
CONCURRENCY CONTROL IN
TRUSTED DATABASE MANAGEMENT SYSTEMS:

A SURVEY

Bhavani Thuraisingham and Hai-Ping Ko

The MITRE Corporation
Burlington Road, Bedford, MA 01730

A B S T R A C T

Recently several algorithms have been proposed for
concurrency control in a Trusted Database Management

System (TDBMS). The various research efforts are examining

the concurrency control algorithms developed for DBMSs and
adapting them for a multilevel environment. This paper

provides a survey of the concurrency control algorithms for a

TDBMS and discusses future directions.

1. I N T R O D U C T I O N

A transaction is normally considered as a program unit
that must be executed in its entirety or not executed at all.

The module of a database management system (DBMS) that is
responsible for transaction execution is a transaction manager.

An objective in most database management systems is to

execute multiple transactions concurrently. Generally,

transactions could interfere with one another and, as a result,
could cause the database to be inconsistent. The techniques

that have been developed to ensure the consistency of a

database in the midst of concurrent transaction execution are
called concurrency control techniques [BERN87].

In a multi level environment, the users are assigned
different security levels, and they access a database consisting
of data at different sensitivity levels. The DBMS must ensure
that users only obtain information at or below their security
level. Such a DBMS is called a trusted DBMS (TDBMS). 1
When transactions are executed in a multilevel environment in

addition to consistency, it must be ensured that the access
control policy enforced by the system is not violated and
transactions executing on behalf of higher level users do not

interfere with those executing at a lower level. For example,
if an Unclassified transaction wants to update an Unclassified
data object when a Secret transaction is already reading that
same object, and if the Unclassified transaction has to wait
until the Secret transaction completes the read operation, then
there is undesirable interference. The objective of concurrency
control algorithms will be to ensure security as well as

consistency.

While transaction management techniques are relatively
mature for traditional database applications (such as banking

and business data processing), it is only recently that
concurrency control techniques are being examined for a

mult i level database environment. In other words, the
developments in multilevel database concurrency control are

more than a decade behind the developments in database
concurrency control. Furthermore, during recent years,

database concurrency control has progressed beyond traditional
applications and techniques are now being developed for
advanced appl ica t ions . Such appl ica t ions i nvo lve
heterogeneous environments, real-t ime processing, long

durat ion t ransact ions , and co l l abora t ive comput ing
environments. Furthermore, theory of database concurrency

control is sufficiently developed for traditional database
applications. Therefore , much needs to be done on

concurrency control for multilevel database applications.

Recently several algorithms have been proposed for
concurrency control in a TDBMS. The various research efforts

are examining the concurrency control algorithms developed
for DBMSs and adapting them for a multilevel environment.
Due to the influx of these algorithms, we feel that it is
necessary to group these algorithms so that one gets a better
perspective of the current research on concurrency control in
TDBMSs. This will then enable us to determine the research
directions based on the current trends on concurrency control in
DBMSs. In this paper we survey the various concurrency

control algorithms in TDBMSs and discuss their essential
characteristics. We have also determined the areas that need
further work.

The organization of this paper is as follows. In section 2
we provide a brief overview of the current trends on

concurrency control in DBMSs. This is necessary if one is to
determine the directions for concurrency control in TDBMSs.

In section 3 we describe in detail our survey of concurrency
control in TDBMSs. Future directions are given in section 4.

2. A B R I E F O V E R V I E W C O N C U R R E N C Y
C O N T R O L IN DBMSs

In the literature, TDBMSs have sometimes been referred to as
Multilevel Secure Database Management Systems
(MLS/DBMSs).

Transaction management and concurrency control have

been a subject of much research since the mid-1970s. The
early work focussed on developing algorithms for traditional

52 SIGMOD RECORD, Vol. 22, No. 4, December 1993

database applications. These applications are mainly in

business processing and the DBMS is based on the relational
model. The goal is to maintain strict consistency when

multiple transactions execute concurrently [BERN87].

While the algorithms were being incorporated into the

numerous prototypes and products, research was also being
carried out on developing (1) algorithms for handling a

distributed environment and (2) a theory of database
concurrency control. Distributed concurrency control
algorithms focussed on ensuring the consistency of a

distributed database when multiple transactions executed
concurrently at different sites [BERN81, CERI84]. These

algorithms also included the case where the data objects were
replicated (either totally or partially) at different sites. In

addition, issues on handling site and network failures were also
investigated. The distributed DBMS (DDBMS) was based on

the relational model, and it was assumed that the environment
was homogeneous. In developing a theory of database

concurrency control, the idea was to formulate conditions
which will test whether a particular concurrency control
algorithm will guarantee consistency of the database in the
midst of multiple updates [PAPA86]. In addition to these

developments, issues on data replication as well as weaker
notions of consistency requirements were investigated.

Since the mid-1980s, much research is being carried out
for advanced database applications. Algorithms for DBMSs
based on nonrelational data models (such as object-oriented data

models) [KIM88] as well as algorithms for heterogeneous and
possibly autonomous environments are being investigated

[SHET90]. In addition, special algorithms for handling nested
transactions [MOSS85], cooperative computing environments

[BARG91] as well as real-time environments [HUAN91] are
being developed.

3. C O N C U R R E N C Y C O N T R O L A L G O R I T H M S
IN T R U S T E D D A T A B A S E M A N A G E M E N T
S Y S T E M S

3 . 1 O V E R V I E W

As stated in section 1, if transactions are executed serially,
then there will be a performance bottleneck. Therefore,

transactions usually execute concurrently as specified by a
schedule. In a multi level environment, in addition to

consistency, it has to be ensured that high level transactions
cannot affect the lower level ones at the local as well as the

global levels. Concurrency control techniques must ensure
that consistency as well as security has to be preserved. It has

been shown that standard concurrency control techniques
cannot be used directly for a TDBMS as they cause covert
channels. For example, in the locking approach to providing
concurrency control there is a potential for covert channels if
subjects at different security levels access the same object

concurrently. For example, suppose a Secret transaction
requests read access to an Unclassified data object Q while an
Unclassified transaction requests either read or write access to

Q. If both transactions want only to read Q, then they can

both get shared locks for Q at the same time. That is, there is

no possibility for a channel. However, i f the Unclassified
transaction wants to write, then there is a possibility for a
channel. For example, a Secret transaction can issue a

sequence of requests of the form:

(get read lock Q, release read lock Q),
(get read lock Q, release read lock Q)

The Unclassified transaction could issue requests to write into
Q. If the Secret transaction already has a read lock, then the

request issued by the Unclassified transaction will be denied.
The Unclassified transaction could detect the pattern of the

denials and acceptances that it gets by requesting a series of
write requests to the object Q. If both transactions collude,

then Secret information can be covertly passed to the
Unclassified transaction. A similar problem occurs when a
Secret transaction requests read or write access to a Secret

object Q while an Unclassified transaction requests write access

to Q.

As in the case of locking technique, it has been shown

that other concurrency control techniques such as
timestamping also cannot be used for a TDBMS without

modifications. As a result, some research efforts are under way
on developing appropriate concurrency control algorithms for a

TDBMS. We have classified the algorithms developed into
five groups .2 The first group consists of algorithms which are

based on muitiversion schedulers. The second group consists
of algorithms for replicated architectures. The third group

consists of algorithms for distributed database management
systems. The fourth group consists of algorithms for object-

oriented database systems. The remaining algorithms have
been grouped into the fifth category. 3 Algorithms will be

Some of the algorithms assume a security policy where a
transaction at level L reads an object at level L or below and
writes into an object at level L or above. Some other
algorithms assume a policy where a transaction at level L
reads an object at level L or below and writes into an
object at level L. The discussion of the algorithms given in
this section is brief. For each algorithm we have given
one or more references. Details of the algorithms can be
obtained from the references cited.

Judy Froscher [FROS92], has suggested to us an alternate
approach for characterizing the secure concurrency control
algorithms based on the underlying architectures. The
architectures include those proposed by the Air Force Summer
Study such as the kernelized architecture, replicated
architecture, and integrity lock architecture. It has also been
pointed to us that an investigation of the concurrency control
issues for kernelized and replicated architectures is being
carried out by Froseher and Kang at NRL. Another approach
to characterize the algorithms could depend on whether
transactions are single-level or multilevel. We feel that more
research needs to be done on the fundamental issues of

SIGMOD RECORD, Vol. 22, No. 4, December 1993 53

selected from each of these categories and discussed in the
ensuing sections 3.2 to 3.6. 4

3 .2 MULTIVERSION ALGORITHMS

To our knowledge, the earliest published work on
multilevel database concurrency control is that of Keefe, Tsai,
and Srivastava [KEEF89]. Further work was carried out by
Keefe and Tsai [KEEF90]. The algorithm developed was based
on multiversion schedulers. Following their work, Maimone
and Greenberg described their version of multiversion
scheduling algorithm in [MAIM90]. In this section, we first
describe Keefe and Tsai's multiversion scheduling algorithms
as given in [KEEF90] and then discuss Maimone and
Greenberg's multiversion algorithms described in [MAIM90].

Keefe and Tsai's Multiversion Scheduler

The security policy proposed is single level subjects with
read at-or-below-your level and write-at-or-above your level.
The scheduler creates a serial order of transactions for each data
object. Initially, the serial ordering is empty. When a
transaction T arrives, it is placed in the order in such a way
that it precedes all transactions S such that subject-level(S) <
subject-level(r) where the subject-level of a transaction is the
level at which the transaction executes. T is given an order-
stamp depending on the position of T in the serial order.

Each data object x has read and write order-stamps. The
value of the read order-stamp of an object is the greatest order-
stamp of any transaction which has read the object. The value
of the write order-stamp of an object is the greatest order-stamp
of any transaction that has written into the object. Whenever a
transaction writes into an object, a new version of the object is
created. The version of an object that is appropriate for a
transaction T is the one with the greatest write order-stamp
which is still less than the order-stamp of T.

Whenever a transaction T requests a read operation on
object O and the operation is not the last step of the
transaction, it is given the appropriate version of O.
Whenever a transaction T requests a write operation on O and
the operation is not the last step of the transaction, it is given
the appropriate version of O if the order-stamp of T is greater
than the read order-stamp of the version. The last operation of
a transaction T proceeds only if for each transaction P, if P has
written something that T has read, then P is already
committed.

concurrency control algorithms before a successful
characterization can be obtained.

Since transaction recovery is not addressed in this paper, we
do not discuss recovery in multilevel secure database systems.
Recently, some work has been done on recovery management
in such systems (see, for example, [KANGI92] for a
discussion).

Keefe and Tsai prove that their algorithm is secure with
respect to resource contention between transactions at different
levels. That is, the algorithm does not cause covert channels
due to resource contention.

Maimone and Greenberg's Multiversion Schedulers

Maimone and Oreenberg [MAIM90] have designed two
algorithms based on the multiversion timestamp ordering
technique. One approach was implemented for Trusted Oracle,
which is a hybrid approach between locking and timestamping
techniques. The second algorithm is a modification of Keefe
and Tsai's muitiversion scheduler. We briefly discuss the two
techniques.

In the Trusted Oracle scheduler, each data object has a
wfitestamp. The writestamp is updated whenever a transaction
which writes the value commits. Since it is assumed that a
subject does not write up, any data object that is updated will
have the security level of the transaction which updated it.
Also, two-phase locking is used to ensure that at most one
uncommitted version of each data object exists at any instant.
For a read only transaction T, a timestamp is obtained when it
begins execution. T can then read any data object provided the
level of T dominates the level of the object. Also, the
appropriate version of the object to read is the one with the
highest write-stamp, which is lower than the timestamp of T.
For read/write transactions, two-phase locking is used to
prevent conflicts between read/write and write/write operations.

Maimone and Greenberg state that Keefe and Tsai's
algorithm requires a trusted scheduler and then propose a
modified version of the algorithm which can be implemented
by single level untrusted schedulers. They describe a method
of assigning timestamps across security levels, which does not
cause any information leakage from a high to low level. A
scheduler operating at level L assigns timestamps to
transactions operating at level L. The algorithm presented is
somewhat similar to Keefe and Tsai's algorithm except that it
is more conservative and could use older values than it is
necessary.

3 .3 REPLICATED A R C H I T E C T U R E

Shortly after Keefe and Tsai's work on multiversion
concurrency control algorithm was published, Jajodia and
Kogan focussed on concurrency control algorithms for
replicated architecture [JAJO90]. Following Jajodia and
Kogan's work, a flurry of activities was reported on
concurrency control for the replicated architecture. Notable
among these efforts are the concurrency control algorithms
developed for the SINTRA project. In this section, we
describe some of the concurrency control algorithms described
for the replicated architecture.

54 SIGMOD RECORD, Vol. 22, No. 4, December 1993

Ja jod ia and Kogan ' s Algor i thm for Repl icated
Databases

Jajodia and Kogan [JAJO90] proposed the first algorithm
for the replicated distributed architecture. In this architecture
(which was originally proposed by the Air Force Summer
Study [AFSB83]), a trusted front-end is connected to multiple
untrusted back-end machines. All communication between the
back-end machines is via the front-end. Each back-end
machine operates at a single level. A back-end machine
operating at level L manages the database consisting of data up
to and including level L. That is, the data at level L is
replicated in the database at level L* if L* dominates L.

The algorithm proposed is as follows: A transaction at
level L is sent by the front-end to the back-end machine
operating at level L. The transaction executing in this back-
end machine is called the parent transaction. After the parent
transaction commits, the transaction is sent to the back-end
machines operating at level L* where L* dominates L. These
transactions are called update projections. The update
projections are executed according to a specific protocol so that
correctness of concurrent transactions are guaranteed. It is
assumed that the scheduler is trusted.

SINTRA Project

SINTRA (Secure INformation Through Replicated
Architecture) project carried out at the Naval Research
Laboratory has designed several algorithms for the replicated
architecture. We have selected a subset of the algorithms
proposed by this project and discuss the essential points. The
algorithms are: (1) Costich's algorithm [COST91], (2) the
algorithm by McDermott et al [MCDE91], (4) Costich and
McDermott's algorithm [COST92], and the algorithm by Kang
et al [KANGM92].

In [COST91], a scheduling protocol for replicated
architecture is proposed which is based on entirely untrusted
processes. It is argued that while the algorithm proposed in
[JAJO90] fails if the security levels are linearly ordered, the
one proposed in [COST91] handles security levels which are
not linearly ordered. One-copy serializability is used for
correcmess criteda.

In [MCDE91], an algorithm for the replicated architecture
is proposed which uses replicated transactions and a set of
queues organized according to security classes. It is argued that
a new notion of correctness is required for such an
environment. Subsequently, a new notion of correctness is
proposed, and it is shown that the algorithm is correct.

In [COST92], an algorithm for the replicated architecture
is given which assumes that transactions are multilevel. 5

These are transactions that operate at different security classes.
A transaction model, which incorporates the notion of
multilevel replicated data history, is given for the replicated
architecture, and a protocol is described for executing the
primary transaction and update projections in such a way that
the resulting replicated data history is one copy serializable.

In [KANGM92], it is stated that the previous algorithms,
such as the ones given in [JAJO90, COST91, and MCDE91],
assume that the untrusted backend databases use conservative
scheduling in order to preserve the scheduled ordering of
conflicting updates. Since the back-end machines are off-the-
shelf components, they may not use such a scheduling
protocol. It is also stated in [KANG92] that the previous
approaches use the conventional basic operations, read and
write to describe transactions. It is argued that the traditional
transaction model is not appropriate for the replicated
architecture, and a new transaction model is proposed.
Subsequently, different algorithms which use untrusted
transaction managers and which overcome some of the
problems associated with the previous approaches are
described.

3 .4 DISTRIBUTED DATABASE MANAGEMENT
S Y S TEMS

While various concurrency control algorithms were being
proposed based on multiversion scheduling and for the
replicated architecture, MITRE was conducting research and
development activities on concurrency control for a trusted
distributed database environment (TDDBMS) [THUR90].
Around the same time, SRI also conducted research on
distributed database concurrency control [GREE91]. In this
section, we discuss both MITRE's work and SRI's effort.

M I T R E ' s R e s e a r c h

MITRE conducted some research on concurrency control
algorithms for a trusted distributed database management
system. The original version is published in [THUR89] and
refined versions of the algorithms are given in [THUR90a].
The algorithms have since been simulated and performance
results are discussed in [RUBI92a, RUBI92b]. Extensions to a
limited heterogeneous environment where the nodes handle
different accreditation ranges are discussed in [THUR92a]. The
algorithms that have been designed are based on locking,
timestamping, and validation. All of the algorithms utilize

Note that multilevel transactions discussed here are
transactions that execute at multiple security levels. Note
that multilevel transactions have been used to denote
something different in nonmultilevel DBMSs. For a
discussion we refer to section 1.6.3.

SIGMOD RECORD, Vol. 22, No. 4, December 1993 55

two copies of a data item. Here we discuss the essential
points of just the locking algorithm. 6

For each data object classified at level L, two copies of it
are maintained at level L; one copy is for all transactions
operating at the level L, and the other copy is for all
transactions operating at a level which strictly dominates the
level L. The transactions operating at a level L may read from
and write into the copy assigned to them. The transactions
operating at a level which strictly dominates the level L only
read from the copy assigned to them. For example, if the data
object X is Unclassified, then there are two copies of X, X1,
and X2 at the Unclassified level. Unclassified transactions can
read from and write into the object X1. Confidential, Secret,
and TopSecret transactions read from the copy X2. Since X2
is used for read-only purposes, we assume that there are no
read-locks on X2. However, if an Unclassified transaction has
a write-lock on X1 when a higher level transaction requests a
read operation on X2, then the higher level transaction must
wait until the write operation is completed. As soon as the
write operation is committed by the Unclassified transaction, a
copy of the data object, say X2*, is created immediately.
X2*Elbecomes the current version to be used by the higher
level transactions. That is, after an Unclassified transaction
requests the write lock for X1, any read request by a higher
level transaction would be directed to X2*. X2Dmay be deleted
later by a garbage collector. To ensure consistency, X2 should
be deleted only if there are no read requests queued for it. Since
we assume that X2 is an Unclassified object, the process
which deletes X2 must be trusted.

The algorithm is extended to a distributed environment
using distributed two-phase locking and two-phase commit
protocol.

SRI's Research

SRI did some early research on concurrency control for a
trusted distributed database management system [DOWN89].
Further work is reported in [GREE91]. We discuss some of
the essential points in SRI's approach as given in [DOWN89].

In [DOWN89], locking, timestamping, and optimistic
concurrency control techniques are examined, and it is
concluded that optimistic concurrency control technique could
provide sefializability under the assumptions of the Seaview
architecture [LUNT88]. The algorithm works as follows:
Suppose Ti is a higher level transaction in the validation
stage. If there is a lower level transaction Tj which has a
smaller transaction number than Ti and Ti starts its read phase
before Tj completes its write phase and the writeset of Tj has a

nonempty intersection with the readset of Ti, then Tj is rolled
back and started again; otherwise Tj is committed.

As stated in [DOWN89], a problem with the proposed
approach is that there is a possible starvation with higher level
transactions. If transactions are continuously rolled back, then
it is suggested that one possibility would be to violate
serializability and let the transactions commit despite
conflicts .7

3 .5 O B J E C T - O R I E N T E D
MANAGEMENT SYSTEMS

D A T A B A S E

The only effort reported on concurrency control for secure
object-oriented database systems is that of Thuraisingham
[THUR90b]. In this work, the concurrency control technique
proposed by Kim et al [KIM88] in the ORION model is
extended to a multilevel environment. The algorithm utilizes
the two-copy approach discussed in [THUR90a] but considers
the full range of locks discussed in [KIM88].

Due to the complexity of the objects present in an object-
oriented environment, several locking modes have been defined
in [KIM88]. These locks are S, X, IS, IX, SIX, ISO, IXO,
SIXO, ISOS, IXOS, and SIXOS. In [KIM88], a
compatibility matrix for granularity locking and composite
object locking is described. This matrix illustrates whether a
lock P1 on object O can be granted to a subject TI when a
subject T2 has a lock P2 on object O. In [THUR90b], the
various lock modes described in [KIM88] have been examined,
and the security impact is discussed. In this approach, there
are two copies of each data object (class, instance, etc.,) is
maintained, one for subjects at the same level and one for
subjects at higher levels. The compatibility matrix described
in [KIM88] is used on a per security level basis. That is, the
matrix is used to determine whether a lock P1 on object O can
be granted to a subject T1 at level L when a subject T2 at level
L has a lock P2 on object O. Modifications to this matrix are
described in [THUR90b] when T1 and T2 are operating at
different security levels.

3 .6 OTHER ALGORITHMS

Notable among the other algorithms are LDV's approach
to database consistency [OBRI90], the single-version
fimestamping algorithm proposed by Ammann and Jajodia
[AMMA91], algorithm based on event count and sequences
proposed by McCollum and Notargiacomo [MCCO91], two-
snapshot algorithm proposed by Ammann et al [AMMA92],
correctness criteria proposed by Jajodia and Atluri [JAJO92],

MITRE's work on concurrency control for a TDDBMS
discussed in [RUBI92a, RUBI92b] was a consequence to the
initial work on query processing for a TDDBMS reported in
[RUBI90].

In [RUBI92a], an optimistic concurrency control algorithm
is proposed which maintain two copies of each data item. It
is informally argued that the proposed algorithm is secure,
serializable, and there is no starvation.

56 SIGMOD RECORD, Vol. 22, No. 4, December 1993

orange locking algorithm proposed by McDermott and Jajodia
[MCDE92], and an algorithm for multilevel transactions
proposed by Costich and Jajodia [COST92b]. We briefly
discuss these efforts.

In [OBRI90], Jajodia and Kogan's concurrency control
algorithm is adapted to a kernelized DBMS architecture. It is
the architecture which is used by the Lock Data Views system
[STAC90]. In particular, a consistency policy for a trusted
DBMS is given in [OBRI90].

Amman and Jajodia [AMMA91] have proposed a
timestamp ordering algorithm which uses just a single copy.
In this algorithm, if a lower level transaction requests a write
on data object when a higher level transaction is reading the
object, then the higher level transaction is aborted and priority
is given to the lower level transaction.

McCollum and Notargiacomo [MCCO91] have proposed
an algorithm for a distributed architecture based on the trusted
front-end and untrusted back-end approach. The algorithm can
handle no replication, partial replication, or even total
replication. It extends the event count and sequencers
algorithm described in [REED79] to a multilevel environment.

Ammann et al [AMMA92] have proposed an algorithm
called the two-snapshot algorithm. In some ways, this
algorithm is similar to the two-copy algorithm proposed in
[THUR90a]. In this algorithm, two snapshots of the database
are maintained at each security level. There is also a full
working database at each security level. High level transaction
access snapshots of low level data. As stated in [AMMA92],
periodically new snapshots are taken at specified security levels
and high level transactions are methodically given access to the
new snapshots.

Jajodia and Atluri [JAJO92] propose three different
notions of serializability which are alternatives to one-copy
serializability. They argue that one-copy serializability might
be too restrictive for trusted database systems and hence, the
need for alternate notions of serializability.

McDermott and Jajodia have proposed concurrency control
algorithms called the orange-locking algorithms [MCDE92].
It is stated that these algorithms do not use multiple versions
and yet provide serializable schedules without introducing
covert channels. The basic idea is to change standard locks to
orange-locks when certain situations occur.

Costich and Jajodia [COST92b] have proposed an
algorithm for multilevel transactions. It is stated that most of
the previous approaches assume that transactions operate at a
single level and that in certain cases, a transaction may have to
operate at multiple security levels. It is also shown that the
proposed algorithms for multilevel transactions is one-copy
serializable. While the algorithms for multilevel transactions

discussed in [COST92a] focussed mainly on the replicated
architecture and for a limited class of transactions, [COST92b]
considers a larger class of transactions as well as architectures.

4. DIRECTIONS FOR FURTHER RESEARCH

Multilevel Database Concurrency Control is following
database concurrency control fairly closely. Various
algorithms have been proposed, and it has been argued
informally that the algorithms are sefializable and secure. As
pointed out to us by Froscher [FROS92], research recently
began on investigating concurrency control issues which are
specific to the approaches used to design a TDBMS. These
approaches include those based on the replicated and kernelized
architectures.

However, before one can guarantee serializability and
security of the algorithms, a theory of multilevel database
concurrency control needs to be developed. Such a theory will
formulate conditions for checking sefializability and security of
the various algorithms proposed. Therefore, we believe that
developing such a theory is essential if useful TDBMSs with
higher assurance are to be developed.

Once it can be ensured that an algorithm is serializable and
secure, then the next question is the selection of an efficient
algorithm. We envision that performance will be a major
consideration in such a selection. Therefore, analytical as well
as simulation studies need to be carried out to determine the
performance of the various algorithms proposed. The work
carried out at MITRE and reported in [RUBI92a] is just the
first step towards such a study.

Finally, while research should continue on designing
secure concurrency algorithms for traditional multilevel
database applications (such as investigating concurrency
control issues for various architectures, extending nested
transactions for a multilevel environment, proposing
algorithms for multilevel transactions, and processing integrity
and security constraints during transaction execution in a
multilevel environment), research should also begin on
concurrency control for advanced multilevel database
applications. In particular, the security impact on
heterogeneity, real-time processing, long-duration transactions,
and cooperative computing environments, need to be
determined. A preliminary investigation of research on
transaction management for some of the new generation
applications is given in [THUR92b,THUR92c, DEMU92].

ACKNOWLEDGMENT: We gratefully acknowledge
Rome Laboratory for sponsoring our work on concurrency
control in TDBMSs.

SIGMOD RECORD, Vol. 22, No. 4, December 1993 57

LIST OF REFERENCES

[AFSB83] Air Force Studies Board, 1983, Committee on
Multilevel Data Management Security, Multilevel Data
Management Security, National Academy Press.

[AMMA91] Ammann, P., and S. Jajodia, 1991, "A
Timestamp Ordering Algorithm for Secure Single-Version
Multilevel Databases," Proceedings of the 5th IFIP Working
Conference in Database Security, Shepherdstown, West
Virginia.

[AMMA92] Ammann, P. et ai, 1992, A Two Snapshot
Algorithm for Concurrency Control in Multilevel Secure
Databases," Proceedings of the IEEE Symposium of Security
and Privacy, Oakland, California.

[BARG91] Bargouti, N., and G. Kaser, 1991, "Concurrency
Control in Advanced Database Applications," A C M
Computing Surveys, Vol. 23, #3.

[BERN81] Bernstein, P., and N. Goodman, 1981,
"Concurrency Control in Distributed Database Systems,"
ACM Computing Surveys, Vol. 13, #2.

[BERN87] Bernstein, P. A., V. Hadzilacos, and Goodman, N.,
1987, Concurrency Control and Recovery in Database
Systems, Addison-Wesley Publishing Company.

[CELL88] Cellary, W., E. Gelenbe, and T. Morzy, 1988,
Concurrency Control in Distributed Database Systems, North
Holland, Amsterdam.

[CERI84] Ced, S., and G. Pelagatti, 1984, Distributed
Databases, Principles and Systems, McGraw-Hill Book
Company, NY.

[COST91] Costich, O., 1991, "Transaction Processing Using
an Untrusted Scheduler in a Multilevel Database with
Replicated Architecture," Proceedings of the 5th IFIP Working
Conference in Database Security, Shepherdstown, West
Virginia.

[COST92a] Costich, O., and J. McDermott, 1992, "A
Multilevel Transaction Problem for Multilevel Secure
Database Systems and Its Solution for the Replicated
Architecture," Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA.

[COST92b] Costich, O., and S. Jajodia, 1992, "Maintaining
Multilevel Transaction Atomicity in MLS Database Systems
with Kernelized Architecture," Proceedings of the 6th IFIP
Working Conference in Database Security, Vancouver, British
Columbia.

[DEMU92] Demurjian, S., T.C. Ting, and B. Thuraisingham,
September 1992, "Security for Collaborative Computing
Environments," to be submitted for publication.

[DENN87] Denning, D. E., et al, April 1987, "A Multilevel
Relational Data Model," Proceedings of the IEEE Symposium
on Security and Privacy, Oakland, CA.

[DOWN89] Down, A., et al, 1989, "Issues in Distributed
Database Security," Proceedings of the 5th Computer Security
Applications Conference, Tucson, AZ.

[FROS92] Froscher, J., September 1992, Private
Communication.

[GREE91] Greenberg, I., 1991, Distributed Database Integrity,
Final Report A002, SRI International, Menlo Park CA.

[HUAN91] Huang, J., 1991, Real-time Transaction
Processing: Design, Implementation, and Performance
Evaluation, Ph.D. Thesis, University of Massachusetts.

[JAJO90] Jajedia, S., and B. Kogan, 1990, "Transaction
Processing in Multilevel Secure Databases Using the
Replicated Architecture,* P r O n g s of the IEEE Symposium
on Security and Privacy, Oakland, CA.

[JAJO92] Jajodia, S., and V. Atluri, 1992, "Alternative
Correctness Criteria for Concurrent Execution of Transactions
in Multilevel Secure Databases," Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA.

[KANGI92] Kang, I. and T. Keefe, 1992, "Recovery
Management for Multilevel Secure Database Systems,"
Proceedings of the 6th IFIP Working Conference in Database
Security, Vancouver, British Columbia.

[KANGM92] Kang, M., et al, 1992, "A Practical Transaction
Model and Untrusted Transaction Manager for a Multilevel
Secure Database System," Proceedings of the 6th IFIP
Working Conference in Database Security, Vancouver, British
Columbia.

[KEEF89] Keefe, T., W.T. Tsai, and J. Srivastava, 1989,
Database Concurrency Control in Multilevel, Secure Database
Management Systems, Technical Report 89-73, University of
Minnesota (a version also published in the Proceedings of the
6th IEEE Data Engineering Conference).

[KEEF90] Keefe, T., and W.T. Tsai, 1990, "Multiversion
Concurrency Control for Multilevel Secure Database
Systems," Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA.

[KIM88] Kim, W., et al, November 1988, Composite Object
Revisited, MCC Technical Report, ACA-ST-387-88.

58 SIGMOD RECORD, Vol. 22, No. 4, December 1993

[LUNT88] Lunt, T., 1988, "Multilevel Database Systems:
Meeting Class AI," Proceedings of the 2nd IFIP Working
Conference in Database Security, Ontario.

[MAIM90] Maimone, W., and I. Greenberg, 1990, "Single-
level Multiversion Schedulers for Multilevel Secure Database
Systems, " Proceedings of the 6th Computer Security
Applications Conference, Tucson, AZ.

[MCCO91] McCollum, C., and L. Notargiacomo, 1991,
"Distributed Concurrency Control with Optional Data
Replication," Proceedings of the 5th IFIP Working Conference
in Database Security, Shepherdstown, West Virginia.

[MCDE91] McDermott, et al, 1991, "A Single-level Scheduler
for the Replicated Architecture for Multilevel Secure
Databases," Proceedings of the 7th Computer Security
Applications Conference, St. Antonio, TX.

[MCDE92] McDermott, J., and S. Jajodia, 1992, "Orange
Locking: Channel-free Database Concurrency Control Via
Locking," Proceedings of the 6th IFIP Working Conference in
Database Security, Vancouver, British Columbia.

[MOSS85] Moss, E., 1985, Nested Transactions: An
Approach to Reliable Distributed Computing, The MIT Press,
Cambddge, MA.

[OBRI90] R. O'Brien, et al, 1990, Trusted Database
Consistency Policy, RADC Technical Report TR-90-387.

[PAPA86] Papadimitfiou, C., 1986, The Theory of Database
Concurrency Control, Computer Science Press.

[REED79] Reed D., et al, 1979, "Synchronization with
Eventcounts and Sequencers," Communications of the ACM,
Vol. 22, #2.

[RUBI90] Rubinovitz, H., and B. Thuraisingham, August
1990, Secure Distributed Query Processor: An Overview,
MTR 10969, Vol. 1 (a version accepted for publication in the
Journal of Systems and Software).

[RUBI92a] Rubinovitz, H., and B. Thuraisingham, 1992,
Design and Simulation of Query Processing and Concurrency
Control Algorithms for a Trusted Distributed Database
Management System, Technical Report MTR 92B0000077,
The MITRE Corporation, Bedford, MA.

[RUBI92b] Rubinovitz, H., and B. Thuraisingham, 1992,
"Design and Simulation of Secure Distributed Concurrency
Control Algorithms," Proceedings of the 1992 Computer
Simulation Conference, Reno, NV.

[SHET90] Sheth, A., and J. Larson, September 1990, "
Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases," A CM
Computing Surveys, Vol. 22, #3.

[STAC90] Stachour, P., and B. Thuraisingham, June 1990,
"Design of LDV - a Multilevel Secure Database Management
System," IEEE Transaction on Knowledge and Data
Engineering, Vol. 2, #2.

[THUR89] Thuraisingham, B., 1989, Research Directions in
Trusted Distributed Database Management Systems, Technical
Report, Mg9-52, Volume 2, The MITRE Corporation,
Bedford, MA (not currently in public domain).

[THUR90a] Thuraisingham, B., July 1990, Multilevel
Security Issues for Distributed Database Management
Systems, Technical Report, MTP 291, The MITRE
Corporation, Bedford, MA (a version also published in
Computers and Security Journal, 1991).

[THUR90b] Thuraisingham, B., July 1990, Issues on
Developing a Multilevel Object-Oriented Data Model,
Technical Report, MTP 384, The MITRE Corporation,
Bedford, MA (a version also published in the Journal of
Object-Oriented Programming, 1991).

[THUR92a] Thuraisingham, B., and H. Rubinovitz, 1992,
"Multilevel Security Issues for Distributed Database
Management Systems - III," Computers and Security Journal.,
Vol. 11.

[THUR92b] Thuraisingham, B., October 1992, *A Note on
the Multilevel Security Impact on Real-time Database
Management Systems," Presented at the 5th Rome Laboratory
Database Security Workshop, Fredonia, NY.

[THUR92c] Thuraisingham, B. and H. Ko, September 1992,
Concurrency Control in Trusted Database Management
Systems, Technical Report, M92B0000109, The MITRE
Corporation, Bedford, MA.

SIGMOD RECORD, Vol. 22, No. 4, December 1993 59

