Discrete Event Dyn Syst
DOI 10.1007/s10626-012-0139-x

Concurrency bugs in multithreaded software: modeling
and analysis using Petri nets

Hongwei Liao - Yin Wang - Hyoun Kyu Cho -
Jason Stanley - Terence Kelly - Stéphane Lafortune -
Scott Mahlke - Spyros Reveliotis

Received: 21 February 2011 / Accepted: 16 April 2012
© Springer Science+Business Media, LLC 2012

Abstract In this paper, we apply discrete-event system techniques to model and
analyze the execution of concurrent software. The problem of interest is deadlock
avoidance in shared-memory multithreaded programs. We employ Petri nets to
systematically model multithreaded programs with lock acquisition and release

This work was partially supported by NSF grant CCF-0819882 and an award from HP Labs
Innovation Research Program (University of Michigan) and by NSF grants CMMI-0619978
and CMMI-0928231 (Georgia Institute of Technology).

H. Liao (X)) - H. K. Cho - J. Stanley - S. Lafortune - S. Mahlke
Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109, USA

e-mail: hwliao@umich.edu

H. K. Cho
e-mail: netforce@eecs.umich.edu

J. Stanley
e-mail: jasonsta@eecs.umich.edu

S. Lafortune
e-mail: stephane@eecs.umich.edu

S. Mahlke
e-mail: mahlke@eecs.umich.edu

Y. Wang - T. Kelly
HP Labs, Palo Alto, CA 94303, USA

Y. Wang
e-mail: yin.wang@hp.com

T. Kelly
e-mail: terence.p.kelly@hp.com

S. Reveliotis

School of Industrial & Systems Engineering,

Georgia Institute of Technology, Atlanta, GA 30332, USA
e-mail: spyros@isye.gatech.edu

Published online: 13 May 2012 4\ Springer

Discrete Event Dyn Syst

operations. We define a new class of Petri nets, called Gadara nets, that arises from
this modeling process. We investigate a set of important properties of Gadara nets,
such as liveness, reversibility, and linear separability. We propose efficient algorithms
for the verification of liveness of Gadara nets, and report experimental results on
their performance. We also present modeling examples of real-world programs. The
results in this paper lay the foundations for the development of effective control
synthesis algorithms for Gadara nets.

Keywords Concurrent software - Deadlock analysis - Modeling - Petri nets

1 Introduction

In the past decade, computer hardware has undergone a true revolution, moving
from uniprocessor architectures to multiprocessor architectures. In order to exploit
the full potential of multicore hardware, there is an unprecedented interest in
parallelizing computing tasks that were previously conducted in series. This trend
forces parallel programming upon the average programmer. Parallel programming is
fundamentally more challenging than serial programming because of the complexity
of reasoning about concurrency. Lock primitives, such as mutual exclusion locks
(mutexes), are often employed to protect shared data and prevent data races. In-
appropriate use of mutexes can lead to circular-mutex-wait (CMW) deadlocks in the
program, where a set of threads are waiting indefinitely for one another and none of
them can proceed. Significant effort has to be spent to detect and fix deadlock bugs.

Development of highly reliable and robust software is a very active research
area in the software and operating systems communities. Some recent work includes
Qin et al. (2005), Nir-Buchbinder et al. (2008), Novark et al. (2007, 2008), Musuvathi
et al. (2008) and Park et al. (2009). There is an emerging need for systematic method-
ologies that will enable programmers to characterize, analyze, and resolve software
failures, such as deadlocks. Decades of study have yielded numerous approaches
to program deadlock resolution, but none is a panacea. Static deadlock prevention
via strict global lock-acquisition ordering is straightforward in principle but can
be remarkably difficult to apply in practice. Static deadlock detection via program
analysis has made impressive strides in recent years (Flanagan et al. 2002; Engler
and Ashcraft 2003), but spurious warnings can be numerous and the cost of manually
repairing genuine deadlock bugs remains high. Dynamic deadlock detection may
identify the problem too late, when recovery is awkward or impossible; automated
rollback and re-execution as in Qin et al. (2005) can help, but irrevocable actions
such as I/O can preclude rollback. Variants of the Banker’s Algorithm (Dijkstra
1982) provide dynamic deadlock avoidance, but require more resource-demand
information than is often available and involve expensive runtime calculations.

Our on-going Gadara project (Kelly et al. 2009) is a multidisciplinary effort
to develop a software tool that takes as input a deadlock-prone multithreaded C
program and outputs a modified version of the program that is guaranteed to run
deadlock-free without affecting any of the functionalities of the program. In view of
the event-driven nature of program dynamics and the logical control specification of
deadlock avoidance, we approach this problem from a discrete-event systems (DES)

@ Springer

Discrete Event Dyn Syst

angle (Cassandras and Lafortune 2008). We build a formal model of the program,
analyze its properties, and synthesize control logic to enforce deadlock freeness.
The focus of this paper is on the first two steps: modeling and analysis. Our control
synthesis results will be presented in subsequent papers.

Finite state automata and Petri nets are the two most popular modeling for-
malisms for DES. We chose Petri nets as our modeling formalism, because they
are efficient at capturing the concurrency of a dynamic system while avoiding
enumerating its state space. Deadlock analysis based on Petri nets has been widely
studied for flexible manufacturing systems and other technological applications
involving a resource allocation function (Li et al. 2008; Reveliotis 2005). Various
special classes of Petri nets have been proposed to analyze manufacturing systems
(Li et al. 2008). Recently, there has also been a growing interest in the application
of DES to software systems and embedded systems; see, e.g., Wallace et al. (1996),
Phoha et al. (2004), Liu et al. (2006), Dragert et al. (2008), Auer et al. (2009), Gamatie
et al. (2009), Iordache and Antsaklis (2010) and Delaval et al. (2010). A review
of the application of Petri nets to computer programming is presented in Iordache
and Antsaklis (2009). Modeling thread creation/termination and mutex lock/unlock
operations is in fact a classical application of Petri nets (Murata 1989); in particular,
Petri nets were used in Murata et al. (1989) to analyze deadlocks in Ada programs.
In the case of the popular Pthread library for C/C++ programs, Petri nets have also
been employed to model multithreaded synchronization primitives (Kavi et al. 2002).

We discovered that the existing special classes of Petri nets in the literature do
not exactly match the specific features of Petri nets that arise when modeling the
locking behavior of multithreaded programs. Therefore, we propose a new class of
Petri nets, called Gadara nets, that explicitly models multithreaded programs with
lock acquisition and release operations. With the class of Gadara nets formally
defined, we can efficiently analyze program deadlocks via formal models, and
synthesize deadlock avoidance control policies that can in turn be instrumented in
the underlying programs. By establishing a set of important properties of Gadara
nets (e.g., liveness and reversibility), the deadlock-freeness—a behavioral property—
of the program can be analyzed via the program’s corresponding Gadara net model
by exploiting the structural properties of the net. This correspondence is crucial to
the effectiveness and efficiency of control synthesis of Gadara nets for the purpose
of deadlock avoidance in the programs. By “effectiveness” we mean that the control
logic synthesized from the Gadara net will provably avoid potential CMW-deadlocks
at run-time. By “efficiency” we mean that the run-time computational overhead is
minimized and the control logic has the property of maximal permissiveness in the
sense that it will restrict concurrency only when necessary to eliminate deadlock.

The main contributions of this paper are summarized as follows. (i) We formally
define the classes of Gadara nets and controlled Gadara nets; the latter one is defined
in anticipation of the effect of control synthesis on Gadara nets. (ii) We investigate
several important properties of Gadara nets, such as liveness, reversibility, and linear
separability, which provide the necessary foundations for the future synthesis of
maximally-permissive liveness-enforcing (MPLE) control policies for Gadara nets.
(iii) We present efficient algorithms for the verification of liveness of Gadara nets us-
ing mathematical programming, and report experimental results on the performance
of the algorithms. We use examples of deadlocks from two real-world programs,
BIND and the Linux kernel, to illustrate our results.

@ Springer

Discrete Event Dyn Syst

We make the following remark for the sake of clarity.

Remark 1 The notion of “deadlock” we discussed above refers to CMW-deadlock
of a program; in the Petri net literature, “deadlock” usually refers to the case where
all the transitions in the net are disabled. To avoid any confusion, in the rest of this
paper, we refer to these two types of deadlocks as CMW-deadlock (Definition 1) and
total-deadlock (Definition 6), respectively. We use the terms, deadlock and CMW-
deadlock, interchangeably, when there is no confusion from the context. Moreover,
as we will show in Section 4, in order to avoid CMW-deadlocks of a program, we
require liveness of its corresponding Petri net model. Therefore, the key Petri net
property under study in this paper is liveness, rather than total-deadlock-freeness.

This paper is organized as follows. Section 2 overviews the Gadara project and
describes the modeling of multithreaded programs. In Section 3, we formally define
Gadara nets and controlled Gadara nets. Some important properties of Gadara nets,
such as liveness, reversibility, and linear separability of state space, are established in
Section 4; the algorithms for the verification of liveness of Gadara nets are presented
in Section 5. We present some examples of deadlocks from real-world software in
Section 6, and conclude in Section 7. A preliminary version of some of the results in
Sections 3 and 4 appears in Wang et al. (2009b); a preliminary version of some of the
results in Sections 5.2 and 5.3 appears in Liao et al. (2011).

2 Modeling of multithreaded software

We first introduce the definition of a CMW-deadlock.

Definition 1 A program is said to be in a CMW-deadlock if there exists a circular
chain of two or more threads in the program, where each thread in the chain waits
for a mutex that is held by the next thread in the chain, and none of the threads can
proceed.

The architecture of Gadara is shown in Fig. 1 and comprises four steps. (1) The C
program source code is converted into a Control Flow Graph (CFG) by compiler
techniques. A CFG is a high-level graphical representation of all code execution
paths that might be traversed by the program. The CFG is augmented with additional
information about lock variables and lock functions. The enhanced CFG is a directed
graph. (2) The enhanced CFG is translated into a Petri net model, i.e., a Gadara
net. (3) Based on the obtained Gadara net model of the program, the goal of
CMW-deadlock-freeness of the program is mapped to an appropriate necessary and
sufficient condition that must be satisfied by the Gadara net model. Control synthesis
is further carried out on the Gadara net to enforce this condition. The output of this
step is a controlled Gadara net, augmented with monitor (a.k.a. control) places, which
corresponds to a CMW-deadlock-free program. (4) The synthesized control logic
captured by the monitor places is incorporated into the program by instrumenting
the original code.

The four steps described above are all conducted off-line. During program exe-
cution, the only on-line overhead is due to the additional lines of code pertaining to

@ Springer

Discrete Event Dyn Syst

offline ' online

b 2
W . compile 1 | instrumented executable
source code L
J A ! " control _
- I | control () |
. o l . [
Y comple £ Lo Jogie ¢ observe '
= 1
control g : . 1 control 1
5 | | contro) \
flow graph E ! 1 logic observe”
o [g
translation control | . | mTTToomoo oo
logic ; | control control "
Y synthesis control I ' losic) \
Petri net > logic bl G observe _ _!

Fig.1 Gadara architecture

checking and updating the contents of the monitor places. In this paper, we focus
on the formal DES aspects pertaining to Steps 2 and 3 (analysis part). The reader
is referred to our earlier publications in computer science venues (Wang et al. 2008,
2009a) for more details on Steps 1 and 4.

Determining if a program is deadlock-free, for any type of deadlock, is un-
decidable, as it is a special instance of the halting problem for Turing machines
(Hopcroft et al. 2006). We overcome this obstacle by focusing on CMW-deadlocks
and by making modeling assumptions. A key challenge is scalability. Real-world
large-scale software contains thousands of functions and millions of lines of code.
Inlining the whole program, which is required for CMW-deadlock analysis, is not
an option. We first prune functions and code regions that are irrelevant to deadlock
analysis. We apply lock graph analysis (Engler and Ashcraft 2003; Cano et al. 2010)
to isolate the code regions that are subject to CMW-deadlock, and inline only the
tail of the whole call stack that fully contains the CMW-deadlock. After pruning
and lock graph analysis, we obtain a manageable model that captures all mutex
interactions, and thereby all CMW-deadlocks in the program. In addition to scal-
ability, language features also pose difficulties, e.g., recursion, function pointers,
and dynamic locks. When in doubt about what particular lock a given call refers
to, we model the lock in a conservative way (Wang et al. 2008). Finally, there are
Operating System, C language, and Pthread library specific features that we do not
currently model, e.g., UNIX Inter-Process Communication calls that can result in
other types of deadlocks, and setjump, longjump functions in C. Using all of
the above techniques and under the above restrictions, we are able to capture all
CMW-deadlocks in multithreaded programs using Petri nets.

As discussed above, a wide range of sub-classes of Petri nets have been proposed
in the literature, most of them motivated by applications in flexible manufactur-
ing systems. Similarly, the class of Gadara nets formally defined in this paper is
motivated by the application domain of concurrent software, with a focus on the
analysis of CMW-deadlocks. A Petri net model is obtained in Step 2 of the Gadara
architecture in Fig. 1 by translating the enhanced CFG of the program. We create a
place to represent each node (i.e., basic block) in the enhanced CFG. Moreover,
a directed arc connecting two nodes in the enhanced CFG is represented by a
transition and associated arcs in the Petri net. Lock variables are also modeled by

@ Springer

Discrete Event Dyn Syst

places, whose connectivity to the transitions is determined by the actions of lock
acquisitions/releases of the program. A token in a place that represents a basic block
models a thread executing in this basic block; a token in a place that represents a lock
models the availability of this lock. The final Petri net model is called a Gadara net.
We formally define Gadara nets in Section 3. Under the framework of Gadara nets,
we are able to: (i) systematically characterize the execution of programs in terms
of formal models; (ii) analyze the desired properties of programs in the context of
models, and transform the goals into equivalent control specifications on Petri nets;
and (iii) synthesize provably correct and optimal control logic on the model that can
in turn be instrumented in the original programs.

In this paper, we will use a deadlock bug in the BIND software as a running
example, which is shown in Fig. 2. The acronym BIND stands for “Berkeley Internet
Name Daemon,” which is a popular Domain Name System (DNS) on the Internet.
Figure 2a shows the lines of code that are related to the deadlock under considera-
tion; the corresponding Gadara net model is shown in Fig. 2b. The deadlock occurs
if there is one token in p;, which represents one thread holding lock A while waiting

rwlock_lock(&rbtdb->tree_lock, type);
/* LOCK(A) */

lock (&rbtdb->node_lock[il);

/* LOCK(B) */

if (..o
rwlock_unlock(&rbtdb->tree_lock) ;
/* UNLOCK(A) */
rwlock_lock(&rbtdb->tree_lock, READ);

/* LOCK(A) */

unlock (&rbtdb->node_lock[i]);

/* UNLOCK(B) */

rwlock_unlock(&rbtdb->tree_lock);

/* UNLOCK(A) */

(a) (b)

Fig. 2 A deadlock example in BIND: a simplified code; b Gadara net model

@ Springer

Discrete Event Dyn Syst

for lock B, and there is one token in p4, which represents another thread holding lock
B while waiting for lock A. This deadlock bug occurred in the final release version
9.2.2, and was fixed in the release candidate version 9.2.3rcl. As the bug database of
BIND is not open to the public, we confirmed the bug by the change log of 9.2.3rcl,
as well as using source code comparison. The bug resided in the rbtdb. c file, which
is a red black tree data structure that stores domain names and IP addresses. For the
sake of discussion, the Gadara net model has been simplified; in particular, we model
the Reader/Writer lock in this example as a mutex.

3 The Gadara Petri net model

Gadara nets, first introduced in Wang et al. (2009b), are a special class of Petri nets
that model multithreaded C programs with lock allocation and release operations,
for the purpose of CMW-deadlock avoidance. In this section, we formally define the
class of Gadara nets. When an original Gadara net is augmented with the synthesized
monitor places, we obtain the class of controlled Gadara nets, which are also defined.
We first briefly review some Petri net preliminaries; see Murata (1989) for a detailed
discussion.

3.1 Petri net preliminaries

Definition 2 A Petri net dynamic system A = (P, T, A, W, M,) is a bipartite graph
(P, T, A, W) with an initial number of tokens. Specifically, P = {pi, pa, ..., pn} is the
set of places, T = {t1, tp, ..., t,y} is the set of transitions, A € (P x T) U (T x P) is the
set of arcs, W : A — {1, 2, ...} is the arc weight function, and for each p € P, My(p)
is the initial number of tokens in p.

The marking (a.k.a. state) of a Petri net A/ is a column vector M of n entries
corresponding to the n places. As defined above, M, is the initial marking. We use
M(p) to denote the (partial) marking on a place p, which is a scalar; we use M(Q) to
denote the (partial) marking on a set of places Q, which is a |Q| x 1 column vector.
The notation ep denotes the set of input transitions of place p: ep = {¢|(t, p) € A}.
Similarly, pe denotes the set of output transitions of p. The sets of input and output
places of transition ¢ are similarly defined by ez and re. This notation is extended to
sets of places or transitions in a natural way. A transition ¢ is enabled or fireable at
M,ifVp € ot, M(p) = W(p,t). When an enabled transition ¢ fires, for each p € eot, it
removes W(p, t) tokens from p; and for each g € te, it adds W(z, q) tokens to g. The
reachable state space R(N', M) of \ is the set of all markings reachable by transition
firing sequences starting from M.

A pair (p,t) is called a self-loop if p is both an input and output place of t. We
consider only self-loop-free Petri nets in this paper. A Petri net is called ordinary if
all the arcs in the net have unit arc weights, i.e., W(a) = 1, Va € A; otherwise, it is
called non-ordinary. Without any confusion, we can drop W in the definition of any
Petri net A\ that is ordinary.

The incidence matrix D of a Petri net is an integer matrix D € Z™, where
D;; = W(t;, p;)) — W(p;, tj) represents the net change in the number of tokens in

@ Springer

Discrete Event Dyn Syst

place p; when transition ¢; fires. A state machine is an ordinary Petri net such that
each transition ¢ has exactly one input place and exactly one output place, i.e.,
VieT,|eot|=|te|=1.

Let D be the incidence matrix of a Petri net /. Any non-zero integer vector y
such that DTy =0 is called a P-invariant of N. Further, P-invariant y is called a
P-semiflow if all the elements of y are non-negative.

By definition, P-semiflow is a special case of P-invariant. A straightforward
property of P-invariants is given by the following well-known result (Murata 1989): If
avector y is a P-invariant of Petrinet N = (P, T, A, My), then we have MTy = M['y
for any reachable marking M € R(N, My). The support of P-semiflow y, denoted as
Ilyll, is defined to be the set of places that correspond to nonzero entries in y. A
support ||y|| is said to be minimal if there does not exist another nonempty support
1'll, for some other P-semiflow y’, such that ||y’||C|y|l. A P-semiflow y is said to be
minimal if there does not exist another P-semiflow y’ such that y'(p) < y(p), Vp. For
a given minimal support of a P-semiflow, there exists a unique minimal P-semiflow,
which we call the minimal-support P-semiflow (Murata 1989).

3.2 Gadara Petri nets

As discussed in Section 2, Gadara nets are translated from the enhanced CFG of
multithreaded programs. They provide a formal foundation to model the locking
behavior (case of mutexes) of the program. Gadara nets share features with classes
of Petri nets that arise in the modeling of manufacturing systems (Reveliotis 2005; Li
et al. 2008). More specifically, they consist of a set of process subnets that correspond
to thread entry points in the program, and resource places that model the locks
through which threads interact.

Definition 3 Let Iy = {1, 2, ..., m} be a finite set of process subnet indices. A Gadara
net is an ordinary, self-loop-free Petri net Ng = (P, T, A, My) where

1. P= PyUPsU Py is a partition such that: (a) Ps=J
Ps, N Ps, =9, foralli # j, (b) Po=J
{ri,ra,ri}, k> 0.

20 T=Ui T Ti #9, TiNT; = ¢, foralli # j.

3. Foralli € I, the subnet \; generated by P, U {po,} U T is a strongly connected
state machine. There are no direct connections between the elements of Pg, U
{po,} and T'; for any pair (i, j) with i # j.

4. Vpe Ps,if [pe| > 1,thenVt € pe, ot N Pr = 0.

5. Foreachr € Pg, there exists a unique minimal-support P-semiflow, Y, such that
{r} =Y, NPr, (Vp € Y, ID(Y,(p) = 1), Po N [[Y,]|= ¥, and Ps N [[Y,]| 9.

6. Vre Pgr, My(r)=1,Vp e Ps, My(p) =0, and Vpy € Py, Mo(po) > 1.

7. Ps=U,cp, (YD

icln Ps,, PS, ;ﬁ Q), and
Py,, where Py, = {py,}; and (c) Pr =

ieln

A Gadara net Ny is defined to be an ordinary Petri net, because it models
programs with mutex locks. Condition 1 classifies the set of places in N into three
types: (i) The idle place po, € Py is an artificial place added to facilitate the discussion
of liveness and other properties. The tokens in an idle place represent the threads

@ Springer

Discrete Event Dyn Syst

that “wait” for future execution. (ii) Pg is the set of operation places. Each operation
place models a basic block of the program. A token in an operation place represents
one instance of thread that is executing in the current basic block. (iii) Pg is the set
of resource places that model mutex locks. A token in a resource place represents the
availability of the mutex lock. For example, in the Gadara net shown in Fig. 2b, place
po is an idle place, places r4 and rp are resource places, and the other places in the
net are operation places.

Condition 2 defines the set of transitions in Ng. Each subnet of A has its
own set of transitions, which is not shared by any other subnet. A transition in
NG models the action of lock acquisition or release by the program; a transition
can also model branches in the program, such as if/else. N consists of a set
of subnets N; that define work processes, called process subnets in the literature.
Based on process subnet N;, if we further consider the resource places (and monitor
places to be introduced in the next section) associated with it, then the resulting net
is called a resource-augmented process subnet, denoted as N;"®. Unlike most prior
work in manufacturing applications, our process subnets need not be acyclic, due to
the modeling of loops in programs. We observe from Fig. 2b that the concurrent
execution of multiple threads can even be modeled by one process subnet with
multiple tokens in different operation places.

In Condition 3, the restriction of the process subnets N; to the class of state
machines implies that there is no “forking” or “joining” in these subnets. The state
machine structure of a process subnet is a natural result of the translation of the
enhanced CFG as described in Section 2. On the other hand, the strong connectivity
of the subnets N, which is also stipulated by Condition 3, ensures that in the
dynamics of these subnets, a token starting from the idle place will always be able to
come back to the idle place after processing. In more natural terms, this requirement
for strong connectivity implies that the only reason that might prevent the completion
of the considered processes is their contest for the locks that govern their access to
their critical sections and not any other potential errors in the underlying program
logic. Further, the process subnets are interconnected only by resource places, i.e.,
any operation place or idle place in N; does not connect to any transition in N,
fori # j.

Condition 4 models the requirement that a transition representing a branch
selection should not be engaged in any resource allocation. Conditions 5 and 6
characterize a distinct and crucial property of Gadara nets. First, the semiflow
requirement in Condition 5 guarantees that a resource acquired by a process will
always be returned later. A process subnet cannot “generate” or “destroy” resources.
We further require all coefficients of these semiflows Y, to be equal to one. This
requirement implies that the total number of tokens in ||Y;||, the support places of
any such semiflow Y,, is constant at any reachable marking M. Condition 6 defines
the initial token content, and therefore this constant is exactly equal to one. Hence,
we have the following proposition:

Proposition 1 Foranyr € Py, at any reachable marking M in N, there is exactly one
token in the support places of P-semiflow Y,.

To illustrate the concept of P-semiflow, consider the Gadara net shown in Fig. 2b
that has two resource places r 4 and 7 g. The minimal-support P-semiflows associated

@ Springer

Discrete Event Dyn Syst

with r4 and rp are ||Y,,|| = {ra, P1, P2, P3, Ps. Ps} and ||Y,, || = {rB, p2, P3, P4, Ps},
respectively.

As we discussed above, if the token is in resource place r, the mutex lock
corresponding to r is available. Otherwise, it is in a place p € ||Y,|| N Ps, of some
process subnet A\;, which means that the thread in p is holding the lock. Condition 6
specifies the initial markings of the three types of places. At the initial state, all the
mutex locks are available; there is no thread executing in the process subnets; and,
the number of threads waiting for future execution can be any positive integer.

Condition 7 states that any operation place models a basic block, which requires
the acquisition of at least one lock for its execution. A multithreaded program
contains sections executed with at least one lock held by the executing thread, called
critical sections in operating systems terms, and sections executed without holding
any lock. Condition 7 implies that the process subnets only model the critical sections
of the programs. Since the sections executed without involving any lock are irrelevant
to CMW-deadlock analysis, in practice, we prune the Petri nets translated from
CFGs so that our obtained Gadara nets only model the critical sections. This pruning
process is automated; see Wang (2009) for details.

3.3 Controlled Gadara nets

Based on the Gadara net model of the program, we want to synthesize control logic to
be enforced on the net so that the controlled net corresponds to a CMW-deadlock-
free program. Supervisory control based on place invariants (SBPI) is a common
control technique for Petri nets (Yamalidou et al. 1996; Giua 1992; lordache and
Antsaklis 2006). Control specifications implemented by SBPI are represented by a
set of linear inequalities on the net markings. Each linear inequality is enforced via
a monitor place with its associated arcs that augment the original net. The added
monitor place establishes a new invariant in the net dynamics and guarantees that
the specified linear inequality is always satisfied in the controlled net. This invariant
has a structure that is similar to that introduced by Condition 5 of Definition 3, with
the monitor place playing the role of a new (generalized) resource place. When we
use SBPI on the Gadara net, we obtain a controlled Gadara net, as defined below.
Note that one need not associate a controlled Gadara net with any specific control
policy. It is a structural definition that does not refer explicitly to the content of the
linear inequalities that are enforced by SBPI.

Definition 4 Let N = (P, T, A, My) be a Gadara net. A controlled Gadara net
G =PUPc, T, AU Ac, W€, M) is a self-loop-free Petri net such that, in addition
to all conditions in Definition 3 for N, we have

8. For each p. € Pc, there exists a unique minimal-support P-semiflow, Y, , such
that {p.} =Y, Il N Pc, Po N Y, ll=9, Pr N Y, ll=0, Ps N[|Y,ll# @, and
ch (pc) =1

9. Foreach p. € Pc, M§(p.) > mz;)x Y,.(p).

PErls

Definition 4 indicates that the introduction of the monitor places into N pre-
serves the net structure of A as specified by Definition 3. Condition 8 states
that the monitor places P¢ share similar structural properties with the resource

@ Springer

Discrete Event Dyn Syst

places Pg in terms of the place invariants imposed on the net, which is inspired by
the SBPI technique. But they have weaker constraints. More specifically, monitor
places may have multiple initial tokens and non-unit arc weights. Thus, V& does not
necessarily have to be an ordinary net, due to the arcs with non-unit weights that
can be potentially introduced by a monitor place. Condition 9 implies that the initial
marking of a monitor place provides a number of tokens that is able to cover, in
isolation, the token request posed by any stage in the support of the semiflow of that
monitor place.

As a special case of NE, if all the arcs in the net have unit arc weights (or,
more specifically, all the arcs associated with monitor places in the net have unit
arc weights), then V¢, , the class of controlled Gadara nets that remain ordinary, can
be defined as follows.

Definition 5 Let Ng = (P, T, A, My) be a Gadara net. An ordinary controlled
Gadara net N(CII = (PU Pc, T, AU Ac, M) is an ordinary, self-loop-free Petri net
that satisfies Conditions 1 to 7 in Definition 3 and Conditions 8 and 9 in Definition 4.

Remark 2 From Definitions 3-5, we observe that N is a special subclass of both
N&l and V¢, where Pc = @ and A¢ = @. Furthermore, N&l is a special subclass of

&, where We(a) = 1,Va € AU Ac. Therefore, any property that we derive for V&
holds for both N, and Ng as well. In the following, for the sake of simplicity, we
refer to V& as a “Gadara net” (unless special mention is made).

Conditions 5-7 of Definition 3 together lead to the following important property
of Gadara nets.

Proposition 2 Given a Gadara net N§, for any reachable marking M,¥p € Ps, M(p)
is either 0 or 1. In other words, all operation places in N are 1-bounded.

Proof Proposition 1 states that for any r € Pg, there is exactly one token in the
support places, || Y,||, of its P-semiflow Y,. This result, when considered together with
Condition 7 of Definition 3, implies that for any operation place in N¢, its marking
is either O or 1. O

We see that NV¢, is obtained by augmenting the original net with monitor places
that will control the firing of transitions. In this regard, we partition the transitions in
the net 7 into two disjoint subsets: T = T, U T,., where T, is the set of controllable
transitions (which can be disabled by a monitor place), and 7, is the set of
uncontrollable transitions (which cannot be disabled by a monitor place). Then, N
is said to be admissible if Pc e N T, = (. In the remainder of this paper, we make
the following assumption:

Assumption 1 N is admissible.
According to the semantics of the program represented by Gadara nets, branching
transitions are uncontrollable; this is why the branching transitions must satisfy

Condition 4 of Definition 3. On the other hand, lock acquisition transitions are
controllable so that we can avoid CMW-deadlocks. The rest of the transitions can

@ Springer

Discrete Event Dyn Syst

be classified either way, representing the “upper bound” and the “lower bound” of
Ty, respectively.

Assumption2 {te T:(Ap € Ps),(|[pe| > 1) A(t € pe)} C T, C T\ (PRre).

The development of results in this paper only requires that 7). contains all the
branch selection transitions (i.e., the lower bound in Assumption 2); these results
also extend to any other choice of T}, that satisfies Assumption 2.

3.4 Discussion

Petri nets have been extensively applied to the modeling and analysis of flexible
manufacturing systems and other technological applications involving a resource
allocation function (Li et al. 2008; Reveliotis 2005). In this application domain, the
class of S*PR nets is one of the most widely studied sub-classes of Petri nets; it
consists of process-oriented nets that possess an acyclicity property (Ezpeleta et al.
1995). Many sub-classes of Petri nets have been developed to extend the formulation
of $3 PR in order to model special features of specific systems. Recently, a new class
of Petri nets, called ST PR, has been proposed for anomaly detection in manufactur-
ing systems (Allen 2010). A unique characteristic of S7 PR nets is that the system
allows resource creation and negated resources; these features are not suitable for
our needs in this paper. Multithreaded software systems share some similarities with
manufacturing systems, e.g., the operation of both systems requires acquisition and
release of resources (i.e., locks). However, loops, such as for and while, are very
common in programs, and they result in internal cycles in the process subnets of their
Petri net models. Thus, there is a need to relax the acyclicity constraint of S* PR nets.
The resulting superclass is called $* PR. Deadlock analysis is known to be difficult
when the process subnets in process-oriented nets contain internal cycles (Park and
Reveliotis 2002; Jeng and Xie 2001). In Jeng and Xie (2001), the authors study the
class of RCN* merged nets, which arises in semiconductor manufacturing systems.
The potentially degraded behaviors (e.g., reworks and failures) in this manufacturing
setting necessitate the internal cycles in the model. In Park and Reveliotis (2002),
liveness-enforcing supervision is investigated for a broad class of resource allocation
systems, in the presence of uncontrollable behavior that can also lead to cyclic
behavior. Park and Reveliotis (2001) extends the results on liveness analysis and
control of ordinary nets to the class of non-ordinary process-resource nets. There
are few results on deadlock analysis in S* PR (Ezpeleta et al. 2002). Gadara nets Ng
fall within the S* PR class, but they possess features, such as unit arc weight and
1-bounded operation places, which render deadlock analysis more tractable and
enable the synthesis of MPLE control logic through monitor places.

4 Main properties of Gadara nets

With the class of Gadara nets formally defined, our next task is to establish the rele-
vant properties of Gadara nets, such that the goal of CMW-deadlock-free execution
of a program can be mapped to an equivalent objective in terms of its corresponding
Gadara net model. This task is carried out in three steps. First, we establish in

@ Springer

Discrete Event Dyn Syst

Section 4.3 that the goal of CMW-deadlock-free execution of a program is equivalent
to its corresponding Gadara net model satisfying a behavioral property, called
reversibility. Second, we prove in Section 4.4 that for a Gadara net, liveness, which is
a behavioral property, is equivalent to the absence of certain types of siphons in the
net, which is a structural feature. Third, we show in Section 4.5 that for a Gadara net,
liveness is equivalent to reversibility. As a result of the above three steps of analysis,
the behavioral property of CMW-deadlock-free execution of a program is mapped
to an equivalent objective in terms of a structural property of the Gadara net. This
mapping has important implications for efficient MPLE control synthesis. Finally,
we conclude this section with the discussion of an additional property of Gadara nets
that is known as the linear separability of their state space and facilitates the MPLE
control of these nets through monitor places.

4.1 Petri net liveness and reversibility

First, let us provide a series of definitions that formalize the Petri net concepts of
liveness and reversibility and some additional concepts related to them.

For the sake of simplicity, in the following discussion we use R(N, M) to denote
the set of reachable markings of net V starting from marking M.

A marking M is live if Vi € T, there exists M’ € R(N, M), such that 7 is enabled
at M'. A Petrinet (N, My) is live if YM € RN, My), M is live. Petri net \V is said to
be quasi-live if, for all t € T, there exists M € R(N, My), such that ¢ is enabled at M.
Petri net is said to be reversible if My € RN, M), for all M € RN, My).

Definition 6 A Petri net is in a total-deadlock if all the transitions in the net are
disabled.

Clearly, the state machine structure of subnets and the initial marking of idle
places (as specified by Conditions 3 and 6 of Definition 3, respectively) imply that
all subnets V; in a Gadara net A/ are quasi-live. Furthermore, the resource require-
ment of operation places and the initial marking of resource places (as specified
by Conditions 5 and 6 of Definition 3, respectively) imply that quasi-liveness is
preserved, when each subnet ; is augmented with the corresponding resource places
in Pg. Similarly, Conditions 8 and 9 of Definition 4 imply the preservation of quasi-
liveness for the subnets N\; of N & when augmented with the monitor places p. € Pc.
Finally, the combination of Condition 3 of Definition 3 with the quasi-liveness of the
resource and monitor-place-augmented subnets V; established above, further implies
the reversibility of the latter, when executing in isolation, i.e., when My(py,) = 1.

4.2 Resource-induced deadly marked siphons and modified markings

We first introduce the notion of siphon, which is a well-defined structural construct
in Petri nets.

A nonempty set of places S is said to be a siphon if ¢S C Se. In Fig. 2b, the set of
places Sap = {ra, B, P2, P3, Ps, Ps} 1s a siphon.

The following concepts pertain to the process-resource net structure of Gadara
nets, and they play a very important role in the characterization of the liveness and
reversibility of Gadara nets that is provided in the rest of this section.

@ Springer

Discrete Event Dyn Syst

Place p is said to be a disabling place at marking M if there exists ¢ € pe, s.t.
M(p) < W(p, 1.

Definition 7 A siphon S of a Gadara net Vg is said to be a resource-induced deadly
marked (RIDM) siphon (Reveliotis 2005) at marking M, if it satisfies the following
conditions:

1. every transition ¢ € oS is disabled by some place p € § at marking M;
2. SN(PrU Pc) #0;
3. Vpe SN(PrU Pc¢), pis adisabling place at marking M.

From Definition 7, a RIDM siphon is defined by a siphon S, together with a
partial marking on S. Thus, whenever we refer to a RIDM siphon S, it means the
set of places that constitute S as well as the partial marking on S. To illustrate the
notion of RIDM siphon, again, refer to the example in Fig. 2b, and consider the
reachable marking M, where there is one token in py, one in p;, and one in p4, while
all other places are empty. The siphon S4p = {ra, rp, p2, p3, Ps. ps} discussed above
is a RIDM siphon at marking M. Further, S 4 is an empty siphon at marking M. The
notion of RIDM siphon can also be used in a non-ordinary net. In general, a RIDM
siphon can be nonempty. An empty siphon is a special case of RIDM siphon. See
Fig. 5.10 on p. 136 of Reveliotis (2005) and Fig. 1 in Liao et al. (2010) for examples
of nonempty RIDM siphons in non-ordinary nets.

Definition 8 Given a Gadara net N, and a marking M € RW¢, M), the modified
marking M is defined by

= M(p), it p ¢ Po;
M(p) = {o, if p € Py. M

Modified markings essentially “erase” the tokens in idle places. The set of
modified markings induced by the set of reachable markings is defined by
RWNE, M§) = {M|IM € RN, M§)}. Note that the number of tokens in idle places
Py can always be uniquely recovered from the invariant implied by the strongly-
connected state-machine structure of the subnet M. So, there is a one-to-one
mapping between the original marking and the modified marking, i.e., M} = M, if
and only if ‘M, = M,, where M, and M, are reachable.

Condition 7 of Definition 3 indicates that the set of idle places do not directly
interact with any resource place, and therefore they are irrelevant to the analysis of
CMW-deadlocks. The notion of modified markings enables us to associate the non-
liveness of the net to RIDM siphons.

4.3 Multithreaded program and its Gadara net model
The following result provides a bridge between a program and its corresponding
Gadara net model, under the assumptions discussed in Section 2, in terms of two

relevant behavioral properties.

Proposition 3 A multithreaded program that can be modeled as a Gadara net N, is
CMW-deadlock-free iff N, is reversible.

@ Springer

Discrete Event Dyn Syst

Proof First we show the “=" direction.

If a program is free from any CMW-deadlocks, then for any stage the program
is executing, all instances of threads in the program can always complete the rest of
their executions, and terminate the processes. This corresponds to the case in the
Gadara net model, where starting from any marking of the net, the tokens in the
operation places can eventually return to the idle places, which leads the net back to
the initial marking. Thus, the net is reversible.

Next we show the “<«=” direction.

(Proof by contra-positive proposition) Suppose there exist at least two threads
involved in a CMW-deadlock of the program; then these instances of threads are
unable to complete their executions. In the corresponding Gadara net model of
the program, these deadlocked threads are modeled as tokens in operation places.
The fact that these threads are unable to terminate implies that the aforementioned
tokens will never return to the idle places. In other words, starting from this state,
the net will never return to the initial marking. Thus, the net is not reversible. O

Remark 3 When it is not possible to build an exact Gadara net model of a program
due to modeling constraints such as those discussed in Section 2, it is preferable
to build a “conservative” model that is certain to include all possible execution
paths of the program (and possibly some infeasible paths as well). In this case,
the reversibility property of the Gadara net model is a sufficient (but possibly not
necessary) condition for CMW-deadlock-freeness of the program; the rest of the
discussion in this paper still applies for the conservative model.

Remark 4 From Remark 1 and the above discussion, we know that a Gadara net
model being total-deadlock-free does not guarantee that its corresponding program
is free from any CMW-deadlocks. For example, let us consider a Gadara net model
containing N process subnets. Assume that at some marking of the net: (i) there exist
two process subnets, say V| and N5, such that all the transitions in these two process
subnets are disabled; and (ii) for the remaining N — 2 process subnets, there exists
at least one enabled transition in each of them. The Gadara net at this marking is
total-deadlock-free by Definition 6. However, the underlying program has a CMW-
deadlock, which involves the threads modeled by process subnets N; and N.

It is well known that if an ordinary Petri net cannot reach an empty siphon,
then the net is total-deadlock-free (Reisig 1985). But, Remark 4 implies that for
the purpose of CMW-deadlock avoidance in a multithreaded program, requiring
its Gadara net model to be total-deadlock-free is not sufficient. This motivates our
investigation of the liveness property of Gadara nets in the next section, where we
establish necessary and sufficient conditions for liveness (of N, Ng, and N§,) in
terms of the absence of certain types of siphons.

4.4 Liveness of Gadara nets
Liveness and reversibility are closely related properties of Gadara nets. In fact, they

are shown to be equivalent in Section 4.5. In this section, we first establish some
results about the liveness of Gadara nets, which connect this behavioral property to

@ Springer

Discrete Event Dyn Syst

a certain structural property in terms of siphons. Similar results exist in the literature
(see Theorem 5.3 and Corollary 3 on p. 132 of Reveliotis 2005) for a class of process-
resource nets that are structurally similar but model processes with no internal cycles.
Despite the presence of cycles and other technical differences in our process subnets,
the above results in Reveliotis (2005) can be extended to Gadara nets.

Theorem 1 Gadara net N, is live iff there does not exist a modified marking Me
RWNE, MY) and a siphon S such that S is a RIDM siphon at M.

Proof First we show the “=" direction.

(Proof by contra-positive proposition) Suppose that there exists a marking M
such that the corresponding modified marking M contains a RIDM siphon S. From
the definition of the RIDM siphon, there exists a place g € SN (PrU P¢), and a
transition ¢ € ge that is disabled due to the lack of enough tokens in g. On the
other hand, since g € S, by the definition of RIDM siphons, the transitions in eq
are all disabled. Therefore, place g will never get replenished in R(NE, M), and the
disabled transition ¢ will remain non-live in R(N¢, M). Furthermore, Condition 5 of
Definition 3 and Condition 8 of Definition 4 imply that Py N ||Y,||l= ¥, and g ¢ T7e,
where T; = Ppe. So, when we move from the modified markings to the original
markings in N§ by re-introducing the tokens in Py, place g will not gain new tokens,
and the disabled transition ¢ will remain non-live. Therefore, the liveness of J\/'é
implies that RNV, My) contains no RIDM siphons.

Next we show the “«<” direction.

(Proof by contra-positive proposition) Suppose that N¢ is not live. We want
to show that R(NE, M) contains at least one RIDM siphon. By the non-liveness
assumption, we know that there exists a marking M’ € R(NE, M) such that at least
one transition ¢ € T is never enabled in R(NE, M').

In view of the structural assumptions made in defining NS, there also exists a
marking M € RN, M), that satisfies the following two conditions: (i) There exists
at least one process subnet ; such that M(po,) < Mo(po,). Namely, an instantiation
of the thread modeled by N; is “half-way” in execution at marking M. Furthermore,
the dead transition ¢ must belong to one of these thread subnets. (ii) Every transition
t ¢ Pye is disabled at M. From the definition of the modified marking, this fact
further implies that all the transitions are disabled at M. That is, M is a total-
deadlock.

We claim that (i) must be satisfied, because otherwise M, is reachable from M’.
In this case, the quasi-liveness property of AV, discussed in Section 4.1, implies that ¢
is not dead at M’, which contradicts our assumption. We claim that (ii) must also be
satisfied. Although a process subnet of V'S may contain an internal cycle, Condition 4
of Definition 3 and Assumption 1 guarantee that the entering/leaving of any cycle
will not be constrained by any generalized resource, and thus a token will never be
“trapped” in a cycle where it loops indefinitely. Therefore, the remaining process
subnets, which are not involved in the CMW-deadlock, can eventually complete the
execution of all their active thread instances and return all their tokens back to their
idle places. Hence, the only enabled transitions of these subnets at M are the output
transitions of their idle places, which further implies that they are in a total-deadlock
at M. In other words, a marking M # M¢, whose modified marking M corresponds
to a total-deadlock, is always reachable from M'.

@ Springer

Discrete Event Dyn Syst

We are left to show that M contains a RIDM siphon. Let S denote the set of
disabling places at M. Since M is a total-deadlock, Se = T, where T is the set of all
transitions in the net. Thus, we have the relationship: ¢S € Se = 7. By definition, Sis
a siphon. Obviously, § also satisfies Conditions 1 and 3 of Definition 7. Furthermore,
Condition (i) that characterizes marking M, when combined with the state machine
structure of net A; (cf. Condition 3 of Definition 3), implies that there exists at least
one transition ¢ € T; with e N Ps = {p} # ¥ and with M(p) = M(p) = 1. Therefore,
the total-deadlock at M must involve some place ¢ € P U Pc, and Condition 2 of
Definition 7 is satisfied. Hence, S is a RIDM siphon in N, O

When a Gadara net is ordinary (i.e., Ng or N &1)» we can characterize liveness in
terms of empty siphons, which is a special case of RIDM siphons.

Theorem 2

(1) Gadara net N is live iff there does not exist a marking M € R(Ng, M) and a
siphon S such that S is an empty siphon at M.

2) Gadara net ./\/'g1 is live iff there does not exist a marking M € R(Nél, Mg) and a
siphon S such that S is an empty siphon at M.

The proof of this theorem is similar to the proof of Corollary 3 on p. 132 of
Reveliotis (2005) and is omitted here.

As discussed in Section 4.2, the siphon Ssp = {ra,rs, p2, P3, Ps, Pe} in the
Gadara net shown in Fig. 2b becomes an empty siphon at the reachable marking
M, where there is one token in py, one in p;, and one in p4, while all other places
are empty. Thus, from Theorem 2, the Gadara net depicted in Fig. 2b is not live.
Alternatively, we can also verify that S4p is a RIDM siphon at ‘M; hence, from
Theorem 1,we arrive at the same conclusion that the Gadara net in Fig. 2b is not live.

4.5 Reversibility of Gadara nets

In this section, we establish the equivalence between liveness and reversibility in
Gadara nets. This result “links” Proposition 3 with Theorems 1 and 2, such that the
goal of CMW-deadlock-free execution of the program can be mapped to the absence
of certain types of siphons in the Gadara net.

Theorem 3 Gadara net N G is live iff it is reversible.

Proof First we show the “=" direction.

Given a marking M € R(NE, My) with M # M, consider a non-empty place p €
Ps and its corresponding process subnet A;. The strong connectivity of A; implies
that there is a path (i.e., a sequence of feasible transitions) from p to py,. Let ¢ denote
the transition in that path with ¢’ € e p,. The assumed liveness of the net implies that
starting from M, we shall eventually be able to fire #. Furthermore, the activation of
the aforementioned sequence of feasible transitions does not have to involve any of
the tokens in M(py,). Thus, the token in p at marking M can eventually be collected
into p,,. Since the above argument holds for any non-empty operation place at any
marking M € RN, My), and the total number of tokens in Pg at M is finite, we

@ Springer

Discrete Event Dyn Syst

shall eventually be able to collect all the tokens in Pgs at marking M into Py. Denote
this last marking as M’. Combined with Condition 5 of Definition 3, it follows that
M = M.

Next we show the “«” direction.

We discussed in Section 4.1 that the resource and monitor-place-augmented
subnets in NV, are quasi-live. This property, together with the assumed reversibility
of the net, implies that N/ is live. i

4.6 Linear separability and MPLE control of Gadara nets

We summarize the properties we have shown so far with the following important
results.

Theorem 4

(1) If a multithreaded program can be modeled as Gadara net N¢, then the program
is CMW-deadlock-free iff N, cannot reach a modified marking M such that
there exists at least one RIDM siphon at M.

(2) If a multithreaded program can be modeled as Gadara net N (or N,), then the
program is CMW-deadlock-free iff N (or N§,) cannot reach a marking M such
that there exists at least one empty siphon at M.

Theorem 4 implies that the problem of CMW-deadlock avoidance in a multi-
threaded program is equivalent to the problem of preventing any RIDM siphon
(resp., empty siphon) from becoming reachable in the modified reachability space
(resp., original reachability space) of its Gadara net model ¢ (resp., Ng or N§,)).
The results established in this section serve as the foundations for the development
of MPLE control policies for Gadara nets based on structural analysis (Liao et al.
2010). They also provide a formal method for efficiently verifying the liveness of a
Gadara net (and the CMW-deadlock-freeness of its underlying program), as we will
see in Section 5.

MPLE control synthesis is an important class of problems in supervisory control
of Petri nets. Next we show that MPLE control through monitor places is always
feasible in Gadara nets. Note that such a property does not always hold in general
for other classes of nets; see Wang et al. (2009b) for a counter-example. We first
establish a general property that in Gadara nets, any set of reachable markings can
always be separated from the rest through a set of linear inequalities, so that the SBPI
technique can be used to synthesize monitor places to enforce such a separation. The
property is referred to as the linear separability of the state space of Gadara nets.

For the sake of discussion, let us denote the control specifications in SBPI as a set
of linear constraints {(l, bx), k = 1,2, ...} of the form

ITM < by)
that are enforced on the net markings, where for any k, [, is a weight vector and

by is a scalar. Similarly to the notion of modified marking, we define the notion of
Pg-marking to facilitate the ensuing discussion.

@ Springer

Discrete Event Dyn Syst

Definition 9 Given a Gadara net NS and a marking M € RINE, M}), the Ps-
marking M is defined by

= | M(p),ifpe Pg
Mip) = {o, if p ¢ Ps. ®)

As in the case of modified markings, this projection does not introduce any
ambiguity. There is a one-to-one mapping between the original marking and the Ps-

marking, i.e., M; = M, if and only if M; = M,, where M, and M, are reachable.
More specifically, the number of tokens in the places in the sets Pg and Pc can
be recovered from the invariants respectively established by Conditions 5 and 8
in Definitions 3 and 4; the number of tokens in the places in the set Py can be
recovered in a similar manner as for modified markings. Therefore, we consider
linear constraints for Pg-markings only, i.e., the coefficients corresponding to places

in sets Py, Pgr, and P¢ are all zero. From Proposition 2, we know that Misa binary
vector, which is a key result to establish the desired linear separability property.

Theorem 5 Given a Gadara net /\/g and a set of markings V < R(NE, M), there
exists a finite set of linear constraints LC(V) = {(l,b1), (lo, by), ...} such that M € V
iftvV(l;, b)) € LC(V), I'M < b,.

Proof We prove by construction. According to Definition 9, any marking is uniquely
characterized by its corresponding Pg-marking. Thus, for any marking M’ ¢ V, we

can focus our attention on the associated Ps-marking ‘M’. We construct the linear
constraint associated with M’ based on M’ as follows.

~1 it M'(p) =0 _
Ipp=1 1iMp) =1;b= > M(p) -1 4)
0,if p ¢ Pg pePs

Observe that the coefficient vector / and the scalar b specified in Eq. 4 satisfy: [T M’ =
b +1>b. We know that any Ps-marking is a binary vector, i.e., its component
is either 0 or 1. Thus, the choice of / and b guarantees that if we change any

component in ﬁ, then the value of /7 M’ will decrease by 1 after the change. Any
reachable marking M # M’ can be considered as being obtained by changing a set of

components of M’. As a result, any reachable marking M # M’ satisfies the linear
inequality /7 M < b; and, M’ is the only marking that does not satisfy this linear
inequality. In other words, if we enforce the constraint /7 M < b on the net, then
we only prevent one single marking M’ from being reachable and nothing else.

We can construct such a linear inequality constraint for every marking in
RWNE, M\ V. Since R(NE, M§) is finite, containing no more than 2! states,
RWE, M{\V is finite as well, and there is a finite set of linear constraints that
separates V from its complement in RN, Mj). O

Separating the set of desirable markings from the set of undesirable markings, with
respect to the goal of liveness enforcement, is a special case of this general result.
Therefore, we have established the feasibility of MPLE control for Gadara nets

@ Springer

Discrete Event Dyn Syst

Fig.3 A deadlock example
in BIND: controlled Gadara
net model

through monitor places. This result provides the foundation for our complementary
work on control synthesis, reported in Liao et al. (2010, 2011) and Nazeem et al.
(2010, 2011). While this is beyond the scope of the present paper, we make the
following brief comments. In Liao et al. (2010, 2011), we presented an efficient
siphon-based MPLE control synthesis algorithm for Gadara nets, while in Nazeem
et al. (2010, 2011), we proposed an alternative approach based on state space
expansion and classification theory. When applied to the BIND example in Fig. 2b,
both methodologies synthesize the same control specification: p; + ps < 1. Using
SBPI, we obtain the monitor place p. that enforces this specification, as shown
in Fig. 3.

5 Verification of liveness using mathematical programming

According to Theorems 1 and 2, liveness in Gadara nets can be verified by detecting
certain types of siphons that may be reachable in the nets. The problem of siphon

@ Springer

Discrete Event Dyn Syst

detection in Petri nets has been extensively studied in the literature. In Boer and
Murata (1994), a basis siphon generation algorithm is presented using the sign
incidence matrix derived from the original incidence matrix of the net. In the Gadara
project, an efficient siphon detection algorithm using the so-called lock dependency
graph is reported in Wang (2009). Recently, a similar method of siphon detection
using graph theory has been applied to the class of $*PR nets (Cano et al. 2010).
In contrast to the above explicit siphon generation approaches, a generic Mixed
Integer Programming (MIP) formulation is presented in Chu and Xie (1997) for
the detection of maximal empty siphons in ordinary, structurally bounded Petri nets;
we refer to this formulation as MIP-ES hereafter. Furthermore, MIP has also been
employed to detect maximal RIDM siphons in general process-resource nets that are
not necessarily ordinary (Reveliotis 2005); we refer to this general MIP formulation
stated on pp. 139-140 of Reveliotis (2005) as MIP-RS hereafter.

From the development of Theorem 1,we know that if a Gadara net is not live, then
the net will eventually reach a so-called “total-deadlock modified-marking”, where
all the transitions in the net are disabled. This result is formally stated as Corollary 1
in Section 5.1 below. This corollary also provides us with an efficient methodology to
verify the liveness of a Gadara net through mathematical programming formulations
by detecting total-deadlock modified-markings. Similar in spirit to the aforemen-
tioned mathematical programming formulations, our formulations search for a total-
deadlock modified-marking over the broader set of markings defined by the state
equation of the net. Thus, any total-deadlock modified-marking identified by these
formulations might or might not be reachable in the actual net. More specifically,
if the proposed formulations do not have a solution, then the net is live; otherwise,
the net may or may not be live. A “byproduct” of these formulations is a RIDM
siphon (or an empty siphon in the case of ordinary nets) that is constructed from
the identified total-deadlock modified-marking through Corollary 2 in Section 5.1
below. The constructed siphon can then be used for MPLE control synthesis, as we
do in Liao et al. (2011).!

A more detailed description of the technical developments of this section is as
follows. Exploiting the special properties of Gadara nets, we propose in Section 5.2,
an efficient MIP formulation for liveness verification of N. This MIP formulation
is then generalized for liveness verification of ¢, in Section 5.3. In Section 5.4, we
propose another MIP formulation for liveness verification of N¢. In the following
discussion, we denote the above three formulations as MIP-Ng, MIP-J\/CC;I, and
MIP-NE, respectively, which are self-explanatory from their names. The formu-
lations MIP-Ng and MIP-/\/&1 customize the generic formulation MIP-ES; the
formulation MIP-N§ customizes the generic formulation MIP-RS. The development
of the customized MIP formulations was motivated by the need of efficient control
synthesis for large-scale concurrent software, and it exploits the special structure
of Gadara net models of multithreaded programs. These customized formulations
enhance the efficiency and scalability of liveness verification of Gadara nets, which
is important for CMW-deadlock analysis of large-scale software. They are also

11t should also be noticed that, in the particular case that the identified RIDM siphon is actually
unreachable, the monitor places resulting from the MPLE synthesis do not compromise the maximal
permissiveness of the synthesized control logic.

@ Springer

Discrete Event Dyn Syst

employed in the MPLE control synthesis of Gadara nets (Liao et al. 2011). In
Section 5.5, we report experimental results that compare the performance of liveness
verification of ¢, using MIP-N§, with that of using MIP-ES; we also compare the
performance of liveness verification of N using MIP-N¢, with that of using MIP-
RS. Although the formulations considered in our comparative study use different
objective functions and produce, in general, different siphons, they all have the same
implication for the purpose of liveness verification: a special property of the optimal
solution or, in certain cases, the absence of such a solution itself, is a sufficient
condition for the liveness of the Gadara net.

5.1 Key properties

We first present some properties of Gadara nets that are relevant to the development
of the formulation of liveness verification. Based on Theorem 1,we have the follow-
ing results. Both Corollaries 1 and 2 follow from the “<=" direction of the proof of
Theorem 1.

Corollary 1 If N is not live, then N¢, will reach a modified marking M € RINE., M§)
and M # M, such that N§ is in a total-deadlock at the modified marking M.

Corollary 2 In N¢, given a total-deadlock modified-marking M € RN, M§) and
M # M, let S be the set of disabling places at M. Then, S is a RIDM siphon at M.

Given a total-deadlock modified-marking M # M, we can easily construct a
RIDM siphon at M using Corollary 2. Note that the modified initial marking is always
a total-deadlock modified-marking. But for liveness verification, we are interested
in detecting a total-deadlock modified-marking that is different from the modified
initial marking. Therefore, instead of repeating the above statement, we impose this
qualification on any sought total-deadlock modified-marking considered in the rest
of this section.

5.2 Verification of liveness of Ng

Recall that a place p is said to be a disabling place at marking M if p disables at
least one of its output transitions at M. Further, in an ordinary net, if a place p is a
disabling place at marking M, then we have M(p) = 0 and p disables all of its output
transitions. By Definition 8, we know that for any place p € Py, its modified marking
‘M(p) = 0. Moreover, from Definition 3 and Proposition 2, we know that N is an
ordinary net, and the modified marking of any place p € PsU Py is either O or 1.
Therefore, in N, the modified marking of a place p, ‘M(p), can be used as a binary
indicator variable associated with p, as described in the following remark.

Remark 5 For any place p € Py U PsU Pg, we have: (i) M(p) = 0 iff at M, place p
is a disabling place and p disables all of its output transitions; (ii) M(p) = 1 iff at M,

place p is not a disabling place and p enables all of its output transitions.

According to Corollary 1, if N, is not live, then we know a priori that the net will
reach a total-deadlock at some modified marking ‘M. Moreover, once M is reached,

@ Springer

Discrete Event Dyn Syst

we know a priori from Corollary 2 that there exists a RIDM siphon S at M, which
contains the set of all disabling places at M. In particular, we know from Remark 5
that in the case of A/, this RIDM siphon S is an empty siphon at M.

The above discussion implies that we can verify the liveness of N very efficiently,
by detecting a total-deadlock modified-marking M, i.e., a modified marking M
where all the net transitions are disabled. Based on the special structure of N,
any transition ¢ in the net can be categorized into one of the following three types.
(i) Transition ¢ is an output transition of an idle place. We know that under the notion
of modified marking, ¢ is always disabled. (ii) Transition ¢ has only one input place,
and this input place is an operation place. For ¢ to be disabled, its input place must be
a disabling place. (iii) Transition ¢ has more than one input place. For ¢ to be disabled,
at least one of its input places must be a disabling place.

Therefore, in order to detect a total-deadlock modified-marking M, we need to
enforce the above three types of transitions to be disabled at M, which is addressed
by constraints (7)—(9) of the MIP formulation presented below. If M is detected,
then we can use Corollary 2 to construct an empty siphon, which will be used in
MPLE control synthesis; otherwise, we know that the net is live. In other words, the
problem of liveness verification of N can be mapped to the problem of finding a
total-deadlock modified-marking in the modified reachability space of Ng. The latter
problem can be solved by the following MIP formulation, MIP-N¢, which customizes
the generic MIP-ES formulation presented in Chu and Xie (1997) for maximal empty
siphon detection in structurally bounded ordinary nets.

MIP-Ng: min Z M(p) 5
pePs
s.t. M= My+ Do (6)

M(p) = M(p),Vp € PsU Pg; M(p)=0,Ype Py (7)
M(p) =0,VYp € Q, where 8)

Q={qeP:(3reT), (er={q}) An(q € Py)}

S M(p)—lef +1<0,Vest. et > 1 9)
peet
Y M(p) =2 (10)
PEPs
D M(p) <|Pgl -2 (11)
PePR
M=>0;0 €Z (12)

We explain the MIP-Ag formulation presented in Eqgs. 5-12 as follows. In the
objective function (5), we want to minimize the number of marked operation places
in the detected total-deadlock modified-marking. The selection of such an objective
function will produce siphons that are efficient for MPLE control synthesis (Liao
et al. 2011); the details are beyond the scope of this paper. Constraint (6) is the state

@ Springer

Discrete Event Dyn Syst

equation of the net, which is a necessary condition for the set of reachable markings.
Constraint (7) connects an original marking with its associated modified marking
based on Definition 8. From the above discussion, we want to verify liveness by
finding a total-deadlock modified-marking M. Constraints (7)-(9) enforce that the
three types of transitions, discussed above, are all disabled at M. Constraint (10)
follows from the fact that at least two threads must be involved in a CMW-deadlock.
In the context of the Gadara net model, this implies that at least two operation places
are marked in a CMW-deadlock. As a result, it follows from constraint (10), and
Conditions 6 and 7 of Definition 3, that at least two resource places must be empty,
and hence become disabling places in a CMW-deadlock; this leads to constraint (11).
Constraint (12) specifies the bounds of the variables.

The solution of MIP-Ng, if it exists, is a total-deadlock modified-marking M,
based on which we can construct an empty siphon using Corollary 2. The correctness
of the MIP formulation follows as a result of Proposition 2 and Corollary 1, together
with the preceding discussion. The number of variables and constraints used by MIP-
NG is O(|P| + |T)); in particular, the formulation involves 2| P| non-negative real
variables and | 7’| non-negative integer variables.

5.3 Verification of liveness of V&,

The class of Gadara nets N, shares all the features of Ng. The only difference
between N, and Ng is that N¢, has a set of monitor places Pc, whose initial
markings may be greater than 1. Observing this difference, the MIP-Ng formulation
presented in Egs. 5-12 in Section 5.2 can be immediately extended to liveness
verification of N&,. Although Remark 5 remains true in N&, for any p € PyU PgU
Pg, it generally does not hold for the modified markings of monitor places. Thus, we
need to introduce a new constraint on the binary indicator variables associated with
the monitor places. For the sake of simplicity, with a slight abuse of notation, we also
use the notation M(p) to denote the binary indicator variable for any p € Pc in the
formulation MIP-N & presented below. That is, ‘M(p) is not necessarily the modified
marking for any p € Pc in MIP-N,. M(p) is used as an indicator variable such that
if p is not a disabling place at M, then M(p) = 1; otherwise, M(p) = 0.

Define SB(p) to be a structural bound of place p. In Gadara nets, we can set:
SB(p) = M{(p),¥p € PyU Pc,and SB(p) =1,Vp € PsU Pg.

The liveness of N, can be verified by detecting a total-deadlock modified-
marking in the modified reachability space of N, which can be solved by the
following MIP formulation:

MIP-N§,: In addition to the MIP-Ng formulation (5)-(12),? we also need con-
straints (13) and (14) on M(p) for any p € Pc.

M(p) € {0,1},Yp e P¢ (13)
— M(p)
M(p) = M(p) > SB(p),Vp € Pc (14)

2Technically, the notation M in Eq. 6 should be substituted by M.

@ Springer

Discrete Event Dyn Syst

Constraint (13) specifies that M(p) is a binary indicator variable associated
with any p € Pc. Constraint (14) characterizes the enabling/disabling feature of a
monitor place p € Pc in terms of the binary indicator variable M(p). The intuition
is explained as follows. Since N, is an ordinary net, if a monitor place p € Pc is a
disabling place at marking M, then M(p) = 0, which, together with constraint (14),
forces the corresponding M(p) to be 0. On the other hand, if a monitor place p € Pc¢
in NV§, is not a disabling place at marking M, then M(p) > 1, which, together with
constraints (13) and (14), forces the corresponding M(p) to be 1.

Remark 6 A controlled Gadara net (N, or N¢) is obtained by augmenting an
original Gadara net Ng. Thus, constraints (10) and (11) used in MIP-Ng, which are
derived based on the definition of N, remain true in MIP-N &> presented above,
and in MIP-N¢, to be presented in the next section.

Similarly to the case of N, if N, is not live, then the solution of MIP-N§,
corresponds to a total-deadlock modified-marking, based on which we can construct
an empty siphon using Corollary 2. The number of variables and constraints used
by MIP-N, ¢1 18 O(| P| + | T); in particular, the formulation involves 2| P| — | P¢c| non-
negative real variables, | Pc| binary variables, and | 7’| non-negative integer variables.

5.4 Verification of liveness of N/

We know from Definition 4 that /S is not necessarily ordinary. The potential non-
ordinariness makes the liveness verification formulation for N more complicated
than those for N and N¢,. In MIP-N§, we need to further introduce a new binary
indicator variable, defined as follows.

Let A(p, t) be an indicator variable associated with the directed arc from place p
to transition r at M. The dependency of A(p,t) on M is suppressed in the notation
for the sake of simplicity. The value of A(p, ¢) is defined as:

1, if place p enables transition ¢ at M,

A(p,) = { (15)

0, if place p disables transition ¢ at M.

If A(p,t) = 1, then the arc (p, t) is said to be an enabled arc; otherwise, it is said to be
a disabled arc. Note that the potential non-ordinariness in NS, which motivates the
introduction of the indicator variable A(p, t), can only be caused by the associated
arcs of the monitor places. Therefore, we only need to introduce the indicator
variable A(p, t) for place-transition pairs (p, f) such that p € Pc and t € pe.

Similar to MIP-N\. G1» WeE use M(p) as a binary indicator variable associated with
p € P in the MIP-NV¢ formulation. That is, if p is not a disabling place at M, then
‘M(p) = 1; otherwise, M(p) = 0. In the formulation, for any p € Py U PsU Pg, M(p)
represents both the indicator variable associated with p and the modified marking
of p (according to Remark 5); for any p € Pc, M(p) only represents the indicator
variable associated with p (a slight abuse of notation as discussed in Section 5.3).

The liveness of N can also be verified by detecting a total-deadlock modified-
marking in the modified reachability space of N/&. This can be solved by the follow-
ing MIP formulation, MIP-N§, which customizes the generic MIP-RS formulation

@ Springer

Discrete Event Dyn Syst

presented in Reveliotis (2005) for maximal RIDM siphon detection in general
process-resource nets.

MIP-N¢: min Z M(p) (16)
PpEPs
st. M= Mj+ Do 17)

M(p) = M(p).Vp € PsU Pg; M(p) =0,¥pe Py (18)
M(p) =0,Yp € Q, where (19)
O={qeP:@3teT), (st ={q}) A (q € Ps)}

> Ao+ Y. Mp)—let+1=0, (20)

peetNPc peetN(P\Pc)
Vi st |et] >1
M(p) — W(p,0n+1

A(p, 1) > , 21
(p, 1) > SB() (21)
YW(p,t) >0s.t. pe Pc

A(p,t) = M(p),YW(p,t) > 0s.t. p € Pc (22)

> A(p.t)—|psl+ 1 = M(p).Vp € Pc (23)

tepe

Y M(p)=2 (24)

PEPs

> M(p) <|Prl -2 (25)

PEPR

M >0;0 €Z$; M(p) € {0,1},Vp € Pc; (26)

A(p.t) €{0,1},Yp € Pc,Vt € pe

We explain the MIP-N¢, formulation presented in Eqs. 16-26 as follows. The
objective function (16) and constraints (17)—(19), (24), and (25) are the same as
their counterparts in MIP-Ng and MIP-N¢,. Similar to MIP-Ng and MIP-N¢,, the
MIP-N¢ formulation aims to verify the liveness of NS by detecting a total-deadlock
modified-marking M. Constraint (19) enforces that the set of transitions, which have
only one input place, must be disabled. Moreover, for the set of transitions that have
more than one input place, constraint (20) enforces that at least one input place must
be a disabling place. On the other hand, constraint (21)* ensures that the value of
A(p, t), which is associated with an enabled arc (p, t) with p € Pc, must be 1. Hence,
all variables A(p,) that are forced to zero by constraint (20) are indeed variables
that correspond to disabled arcs. Constraint (22) recognizes any monitor place, which

3Constraint (21) does not completely characterize the correct pricing of A(p, ¢) for all arcs. But what
we need for liveness verification (and RIDM siphon construction) is the correct pricing of M(p),
which is guaranteed by the nature and role of the objective function (16).

@ Springer

Discrete Event Dyn Syst

disables at least one of its outgoing arcs and hence is a disabling place. Constraint (23)
recognizes any monitor place, which enables all of its outgoing arcs and hence is not
a disabling place. Constraint (26) specifies the bounds of the variables.

If V¢ is not live, then the solution of MIP-N¢, corresponds to a total-deadlock
modified-marking, based on which we can construct a RIDM siphon using Corollary
2. Compared to MIP-Ng and MIP-N,,, the additional complexity in MIP-V arises
from the variables and constraints associated with the arcs (p, t), where p € Pc. The
number of variables and constraints used by MIP-N¢ is O(| P| + | T| + | P¢||T|) in the
worst case. In practice, we observe that | Pc| <« | P| in controlled Gadara net models
of real-world software.

5.5 Experimental results

In this section, we report the experimental results from a comparative analysis
between the performance of the customized algorithms MIP-N§, and MIP-N§
with that of the generic siphon detection algorithms MIP-ES and MIP-RS, respec-
tively, for liveness verification of Gadara nets. The experiments were completed
on a Mac OS X laptop with a 2.4 GHz Intel Core2Duo processor and 2 GB of
RAM. The mathematical programming formulations are solved using Gurobi 3.0.1
(Gurobi 2010).

We first compare the performance of MIP-N¢, with that of MIP-ES presented in
Chu and Xie (1997). Random Gadara nets for these experiments are generated by a
random-walk-style algorithm. At each step, the program randomly decides either to
grab a lock or to release one already held; the number of steps is specified as an input
parameter. Additional logic is applied to ensure valid behavior. The random Gadara
net generator (available at http:/gadara.eecs.umich.edu/software.html) is based on
our experience in modeling real concurrent programs (Wang 2009). Furthermore,
we apply the MPLE iterative control techniques proposed in Liao et al. (2010) to
synthesize control logic for these random Gadara nets. Monitor places are added to
the original Gadara nets by running a random number of control iterations for each
net.* The resulting controlled Gadara nets, which belong to the class N, G1» are input
to MIP-N¢, and MIP-ES, for the purpose of liveness verification. Their execution
times on these nets are recorded as sample data.

Figure 4a shows the sample statistics of the execution times of the two algorithms,
where the y-axis is on a log scale. We group the samples according to the pair of
parameters (a, s) that is used in generating the random Gadara nets, where a is the
number of resource acquisitions per subnet, and s is the number of process subnets in
the Gadara net. The x-axis of the figure shows the nine different groups we studied.
The number of monitor places is suppressed, because it varies within a group. We
report the average number of monitor places for each group in Table 1. In Fig. 4,
the crosses represent the means, the segments represent the half-standard-deviation
confidence intervals, and the solid squares and plus signs represent the maxima or
minima.’

4For a given Gadara net, if the iterative control technique converges before the pre-selected random
number of iterations are completed, we output the converged net and disregard the remaining
iterations.

>Sample statistics are based on log-scale data.

@ Springer

http://gadara.eecs.umich.edu/software.html

Discrete Event Dyn Syst

10! + *

10°

% . .
% .% ’] %
- N =
2 10 . =
\6/ T
=} T T T T T T x
B %o ox X oox X Ioxo1
10 i n n i 1
* + + * + + + + +

u—— MIP-NG,
10+ +— MIP-ES

V) O Ny VY
SR I OIS AN OIS
NSO\ GINCIINCIING

(Acq./Subnet,Subnets)
(@)

L] . - L]
T I I
% %+ % %+ f+ %+ I+ %+ f+
+ +
- - - L] L] - -
u—— MIP-NE
4+— MIP-RS
SISO
TSR
(Acq./Subnet,Subnets)
(b)

Fig. 4 Sample statistics: a MIP-N, vs. MIP-ES; b MIP-N¢, vs. MIP-RS

Next, we analyze the performance of the two algorithms using the Normalized
Cumulative Frequency (NCF), which is defined as follows.

> Ji(x)
NCF(x)== (27)
n
where n is the sample size of a group, and J;(x) is an indicator variable associated
with the i-th sample and is a function of x (x > 0), such that

1, if the value of the i-th sample < x; (28)
0, otherwise.

Ji(x) = {

The NCFs of our experiments on MIP-N¢,; and MIP-ES are shown in Fig. 5a, where
the x-axis is on a log scale.

We also compare the performance of MIP-N§, with that of MIP-RS presented
in Reveliotis (2005). In this case, we apply the Empty-Siphon-Based Control
Algorithm, described in Section IV-A.1 of Liao et al. (2010), to the Gadara nets,
and choose the controlled Gadara nets that are non-ordinary and belong to the
class of N¢. These nets are input to the two algorithms, for the purpose of liveness
verification. Similarly, the sample statistics are shown in Fig. 4b and the NCFs are
shown in Fig. 5b.

From the above analysis, we observe in Fig. 4 that the proposed customized
algorithms are more efficient for liveness verification of Gadara nets than the generic
siphon detection algorithms in all the nine groups in terms of means, standard
deviations, and ranges. From Fig. 5, we find that for MIP-N¢,, 98% of the samples
are smaller than 0.1 s, while for MIP-ES, only 40% of the samples are; further, for
MIP-NE, 99% of the samples are smaller than 0.1 s, while for MIP-RS, only 15% of
the samples are.

Table 1 presents a summary of the experimental results. For each set of parame-
ters (each row in the table), over 100 samples of random Gadara nets are gener-
ated. Consider the comparison between the performance of MIP-N§, and that of

@ Springer

Discrete Event Dyn Syst

Table 1 Experimental results of comparative analysis on liveness verification algorithms

Method a S P T C SS US TLE
MIP-NE, 11 11 87.25 68.65 7.12 230581 91889 0.01
MIP-ES 0.06
MIP-N§ 85.86 66.55 7.88 218741 85157 0.00
MIP-RS 0.22
MIP-N, 11 12 94.84 76.08 7.15 496055 221560 0.01
MIP-ES 0.11
MIP-N§ 93.66 73.64 8.46 444871 202773 0.00
MIP-RS 0.19
MIP-NE, 11 13 101.34 82.02 7.62 614988 235364 0.01
MIP-ES 0.10
MIP-N§ 99.61 79.68 8.26 653032 274092 0.00
MIP-RS 0.24
MIP—/\/'(C;1 12 11 89.63 71.52 6.64 291166 104067 0.01
MIP-ES 0.06
MIP-N§ 87.45 68.48 7.51 286145 125343 0.00
MIP-RS 0.16
MIP-N, 12 12 96.01 77.58 6.87 523258 203359 0.01
MIP-ES 0.10
MIP-N§ 95.06 75.64 7.81 535029 241084 0.00
MIP-RS 0.18
MIP-N, 12 13 103.89 84.79 7.49 862689 324566 0.01
MIP-ES 0.06
MIP-N§ 103.14 83.05 8.41 745614 310375 0.00
MIP-RS 0.18
MIP-N, 13 11 93.09 73.84 7.71 254733 101207 0.01
MIP-ES 0.13
MIP-N§ 91.24 71.50 8.26 235609 95000 0.00
MIP-RS 0.22
MIP-N, 13 12 98.50 79.62 7.28 394573 155436 0.02
MIP-ES 0.08
MIP—N(C; 97.25 77.62 8.06 398204 160820 0.00
MIP-RS 0.18
MIP-NE, 13 13 105.34 85.62 7.99 716595 314641 0.01
MIP-ES 0.04
MIP-N§ 104.28 83.66 8.87 703018 298153 0.00
MIP-RS 0.17

MIP-ES. We set a time-out threshold of 10 s. A net times out if its liveness cannot
be determined by either MIP-N¢, or MIP-ES in less than 10 s. The proportion of
sample nets that timed out is reported in the last column (TLE) of the table. All the
other statistical data in this table are calculated over only sample nets where both
MIP-N¢, and MIP-ES did not time out. The comparison between the performance
of MIP-N§ and that of MIP-RS is carried out in a similar way. The first column lists
the four algorithms under consideration. The second (a) and third (s) columns are
the number of resource acquisitions per subnet and the number of process subnets,
which are input parameters to the random program generator. In generating the
random nets, the number of resources (locks) in the original Gadara net is set to
be 12, and the probability of acquiring a new resource before releasing one already

@ Springer

Discrete Event Dyn Syst

1 1 —
0.9 0.9 P
t
0.8 0.8
0.7 0.7 /
~ 06 / ~ 06 !
= ! = !
g 05 g 05 /
Z 0.4 Z 0.4 !
03 03 h
Il ¢
02 / ---= MIP-N§, 02 s --—- MIP-N
0.1 B —— MIPES 0.1 —— MIPRS
0 < 0L
04 103 102 107 100 10! 1073 1072 107! 10° 10!
time (s) time (s)
(a) (b)

Fig. 5 Normalized Cumulative Frequency (NCF): a MIP-N¢, vs. MIP-ES; b MIP-N¢, vs. MIP-RS

held is 0.5. The fourth (P), fifth (T), and sixth (C) columns correspond to the average
number of places, transitions, and monitor places in the sample Gadara nets. The
seventh (SS) and eighth (US) columns describe the state space complexity, i.e.,
the average numbers of safe and unsafe states that are reachable in the nets. Note
that the solution of the mathematical programming formulations does not require
the construction of the state space; the numbers of safe and unsafe states were
generated separately for the sake of scalability assessment. The last column (TLE) is
the proportion of sample nets that did time out.

From Table 1, we see that the proposed customized algorithms seldom timed out,
while the generic algorithms timed out more often. Moreover, for the nets where the
proposed customized algorithms timed out, the generic algorithms also timed out.
Since MIP-N§, and MIP-NV§ were formulated to exploit the structural properties
of Gadara nets, it is not surprising that they outperform MIP-ES and MIP-RS,
respectively. What is encouraging is that the results in Figs. 4 and 5 and in Table 1
demonstrate that MIP-N§, and MIP-N, are scalable to large nets, which make them
attractive for analyzing CMW-deadlock-freeness in large software programs.

6 Case studies of deadlock in open source software

In addition to BIND, whose deadlock bug is used as a running example in this paper,
we have used our model-based approach to perform deadlock analysis of several
open-source programs so far in the Gadara project. These case studies demonstrate
the benefits of a formal, model-based approach in providing an accurate and compact
characterization of a deadlock scenario and in enabling systematic deadlock analysis
using the techniques presented in this paper.

OpenLDAP is a popular open-source implementation of the Lightweight Direc-
tory Access Protocol (LDAP). We built the Gadara net model of version 2.2.20
of slapd, which is a high-performance multithreaded network server program of
OpenLDAP, and has a confirmed CMW-deadlock bug. The slapd program has
1,795 functions, of which 456 remain after the pruning process discussed in Section 3.2
(Wang et al. 2008). The discovery of the CMW-deadlock bug in OpenLDAP by

@ Springer

Discrete Event Dyn Syst

analyzing its Gadara net model is discussed in Wang et al. (2010). Apache, formally
known as Apache HTTP Server, is an open-source web server software. We built the
Gadara net model of Apache httpd version 2.2.8. Analysis of this model revealed
no CMW-deadlock in the software, which is consistent with the data in the Apache
bug database (Wang et al. 2009a).

In the rest of this section, we discuss in detail a deadlock bug in version 2.5.62 of
the Linux kernel that is captured in its Gadara net model. The deadlock example is
inspired by the study conducted in Engler and Ashcraft (2003). Figure 6 shows this
deadlock example. We annotated the lines of code that are related to lock allocations
and releases. Each annotation explains the specifics of the corresponding line of

/**%* Thread 1 **x/
spin_lock(&im->lock) ; /* LOCK(A), igmp.c, igmp_timer_expire(), 268 */

if (1£1.f14_src){

read_lock(&inetdev_lock); /* LOCK(B), devinet.c, inet_select_addr(), 786 */
for (...){
read_lock(&in_dev->lock); /* LOCK(C), devinet.c, inet_select_addr(), 791 */
if (..o
read_unlock(&in_dev->lock); /* UNLOCK(C), devinet.c, inet_select_addr(), 795 */
break;
}
read_unlock(&in_dev->lock); /* UNLOCK(C), devinet.c, inet_select_addr(), 800 */
¥
read_unlock(&inetdev_lock); /* UNLOCK(B), devinet.c, inet_select_addr(), 803 */
¥
spin_unlock(&im->lock) ; /* UNLOCK(A), igmp.c, igmp_timer_expire(), 289 */
/**x Thread 2 **x/
read_lock(&in_dev->lock); /* LOCK(C), igmp.c, igmp_heard_query(), 338 */
for (...){
spin_lock_bh(&im->lock) ; /* LOCK(A), igmp.c, igmp_mod_timer(), 165 */
spin_unlock_bh(&im->lock) ; /* UNLOCK(A), igmp.c, igmp_mod_timer(), 171 & 177 */
¥
read_unlock(&in_dev->lock); /* UNLOCK(C), igmp.c, igmp_heard_query(), 346 */

/**x Thread 3 **x/
read_lock(&inetdev_lock) ; /* LOCK(B), devinet.c, inet_select_addr(), 759 */

if (lin_dev){
read_unlock(&inetdev_lock); /* UNLOCK(B), devinet.c, inet_select_addr(), 808 */
return addr;

¥

read_lock(&in_dev->lock); /* LOCK(C), devinet.c, inet_select_addr(), 764 */
read_unlock(&in_dev->lock) ; /* UNLOCK(C), devinet.c, inet_select_addr(), 775 */
read_unlock(&inetdev_lock); /* UNLOCK(B), devinet.c, inet_select_addr(), 776 */

Fig. 6 A deadlock example in the Linux kernel: simplified code

@ Springer

Discrete Event Dyn Syst

Fig.7 A deadlock example in the Linux kernel: Gadara net model

code using four components: lock/unlock action, file name, function name, and line
number in the code. The deadlock involves three threads and three locks. Further,
Thread 1 involves a six-level call chain, and Thread 2 calls two functions. We have
inlined the chains of function calls and simplified the control flows, so that only the
code that is relevant to the deadlock is presented in Fig. 6.

The Gadara net model of the considered lines of code is shown in Fig. 7. Analysis
of this model using the techniques presented in this paper reveals two total-deadlock
markings that are reachable from the initial marking as depicted in the figure: (i) The
first total-deadlock marking is M,, where there is one token in pj,, one in p,,, and
one in ps3, while all other places are empty. At marking M, all three threads are
involved in the deadlock. (ii) The second total-deadlock marking is M,, where there
is one token in pi4, One in p,y, and one in pg3, while all other places are empty. At
marking M,, only Threads 1 and 2 are involved in the deadlock. As we can see, the
original deadlock bug in the program, which involves chains of function calls and
complicated branchings, is clearly captured in this Gadara net model, which lays the
groundwork for formal deadlock analysis.

7 Conclusion
Fear of deadlock distorts software development and diverts energy from more

profitable pursuits, e.g., by intimidating programmers into adopting cautious coarse-
grained locking when multicore performance demands deadlock-prone fine-grained

@ Springer

Discrete Event Dyn Syst

locking. Deadlock in lock-based programs is difficult to reason about because locks
are not composable: Deadlock-free lock-based software components may interact
to deadlock in a larger program (Sutter and Larus 2005). Non-composability there-
fore undermines the cornerstones of programmer productivity: software modularity
and divide-and-conquer problem decomposition. In addition, insidious corner-case
deadlocks may lurk even within single modules that are developed by individual
expert programmers (Engler and Ashcraft 2003); such bugs can be difficult to detect,
and repairing them is a costly, manual, time-consuming, and error-prone chore. The
above challenges have motivated the formal model-based approach that we have
adopted in the Gadara project to develop a software tool that will automatically
instrument a given program to provably ensure deadlock freeness at run-time.

This paper has presented our results on modeling and analysis of lock-based
multithreaded programs for the purpose of CMW-deadlock analysis, which are at the
basis of the Gadara methodology. Specifically, we have defined a new class of Petri
nets, called Gadara nets, to systematically model lock allocation and release in this
programming paradigm. We have established a set of important properties of Gadara
nets. The liveness and reversibility properties provide a means to map the behavioral
objective of CMW-deadlock-freeness of a program to the structural requirement on
its corresponding Gadara net model, which in turn lays the foundations for structure-
based MPLE control synthesis of Gadara nets. The linear separability property
further shows the feasibility of MPLE control synthesis. We have proposed a set
of customized algorithms for liveness verification of Gadara nets and compared
their performance with generic MIP-based siphon detection algorithms that are
well-known in the literature. Our future work will report on the control synthesis
framework and customized techniques that we have developed on the basis of the
results in this paper for the class of Gadara nets.

Acknowledgements We thank Ahmed Nazeem, Manjunath Kudlur, and the reviewers for many
helpful comments.

References

Allen LV (2010) Verification and anomaly detection for event-based control of manufacturing
systems. PhD thesis, University of Michigan

Auer A, Dingel J, Rudie K (2009) Concurrency control generation for dynamic threads using
discrete-event systems. In: Proc. Allerton conference on communication, control and computing

Boer ER, Murata T (1994) Generating basis siphons and traps of Petri nets using the sign incidence
matrix. IEEE Trans Circuits Syst—I 41(4):266-271

Cano EE, Rovetto CA, Colom JM (2010) An algorithm to compute the minimal siphons in S* PR
nets. In: Proc. international workshop on discrete event systems, pp 18-23

Cassandras CG, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer, Boston

Chu F, Xie XL (1997) Deadlock analysis of Petri nets using siphons and mathematical programming.
IEEE Trans Robot Autom 13(6):793-804

Delaval G, Marchand H, Rutten E (2010) Contracts for modular discrete controller synthesis.
In: Proc. ACM conference on languages, compilers and tools for embedded systems

Dijkstra EW (1982) The mathematics behind the Banker’s algorithm. In: Selected Writings on
Computing: A Personal Perspective. Springer-Verlag, New York, pp 308-312

Dragert C, Dingel J, Rudie K (2008) Generation of concurrency control code using discrete-event
systems theory. In: Proc. ACM international symposium on foundations of software engineering

Engler D, Ashcraft K (2003) RacerX: effective, static detection of race conditions and deadlocks.
In: Proc. the 19th ACM symposium on operating systems principles

@ Springer

Discrete Event Dyn Syst

Ezpeleta J, Colom JM, Martinez J (1995) A Petri net based deadlock prevention policy for flexible
manufacturing systems. IEEE Trans Robot Autom 11(2):173-184

Ezpeleta J, Garcia-Vallés F, Colom JM (2002) A banker’s solution for deadlock avoidance in FMS
with flexible routing and multiresource states. IEEE Trans Robot Autom 18(4):621-625

Flanagan C, Leino KRM, Lillibridge M, Nelson G, Saxe JB, Stata R (2002) Extended static checking
for Java. In: Proc. the ACM SIGPLAN 2002 conference on programming language design and
implementation

Gamatie A, Yu H, Delaval G, Rutten E (2009) A case study on controller synthesis for data-intensive
embedded system. In: Proc. international conference on embedded software and systems

Giua A (1992) Petri nets as discrete event models for supervisory control. PhD thesis, Rensselaer
Polytechnic Institute

Gurobi (2010) Gurobi optimizer. http://www.gurobi.com/

Hopcroft JE, Motwani R, Ullman JD (2006) Introduction to automata theory, languages, and com-
putation, 3rd edn. Addison Wesley

Tordache MV, Antsaklis PJ (2006) Supervisory control of concurrent systems: a Petri net structural
approach. Birkhéduser, Boston

Tordache MV, Antsaklis PJ (2009) Petri nets and programming: a survey. In: Proc. 2009 American
control conference, pp 4994-4999

Tordache MV, Antsaklis PJ (2010) Concurrent program synthesis based on supervisory control. In:
Proc. 2010 American control conference, pp 3378-3383

Jeng M, Xie X (2001) Modeling and analysis of semiconductor manufacturing systems with degraded
behaviors using Petri nets and siphons. IEEE Trans Robot Autom 17(5):576-588

Kavi KM, Moshtaghi A, Chen D (2002) Modeling multithreaded applications using Petri nets. Int J
Parallel Program 35(5):353-371

Kelly T, Wang Y, Lafortune S, Mahlke S (2009) Eliminating concurrency bugs with control engineer-
ing. IEEE Computer 42(12):52-60

LiZ,ZhouM, Wu N (2008) A survey and comparison of Petri net-based deadlock prevention policies
for flexible manufacturing systems. IEEE Trans Syst Man Cybern Part C 38(2):173-188

Liao H, Lafortune S, Reveliotis S, Wang Y, Mahlke S (2010) Synthesis of maximally-permissive
liveness-enforcing control policies for Gadara Petri nets. In: Proc. the 49th IEEE conference on
decision and control

Liao H, Stanley J, Wang Y, Lafortune S, Reveliotis S, Mahlke S (2011) Deadlock-avoidance control
of multithreaded software: an efficient siphon-based algorithm for Gadara Petri nets. In: Proc.
the 50th IEEE conference on decision and control

Liu C, Kondratyev A, Watanabe Y, Desel J, Sangiovanni-Vincentelli A (2006) Schedulability analy-
sis of Petri nets based on structural properties. In: Proc. international conference on application
of concurrency to system design

Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541-580

Murata T, Shenker B, Shatz SM (1989) Detection of Ada static deadlocks using Petri net invariants.
IEEE Trans Softw Eng 15(3):314-326

Musuvathi M, Qadeer S, Ball T, Basler G, Nainar PA, Neamtiu I (2008) Finding and reproducing
Heisenbugs in concurrent programs. In: Proc. the 8th USENIX symposium on operating systems
design and implementation

Nazeem A, Reveliotis S, Wang Y, Lafortune S (2010) Optimal deadlock avoidance for complex re-
source allocation systems through classification theory. In: Proc. the 10th international workshop
on discrete event systems

Nazeem A, Reveliotis S, Wang Y, Lafortune S (2011) Designing compact and maximally permis-
sive deadlock avoidance policies for complex resource allocation systems through classification
theory: the linear case. IEEE Trans Autom Control 56(8):1818-1833

Nir-Buchbinder Y, Tzoref R, Ur S (2008) Deadlocks: From exhibiting to healing. In: Proc. workshop
on runtime verification

Novark G, Berger ED, Zorn BG (2007) Exterminator: automatically correcting memory errors with
high probability. In: Proc. programming language design and implementation

Novark G, Berger ED, Zorn BG (2008) Exterminator: automatically correcting memory errors with
high probability. Commun ACM 51(12):87-95

Park J, Reveliotis SA (2001) Deadlock avoidance in sequential resource allocation systems with
multiple resource acquisitions and flexible routings. IEEE Trans Autom Control 46(10):1572—
1583

Park J, Reveliotis SA (2002) Liveness-enforcing supervision for resource allocation systems with
uncontrollable behavior and forbidden states. IEEE Trans Robot Autom 18(2):234-240

@ Springer

http://www.gurobi.com/

Discrete Event Dyn Syst

Park S, Lu S, Zhou Y (2009) Ctrigger: exposing atomicity violation bugs from their hiding places.
In: Proc. 14th international conference on architecture support for programming languages and
operating systems

Phoha VV, Nadgar AU, Ray A, Phoha S (2004) Supervisory control of software systems. IEEE Trans
Comput 53(9):1187-1199

Qin F, Tucek J, Sundaresan J, Zhou Y (2005) Rx: treating bugs as allergies—a safe method to survive
software failures. In: Proc. the 20th ACM symposium on operating systems principles, pp 235-
248

Reisig W (1985) Petri nets: an introduction. Springer, New York

Reveliotis SA (2005) Real-time management of resource allocation systems: a discrete-event systems
approach. Springer, New York

Sutter H, Larus J (2005) Software and the concurrency revolution. ACM Queue 3(7):54-62

Wallace C, Jensen P, Soparkar N (1996) Supervisory control of workflow scheduling. In: Proc.
international workshop on advanced transaction models and architectures

Wang Y (2009) Software failure avoidance using discrete control theory. PhD thesis, University of
Michigan

Wang Y, Kelly T, Kudlur M, Lafortune S, Mahlke SA (2008) Gadara: dynamic deadlock avoidance
for multithreaded programs. In: Proc. the 8th USENIX symposium on operating systems design
and implementation, pp 281-294

Wang Y, Lafortune S, Kelly T, Kudlur M, Mahlke S (2009a) The theory of deadlock avoidance via
discrete control. In: Proc. the 36th annual ACM SIGPLAN-SIGACT symposium on principles
of programming languages, pp 252-263

Wang Y, Liao H, Reveliotis S, Kelly T, Mahlke S, Lafortune S (2009b) Gadara nets: Modeling and
analyzing lock allocation for deadlock avoidance in multithreaded software. In: Proc. the 48th
IEEE conference on decision and control, pp 4971-4976

Wang Y, Cho HK, Liao H, Nazeem A, Kelly TP, Lafortune S, Mahlke S, Reveliotis S (2010)
Supervisory control of software execution for failure avoidance: experience from the Gadara
project. In: Proc. international workshop on discrete event systems

Yamalidou K, Moody J, Lemmon M, Antsaklis P (1996) Feedback control of Petri nets based on
place invariants. Automatica 32(1):15-28

Hongwei Liao is currently a Ph.D. candidate in Electrical Engineering-Systems at the University of
Michigan, Ann Arbor, where he received the M.Sc. degree (2009) in Electrical Engineering-Systems,
and the M.S.E. degree (2011) in Industrial and Operations Engineering. He received his B.Eng.
degree (2007) in Electrical Engineering and Dual B.Mgt. degree (2007) in Business Administration
with Honors from Shanghai Jiao Tong University, Shanghai, China. His research interests include
discrete event systems, operations research, and wireless communications. Hongwei Liao was an
intern at General Electric Global Research, Niskayuna, NY, USA, in summer 2010, and an intern at
General Motors Global Research & Development, Warren, MI, USA, in summer 2011. He has been
the recipient of a number of awards, including the Rackham Predoctoral Fellowship Award (2011)
and the College of Engineering Distinguished Achievement Award (2011) from the University of
Michigan, Ann Arbor.

@ Springer

Discrete Event Dyn Syst

Yin Wang received Bachelor’s (2000) and Master’s (2003) degrees from the Shanghai Jiao Tong
University, Department of Automation. He earned his Ph.D. at the University of Michigan Electrical
Engineering and Computer Science department and joined Hewlett-Packard Laboratories in early
2009. While a graduate student, Wang interned at Microsoft Shanghai, IBM Almaden Research
Center, and HP Labs.

Hyoun Kyu Cho received the B.S. degree from Seoul National University, Seoul, Korea, in 2008, in
electrical engineering, and the M.S. degree from the University of Michigan, Ann Arbor, in 2010, in
Computer Sicence and Engineering. He is currently a Ph.D. candidate in the Computer Science and
Engineering program at the University of Michigan, Ann Arbor. His research interests lie in the area
of compilers and computer architecture.

@ Springer

Discrete Event Dyn Syst

Jason Stanley received the B.Eng. degree in Computer Science from the University of Michigan,
Ann Arbor, in 2012. As an undergraduate, he worked as a research assistant in the Electrical
Engineering and Computer Science Department. After graduation, he began working at Citadel
Investment Group. His research interests lie in computer science theory and machine learning.

Terence Kelly is a senior researcher in the Intelligent Infrastructure Lab at Hewlett-Packard Lab-
oratories. His research applies discrete control theory to failure avoidance/elimination in computing
systems. Kelly received a Ph.D. in computer science from the University of Michigan. He is a senior
member of the IEEE and the ACM.

@ Springer

Discrete Event Dyn Syst

Stéphane Lafortune received the B.Eng. degree from Ecole Polytechnique de Montréal in 1980,
the M.Eng. degree from McGill University in 1982, and the Ph.D. degree from the University of
California at Berkeley in 1986, all in electrical engineering. Since September 1986, he has been
with the University of Michigan, Ann Arbor, where he is a professor of Electrical Engineering
and Computer Science. Dr. Lafortune is a Fellow of the IEEE (1999). He received the Presidential
Young Investigator Award from the National Science Foundation in 1990 and the George S. Axelby
Outstanding Paper Award from the Control Systems Society of the IEEE in 1994 (for a paper
co-authored with S. L. Chung and F. Lin) and in 2001 (for a paper co-authored with G. Barrett).
Dr. Lafortune’s research interests are in discrete event systems and include multiple problem
domains: modeling, diagnosis, control, optimization, and applications to computer systems. He is
the lead developer of the software package UMDES and co-developer of DESUMA with L. Ricker.
He co-authored, with C. Cassandras, the textbook Introduction to Discrete Event Systems - Second
Edition (Springer, 2008). Dr. Lafortune is a member of the editorial boards of the Journal of Discrete
Event Dynamic Systems: Theory and Applications and of the International Journal of Control.

Scott Mahlke is a professor in the Electrical Engineering and Computer Science Department
at the University of Michigan where he leads the Compilers Creating Custom Processors group
(http://ccep.eecs.umich.edu). The CCCP group delivers technologies in the areas of compilers for
multicore processors, application-specific processors for mobile computing, and reliable system
design. Mahlke received the Ph.D. degree in Electrical Engineering from the University of Illinois
at Urbana-Champaign in 1997. Mahlke’s achievements were recognized by being named the Morris
Wellman Assistant Professor in 2004 and being awarded the Most Influential Paper Award from the
Intl. Symposium on Computer Architecture in 2007. He is a member of the IEEE Computer Society
and the ACM.

@ Springer

http://cccp.eecs.umich.edu

Discrete Event Dyn Syst

|
1 P [y S
Spyros Reveliotis is a professor in the School of Industrial & Systems Engineering, at the Georgia
Institute of Technology. He holds a Diploma in Electrical Engineering from the National Technical
University of Athens, Greece, an M.Sc. degree in Computer Systems Engineering from Northeastern
University, Boston, and a Ph.D. degree in Industrial Engineering from the University of Illinois at
Urbana-Champaign. Dr. Reveliotis’ research interests are in the area of Discrete Event Systems
theory and its applications. He is a Senior member of IEEE and a member of INFORMS.

Dr. Reveliotis currently serves as associate editor for the IEEE Trans. on Automatic Control, as
department editor for IIE Transactions, and he is also a senior editor in the Conference Editorial
Board for the IEEE Intl. Conference on Robotics & Automation. He has also been an associate
editor for IEEE Trans. on Robotics and Automation and for IEEE Trans. on Automation Science
and Engineering. In 2009 he was the program chair for the IEEE Conference on Automation Science
and Engineering, and currently he serves as a member of the Steering Committee for this conference.
Dr. Reveliotis has been the recipient of a number of awards, including the 1998 IEEE Intl. Conf. on
Robotics & Automation Kayamori Best Paper Award.

@ Springer

	Concurrency bugs in multithreaded software: modeling and analysis using Petri nets
	Abstract
	Introduction
	Modeling of multithreaded software
	The Gadara Petri net model
	Petri net preliminaries
	Gadara Petri nets
	Controlled Gadara nets
	Discussion

	Main properties of Gadara nets
	Petri net liveness and reversibility
	Resource-induced deadly marked siphons and modified markings
	Multithreaded program and its Gadara net model
	Liveness of Gadara nets
	Reversibility of Gadara nets
	Linear separability and MPLE control of Gadara nets

	Verification of liveness using mathematical programming
	Key properties
	Verification of liveness of NG
	Verification of liveness of NG1c
	Verification of liveness of NGc
	Experimental results

	Case studies of deadlock in open source software
	Conclusion
	References

