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Abstract

Concurrent programming puts demands on software debugging and testing, as concurrent software may exhibit

problems not present in sequential software, e.g., deadlocks and race conditions. In aiming to increase efficiency and

effectiveness of debugging and bug-fixing for concurrent software, a deep understanding of concurrency bugs, their

frequency and fixing-times would be helpful. Similarly, to design effective tools and techniques for testing and

debugging concurrent software, understanding the differences between non-concurrency and concurrency bugs in

real-word software would be useful.

This paper presents an empirical study focusing on understanding the differences and similarities between

concurrency bugs and other bugs, as well as the differences among various concurrency bug types in terms of their

severity and their fixing time, and reproducibility. Our basis is a comprehensive analysis of bug reports covering

several generations of five open source software projects. The analysis involves a total of 11860 bug reports from the

last decade, including 351 reports related to concurrency bugs. We found that concurrency bugs are different from

other bugs in terms of their fixing time and severity while they are similar in terms of reproducibility. Our findings shed

light on concurrency bugs and could thereby influence future design and development of concurrent software, their

debugging and testing, as well as related tools.

Keywords: Concurrency bugs, Bug severity, Fixing time, Open source software, Apache Hadoop, Apache ZooKeeper,

Apache Oozie, Apache Accumulo, Apache spark, Case study

1 Introduction
With the introduction of multicore and other parallel

architectures, there is an increased need for efficient and

effective handling of software executing on such architec-

tures. An important aspect in this context is to understand

the bugs that occur due to parallel and concurrent exe-

cution of software. In this paper, we look into how the

increase of such executions have impacted a number of

issues, including the occurrence of related bugs, the diffi-

culty to fix these bugs compared to fixing non-concurrent

ones, and the distribution of unreproducible concurrency

and non-concurrency bugs.

Testing and debugging concurrent software are faced

with a variety of challenges [1]. These challenges concern

different aspects of software testing and debugging, such

as parallel programming [2], performance testing, error

*Correspondence: sara.abbaspour@mdh.se
1Mälardalen University, Västerås, Sweden

Full list of author information is available at the end of the article

detection [3] and more. Since concurrent software exhibit

more non-deterministic behavior and non-deterministic

bugs are generally viewed to be more challenging than

other types of bugs [4–6], testing and debugging concur-

rent software are also considered to be more challenging

compared to testing and debugging of sequential software.

Developing concurrent software requires developers to

keep track of all the possible communication patterns that

evolve from the large number of possible interleavings

or concurrently overlapping executions that can occur

between different execution threads through utilizing the

shared memory.

Handling the many execution scenarios that this results

in is a notoriously difficult task in debugging and makes it

equally hard to create test cases [7].

In the presented study, we are particularly interested

in isolating concurrency bugs from other types of bugs

(non-concurrency bugs) and analyzing the distinguishing

features in their respective fixing processes. Hence, the

main emphasis of this research is on concurrency bugs,

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-017-0055-2&domain=pdf
http://orcid.org/0000-0002-5058-7351
mailto: sara.abbaspour@mdh.se
http://creativecommons.org/licenses/by/4.0/


Abbaspour Asadollah et al. Journal of Internet Services and Applications  (2017) 8:4 Page 2 of 15

and on exploring the nature and extent of concurrency

bugs in real-world software. This exploration of bugs can

be helpful to understand how we should address con-

currency bugs, estimate the most time-consuming and

difficult to reproduce ones, and prioritize them to speed

up the debugging and bug-fixing processes. Also it could

be helpful for designers to avoid the errors that are more

likely to occur during the early phases of the software

life-cycle.

In our study, we address the following research

questions:

• RQ1: How common are different types of

concurrency bugs compared to non-concurrency

bugs?
• RQ2:What is the fraction of unreproducible bugs

that are also concurrency bugs?
• RQ3: How long time is required to fix concurrency

bugs compared to fixing non-concurrency bugs?
• RQ4: Are concurrency bugs severer than

non-concurrency bugs?
• RQ5: How long time is required to fix the severest

concurrency bugs as compared to fix the severest

non-concurrency bugs?

In this study, we investigate the bug reports from

five open source software projects, i.e., Apache Hadoop

project, Apache ZooKeeper project, Oozie project, Accu-

mulo project and Apache Spark project. We classify the

reported bugs into three distinct categories, i.e., fixed

and closed concurrency bugs, fixed and closed non-

concurrency bugs and unreproducible bugs. We further

classify the concurrency bugs based on bug type. For

concurrency and non-concurrency we additionally con-

sider severity and fixing time. We compare the non-

concurrency, concurrency and unreproducible bugs in

terms of their reporting frequency. Our results indicate

that a relatively small share of bugs is related to concur-

rency issues, while the vast majority are non-concurrency

bugs. Fixing time for concurrency and non-concurrency

bugs is different but this difference is not big. However,

the fixing time for unreproducible concurrency and unre-

producible non-concurrency bugs is similar. In addition,

concurrency bugs are considered to be slightly severer

than non-concurrency bugs.

The remainder of this paper is organized as follows.

We describe our research methodology in Section 2. In

Section 3, we present the classification schemes of the

study. We provide a comprehensive set of results, quan-

titative analysis of bug reports and answer the research

questions in Section 4. The discussion on obtained results

and the threats to validity are presented in Section 5. We

survey related work in Section 6. Finally, we conclude

the study and highlight the direction of future work in

Section 7.

2 Methodology
This study is carried out by following the workflow out-

lined in Fig. 1. First, we start with the Bug source software

selection in order to select a proper open source soft-

ware for our study. Second, in the Bug report selection we

identify the set of concurrency bug reports in the issue

tracking database of the selected project through a key-

word search. Then we manually analyze the full set of

identified bug reports in order to exclude those which

are not concurrency-related. Finally, in the bug reports

classification stage, we collect data for the concurrency

bugs, and classify the bug reports based using the clas-

sification scheme described in Section 3. The following

subsections describe the steps of this research workflow in

further detail.

2.1 Bug-source software selection

We considered five open source applications viz., Apache

Hadoop project, Apache ZooKeeper project, Apache

Oozie project, Apache Accumulo project and Apache

Spark project. The projects coordinate distributed pro-

cesses with significant number of releases and an issue

management platform formanaging, configuring and test-

ing. The projects have a web interface for managing,

configuring and testing its services and components while

the detailed information on bugs and bug fixes are openly

available.

Apache Hadoop project1 is a Java based distributed

computing framework built for applications implemented

using the MapReduce2 programming model [8]. Hadoop

has changed constantly and considerably in 59 releases

over six years of development. The Hadoop frame-

work has been widely adopted by both the industry and

research communities [9]. Due to Hadoop’s key concept of

parallel and distributed abstraction, it is recently adopted

by several big companies such as Facebook, Ebay, Yahoo,

Amazon, Adobe and more.

Fig. 1 Research methodology workflow



Abbaspour Asadollah et al. Journal of Internet Services and Applications  (2017) 8:4 Page 3 of 15

Apache ZooKeeper project3 is a fault-tolerant and a

distributed coordination service for other distributed

applications such as cloud computing applications [10].

This tool provides fundamental services by encapsulating

distributed coordination algorithms and maintaining a

simple database. An application can use the ZooKeeper

client to build higher-level coordination functions [11]

such as leader election, barriers, queues, and read/write

revocable locks.

Apache Oozie project4 is a coordination system and

server-based workflow scheduling to manage data pro-

cessing jobs for Hadoop. This tool is a mature solution for

defining and executing workflows (that can be triggered

by a user, time event or data arrival) [12]. It supports use-

ful functionalities such as the persistence of an execution

history.

Apache Accumulo project5 is a distributed, column ori-

ented andmultidimensional data storage [11] that built on

top of Apache Hadoop, Zookeeper and Thrift. Accumulo’s

design is based on the Google Bigtable implementation

and is very similar to HBase (the fundamental data storage

capabilities are between Accumulo and HBase are clearly

similar).

Apache Spark project6 is a cluster computing system

from Apache with incubator status. This tool is pretty

fast at running programs and writing data [13]. Spark

supports in-memory computing, that enables it to query

data much faster compared to diskbased engines such

as Hadoop, and supports a rich set of other tools such

as Spark SQL (for SQL and structured data processing),

MLLib (for machine learning) and Spark Streaming. It

also provides an optimized engine that supports general

computation graphs (GraphX). The aim of the project

is to build a faster distributed parallel processing frame-

work [11] that can perform better for certain tasks than

Hadoop.

These five projects track both enhancement requests

and bugs using JIRA7. JIRA is an issue management plat-

form, which allows users to manage their issues through-

out their entire life cycle. It is mainly used in software

development and allows users to track any kind of unit of

work, such as project task, issue, story and bug to manage

and track development efforts.

2.2 Bug reports selection

In this stage, we selected the concurrency bugs from the

bug report database including bug reports from the period

2006-2015, i.e., the last decade. In total, the projects bug

report databases contain 11860 issues in this period that

are tagged as “Bug”.

We automatically filtered reports that are not likely to

be relevant by performing a search query on bug report

databases. Our search query filtered bugs based on (1)

“Bug” as report type, (2) the status of the report, and (3)

keywords relevant to concurrency. Figure 2 summarizes

the bug report selection process.

In filtering based on “Bug” as report type step, we prac-

tically searched in the projects report databases for the

reports with issue type “Bug”8 according to our main

objective and bug definition.

In filtering based on the status of the report step, we

searched for bugs with “Closed” (i.e., this report con-

sidered finished, the resolution is correct) and “Fixed”

resolution status (i.e., fix for this issue has been imple-

mented). We only selected “Fixed” and “Closed” reports

since unfixed and open bug reports might be invalid and

root causes described in the reports could be incorrect.

It would then be impossible for us to completely under-

stand the details on these bugs and determine their types.

It would have been interesting to also consider bugs with

other statuses or resolutions (such as duplicate bugs, or

bugs that were coded with “won’t fix”) but these bug

Fig. 2 Concurrency bug report selection workflow
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reports are not likely to be as complete and reliable as bugs

that are labeled closed and fixed. Thus without reasonably

complete bug reports it would not be possible to recognize

the reported bugs.

In filtering based on the keywords relevant to concur-

rency step, we decided to use the keywords that could

help us to include the bug reports were compatible with

the scope of this study. In identifying such keywords, we

reviewed the keywords utilized in similar previous stud-

ies [1, 14]. The keywords included in the search, i.e. the

terms, were:

thread, blocked, locked, race, dead-lock, deadlock,

concurrent, concurrency, atomic, synchronize, syn-

chronous, synchronization, starvation, suspension,

“order violation”, “atomicity violation”, “single variable

atomicity violation”, “multi variable atomicity violation”,

livelock, live-lock, multi-threaded, multithreading, and

multi-thread.

After filtering, we obtained a final set with 647 reports.

The detailed information is presented in Table 1. These

647 reports were reported bugs with at least one concur-

rency keywords (from the above list) in their description,

which was already fixed and closed by developers.

Some concurrency bugsmight go unfixed or unreported

because they are difficult or impossible to reproduce. In

order to investigate the distribution of these kind of bugs

(unreproducible bugs) and obtain the results, we perform

three steps. Figure 3 summarizes these steps. The only dif-

ference between these steps and the ones we applied for

concurrency bug selection workflow (Fig. 2) is, how we

implement the “the status of the report” step.

We automatically filtered reports that are not likely to be

relevant by performing a search query on the bug report

database. Our search query filtered bugs based on (1)

“Bug” as report type, (2) the status of the report, and (3)

keywords relevant to concurrency.

In filtering based on “Bug” as report type step, we fil-

tered the projects’ reports with the same issue type as we

applied for filtering the reports for concurrency reports.

We included the bugs from the period 2006-2015 (last

decade). Similarly, after this step we had 11860 reported

bugs in our database.

Table 1 The selected bugs from each project after the keywords

relevant to concurrency step

Project Concurrecny bugs

Hadoop 221

ZooKeeper 83

Oozie 18

Accumulo 21

Spark 8

Total 351

In filtering based on the status of the report step, we

searched for bugs with “Cannot Reproduce”9 resolution

status. After accomplishing this filter, we have obtained

513 reported bugs.

Finally, in filtering based on the keywords relevant to

concurrency step, we used the same keywords as we have

used for excluding concurrency bugs. We obtained a final

set with 203 reports by applying these steps.

2.3 Manual exclusion of bug reports and sampling of

non-concurrency bugs

In this stage, we manually analyzed the 647 bug reports

obtained in the previous step. The manual inspection

revealed that some of the bugs that matched the search

query were not concurrency bugs. Thus, we excluded

them. More specifically, we determined the relevance of

the bugs by checking (1) if they describe a concurrency

bug, and if they do, (2) what type of concurrency bug

it is. The latter is done, by comparing their descriptions

(or explanations) with our concurrency bug classifica-

tion (given in Section 3.1). If we could not map a report

with any class, we excluded that report from our set. We

also excluded reports with very little information, since

we could not analyze them properly. After filtering, we

obtained a final set with 351 concurrency bugs.

As explained in Section 1, our main objective is

understanding the differences between non-concurrency

and concurrency bugs. For comparison purposes, we

randomly sampled an equally sized subset of non-

concurrency bugs (351) that were reported during 2006-

2015 and were “Fixed” and “Closed”. These bugs were used

for comparative analysis between the concurrency and

non-concurrency bug sets.

Table 2 shows the bug counts across the different steps

of the bug report selection process. Note that this selec-

tion process may have some limitations, as discussed in

more detail in Section 5.1.

2.4 Bug reports classification

We analyzed the issues and information contained in

the reports using them to map to the concurrency bug

classification manually. Each bug report contains several

types of information, which were valuable in recogniz-

ing and filtering the concurrency bugs with other types

of bugs to aid us understand the characteristics of bugs.

The bug reports contained for example the description

of the bug with some discussions among the developers

on how to detect, where to detect (bug localization) and

how to fix the bugs. Typically most of the reports include

a description of the correction of the bug, and a link to

the version of the software where the bug has been cor-

rected, and even the scenario of reproducing the reported

bug. The reports also contain additional fields such as
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Fig. 3 Unreproducible concurrency bug report selection workflow

perceived priority, created date, resolved date, version

affected and more.

We used different types of fields in order to explore the

concurrency bug issues in the five selected projects. We

used the priority field to estimate the severity of the bug.

The interval between the Created date and Resolved date

fields was used to calculate the amount of (calendar) time

required to fix the bug (fixing time).

3 Study classification schemes
In order to perform the bug classification process, we

defined three main classifiers and grouped the reports

based on these classifiers. The classifiers were type of

concurrency bug, fixing time and severity. For Concur-

rency bug classification, we used the classification scheme

for concurrency bugs described in Section 3.1. For fix-

ing time, we calculated the fixing time for each bug

report (Section 3.2) and for severity, we used the scheme

proposed by the JIRA in [15] (Section 3.3). The details

of these three classification schemes are described as

follows:

3.1 Concurrency bug classification

We classified and mapped the relevant bug reports related

to the types of concurrency bugs using a classification of

concurrency bug types based on observable properties.

In [14], one of our main contribution is a taxonomy for

concurrency bugs by classifying the bugs in a common

structure considering relevant observable properties. This

classification is based on an assumption that a concur-

rency bug has occurred, i.e., the properties of each bug

may not be sufficient to identify a bug, but once a con-

currency bug has occurred the properties can be used

to uniquely identify which type of bug it is [16]. It cat-

egorizes concurrency bugs into seven disjoint classes as

follows:

• Data race occurs when at least two threads access

the same data and at least one of them write the data

[17]. It occurs when concurrent threads perform

conflicting accesses by trying to update the same

memory location or shared variable [18, 19].
• Deadlock is “a condition in a system where a process

cannot proceed because it needs to obtain a resource

held by another process but it itself is holding a

resource that the other process needs” [20]. More

generally, it occurs when two or more threads

attempts to access shared resources held by other

threads, and none of the threads can give them up

[18, 21]. During deadlock, all involved threads are in a

waiting state.
• Livelock happens when a thread is waiting for a

resource that will never become available while the

CPU is busy releasing and acquiring the shared

resource. It is similar to deadlock except that the state

of the process involved in the livelock constantly

changes and is frequently executing without making

progress [22].
• Starvation is “a condition in which a process

indefinitely delayed because other processes are

always given preference” [23]. Starvation typically

occurs when high priority threads are monopolising

the CPU resources. During starvation, at least one of

the involved threads remains in the ready queue.
• Suspension-based locking or Blocking suspension

occurs when a calling thread waits for an

unacceptably long time in a queue to acquire a lock

for accessing a shared resource [24].
• Order violation is defined as the violation of the

desired order between at least two memory accesses

[25]. It occurs when the expected order of

interleavings does not appear [26]. If a program fails

to enforce the programmer’s intended order of

Table 2 Report counts from different step of bug report selection process

Filter Selected reports # of reports

2006-2015 & Bug & Fixed & Closed Total bug reports (from five projects) 11860

Keywords match related bug reports 647

Concurrency bug reports analyzed 351

2006-2015 & Bug & Fixed & Closed Sample of non-concurrency bug reports 351

2006-2015 & Bug & (Cannot reproduce) Total bug reports (from five projects) 513

Keywords match related bug reports 203
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execution then an order violation bug could

happen [1].
• Atomicity violation refers to the situation when the

execution of two code blocks (sequences of

statements protected by lock, transaction) in one

thread is concurrently overlapping with the execution

of one or more code blocks of other threads such a

way that the result is inconsistent with any execution

where the blocks of the first thread are executed

without being overlapping with any other code block.

3.2 Fixing time calculation

Fixing is the time duration (days) which develop-

ers/debuggers spend to fix a reported bug. Fixing time,

calculated by subtracting the Created date and Resolved

date fields of the bug, i.e. it refers to the calender time

rather than the actual time spent fixing the bug.

3.3 Bug report severity classification

In order to define priority for each issue based on devel-

opers’ perspective we used a classification scheme similar

to the classification defined in [15].

• Blocker shows the highest priority. It indicates that

this issue takes precedence over all others.
• Critical indicates that this issue is causing a problem

and requires urgent attention.
• Major shows that this issue has a significant impact.
• Minor indicates that this issue has a relatively minor

impact.
• Trivial is the lowest priority.

4 Results and quantitative analysis
This section provides the analysis of the data collected for

bugs obtained from the projects bug database. We used

702 bugs (i.e., 351 are concurrency bugs while the rest

(351) are non-concurrency bugs sampled for our analysis)

reported between 2006 and 2015. The bug selection pro-

cess is described in Section 2. We provide the raw data of

this study at https://goo.gl/wcdD16.

RQ1: How common are different types of concurrency bugs

compared to non-concurrency bugs?

As seen in Fig. 4, out of the 9169 reported bugs in the

projects’ databases, 351 (i.e., ∼4%) bugs are related to

concurrency issues and are causing a certain type of con-

currency bug while the rest (i.e., ∼96%) are identified as

non-concurrency bugs.

The 351 concurrency bugs were further categorized

according to the concurrency bug classification in [14]. As

mentioned already in Section 3.1, this taxonomy defines

seven types of concurrency bugs: (1) Data race, (2) Dead-

lock, (3) Livelock, (4) Starvation, (5) Suspension, (6) Order

violation and (7) Atomicity violation. For the sake of this

Fig. 4 Distribution of non-concurrency and concurrency bug types

study, we have added one more category to the taxon-

omy: (8)Not clear. TheNot clear category includes reports

that cover bugs related to concurrency and parallelism,

but are not classified according to the concurrency bugs

taxonomy. For these bugs, the summary and description

of the report indicate that it is a concurrency bug, but

further classification of bug type is impossible by a very

project implementation-specific explanation of the bug

details and solution.

In addition, we investigated the frequency with which

each type of concurrency bug appears, in order to get

insights of bug prioritization.

Figure 5 summarizes the number of concurrency bugs

according to the category. From a total of 351 bug reports,

almost half of them (i.e., 47%) concern data races (or race

conditions), a well-known and common concurrent bug

[27], while only two bug reports (< 1% of the reports) were

identified as Livelock.

Answer RQ1: Only 4% of the total set of bugs are

related to concurrency issues, while the majority of

bugs (i.e., 96%) are of non-concurrency type.

RQ2: What is the fraction of unreproducible bugs that are

also concurrency bugs?

In order to compare the difficulty in reproducing the

concurrency bugs to the difficulty in reproducing non-

concurrency bugs, we analyzed the distribution of unre-

producible bugs from the all five projects’ repository.

Figure 6 provides a view of the distribution of concurrency

bugs in terms of reproducibility10. In Fig. 6, a bug which

reported during 2006 to 2015 (last decade) is categorized

as All, a fixed and closed bug is categorized as Fixed &

Closed. If a report tagged as “Cannot reproduce” then it

is categorized as unreproducible. A bug with at least one

keyword related to concurrency issues is categorized as

Concurrency keywords matched, some of these bugs are

fixed and closed and others are unreproducible. We are

not considering the bugs that are on the investigation and

https://goo.gl/wcdD16
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Fig. 5 Distribution of concurrency bugs

the report related to these are excluded from our study

although they are included in All category. Finally if a bug

falls into one of the concurrency classification types then

it is categorized as a Concurrency bug. This Venn chart

illustrates the comparisons between these categories.

Based on our investigation, the total number of bugs

within this time span is 11860. We identified 9162 (∼77%)

of them as fixed & closed, whereas only 513 of them

(∼4%) could not be reproduce by developers. Out of

513 unreproducible bugs, 203 bugs are categorized in

concurrency keywords matched group.

Answer RQ2: The fraction of unreproducible bugs

from the total set of bugs is only 4% while 2% of the

total set are unreproducible and related to

concurrency issues.

RQ3: How long time is required to fix concurrency bugs

compared to fixing non-concurrency bugs?

In order to gain better understanding on how difficult

is to fix concurrency bugs in comparison with non-

concurrency bugs, we conducted a quantitative analysis

of the effort required to fix both concurrency and non-

concurrency bugs. This effort was measured by calcu-

lating the calendar time between the Created date and

Resolved date fields from projects’ databases.We used this

time as an indicator for the complexity involved in fixing

these bugs.

Table 3 lists the detailed statistics on the obtained

results for fixing time of concurrency and non-

concurrency bugs. Figure 7 summarizes the results of

comparing the fixing time for concurrency and non-

concurrency bugs in the form of box-plots (the vertical

Fig. 6 Distribution of reproducible and unreproducible concurrency bugs
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Table 3 Descriptive statistics results for concurrency and non-concurrency bug sets in terms of fixing time. We report here: average,

minimum, maximum, median and standard deviation values

Fixing time

Bug Average Minimum Maximum Median Standard deviation

Concurrency 82.5 0.1 2025.0 18.2 207.0

Non-concurrency 66.2 0.1 998.1 13.0 145.1

axis scale of the plot is logarithmic). The average of

fixing time for concurrency and non-concurrency bugs

is 82 days and 66 days for fixing concurrency and

non-concurrency bugs, respectively.

To evaluate if there is any statistical difference between

concurrency and non-concurrency bugs fixing time, we

use a Wilcoxon Signed Rank test, a non-parametric

hypothesis test for determining if there is any statistical

difference among the two data sets, with the assumption

that the data is drawn from an unknown distribution. We

use 0.05 as the significance level.

In addition, we calculate the Vargha-Delaney A-statistic

as a measure of effect size [28] for analyzing signifi-

cance. This statistic is independent of the sample size

and has a range between 0 and 1. The choice of

what constitutes a significant effect size can depend

on context. Vargha and Delaney [28] suggest that A-

statistic of greater than 0.64 (or less than 0.36) is

indicative of “medium” effect size, and of greater than

0.71 (or less than 0.29) can be indicative of a “large”

effect size.

We are interested in determining if the fixing

time for concurrency bugs is similar to the one for

Fig. 7 Fixing time comparison for concurrency and non-concurrency

bugs; boxes span from 1st to 3rd quartile, black middle lines are

marking the median and the whiskers extend up to 1.5× the

inter-quartile range while the circles represent the outliers

non-concurrency bugs. We begin by formulating the sta-

tistical hypotheses as follows: the null hypothesis is that

fixing time of the concurrency and non-concurrency bugs

sets have identical distributions (H0) and the alternative

hypothesis is that the distributions are different (H1).

Based on the p-value of 0.006, which is less than 0.05,

we reject the null hypothesis. That is, the fixing time of

concurrency bugs and non-concurrency bugs are statis-

tically different. When calculating the Vargha-Delaney

A-statistic, we obtained a value of 0.559 which indicates a

“small” standardized effect size [28]. From our results, we

can see that the fixing time for concurrency bugs is differ-

ent from the fixing time for non-concurrency bugs, but

that this difference corresponds to a “small” standardized

effect size.

We were also interested in understanding the differ-

ences between fixing time for each type of concurrency

bugs. Figure 8 summarizes our results in the form of box

plots. It is obvious that Order violation, Data races and

suspension took almost same time to fix in average (i.e., 99,

98, 97 days on average, respectively). Atomicity violation

and Deadlock type took less time (49 and 42 on aver-

age, respectively) while Livelock and Starvation type took

Fig. 8 Effort required to fix each type of concurrency bugs
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shorter fixing time (17 and 21 days on average, respec-

tively). Table 4 lists the detailed statistics on the obtained

results for each type of concurrency bugs.

To evaluate if there is any significant statistical differ-

ence between the different types of concurrency bugs,

we use a Wilcoxon Signed Rank test and calculate the

A-statistic effect size. To this end, we report in Table 5

the p-values and the effect size for each type of con-

currency bugs. The tested hypotheses are formulated as

follows: the null hypothesis is that fixing time results

between two different bug types are drawn from the same

distribution and the alternative hypothesis is that the fix-

ing time results are drawn from different distributions.

We use a traditional statistical significance limit of 0.05

and Vargha and Delaney’s suggestion [28] for statistical

significance.

Examining Table 5, we can conclude that the null

hypothesis is accepted with p-values above the traditional

statistical significance limit of 0.05 for the majority of bug

types except for “Deadlock-Data race”, “Deadlock-Order

violation” and “Deadlock-Suspension” pairs where the null

hypothesis is rejected. This shows that the bug fixing

time is not different except between “Deadlock-Data race”,

“Deadlock-Order violation” and “deadlock-Suspension”.

For example, in Table 5, we show the obtained p-value

of 0.003 for testing the pair “Deadlock-Data race”, which

is less than 0.05, and therefore we can reject the null

hypothesis: the fixing time for Deadlock and Data Race

bug types are different. In addition, the A-statistic for

the same pair of bug types is about 0.824 (or 0.175 in

the second row), which is greater than the significance

level of 0.71. We can say that in this case the effect size

is “large”. We can conclude that fixing time for dead-

lock and data race bug types is different with a “large”

effect size.

It should however be noted that the likelihood of

statistical errors vastly increases when doing multiple

tests using the same dataset. The results from the inter-

bug-type comparisons are thus less reliable than the

results from the comparison between concurrency and

non-concurrency bugs.

Answer RQ3: Concurrency bugs require longer fixing

time than non-concurrency bugs, but the difference

is not large.

RQ4: Are concurrency bugs severer than non-concurrency

bugs?

We analyze the difference between concurrency and non-

concurrency bug severity in order to understand if the

severity of bugs is differently distributed. Figure 9 shows

the severity distributions.

In order to statistically compare the severity between

concurrency and non-concurrency bugs, we apply a Two-

Sample Kolmogorov-Smirnov test (also known as two-

sample K-S test) to find if the frequency between these two

types of bugs is significantly different. Our null hypothesis

can be formulated as follows: are the severity level results

of concurrency bugs and non-concurrency bugs drawn

from the same distribution. In this test, if the D-value is

larger than the critical-D-value, the observed frequency is

distributed differently.

Table 6 shows that the D-value is 0.122, which is larger

than the Critical-D-value of 0.07. Based on this fact, statis-

tically we have enough evidence to conclude that there is a

difference between the concurrency and non-concurrency

bug severity distribution. In other words, the concur-

rency and non-concurrency severity types are distributed

differently.

Finally, in order to identify the severity distribution

between concurrency bugs types, we analyze the obtained

results, which are shown in Fig. 10. The results indicate

the distribution of concurrency bugs together with the

severity distribution of each concurrency bug type. We

expected that most of the “Blocker” bugs to be ofDeadlock

type. In reality, as shown in Fig. 10, most of the “Blocker”

bugs are of Data race type. We can interpret this fact in

the following way: the Data race type might represent

the most problematic bug type in terms of severity in the

selected projects. On the other hand, we sorted concur-

rency bugs severity based on their distributions. Table 7

summarizes the obtained results. The rank of severity in

the table is based on the definition given in Section 3.3.

Table 4 Fixing time comparison for concurrency bug types

Fixing time

Concurrency bugs Average Minimum Maximum Median Standard deviation

Deadlock 42.2 0.1 943.2 8.7 142.6

Data race 98.2 0.1 1221.0 24.8 189.5

Order violation 99.3 0.1 2025.0 29.1 298.8

Atomicity violation 48.7 0.2 253.7 19.7 77.8

Livelock 16.9 15.0 18.9 16.9 2.7

Starvation 20.7 1.0 89.2 13.9 25.1

Suspension 96.8 0.5 1890.8 17.9 290.3
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Table 5 Wilcoxon test for concurrency bugs fixing time comparison

H0 \HA Hypothesis Deadlock Data race Order violation Atomicity violation Livelock Starvation Suspension
test result

Deadlock P-value – 0.003596 0.01648 0.1041 0.4447 0.5632 0.01825

A-statistic – 0.824977 0.2347107 0.08517906 0.009917355 0.06688705 0.224775

Data race P-value 0.003596 – 0.9828 0.7515 0.7185 0.1312 0.8194

A-statistic 0.175023 – 0.142112 0.05393939 0.00697888 0.04932966 0.1394123

Order violation P-value 0.01648 0.9828 – 0.6191 0.5816 0.1164 0.7458

A-statistic 0.2451791 0.857888 – 0.08958678 0.01083563 0.0707989 0.235427

Atomicity violation P-value 0.1041 0.7515 0.6191 – 0.9474 0.3627 0.9183

A-statistic 0.2624793 0.9460606 0.268944 – 0.01153352 0.07555556 0.2584206

Livelock P-value 0.4447 0.7185 0.5816 0.9474 – 0.5714 0.8744

A-statistic 0.2716253 0.9930211 0.2826814 0.1023691 – 0.0784573 0.2709458

Starvation P-value 0.5632 0.1312 0.1164 0.3627 0.5714 – 0.2291

A-statistic 0.2631405 0.9506703 0.2703949 0.09814509 0.01149679 – 0.259596

Suspension P-value 0.01825 0.8194 0.7458 0.9183 0.8744 0.2291 –

A-statistic 0.2462994 0.8605877 0.2444628 0.08923783 0.01059688 0.07043159 –

After comparing the different type of concurrency bugs,

we found that most of the bugs categorized as being part

of the Data race type in terms of severity belongs to

the Minor class; the highest population of Deadlock bugs

belong to Critical class; the highest population of bugs cat-

egorized in the Suspension type belongs to Critical class;

the highest population of bugs corresponding to Atom-

icity violation type belongs to Major and Minor class;

the highest population of Order violation bugs belongs to

Minor class and the highest population of Starvation bugs

belong to Major class. We can interpret this as follows:

Deadlock and Suspension bugs have higher severity.

Answer RQ4: Concurrency bugs are considered to be

severer than non-concurrency bugs, but the

difference is relatively small.

RQ5: How long time is required to fix the severest

concurrency bugs as compared to fix the severest

non-concurrency bugs?

We analyze the fixing time of the severest concurrency

bugs and the severest non-concurrency bugs to investigate

how fast the severest bugs get fixed. Based on the sever-

ity classification given in Section 3.3, “Blocker” group

defined for categorizing the bugs with highest priority,

thus we extract the bugs tagged as “Blocker” from our

concurrency and non-concurrency bugs’ data sets. We

also calculate the fixing time for each bug as explained

in Section 3.2. We analyze the fixing time of the bug

with “Blocker” severity in order to compare the fixing

time for the severest concurrency and non-concurrency

bugs.

Fig. 9 Concurrency and non-concurrency bugs severity
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Table 6 Kolmogorov-Smirnov test for concurrency and non-concurrency bugs severity comparison

Shade Non-concurrency bugs Concurrency bugs
∣

∣f (x) − g(x)
∣

∣

Observed Observed Observed cumulative Observed Observed Observed cumulative
frequency proportion proportion f(x) frequency proportion proportion g(x)

Blocker 66 0.188034188 0.188034188 104 0.296296296 0.296296296 0.108262108

Critical 45 0.128205128 0.316239316 50 0.142450142 0.438746439 0.122507123

Major 177 0.504273504 0.820512821 175 0.498575499 0.937321937 0.116809117

Minor 45 0.128205128 0.948717949 22 0.062678063 1 0.051282051

Trivial 18 0.051282051 1 0 0 1 0

Critical D-value = D351,0.05 = 1.36 /
√
351 = 0.072 D-value = Sup

∣

∣f (x) − g(x)
∣

∣ = 0.122507123

Table 8 lists the detailed statistics on the obtained

results for fixing time of concurrency and non-

concurrency bugs with “Blocker” severity. As it shows

the fixing time for concurrency and non-concurrency

bugs with blocker severity are very similar, with an

average of ∼57 and ∼54 days for fixing concurrency

and non-concurrency bugs, respectively. Figure 11 also

summarizes the results of comparing the fixing time for

concurrency and non-concurrency bugs in the form of

box-plots.

In addition, to evaluate if there is any statistical dif-

ference among two data sets (blocker concurrency and

non-concurrency bugs fixing time), we use Wilcoxon

Signed Rank test. Also, we calculate the Vargha-Delaney

A-statistic as a measure of effect size [28] for analyzing

significance. The tested hypotheses are formulated as fol-

lows: the null hypothesis (H0) is that fixing time of the

blocker concurrency and blocker non-concurrency bugs

sets have identical distributions. The alternative hypoth-

esis (H1) is that the distributions are different. Based on

the p-value of 0,308, which is larger than 0.05, we accept

the (H0). That is, the fixing time of concurrency bugs and

non-concurrency bugs have statistically identical distri-

butions. We calculate the Vargha-Delaney A-statistic and

obtain a value of 0.52 which indicates a “small” standard-

ized effect size [28]. From our results, we can see that the

Fig. 10 Concurrency bugs severity
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Table 7 Sorted concurrency bugs severity

Rank Severity Most frequent concurrency bug types

1 Blocker –

2 Critical Deadlock (17%)

Suspension (21%)

3 Major Atomicity violation (5%)

Starvation (6%)

Livelock (1%)

4 Minor Data race (59%)

Order violation (18%)

Atomicity violation (5%)

5 Trival –

fixing time for blocker concurrency bugs is not different

from the fixing time for blocker non-concurrency bugs

and this similarity corresponds to a “small” standardized

effect size.

Answer RQ5: Fixing time for the severest

concurrency bugs is statistically similar to fixing

time for the severest non-concurrency bugs.

5 Discussion
In our study, we find a much smaller share of concur-

rency bugs than the one found by other similar studies.

This could possibly be due to the different bug-source

software and case studies of our study and other similar

studies. An interesting observation is that 52% of 351 con-

currency bugs were reported in the five-year interval of

2006–2010, and the remaining 48% were reported in the

five-year interval of 2011–2015.

Similarly, the fixing time found by prior studies is much

larger for concurrency bugs than for non-concurrency

bugs. We find a difference, but it is relatively small. The

large portion of fixing time in other studies could be due

to reproducing the bugs and using the bug scenarios in the

bug descriptions. However, in our study as shown in Fig. 6,

we find few reports stating difficulties in reproducing the

bug (4% in compare to 77%).

The involvement of more than one thread cause a con-

currency bug. For this reason, we predict to find that con-

currency bugs were severer than non-concurrency bugs.

However, we expected most of the “Blocker” bugs belong

Fig. 11 Fixing time comparison for blocker concurrency and blocker

non-concurrency bugs

to deadlock type due to its characteristic and properties

but this was not the case. In our study Data race was

the biggest portion of “Blocker”. Our interpretation is here

that Data races are the most problematic bugs to fix in

these projects.

Moreover, our investigation shows that about half of the

concurrency bugs are of Data race type. The reason could

be that there are not many approaches to avoid Data race

bug in programming or the approaches are not well devel-

oped and explained for developers. About 13% of the bugs

belongs to the Suspension type. By investigating the bug

reports’ descriptions and comments, we noticed that most

of the Suspension bugs occurred when the developer put

the code in waiting mode for an unnecessary long time

(by using sleep() or wait() method), thereby causing a Sus-

pension bug. We also noticed that, developers (or testers)

in confronting with Order violation bugs were confus-

ing. They typically were not being able to easily find the

correct order of thread execution (lots of description in

the bug report between the developers to figure out the

real cause of the bug). In addition, as we expected Live-

lock has the lowest frequency of concurrency bug types.

By reading the reports’ descriptions and comments, we

understand that most of developers were aware of Livelock

and during the implementation they took care of this type

of bug.

Table 8 Fixing time for the bugs with Blocker severity

Fixing time

Bug Average Minimum Maximum Median Standard deviation

Concurrency 57.4 0.1 2025.0 11.3 206.1

Non-concurrency 54.3 0.1 831.4 8.9 134.1
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Our analysis on unreproducible concurrency bugs illus-

trates that only 513 of reported bugs (∼4%) were unrepro-

ducible. Out of 513 bugs 203 bugs (∼40%) have at least one

concurrency keyword on their descriptions. While 647

bugs out of 11860 (∼5%) contain concurrency keywords.

Our interpretation is here that the number of unrepro-

ducible concurrency bugs are similar to the number of

unreproducible non-concurrency bugs.

Furthermore, by comparing the number of two sets

of reproduced and categorized bugs i.e., closed and

fixed concurrency keywords matched and unreproducible

concurrency keywords matched, our interpretation is

here that the number of closed and fixed concur-

rency keywords matched bugs is two times bigger than

the number of unreproducible concurrency keywords

matched bugs.

5.1 Validity threats

In the design and execution of this study, there are several

considerations that need to be taken into account as they

can potentially limit the validity of the results obtained.

These considerations are listed below:

• We have chosen the five projects for our study. Based

on the their characteristics (given in Section 2.1), we

consider the projects likely to be representative for

browsers, desktop GUI, and server programs that use

concurrency. However, other projects (e.g.,

implemented in other programming languages)

might show different concurrency bug

characteristics. For instance, prior studies [1, 7]

shows deadlocks in MySQL represent 40% of the total

number of concurrency bugs while in our project,

deadlocks account for a mere 13% of the concurrency

bugs. Nevertheless, for atomicity violation and order
violation, our results are similar to prior findings [1].

• The reports with other status such as “In Progress”

(i.e., this issue is being actively worked on at the

moment by the assignee) or “Open” (i.e., This issue is

in the initial “Open” state, ready for the assignee to

start work on it) were not considered in this study.

However, there is a chance that we did not include

the relevant reports from these groups.
• It is possible - or even likely - that the search query

may have failed to identify some actual concurrency

bugs. It should however be noted that we used more

keywords compared to previous similar studies (see

e.g., [1, 7]) and we argue that a concurrency bug

report that does not contain any of the keywords is

likely to be incomplete.
• Some concurrency bugs might go unfixed because

they occur infrequently or only on certain

platforms/software configurations. It would be

interesting to consider these kinds of bugs, but they

are not likely to have detailed discussions. As a result,

these bugs are not considered as important as the

reported and fixed concurrency bugs that are used in

our study.
• We used Seven categories (type) and manual

categorization for concurrency bugs. We excluded

bugs which did not have sufficiently detailed

information to be categorized. This procedure can

lead to erroneously discarding some concurrency

bugs.
• It should be noted that the fixing time measure used is

elapsed calendar time and does hence not necessarily

reflect the actual effort spent. It could for instance be

the case that less severe bugs are put on hold for some

time at times when efforts need to be devoted to

severer bugs or other tasks. However, it seems likely

that there at least at an aggregated level is a reasonable

positive correlation between calendar time and effort.
• Since all unreproducible reported bugs did not have

sufficient and detailed discussions thus we could not

continue further and map their descriptions (or

explanation) with our concurrency bug classification.

However, we believe that the amount of extracted

bugs can provide an overview of unreproducible bugs

in general.
• Even if the obtained results (for all research questions

RQ1-RQ5) are based on data samples from the five

projects, these results might apply to other software

as well. More analysis is required to confirm whether

this is in fact the case.

6 Related work
A series of related studies on debugging, predicting and

fixing concurrent software have been conducted. In par-

ticular, there is a large body of studies on prediction

[29–32] and propagation [33, 34] of bugs in source code.

Most of these studies strive to identify the components

or source code files, that are most prone to contain bugs.

Fault prediction partially focuses on understanding the

behavior of programmers and its effects on software relia-

bility. This work is complementary to the study conducted

in this research, which is concentrated on a specific type of

bugs (i.e., concurrency bugs) and on understanding their

consequences.

In [35], Vandiver et al. analyzed the consequences of

bugs for three database systems. This work is focused on

presenting a replication architecture, instead of on study-

ing bugs. The authors did not distinguish between con-

currency and non-concurrency bugs, and only evaluated

whether they caused crash or Byzantine faults.

Three open-source applications bug databases (Apache

web server, GNOME desktop environment and MySQL

database) are investigated by Chandra and Chen [36],

again in a study with a slightly different focus than ours.
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The authors analyzed all types of bugs (only 12 of them

were concurrency bugs) to determine the effectiveness

of generic recovery techniques in tolerating the bugs.

Concurrency bugs are only one possible type of bug

that affects their results. In contrast, based on our main

objective we focus on a more narrow type of bugs by

limiting our study scope to concurrency bugs, but pro-

vide a broader analysis (comparing concurrency and non-

concurrency bugs) taking into consideration several types

of these bugs.

Farchi et al. [37] analyzed concurrency bugs by cre-

ating such bugs artificially. They asked programmers to

write codes which have concurrency bugs. We believe

that artificially creating bugs may not lead to bugs that

are representative of the real-world software bugs. We,

on the other hand, analyze the bug database of an open-

source software, which is well maintained, and widely

used software.

Lu et al. examined concurrency bug patterns, man-

ifestation, and fix strategies of 105 randomly selected

real-world concurrency bugs from four open-source

applications (MySQL, Apache, Mozilla and OpenOffice)

bug databases [1]. Their study focused on several aspects

of the causes of concurrency bugs, and the study of their

effects was limited to determining whether they caused

deadlocks or not. We use the similar study methodology

to find relevant bug reports for our analysis but we provide

a complementary angle by studying the effects of recent

concurrency bugs with a more fine-grained classification

than mapping bugs into deadlock and not-deadlock bug

classes.

7 Conclusion and future work
This paper provides a comprehensive study of 11860

fixed bug reports from a widely used open source stor-

age designed for big-data applications. The study covers

the fixed bug reports from the last ten years, with the

purpose of understanding the differences between con-

currency and non-concurrency bugs. Two aspects of these

reports are examined: fixing time and severity. Based on

a structured selection process, we ended up with 351

concurrency bugs and 351 non-concurrency bugs (sam-

pled). By analyzing these reports, we have identified the

frequencies of concurrency, non-concurrency and unre-

producible bugs. The study also helped us to recognize the

most common type of concurrency bugs in terms of sever-

ity and fixing time. The main results of this study are: (1)

Only a small share of bugs is related to concurrency while

the vast majority are non-concurrency bugs. (2) Simi-

larly, only a small share of bugs are unreproducible and

related to concurrency issues (2%). (3) Fixing time for con-

currency and non-concurrency bugs is different but this

difference is relatively small. (4) Concurrency and non-

concurrency bugs are different in terms of severity, while

concurrency bugs are severer than non-concurrency bugs.

(5) Fixing time for the severest concurrency bugs and the

severest non-concurrency bugs is similar. These findings

could help software designers and developers to under-

stand how to address concurrency bugs, estimate themost

time-consuming ones, and prioritize them to speed up the

debugging and bug-fixing processes.

Endnotes
1https://issues.apache.org/jira/browse/HADOOP
2MapReduce is a programming model and an associ-

ated implementation for processing and generating large

datasets that is amenable to a broad variety of real-world

tasks [38].
3https://issues.apache.org/jira/browse/ZOOKEEPER
4https://issues.apache.org/jira/browse/OOZIE
5https://issues.apache.org/jira/browse/ACCUMULO
6https://issues.apache.org/jira/browse/SPARK/
7https://www.atlassian.com/software/jira
8Bug is “a problem which impairs or prevents the func-

tions of the product” [15].
9This issue (bug) could not be reproduced at this time,

or not enough information was available to reproduce the

issue [15].
10Bug reproducibility indicates the reproduction of soft-

ware failure(s) caused by bug(s).
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