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ABSTRACT

Traditional concurrency control techniques for database systems (transaction management based on locking protocols)

have been successful in many multiuser settings, but these techniques are inadequate in open, extensible and

distributed hypertext systems supporting multiple collaborating users, The term “multiple collaborating users”

covers a group setting in which two or more users are engaged in a shared task. Group members can work

simultaneously in the same computing environment, use the same set of tools and share a network of hypertext

objects. Hyperbase (hypertext database) systems must provide special support for collaborative work, requiring

adjustments and extensions to normal concurrency control techniques. Based on the experiences of two collaborative

hypertext authoring systems, this paper identifies and discusses six concurrency control requirements that distinguish

collaborative hypertext systems from multiuser hypertext systems, Approaches to the major issues (locking,

notification control and transaction management) are examined from a supporting technologies point of view.

Finally, we discuss how existing hyperbase systems fare with respect to the identified set of requirements. Many of

the issues discussed in the paper are not limited to hypertext systems and apply to other collaborative systems as

well.
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1. INTRODUCTION

Computing support for a large engineering enterprise [12] provides an example of the need for an advanced,

collaborative, hypertext-based information management system capable of integrating several different application

domains such as CAD, CASE, programming environments, office information systems and digital libraries. These

advanced systems require management of a very rich and complex set of data types as well as dynamic management

of the structure of the data itself (metadata). To make hypertext the integrating factor among diverse data-intensive

application domains, hyperbase (hypertext database) systems must provide a wide variety of features not found in the

current generation of database systems [1,5,9,11,19]. In addition to the usual database requirements of controlled
sharing, integrity, backup and recovery of data, hyperbase systems must be capable of modeling complex

interrelationships and providing support for novel data types. Hyperbase systems must also handle enormous

amounts of data, long transactions, extensibility, notification control and versioning of both the data and the

structure of hypertext. As a result of these requirements, hyperbase systems are emerging as an important new

research direction [2, 14,17,25,27].
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Both the Programming Systems Laboratory (PSL) at Aalborg University and the Hypermedia Research Laboratory

(HRL) at Texas A&M University have conducted research on hyperbase systems and distributed hypertext system

architectures over the past six years (see Tables 1 and 2). Projects at the PSL have mainly focused on providing

support for collaborative work [24] and lately also on open, extensible architectures [22]. Research at the HRL has

mainly focused on open, extensible architectures [10] and recently also on support for multiple users [14]. These

projects involve numerous distributed hypertext applications.

Table 1. Hyperbase Research at the PSL Table 2. Hwerbase Research at the HRL

Project Period Hyperbase System Refs.

1987-1988 HyperBase W

1989-1990 HyperBase #1 [24,26]

1990-1991 HyperBase #2

1990-1991 Fenris

1990- Hyperform [22,25]

Project Period Hyperbase System Refs.

1987-1990 PROXHY [10]

1990-1991 HBl [15,16]

1991-1992 Ht32 [14]

1992- HB3

Typically, distributed systems have taken a systems-oriented approach to distribution control [13]. The systems-

oriented approach deals with the problem of distribution by masking problems (such as geographical location,

sharing, concurrency, consistency and reliability) from applications (distribution transparency). Hence sharing is

transparent, with each user unaware of the activity of others. This clearly contradicts the needs of collaborative

systems [13,23]. To coordinate and collaborate, group members must be aware of the activities of other members.

This paper focuses on the special requirements for concurrency control in hyperbase systems posed by open,

extensible and distributed hypertext systems supporting multiple collaborating users. The term “multiple

collaborating users” covers a group setting in which two or more users are engaged in a shared task. Group members

can work simultaneously in the same computing environment, use the same set of tools and share a network of

hypertext objects. Based on the experiences of two collaborative hypertext authoring systems, we enumerate and

discuss concurrency control requirements that distinguish collaborative hypertext systems from multiuser hypertext

systems. Finally, we examine the extent to which existing hyperbase systems provide support for the identified

requirements.

2. COLLABORATIVE HYPERTEXT SYSTEMS

It is useful to distinguish collaborative systems from other multiuser systems. Both database systems and

timesharing systems support multiple users. However, neither of these are collaborative since they provide little

notification. If one user performs some action, other users are not normally notified of the action and may only

learn of it by explicitly querying the system. There are three broad categories of collaborative systems: real-time,

non-real-time and mixed systems [4, 13]. Real-time (synchronous) systems require the simultaneous presence of all

users and one user’s actions must be quickly propagated to the other users. In non-real-time (asynchronous) systems,

users typically work in isolation at their own pace. As a result, non-real-time sessions are less focused and often

longer in duration. Mixed systems contain elements of support for both synchronous and asynchronous

collaboration. Collaborative hypertext authoring systems are examples of mixed systems. Several research projects

have revealed shortcomings of existing database technology in managing concurrency control for collaborative

hypertext systems [8,9,24]. Based on the experiences of EHTS [23] and SEPIA [20], we identify concurrency

control requirements that distinguish collaborative hypertext systems from multiuser hypertext systems.

2.1 EHTS

EHTS [23] is a collaborative hypertext authoring system based on Aalborg University’s HyperBase [26]. HyperBase

is designed to support collaboration among its users and was the first hyperbase system to include a general event

mechanism. EHTS consists of two tools: a multiple window text editor and a graphical browser. EHTS enables a

group to collaborate on a shared task. Changes made on shared data by one user are immediately visible to all other

members of the group. Group members can communicate in real-time and send asynchronous messages within the
EHTS environment, enabling collaboration among members separated by time as well as space.

Trigg et al. [21] describe three fundamental issues in simultaneous sharing: access contention, real-time monitoring

and real-time communication. EHTS uses events and user-controlled locks to deal with these issues and to provide

controlled data sharing among collaborating group members [24]. EHTS also provides contention resolution at the
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level of attributes in nodes and links and allows any number of users to simultaneously read and display the data field

of a given node in a window on the screen. HyperBase allows locked objects to be read by any number of users,

however permission to make modifications to the data field are restricted to one user at a time. Locks are allocated

when the user invokes the editor lock command indicating a change in mode from browse to edit. Locks are

deallocated when either the editor unlock command is invoked or the window is closed. All readers are notified as

soon as possible that a data field they are accessing may be changed. Readers are provided with four types of

modification notices:

1.

2.

3.

4.

2.2

Intention. All readers are notified when one person signals intention to modify the data field of the node

by obtaining a lock. The node icon in the browser is shown bold faced. The readers also get the name

of the person, enabling contact through use of the internal talk mechanism (real-time communication).

Readers can then subscribe to the event corresponding to when the writer unlocks the data field.

Update. When the writer actually writes the modified data field of the node onto the shared database, all

readers of the data field automatically get the contents in the data field display updated with modifications

made by the writer (real-time monitoring).

Completion. When the writer is finished modifying the data field of a node, users having subscribed to

this event get notified that the data field of the node has been unlocked and is write accessible.

Deletion. When a node is deleted, the display of the node is removed from the screens of all readers.

SEPIA

The latest version of SEPIA has been characterized as a cooperative hypermedia authoring environment [20]. SEPIA

captures three different collaboration modes that arise naturally during group work processes. In individual mode,

collaborators work on separate parts of the information base (in parallel or at different times), or the way in which

documents are processed ensures that at most one person at a time works on a document. At other times several

collaborators may concurrently access some part of the information base but still wish to work as independently as

possible. In this loosely-coupled mode awareness of co-workers’ presence and activities is necessary to detect

possible conflicts and coordination needs. Finally, if several collaborators wish to work in a synchronous way, they

engage in tightly-coupled work where they cooperate and coordinate their activities in a conference-like meeting. In

tightly-coupled mode co-workers are provided with direct communication channels and a shared environment that

includes a common view of the information base.

The earlier version of SEPIA was a single user system and hence did not support collaboration. The move from a

single user authoring environment to a collaborative authoring environment required changes in the underlying

hyperbase system [8]. GMD-IPSI’S HyperBase [18] was extended and became the Cooperative Hypermedia Server

(CHS) [17]. CHS is built on a relational database system that provides shared access to hypermedia documents,

transaction facilities, crash recovery, recovery from deadlock and livelock situations and database consistency. In

order to support collaboration, the data model of HyperBase was extended with user-controlled locks (or activity

markers) and a notification mechanism. CHS also maintains collaboration information such as event subscriptions.

2.3 Concurrency Control Requirements

Collaborative work poses the following six special requirements on hyperbase systems that may be unnecessary in

other multiuser settings (these requirements will be explored further in the next section):

1.

2.

3.

Event notification. Both EHTS and SEPIA use events to provide real-time monitoring of changes made

by group members to hypertext objects.

Fine-grained notification, It is important to be able to distinguish among operations on different

attributes in an object. To provide real-time monitoring, the event handler of the application must be

able to distinguish between write operations on the data field and on other attributes of nodes.

User-controlled locking. Normally, locking is done implicitly within the scope and control of

transactions. Collaborati~e hypertext ‘systems must support ~ompu~er protocols required for traditional

short transactions and social protocols inherent in collaborative work. User-controlled locking is used to

provide support for long updating sessions that may outlast several short transactions.
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4. Shared locking. Locks should be shared, since exclusive locking does not allow real-time monitoring. In

order to support a common view of the information space, applications may need to read locked objects to

get the latest version.

5. Fine-grained locking. Fine-grained locking enables a fine granularity of sharing between group members

in collaborative working sessions. Locking at the object-level only allows one person to operate on an

object at a time. If one group member is updating the data field of a node, object-level locking will not

allow other group members to annotate or create new attributes in the node.

6. Persistent collaboration information. If collaboration information (e.g. records of users, event

subscriptions and user-controlled locks) is only stored in the server process, clients will not be able to

recover from server crashes. Collaboration information must be stored persistently.

3. CONCURRENCY CONTROL ISSUES

This section contains a discussion of the three most important cornerstones for systems supporting collaborative

work: locking, notification control and transaction management. Following this, we briefly discuss the use of

version control as an extension to traditional concurrency control techniques.

3.1 Locking

Four of the six requirements (3,4,5,6) listed in Section 2.3 directly imply the need for locking in hyperbase systems.

Hyperbase systems must provide an additional feature not found in traditional database systems: user-controlled

locking. User-controlled locking should be shared, fine-grained and persistent.

The rationale behind user-controlled locking is the same as the rationale behind long transactions. Operations on

objects in hypertext environments (such as compiling source code or circuit layout) are often long-lived. If a

hypertext network contains large documents, a user may require anywhere from a few minutes to several days to

make updates to a single object. Variants and extensions to the following simple collaboration example will be used

throughout the paper to illustrate the need for various new concurrency control constructs. We have chosen an

authoring session since this type of collaboration requires support for both real-time and non-real-time sharing.

Two researchers, Dave and Pete, are collaborating on a paper in a hypertext authoring system. The deadline

for the paper is approaching rapidly, so they decide to work in parallel on dijj+erent parts of the paper. Dave

must finish the introduction and Pete the conclusion. Dave locks the introduction and Pete locks the

conclusion, and both start working. The update process takes several hours. Both Dave and Pete are

cautious people, so they save their documents several times during the session to avoid loss of data from

system crashes.

This scenario shows the need for combining user-controlled locking with short transactions. User-controlled locking

is used to provide support for long updating sessions that may outlast several short transactions. All operations

(such as frequent saves) on locked objects will be performed within the scope of short transactions. Since user-

controlled locking is persistent and short transactions provide traditional means of crash recovery, this type of system

can recover from both client and server crashes. The only loss in case of system failure is the unsaved data in the

client applications (all systems have this problem). Thus, user-controlled locking is not an alternative to short

transactions, merely a necessary supplement. The use of user-controlled locking versus long transactions to provide

support for long duration updates will be further examined in Section 3.3.

3.1.1 Shared Locking

The basic information access metaphor in hypertext is navigation and many systems provide (graphical) browsers to

help users navigate in the hypertext network, Allowing locked objects to be read enables users to navigate through a

hypertext network containing locked objects. Exclusive locking is too restrictive in collaborative systems, since

applications need to read updated parts of objects to support real-time monitoring. Shared locking enables group

members to collaborate and makes the complete hypertext network accessible. Thus, we are only interested in

avoiding write-write conflicts, since read-write (and read-read) situations are not considered conflicts.

During the writing of the conclusion, Pete needs to read the introduction to see how Dave has de~ned a

certain term important to the paper. Dave is still working on the introduction and holds a lock on it. Since

the system supports shared locking, Pete is able to open the introduction and read the definition.
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Separation of collaboration mechanisms from security mechanisms is also very appropriate. When the user (or

group) wants to protect data from unauthorized access, a separate access control mechanism must be used. In

collaborative systems, the access control mechanism should support at least the notions of user, group and others. In

this way access can be limited to members of the project group.

3.1.2 Fine-grained Locking

Locking is a well-known way of dealing with access contentions. Experiences with EHTS show that locking at the

attribute level allows a finer grained concurrency and hence collaboration. In HyperBase [26] and Hyperform [25],

users can lock whole objects in one operation or single attributes one at a time. The fine grained locking

mechanism changes the nature of access contentions, moving the contention from the level of objects to the level of

single attributes in objects. In this way several group members can share attributes of an object instead of sharing a

network of hypertext objects with only one member operating on an object at a time. In EHTS, one member could

be updating the data field of a node, while another member adds a new attribute and yet another member creates a link

fromlto the node. Access contentions cannot be avoided, but by moving the contention to a finer grained level,

conflicts will occur less frequently.

While writing the conclusion, Pete needs to reference some of the material Dave is writing in the

introduction. Pete opens the introduction, finds the particular passage and creates a reference to it. In this

particular authoring system cross-references are implemented with a special link type. Thus, what Pete

actually did, was to create a linkfrom a node in the conclusion to a node in the introduction which has the

data field locked by Dave.

Many outstanding issues in the area of locking require further research. Queuing of lock requests in collaborative

systems must be considered. When two users try to lock the same object, only one will be granted the lock. Should

we queue the lock request of the other user? Should we provide a notification event when nodes of interest become

unlocked? Should the system provide a mechanism for negotiating about locks? An additional issue related to

locking in collaborative systems is that of killing locks. Should it be possible for a group member to take over a

lock from another member (in case he has forgotten to unlock and has gone home)?

3.1.3 Persistent Locking

If locks are only stored in the server process, clients will not be able to recover from server crashes. Such

information must be stored persistently.

Suddenly, during the collaborative writing session the server machine crashes and reboots. When the

hyperbase server is restarted, the transaction log is used to put the hyperbase in a consistent state and

information on locks are restored into the server process. Both Dave and Pete can continue their update

process exactly where they were before the server machine went down. Since only the server machine

crashed, they did not even lose the unsaved data on the client machines.

The opposite case (a client machine crashes) is also supported, since the user does not lose granted locks. When the

client application is restarted, persistent locks can be retrieved from the server.

3.2 Notification Control

Notification control allows group members to be notified of important actions on the shared network of hypertext

objects performed by other members of the group. Three of the six requirements listed in Section 2.3 are related to

event notification (1,2,6). It has been well established that a notification mechanism is necessary to support

collaboration [3,8,9,24]. Notification control should be flne-grained and persistent.

Garrett et al. [6] discuss four possible notification strategies: (1) immediate update; (2) immediate notification; (3)

passive notification and (4) no notification. Collaborative hypertext systems will typically use the first strategy

since this allows applications to provide real-time monitoring of changes to the shared hyperbase. Real-time

monitoring is a crucial part of collaboration.

In order to follow up in the conclusion on all issues mentioned in the introduction, Pete needs to follow the

progress of Dave’s work. Pete opens the introduction and gets notified that the document is locked and

hence cannot be updated by him. He keeps the document open in a window on his display. Each time

Dave pe~orrns a save operation, the window containing the introduction automatically gets updated with the

latest changes pe~ormed by Dave. In this way Pete can follow the progress of Dave’s work.
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It is important to notice that event notification should be asynchronous. Synchronous notification requires that

applications poll either the hyperbase server or the client library for event messages. This polling is very inefficient.

In asynchronous notification, client applications are interrupted when event messagesarrive. The event handler reads

the arriving message and, based on the message, performs some action. In the example, the event handler of Pete’s

application reads the updated introduction from the hyperbase and updates the window. This operation is performed

automatically and immediately.

An additional issue related to notification control is that of individual versus on/off event subscriptions. Should the

notification mechanism allow applications to only subscribe to specific events of interest or should applications

receive all (or no) events from the server? The first solution places the selection overhead with the server. For every

operation the server must check which client applications have subscribed to that specific event. The second

solution places the overhead with the application. For each incoming event, the event handler of the application

must determine if the event should trigger some action. The first solution will typically be implemented with inter-

process communication, while the second may use a broadcast protocol.

3.2.1 Fine-grained Notification

The authoring example combined with the description of EHTS illustrates four important applications of a

notification mechanism: notifying about lock, unlock, delete and write operations. In general, notification of all

operations on objects and attributes in objects should be supported. As mentioned, it is important to be able to

distinguish between operations on different attributes in an object. In order to provide real-time monitoring, the

event handler of the application must be able to distinguish between write operations on the data field and on other

attributes of nodes. Thus, fine-grained collaboration requires both fine-grained locking and fine-grained event

notification. If the locking mechanism only operates at the object level, an attribute-level event mechanism cannot

(reliably) be implemented.

3.2.2 Persistent Event Subscription

Event information should be kept persistently in the hyperbase system. The rationale behind this is the same as for

persistent locking. If the server crashes, clients will not be able to recover if event information is only stored in the

server process. If the client ,machine crashes, the server still holds event subscriptions for the client.

3.3 Transaction Management

In traditional database systems, transactions serve three distinct purposes [1]: (1) they are logical units that group

operations comprising a complete task; (2) they are atomicity units whose execution preserves the consistency of the

database; and (3) they are recovery units that ensure that either all the steps enclosed within them are executed or

none. This section will discuss three issues important to collaborative hypertext systems: short transactions, long

transactions and data model extensibility in hyperbase systems as an alternative to short transactions.

3.3.1 Short Transactions

The authoring example establishes the need for short transactions in collaborative hypertext systems. In database

systems, locking is typically done implicitly within the scope and control of short transactions. Locks are used to

avoid both read-write and write-write conflicts on shared data by multiple concurrently accessing users (processes).

Data is locked in different granularities and in different modes to prevent other users from performing conflicting

operations on the same set of data.

Several hyperbase systems are built on top of existing database systems. A typical problem with this approach is

that database systems do not support user-controlled locking and often provide transaction management that is

inadequate for collaborative systems. HB2 [14], for instance, is built on top of an extended relational database that

currently only provides locking implicitly within short transactions at the level of classes. Obviously, this locking

granularity significantly reduces the level of concurrency (and hence collaboration) in the system, compromising

performance in collaborative settings,

3.3.2 Long Transactions

Long transactions have been identified as crucial in hyperbase and other database systems for CAD, CASE and
software development applications [1,5,9, 11,19]. The rationale behind long transactions is that operations on
objects in hypertext environments are often long-lived. User-controlled locking combined with short transactions is

in many respects a better solution to long updating sessions than long transactions. The major problem with long
transactions is that they prevent other users from gaining access to resources for an extended period of time. This

causes serious performance problems if these transactions are allowed to lock resources until they commit [1]. Other
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transactions (long or short) wanting to accessthe same resources are forced to wait, even though the long transaction

might have finished using the resources. Also, there is a problem with aborting and rolling back long transactions

since much time will be spent (lost) undoing and redoing the long transaction. The differences between long

transactions and user-controlled locking are three-fold

1. The logical, atomici~ and recovery units are much smaller in user-controlled locking. Therefore, sharing

and exchange of information can take place at much smaller intervals.

2. User-controlled locking does not completely prevent other users from getting to resources over long

periods of time. User-controlled locking only avoids write-write conflicts, not read-write conflicts, which

are also avoided in long databasetransactions.

3. In user-controlled locking, users or applications must explicitly lock needed resources. Locking is done

implicitly in long transactions, sometimes at a granularityy inadequate for multiuser and collaborative

settings.

In a system designed for collaboration, we want the users to be aware of the multiuser situation. This is not

possible with long transactions because of the atomicity feature of these transactions. Long transactions do not

support sharing within long updating sessions and hence real-time monitoring, which is crucial to collaboration.

User-controlled locking combined with short transactions preserves all three transaction purposes as well as

providing support for sharing.

3.3.3 Extensibility as an Alternative to Short Transactions

Experiences with Hyperform [25] indicate that data model extensibility in hyperbase systems might provide an

alternative to short transactions. Instead of grouping operations at the application level with a transaction

mechanism, it is possible to group operations at the hyperbase level with the object-oriented data modeling facility.

Thus, atomic operations involving more than one Hyperform operation can also be supported by moving the

operation from the application to the hyperbase. This solution actually speeds the operation since internal

operations are much faster than operations over the network. Another advantage of using extensibility instead of

short transactions is that users (applications) can decide to only receive one event notifying of the complex operation

instead of several events notifying about a series of basic operations (leaving it up to the user to interpret what

complex operation was performed). Extensibility y in Hyperform directly deals with the grouping and atomicity

aspects of transactions. Hyperform can also easily be extended to deal with the recovery aspect (e.g., using a log).

3.4 Version Control as an Extension to Concurrency Control

The HB3 project at the HRL is exploring the use of version control as an extension to concurrency control in

hyperbase systems (personal communication). Their impression is that effective solutions to multiuser concurrency

control inevitably involve versioning. We briefly describe how version control can assist in managing concurrent

accessto shared objects.

Each object is considered to be a collection of different versions. Each version represents the state of the object at

some time in the history of its development. The versions are usually stored in the form of a compact representation

that allows the full reconstruction of any version. Once the original version of the object has been created, it

becomes immutable. A new version can be created after explicitly reserving the object. This reservation makes a

“copy” of the original version (or the latest version thereafter) and gives the owner exclusive access to the copy to

modify and later deposit as a new version. Other users needing access to the same object must either wait until the
new version is deposited or reserve another version. Thus, two or more users can modify the same object only by
working on two parallel versions, creating branches in the version history. Branching ensures write serializability

by guaranteeing that only one writer per version of an object exists. The result of consecutive reserves, deposits and

branches is a version tree that records the full history of development of the object. These branches may be merged

at some point in time to reflect the updates performed by all users. The time interval between merges is a parameter

to the version control mechanism. Synchronous collaborative systems require merges at short intervals of time (if

modification has occurred), while asynchronous collaborative systems require merges at longer intervals. When

branches of the version tree are merged (for example, by merging the latest version of each branch into one version),

the tree becomes a directed acyclic graph.
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To summarize, version control provides the following extensions to concurrency control:

1. The existence of multiple versions of objects eliminates the need for write-write synchronization since

each write operation occurs in the context of one version and thus cannot conflict with other operations.

2. A version control mechanism preserves the object identity of different versions of collaborative artifacts.

3. A version control mechanism allows several long updating sessions on the same object to run in parallel

with the restriction that different branches of the object are used. These branches must be merged at some

point in time to reflect the updates performed by all users.

4. The integrity of individual contributions to an object is maintained since the complete history of the

object is recorded by the version control mechanism.

4. EXISTING HYPERBASE SYSTEMS

Table 3 shows how eight major hyperbase systems fare with respect to the basic requirements for concurrency

control put forth in this paper. Four of the eight systems directly provide features necessary for supporting

collaborative work. Aalborg University’s HyperBase [26] provides a minimal set of concurrency control features but

lacks support for transactions and persistent collaboration information. Although it has proven valuable as a

hyperbase system for EHTS [23], these missing features make EHTS vulnerable to many kinds of system failures.

CHS [17] fulfills all six requirements and has been successfully used to support SEPIA [20]. Since CHS only

provides locking and notification at the object-level, SEPIA is limited to object-level sharing. HB2 [14] falls short

on the requirement for shared locking, and (like CHS) only provides support for object-level sharing. HB3 (the

successor of HB2) and CHS (in cooperation with its version server CoVer [7]) are envisioned to solve many

concurrency control issues through their version control mechanisms. Hyperform [25] directly addresses all

requirements except support for persistent collaboration information. Due to Hyperform’s extensible nature, the

missing feature can easily be incorporated in the system.

We have not seen the first successful commercial hyperbase system. Consequently, it is tempting to use existing

database systems to manage storage in hypertext systems, and many have chosen this solution, both as a foundation

for development of hyperbase systems and to directly manage storage in hypertext systems. The advantage of having

a full-featured database system handle physical storage is that many database features can be inherited directly from

the underlying database system. The danger is that the services provided in the underlying database system are

usually too specialized or restricted to support the given task, thus requiring inelegant and inefficient workarounds.

Existing hyperbase systems are useful vehicles for examining a range of architectural, data storage and data sharing

issues.

5. CONCLUSION

We have identified and discussed six basic requirements for concurrency control that distinguish collaborative

hypertext systems from multiuser hypertext systems. The requirements can be grouped into two broad categories.

Hyperbases must provide support for event notification and user-controlled locking. Event subscription should be

fine-grained and persistent. User-controlled locking should be shared, fine-grained and persistent. The requirements

were discussed in the light of a simple authoring example since authoring systems require support for both non-real-

time and real-time collaboration. Real-time collaborative systems require fast response and notification times in

order to support a common view of the information space and in some caseseven finer-grained (paragraph, sentence,

word or letter) locking and notification to provide support for group editing sessions [3].

To be useful for collaborative work, hypertext transactions should provide for long duration update sessions and

sharing and exchange of information within these sessions. We suggest a move from systems-oriented towards user-

oriented’distribution control in collaborative settings. This move requires adjustments-and extensions to traditional

concurrency control techniques as discussed throughout the paper. Collaborative systems require a mixture of system

and user distribution control. Distribution issues such as geographical location, consistency and reliability are best

left to the system, while the user should have some control over concurrency and sharing. Applications should be

able to acquire necessary locks based on user actions such as moving from browse to edit mode in a hypertext
authoring system (for instance, by hitting a key in a window on the display). Applications should also be able to

share data within long updating sessions. In this context, we have argued for the use of user-controlled locking in

combination with short transactions, since long transactions do not provide enough support for sharing and exchange

of information within sessions.
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Table 3. Selected Hyperbase System Features.

Hyperion Hyperform
[27] [22,25]

GMD-IPSI’S
HyperBase

[18]

HB 1

[15,16]

HB2
[14]

CHS

[17]

33
NO YES

not applicable YES

User-controlled
Locking NO YES

(single user)

NONO YES YES

Shared

Locking not applicable YES not applicable not applicable NO YES

Locking

Granukuity not applicable Attribute not applicable not applicable Obiect Object

Persistent

Locking not applicable NO not applicable not applicable YES YES

33
NO YES

not applicable Attribute

Notification

Control I Limited I YES

(single user)

NONO YES YES

Notification

Granularity Inot applicable I Attribute not applicable not applicable Object Object

Notification

Persistency not applicable NO

1 1

not applicable YES YESnot appbcable

Transaction

Management YES NO

(singleouser)

YES YES YES

Centralized I Centralized

Client-Server Client-Sewer ISystem Centralized Centralized

Architecture Client-Server Client-Server

Centralized

Client-Sewer

Centralized

Client-Server

Centralized

Client-Semer

Centralized

Client-Server

Storage

Facility I File System I FileSystem

Extended

Relational DB

Nested

Relational DB File System IRelational DB Semantic DB Relational DB

(p rowded m

COVer)

NO

(prowded In

HB3)

NO

Version

Control Nodes Nodes NO NO NO I Objects I

Data model

Extensibihty NO NO NO NO NO IYESINO NO

Note: Except for the HAM, the information in this table was verified by the developers of each system.
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