982), 260-274.

9. BLOCH, J. J., DANIELS, D. S., AND SPECTOR, A. Z. A weighted voting algorithm for replicated
directories. J. ACM 34, 4 (Oct. 1987), 859-909.

10. CHAN, A., Fox, S., LIN, W. T., NORI, A., AND RIES, D. The implementation of an integrated
concurrency control and recovery scheme. In Proceedings of the I982 SIGMOD Conference:
International Conference on Management of Data (Orlando, Fla., June 2-4). ACM, New York,
1982, pp. 184-191.

11. COOPER, E. C. Circus: A replicated procedure call facility. In Proceedings of the 4th Symposium
on Reliability in Distributed Software and Database Systems (Oct.). IEEE Press, Washington, D.C.,
1984, pp. 1 l-24.

12. DUBOURDIEU, D. J. Implementation of distributed transactions. In Proceedings of the 1982
Berkeley Workshop on Distributed Data Management and Computer Networks. Lawrence Berkeley
Laboratory, Berkeley, Calif., 1982, pp. 8 l-94.

13. EAGER, D. L., AND SEVCIK, K. C. Achieving robustness in distributed database systems. ACM
Trans. Datab. Syst. 8, 3 (Sept. 1983), 354-381.

14. EL-ABBADI, A., AND TOUEG, S. Availability in partitioned replicated databases. Tech. Rep. TR
85-721. Dept. of Comput. Sci., Cornell University, Dec. 1985.

15. ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L. The notions of consistency and
predicate locks in a database system. Commun. ACM 19, 11 (Nov. 1976), 624-633.

16. FISCHER, M., AND MICHAEL, A. Sacrificing serializability to attain high availability of data in an
unreliable network. In Proceedings of the ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems (Los Angeles, Calif., Mar. 29-31). ACM, New York, 1982, pp. 7-75.

17. GIFFORD, D. K. Weighted voting for replicated data. In Proceedings of the 7th Symposium on
Operating Systems Principles (Pacific Grove, Calif., Dec. 10-12). ACM, New York, 1979, pp.
150-162.

18. GOLDMAN, K. J., AND LYNCH, N. A. Quorum consensus in nested transaction systems. In
Proceedings of the 6th AnnualACMSymposium on Principles of Distributed Computing(Vancouver,
B.C., Canada, Aug. 10-12). ACM, New York, 1987, pp. 27-4 I.

19. GRAY, J. N. Notes on database operating systems. In Lecture Notes in Computer Science, vol.
60. Springer-Verlag, Berlin, West Germany, 1978, pp. 393-48 I.

20. HAMMER, M. M., AND SHIPMAN, D. W. Reliability mechanisms for SDD-1: A system for
distributed databases. ACM Trans. Datab. Syst. 5,4 (Dec. 1980), 431-466.

21. HEDDAYA, A., Hsu, M. C., AND WEIHL, W. E. Two-phase gossip: Managing distributed event
histories. Tech. Rep. TR-04-87. Harvard Univ., Cambridge, Mass., Dec. 1987.

278 MAURICE HERLIHY

22. HEKLIHY, M. P. Concurrency versus availability: Atomicity mechanism for replicated data. ACM
Trans. Comput. Syst. 5, 3 (Aug. 1987), 249-274.

23. HERLIHY, M. P. Comparing how atomicity mechanisms support replication. In Proceedings ofthe
4th Annual ACM Symposium on Principles of Distributed Computing (Minaki, Ont., Canada, Aug.
5-7). ACM, New York, 1985, pp. 102-l 10.

24. HERLIHY, M. P. A quorum-consensus replication method for abstract data types. ACM Trans.
Comput. Syst. 4, 1 (Feb. 1986) 32-53.

25. HERLIHY, M. P. Extending multiversion timestamping protocols to exploit type information
(special issue on parallel and distributed computing). IEEE Trans. Comput. C-35, 4 (Apr. 1987),
443-449.

26. HERLIHY, M. P. Dynamic quorum adjustment for partitioned data. ACM Trans. Datab. Syst. 12,
2 (June 1987), 170-194.

27. HERLIHY, M. P., AND WEIHL, W. E. Hybrid concurrency control for abstract data types. In
Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (Austin, Tex., Mar. 21-23). ACM, New York, 1988, pp. 201-210.

28. HERLIHY, M. P., AND WING, J. M. Avalon: Language support for reliable distributed systems. In
Proceedings of the 17th Symposium on Fault-Tolerant Computer Systems (July). IEEE Computer
Society Press, Washington, DC., 1987, pp. 89-95.

29. KORTH, H. F. Locking primitives in a database system. J. ACM 30, 1 (Jan. 1983), 55-79.
30. LISKOV, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust, distributed

programs. ACM Trans. Prog. Lang. Syst. 5, 3 (July 1983), 38 l-404.
3 1. LYNCH, N. A. Concurrency control for resilient nested transactions. In Proceedings of the 2nd

ACM Symposium on Principles of Database Systems (Mar.). ACM, New York, 1983, pp. 166- 18 1.
32. LYNCH, N. A., AND MERRITT, M. Introduction to the theory of nested transactions. Tech. Rep.

MIT/LCS/TR-387. Laboratory for Computer Science. MIT, Cambridge, Mass., Apr., 1986.
33. Moss, J. E. B. Nested transactions: An approach to reliable distributed computing. Tech. Rep.

MIT/LCS/TR-260. Laboratory for Computer Science. MIT, Cambridge, Mass., Apr. 198 1.
34. PAPADIMITRIOU, C. H. The serializability of concurrent database updates. J. ACM 26, 4 (Oct.

1979), 63 l-653.
35. PAPADIMITRIOLJ, C. H., AND KANELLAKIS, P. On concurrency control by multiple versions. ACM

Trans. Datab. Syst. 9, 1 (Mar. 1984), 89-99.
36. REED, D. P. Implementing atomic actions on decentralized data. ACM Trans. Comput. Syst. I, 1

(Feb. 1983), 3-23.
37. SCHWARZ, P. M., AND SPECTOR, A. Z. Synchronizing shared abstract types. ACM Trans. Comput.

Syst. 2, 3 (Aug. 1984), 223-250.
38. SKEEN, M. D. Crash recovery in a distributed database system. Ph.D. dissertation, Univ. California,

Berkeley, Berkeley, Calif., May 1982.
39. SKEEN, D., CHRISTIAN, F., AND EL-ABBADI, A. An efficient, fault-tolerant protocol for replicated

data management. In Proceedings of the 4th ACM SIGACT-SIGMOD Conference on Principles of
Database Systems (Portland, Ore., Mar. 25-27). ACM, New York, 1985, pp. 2 15-229.

40. SPECTOR, A. Z., BUTCHER, J., DANIELS, D. S., DUCHAMP, D. J., EPPINGER, J. L., FINEMAN, C. E.,
HEDDAYA, A., AND SCHWARZ, P. M. Support for distributed transactions in the tabs prototype.
IEEE Trans. Softw. Eng. I I, 6 (June 1985), 520-530.

41. SVOBODOVA, L. A reliable object-oriented repository for a distributed computer system. In
Proceedings of the 8th ACM Symposium on Operating Systems Principles (Pacific Grove, Calif.,
Dec. 14-16). ACM, New York, 1981, pp. 47-58.

42. THOMAS, R. H. Consensus approach to concurrency control for multiple copy databases. ACM
Trans. Datab. Syst. 4, 2 (June 1979), 180-209.

43. WEIHL, W. E. Data-dependent concurrency control and recovery. In Proceedings of the 2nd
Annual Symposium on Principles of Distributed Computing (Montreal, Que., Canada, Aug. 17-19).
ACM, New York, 1983, pp. 63-75.

44. WEIHL, W. E. Specification and implementation of atomic data types. Tech. Rep. TR-314.
Laboratory for Computer Science. M.I.T., Cambridge, Mass., Mar. 1984.

RECEIVED MARCH 1986; REVISED JUNE 1987, JULY 1988, AND MAY 1989; ACCEPTED MAY 1989

Journal ofthe Association for Computing Machinery, Vol. 37, No. 2, April 1990.

