
In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

1

Concurrency Control Techniques and the KBMS Environment:

A Critical Analysis

Fernando de Ferreira Rezende

Department of Computer Science - University of Kaiserslautern

P.O.Box 3049 - 67653 Kaiserslautern - Germany

e-mail: rezende@informatik.uni-kl.de

June 1993

Abstract

Knowledge Base Management Systems (KBMSs) are a new product generation with recognized applica-

bility in several different areas, like medicine, geology, engineering design, robotics, etc. As long as this

applicability is growing, the necessity for knowledge sharing is also becoming a crucial point to be taken into

account by those systems. Thus, knowledge sharing and connectivity are going to be the key features of

the intelligent information systems of the future. This means that many users should be able to access the

KBMSs simultaneously. Nevertheless, arbitrary concurrent access to a resource can lead to many incon-

sistencies, and undesirable behavior. The main purpose of this paper is to identify the essential problems

to be addressed by concurrency control techniques. Moreover, some of the well-known concurrency control

techniques are investigated, and a critical analysis is made about their (in)adequacies, if they were to be

directly applied to the KBMS environment.

Contents

1. Introduction ... 2

2. The Need for Multi-User KBMSs... 2

3. Concurrency Control Problems... 3

4. Concurrency Control Issues for KBMSs.. 6

5. Concurrency Control Techniques.. 8

5.1 Two-Phase Locking... 8

5.2 Predicate Locks... 11

5.3 Granular Locks .. 13

5.4 Dynamic Directed Graph Protocol... 18

6. Conclusions and Future Work... 24

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

2

1. Introduction

Concurrency control techniques are well-known in the database community, and there is a vast amount of

literature in this area. The main problem addressed by concurrency control is the coordination of actions

that operate in parallel, access shared data, and doing so potentially interfere with each other. This inter-

ference can lead the database to an undesirable, inconsistent state, if it is not controlled at all. Concurrency

control problems arise in many different areas. Particularly, in this work we examine the problems that arise

when large, multi-user knowledge bases (KBs) are used.

After motivating, in Sect. 2, the necessity for concurrency control in Knowledge Base Management Systems

(KBMSs), we present an overview of the problems that should be addressed by concurrency control (Sect.

3). Thereafter, we provide some important issues which should be taken into account when talking about

concurrency control methods for KBMSs (Sect. 4). By doing so, we are then able to analyze many of the

concurrency control techniques and their (in)adequacies to the KBMS environment (Sect. 5). After this

analysis, we then conclude the paper in Sect. 6, pointing out some important aspects to be considered by

a concurrency control mechanism tailored for KBMSs, and finally giving some directions for future work.

Note that we are most interested in performing a critical analysis of the actual concurrency control

techniques, if they were to be directly applied to KBMSs. In other words, we point out problems, leaving the

proposal of a possible panacea to a later opportunity.

2. The Need for Multi-User KBMSs

KBMSs are a new product generation, which arrived due to the addition of new functionalities to databases.

Taking a different point of view, the incorporation of database-like features in expert systems also helped in

the development of such systems. This is one of the two approaches to the development of KBMSs cited

by [BM86], namely, the evolutionary approach, which starts with an existing technology and moves toward

a KBMS by extending its functionality. The other one, the revolutionary approach, starts with a knowledge

representation language and then builds around it appropriate KBMS facilities. Anyway, not only the incor-

poration of functionalities to the conventional database systems, or the addition of facilities to some

knowledge representation language, will be needed to the success of KBMSs. It is also necessary to adapt

such systems to real-life production environments. This is what the research in the direction of KBMSs is

trying to achieve [MB90].

As already happened with Data Base Management Systems (DBMSs), where data sharing and interleaved

execution of an arbitrary number of transactions have become fundamental prerequisites for each

successful system, so it will happen with KBMSs. Knowledge sharing and connectivity are going to be the

key features of the intelligent information systems of the future. Moreover, it will be imperative for efficiency

reasons [Ch91].

This means that the KBs should be accessible not only to one user at a time, what is neither viable

(economical reasons) nor desirable (restrict access). It would be very inefficient to obligate users to access

valuable resources in mutual exclusion. If some system can process just one transaction at a time, it will

spend a great deal of unnecessary time waiting for the disk accesses to complete [Gr78]. Instead, what is

really expected is to have a single KB being shared by multiple users. So, KBMSs should receive queries

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

3

and updates in an interleaved fashion and control their concurrent execution against the KB. Thus, multiple

transactions should be able to run at the same time for better performance of a system. By this way, the

deployment of computing resources (both CPU cycles and space) is optimized [CHM92].

As a practical example, suppose we have a KB, like the one sketched in Fig. 1 (we only used a generali-

zation/classification hierarchy in order to simplify our examples, although the expansion of this KB to

represent aggregation and/or association is trivial). This KB contains information about different means of

transportation. Thus, it is just impracticable to require that a user desiring to work on some vehicle may not

concurrently access this KB while another one is working on, for example, some aircraft. Moreover, an

automobile is composed of several parts (not represented in the illustration), and it is normally required to

have many users working on the different parts of it, obviously at the same time. The applicability of some

KB system is severely constrained if its access is limited to only one user at a time.

Figure 1: An Example Knowledge Base 1.

Therefore, it is just unacceptable to require that several users working on the same KB should access it in

mutual exclusion. On the contrary, knowledge should be shared among several users. To allow such situa-

tions of knowledge sharing, concurrency control mechanisms must be developed and tailored to the KBMS

environment.

3. Concurrency Control Problems

Arbitrary concurrent accesses to a resource can lead to many inconsistencies in the stored and retrieved

information. All of that is because they can interfere with each other due to the interleaving of operations.

This interleaving can cause programs to operate incorrectly even if they are free from errors and no

component of the system fails. To avoid this interference has been called the concurrency control problem.

1. Although a little modified, this KB was originally inspired in the one presented in [Ma88].

means_of_transportation

vehicles aircrafts

automobiles trucks

bmw850 porsche959 benz500

boats airplanes helicopters

mig25 b52

i

sc sc scsc
sc

sc sc

i
i i i

sc - subclass (generalization/classification)
i -instance (instantiation)

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

4

In the context of database systems, this problem has been studied extensively 2. To better understand such

a problem, let us look at some examples.

Using the example KB sketched in Fig. 1, let us think of some situations with multiple users accessing this

KB, and let transaction refer to the execution of a user program on a KB. Suppose a user, say Mary, reads

and writes the object bmw850 (hypothetically represented through the operations read (bmw850) and write

(bmw850)). After that, and before Mary finishes her transaction, another user, say John, reads the same

object (now translated to read (bmw850)). This situation is sketched in the following, where begin, commit,

and abort are transaction boundaries (begin stands for the start of a transaction, commit for its successful

end, and abort for its abnormal end):

- Problem 1:

John Mary

--- begin
begin read (bmw850)
--- write (bmw850)
read (bmw850) ---
--- ---
commit ---
--- abort

This situation illustrates the first concurrency control problem. John reads a value of the object bmw850

which in fact does not exist, because the transaction that wrote that value aborted, and so the effects of it

are obliterated from the knowledge reservoir. This problem is commonly known as Dirty Read or Incon-

sistent Retrieval 3. This anomaly occurs whenever a transaction reads an object after another transaction

has updated it, and commits before the end (commit/abort) of the updating transaction. The retrieval trans-

action cannot be sure about the consistency of the objects it read. This occurs due to the dependency

between the operations (write -> read), which conflict with each other. Two operations are said to conflict if,

generally speaking 4, the computational effect of their execution depends on the order in which they are

processed [BHG87].

Let us continue to find more problems of concurrency, without control. Suppose now that John gets the

object porsche959 twice. After John read it once, and before reading it again and finishing his work, Mary

reads and then writes the same object. The following illustrates this situation:

- Problem 2:

John Mary

begin ---
read (porsche959) begin
--- read (porsche959)
--- write (porsche959)
read (porsche959) ---

2. [BHG87] presents a well summarized consolidation of such studies.
3. [BHG87] say that the above execution is not recoverable, because the commit of a transaction (John’s

transaction, in our example) does not follow the commit of every transaction (Mary’s transaction) from
which it read.

4. The term general is normally used because there are some operations, for example two writes, that might
not conflict, depending on the semantics of such operations, e.g., two writes that write the same value, or
two incremental operations, etc.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

5

--- commit
commit ---

This leads to the second problem of arbitrary interleaving of transactions. The value to be returned by the

second read performed by John will not be the same that he has read previously, but the one written by

Mary. This problem is known as Unrepeatable Read 5. This type of interference occurs whenever a retrieval

transaction reads an object before another transaction updates it, and reads the object again after the other

transaction has updated it. The two read operations return different values for the object. This happens due

to another kind of dependency between the operations (read -> write), which also conflict with each other.

To find another problem, suppose now that John reads the object benz500. After that, Mary also reads the

same object. But before committing their transactions, both write the object. Let us take a look at it schemat-

ically:

- Problem 3:

John Mary

begin ---
read (benz500) begin
--- read (benz500)
write (benz500) ---
--- write (benz500)
commit ---
--- commit

This is the third (although not the last) problem of interleaving transactions, and not controlling their conse-

quences on each other. In this case, the write operation performed by John is superposed by Mary’s write,

i.e., John lost his update. Due to this peculiarity, this problem is known as Lost Update 6. This phenomenon

occurs whenever two transactions, while attempting to modify an object, both read the old value of the object

before either of them has written its new value. This is also another kind of dependency between conflicting

operations (write -> write).

There are also other problems of interleaved execution of transactions. The Phantom problem is one of

them, but we will delay the commentaries about these problems for appropriate subsequent sections.

Nevertheless, there is also one way to avoid these interference problems: not allowing the transactions to

interleave at all. If all transactions execute serially, i.e., one after the other, no problems may arise 7. Thus,

serial executions are correct because each transaction individually is correct and if they execute serially,

they cannot interfere with each other.

Taking this assumption that a serial execution of a set of transactions always produces correct results, we

could think that for all above mentioned problems to be resolved, we only need to obligate the system to

5. [BHG87] say that the above execution does not avoid cascading aborts, because a transaction (John’s
transaction, in our example) does not read only those values that were written by committed transactions
(Mary’s transaction), so an unfinished transaction affected other transactions.

6. [BHG87] say that the above execution is not strict, because both reads and writes of a transaction on an
object (the write performed by Mary’s transaction, in our example) are not delayed until all transactions
that have previously written the object (the write by John’s transaction) are committed or aborted.

7. Discarding the possibility that the transactions themselves might be wrong, because if they were, we could
also find a lot of problems with serial executions. Fortunately, the concurrency control theory discards this
possibility and assumes that the transactions are always correctly written, and the correctness of their
code is the programmers’ responsibility.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

6

process the transactions serially, one at a time. This could be a practical solution for very small systems.

But if we imagine some system with thousands of objects and hundreds of users, this solution is just imprac-

tical. Such a system would make poor use of its resources, and would be also too inefficient. It is just impos-

sible to convince some user that he must wait to execute his program until all other users have completed

their work.

Resolving the concurrency control problems, and, of course, allowing interleaved execution of transactions,

the Serializability Theory was developed. This theory was first presented in [GLPT76], and posteriorly

refined by many other publications. It states that if an execution produces the same output and has the same

effect on the database as some serial execution of the same transactions, it is correct, because serial

executions are also correct [BHG87]. Such executions are called serializable executions (we will not prove

this theory, since there are already a lot of proofs in the literature, and that is beyond our goal; see [BHG87]

for a convincing one).

The transaction executions shown as examples above, which illustrated the dirty read, unrepeatable read,

and lost update problems, are not serializable, because neither of them produces the same output, nor has

the same effect on the KB, as some serial executions of the same set of transactions.

There are a lot of techniques for controlling concurrent executions of transactions, the so-called concur-

rency control techniques, which obtain the effect of serializable, correct executions, avoiding thus the many

above mentioned problems. But before analyzing some of these techniques, let us take an overlook at the

KBMS environment and its particularities. This is the topic of the next section.

4. Concurrency Control Issues for KBMSs

Some of the issues arising when multi-user KBMSs are built have already been identified in the studies of

databases, whereas others arise due to the new features and application domains supported by KBMSs.

Unfortunately, there is no commonly agreed architecture for KBMSs. Some initial ideas on KBMS architec-

tures have been proposed in [BM86]. [Ma91] presents a concrete KBMS architecture, implemented in a

prototypical KBMS at the University of Kaiserslautern. Thus, we will not concentrate our discussion on archi-

tectures for KBMSs, but on the different characteristics arising when working with these systems.

In comparison with, for example, relational DBMSs [Co70], KBMSs manage more complex and structured

objects, and also different types of abstraction relationships. In fact, the abstraction concepts are the most

important constructs to be supported by KBMSs [Ma88]. The object descriptions embody (or at least should

do it) all abstraction concepts so that objects can play different roles at the same time (i.e., an object can

be, at the same time, a class, a set, a component, an instance, etc.), depending on the relationships they

have to other objects [Ma91]. These characteristics lead to the conclusion that most KBs features can be

visualized as graphs [CHM92], i.e., graphs can be taken as an abstract representation for KBs. Note that

we are talking about graphs, not about hierarchies, because it is common to have objects in a KB with more

than one parent.

Another important aspect of KBMSs is their active behavior, be it used for redundancy control or for user-

defined reactions to in- and outside events of the real world (which could be translated to the rules, methods,

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

7

demons, etc. commonly handled by KBMSs). All of them are important tasks to be managed by KBMSs,

and must also be taken into consideration when talking about concurrency control.

The power of the languages provided by the KBMSs is also greater than the ones usually provided by

common systems, e.g., relational languages. The query formulation can make use of the different

abstraction relationships and the complex structure of the objects. Additionally, reasoning mechanisms

(deduction and inference mechanisms) are also available, which can be used to draw conclusions or

generate new knowledge from facts and suppositions.

Still about reasoning, but now based on the existence of the abstraction relationships, another important

feature of KBMSs is their built-in reasoning facilities, which can also be used to make deductions about

objects [Ma91], e.g., inheritance is used to reason the internal structure of instances, membership stipula-

tions are used to reason beliefs about elements, implied predicates are used to make conclusions about

aggregation objects based on the monotony of properties, etc.

As we have been advocated, KBMSs are especially useful when applied to multi-user environments. Thus,

the synchronization aspect plays an important role. Queries could, for example, be applied to the complex

objects and their abstraction relationships, producing the evaluation of rule sets with great processing units,

which, in turn, claim large granularities of synchronization and concurrency. Therefore, KBMSs claim the

use of special synchronization mechanisms and control structures, adaptable to their environments. Such

structures could not adequately be built using normal, flat ACID transactions [HR83]. Probably, spheres of

control [Da73, Da78] or nested transactions [Mo85] provide better control structures and tiny processing

granules, which could be better suitable for the KBMS environment.

The semantic knowledge of transactions is another factor to be thought of, which could also be used to

increase the concurrency [Ga83, Ly83, FÖ89]. The main idea behind this use of transactions’ semantics is

to allow nonserializable schedules, which preserves consistency and which are acceptable to the system

users. To produce such semantically consistent schedules, the transaction processing mechanism receives

semantic information from the users in the form of transaction semantic types, compatibility sets, steps,

countersteps [Ga83], and also breakpoints [FÖ89]. With respect to KBMSs, the methods could be a starting

point to the applicability of this approach. The semantics of user- or system-defined methods could be

considered in order to allow more general, non-serializable schedules of methods to be produced. Such a

semantic knowledge use could significantly decrease the transaction response time, and could then be

useful when the cost of producing only serializable interleavings is unacceptably high.

Anyway, structures and techniques for concurrency control are to be developed for the KBMS environment.

Nevertheless, this new research direction must be aware of the KBMS environment itself, its active

behavior, characteristics, reasoning facilities, abstraction relationships, methods, demons, rules, etc. In

other words, these techniques must make use of the KBMS features in order to obtain better performance

and optimization.

5. Concurrency Control Techniques

In this section, we will discuss some of the well-known concurrency control techniques for databases, and

their (in)adequacies to the KBMS environment. First of all, we will present a technique, and thereafter apply

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

8

it directly to our environment. Thus, we will show where this technique could be useful and, if this is the case,

where it is just intolerable, making a kind of critical analysis of them. Let us start with the most popular

technique in commercial products, i.e., two-phase locking.

5.1 Two-Phase Locking

Locking is a mechanism commonly used to resolve the problem of synchronizing access to shared data

[BHG87]. The Two-Phase Locking (2PL, for short) protocol was first introduced in [EGLT76]. Besides

grouping the actions of a process into sequences, called transactions, which are units of consistency, this

lock protocol introduces an additional set of actions, namely, lock and unlock. In turn, two distinct types of

locks can be differentiated, the so-called eXclusive (X) and Shared (S) locks. Exclusive locks are used for

updating an object, whereas shared locks are used for reading it. Further, the transactions are required to

ask for (acquire) a lock on each object, before executing operations on it. By this way, a lock on an object

is used to ensure that, when granted to some transaction, this particular transaction has access to the

requested object (in the mode (X/S) defined by the lock operation). Finally, the unlock operation releases

this object, enabling so its access by other transactions, meaning that this transaction will no longer need

to access it.

With respect to conflicts between different lock modes, the only not conflicting lock pair is the shared one

(S - S), meaning that two transactions may read the same object at the same time. The other ones (S - X,

X - S, and X - X) conflict with each other, and so can only be granted to one transaction at a time, i.e., if a

transaction must acquire a conflicting lock, it must wait until the transaction that owns that lock releases it.

In summary, two operations conflict if they operate on the same object and at least one of them is a Write.

The system (scheduler) thereby ensures that only one transaction can hold a Write (X) lock on an object at

a time, and so only one transaction can update this object at a time.

The essence of the 2PL protocol is that consistency requires that a transaction must be constructed to have

a growing and a shrinking phase [EGLT76] (thus the name two-phase). During the growing phase, a trans-

action can request new locks. However, once a lock has been released, the transaction cannot request a

new one (then the shrinking phase begins, where all locks are being released).

In simplified terms, 2PL works as follows (suppose the lockable units are data items):

(1) Each data item has a distinct lock associated with it. Before accessing some data item, a transaction

must require a lock on it;

(2) If an S lock on a data item is granted to a transaction, no other transaction may access that data item

in X mode, while the first one holds that lock (notice that several S locks on the same data item are

allowed);

(3) If an X lock on a data item is granted to a transaction, no other transaction may access that data item

in any mode, while the first one holds that lock;

(4) Once a transaction releases any lock, it cannot acquire any additional locks.

It can be proven that 2PL ensures serializability, and so produces consistent executions. It is beyond our

goal to prove the correctness of 2PL. Proofs can be found in [EGLT76], and elsewhere [BSW79, Pa79,

BHG87, GR93].

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

9

The protocol above described is the basic 2PL. There is also a variant of this protocol, used in almost all

implementations of 2PL [BHG87], called strict 2PL. It differs from the basic one in that it requires the trans-

action to release all its locks together, when it terminates (either commits or aborts). Among the reasons for

adopting this policy, the most important one is to guarantee a strict execution. Guaranteeing a strict

execution means avoiding cascading aborts and producing recoverable executions [BHG87]. Due to that,

this strict variant is the most commonly used in the implementations of 2PL. From now on, whenever we

mention the 2PL protocol, we will assume this strict variant of it.

Now, let us apply the 2PL protocol in a practical example using our KB, building a new scenario. Suppose

John wants to read an airplane (mig25) and after that to update an automobile (benz500). In a contrary way,

Mary wants to read an automobile (benz500) and thereafter to update an airplane (mig25). The situation

can be sketched as follows:

John Mary

begin ---
S-lock (mig25) begin
read (mig25) S-lock (benz500)
--- read (benz500)
X-lock (benz500) ---
wait X-lock (mig25)
wait wait
.

This is probably the easiest and most classical way in which locks are acquired using 2PL so that a deadlock

may arise. John’s transaction will be waiting for the release of a lock held by Mary’s transaction, and at the

same time Mary’s transaction will be waiting for a lock held by John’s transaction. Deadlocks happen

whenever there is a cyclical sequence of transactions each waiting for the next to release a lock it must

acquire (transaction 1 waits for transaction 2 that waits for 3 (. . .) that waits for 1). In our example, if no

action were taken, John and Mary would wait for each other forever.

Nevertheless, there are a lot of strategies to detect deadlocks. One of them is timeout, where the system,

finding that a transaction is waiting too long for a lock, just guesses that there may be a deadlock involving

this transaction and aborts it (although imprecise in the detection of deadlocks, it works). Waits-for-graph

[Ho72] is another one, where the system maintains a graph showing which transactions are waiting for other

ones. When a cycle is found in this graph, it means precisely that the transactions in the cycle are

deadlocked. The system then chooses one of them as a victim 8, aborts it, obliterating its effects from the

database, and restarts it again.

There are also other strategies for detecting deadlocks, but the best known are both previously mentioned.

In spite of the existence of many such strategies for deadlock detection and resolution, the problem with

2PL is that it does not avoid them. [GR93] advocate that deadlocks are very, very rare events, but [Ya82]

says that it is very easy to construct scenarios where deadlock arises, and [SK80] state that deadlock

detection and recovery in general is an expensive task and should be avoided whenever it is possible.

Anyway, deadlocks may ever arise if the lock protocol does not avoid them, and when they happen the

8. This choice is not always a simple decision due to another problem, worse than deadlock, because it is
harder to detect and wastes resources, named livelock. Shortly described, livelocks are situations where
each member of the livelock set may soon want to wait for another member of the set, resulting in another
abort and restart [GR93].

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

10

system must have at hand some strategy to detect them and resolve the problem. A mechanism to deal with

such events, be it simple or not, consume resources, which may probably be needed by other applications.

In Sect. 3, we have mentioned the main concurrency control problems, but one of these problems was not

exactly detailed there, and postponed to subsequent sections, namely, the phantom problem. Now it is time

to talk about phantoms! Usually, real databases do not contain static structures, where just read and write

operations are allowed. Instead, they in fact contain dynamic structures, where records can be inserted and

deleted at any time. The problem due to this dynamism can better be understood with an example. Suppose

our usual users, John and Mary, are working concurrently in our example KB. John wants to know how

many red automobiles are available in the KB and the total price of them. But after initiating his transaction

and before terminating it, Mary inserts a new object in the KB, e.g., the object ferrari, which is red and also

an instance of automobiles. The following sketches this situation:

John Mary

begin ---
S-lock (bmw850) ---
read (bmw850) ---
S-lock (porsche959) ---
read (porsche959) ---
S-lock (benz500) begin
read (benz500) insert (ferrari)
--- commit
commit ---

The problem here is that John will end his transaction with an inconsistent result, not reflecting the new

object inserted by Mary. The situation shown above is a simple one, but it is not so hard to imagine situations

with even more drastic inconsistent results. If we use 2PL, we cannot prevent someone else from inserting

new records in the database 9, just because there is no lock on nonexistent records. The same problem can

happen if we use a delete operation, where the record may seem to have disappeared for the retrieval trans-

action. Such new or deleted records are called phantoms, because they seem to appear and disappear like

a ghost. The phantom problem was first introduced in [EGLT76], which also proposed a new locking policy,

namely predicate locks (see next section), for dealing with such situations. The phantom problem is the

concurrency control problem for dynamic databases [BHG87], and the 2PL protocol seems to not always

guarantee correct executions for dynamic databases. [GR93] state that there is no pure record-locking

mechanism which can avoid phantoms.

Deadlocks and phantoms are really a problem to be handled by 2PL implementors. But there is another

problem even worse than this, if we consider 2PL in an environment like the one typical of KBMSs. In a

matter of fact, the 2PL policy does not take into account the structure (graph) the objects build in a KB (it is

just unaware about the existence of such a structure and its semantics). This has serious performance impli-

cations for the type of transactions likely to be applied to KBs. Let us better understand this problem with

some examples. Suppose a user wants to lock either some class, and all its instances, or some aggregate

and all its components. Such lock requests on the basis of 2PL are just problematic to be realized. In the

first case, the 2PL does not know what a class is and not even that a class may have any number of

instances. It is just aware about objects (or records), but not about the abstraction relationships between

9. Notice that we are talking about the original, pure version of 2PL. In particular, the predicate lock protocol
(to be discussed in the next section) cope very well with such a problem.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

11

these objects. To grant these locks, the lock manager would have to require locks on all objects individually,

i.e., the 2PL does not recognize a class and all its instances as a single lockable granule. This same obser-

vation is also valid in the second case, i.e., there is no possibility to request a lock on an aggregate and all

its components as a unit.

Analyzing the behavior of the 2PL in these situations, we come up with two major problems. First, the lock

manager may run out of storage with the necessity of acquiring many locks. If we imagine a class with

thousands of instances, the lock manager would have to acquire thousands of locks, which is certainly a

great problem to be handled and thought of. Second, although some locks may not semantically conflict,

they will be handled as conflicting ones. Suppose the above mentioned class and aggregate are the same

object. If one user wants to exclusively access this object through its instance relationships (i.e., the object

as a class and all its instances), and the other one through its component relationships (i.e., the object as

an aggregate and all its components), they would be obligated to serially perform their transactions. This is

due to the fact that the 2PL simply does not know that an object may simultaneously be a class, an

aggregate, etc. Hence, the 2PL should recognize an object and its several relationships to other objects as

different locking granules, and not as a simple object (or record) that must be locked. Such behavior may

reveal drastic performance problems and at the same time significantly reduce the concurrency.

As we have seen, the 2PL protocol does not seem to be appropriate for the KBMS environment. First, it

does not take into account the objects and their different abstraction relationships to other objects, i.e., the

semantics of the structure built by these objects. Second, it does not avoid deadlocks, and detecting and

resolving them consume resources, even if a simple, cheap mechanism is used. Third, it is not capable of

dealing with phantoms.

5.2 Predicate Locks

The idea of using predicate locks for database concurrency control was first introduced in [EGLT76].

Although there are not many commercial systems which use predicate locking as a primary method for

concurrency control, it is an elegant solution to the phantom problem [GR93].

The basic idea behind predicate locks is that transactions can require locks for a specific subset of the

database to which the lock applies, rather than locking individual records. In order to better understand this

protocol, consider, for example, our last scenario, where John wants to know how many red automobiles

there are in the KB and their total price. Using this protocol, he would then request a lock with a predicate

like: lock all red automobiles. By this way, all red automobiles of the KB would be locked, and also the

nonexistent ones (considering thus possible phantoms). Thus, Mary would have to wait until John’s retrieval

transaction terminates, in order to include a new red automobile in the KB. This situation is illustrated in the

following:

John Mary

begin ---
S-lock all red automobiles ---
read (bmw850) ---
read (porsche959) begin
read (benz500) X-lock red automobiles
--- wait
commit wait

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

12

--- insert (ferrari)
--- commit

With this situation, we can observe that the phantom problem is resolved. In general terms, what the system

has to do is to compare whether the predicates conflict or not. If they conflict, the transaction must wait until

this predicate lock is released. If not, the lock is granted to the transaction, and all objects satisfying this

predicate will be locked by it. Essentially, two predicate locks are compatible if [GR93]:

(1) The transaction which is requesting the lock is the same that holds it; or

(2) Both predicates are in shared mode (shared locks do not conflict); or

(3) No object satisfies both predicates.

Whatsoever out of the three cases above is said to conflict. In summary, a system implementing predicate

locks works so that each time a transaction requests a predicate lock, it compares this request with the other

granted and waiting predicate lock. If the request is compatible with all others, it is added to the granted set

and immediately granted. If not, it is added to the waiting list. Whenever a transaction terminates, its

predicate is removed from the granted set, and the system considers again each predicate lock in the

waiting list. The system then grants each predicate which is compatible with the new granted set, and adds

them to this set. If a system follows such a protocol it produces correct schedules of concurrent transactions.

We will not prove the correctness of this protocol, it is beyond our goal (such a proof can be found in

[EGLT76]).

Despite of resolving the phantom problem and providing the I (isolation) of ACID [HR83], predicate locks

have three great shortcomings, leading to its lack of applicability:

1. It is not computationally efficient to check overlap between two predicate locks, and maintaining a

predicate lock table is also very costly. [Mo90] advocates that comparing a new predicate against a

predicate lock table of some reasonable size (e.g., containing 100 expressions) is just prohibitive.

Moreover, [GR93] state that predicate satisfiability is known to be NP-complete (the best algorithms for

it run in time proportional to 2N). In addition, there may be some very complex predicates that it may

become too difficult to decide whether two distinct predicates define overlapping sets or not (and hence

whether they conflict as locks).

2. Predicate locks are somewhat pessimistic [GR93]. Two predicates may be incompatible following the

rules for predicate comparison, but there may be some integrity constraint which make them

compatible, i.e., the system just does not understand some integrity constraints (which are commonly

used in KBMSs, and might help the system to improve concurrency). [GR93] cite a nice example of

such cases: “If I lock the mothers in a department and you lock the fathers in the same department, the

lock manager may not know that fathers can’t be mothers”.

3. Predicates may be arbitrarily complex, so that to discover them may be also a very difficult task.

Due to these drawbacks, predicate locks are just inapplicable in commercial systems, and implementations

in this direction have not been very successful. At a first sight, predicate locks might seem to work well in

the KBMS environment. It resolves the phantom problem, and it seems good for working in hierarchies.

Unfortunately, the obstacles to its applicability are too great: its execution cost is unpayable; it is too pessi-

mistic; and the predicates may be too complex to be tractable.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

13

5.3 Granular Locks

Granular locks could be said to be a practical way of using predicates in a lock mechanism. They were first

introduced in [GLPT76], and are also known as Directed Acyclic Graph (DAG) protocol, or as Multigranu-

larity Locking. The basic idea of this protocol stays in choosing lockable units, which are atomically locked

by the system to ensure consistency and to provide isolation. Lockable units could be, for example,

databases (or KBs), files, sets, subsets, records, fields, and so on.

When choosing the lockable units for implementing this protocol, one will always be faced with the

dichotomy: concurrency versus overhead. On one hand, concurrency is increased by a fine lockable unit

(e.g., a record or a field). Such a unit is appropriate for small transactions which access few units [GLPT76].

On the other hand, a fine locking granule is costly for complex transactions which access a large number of

granules. Such a transaction would have to acquire and maintain a large number of locks [GR93], which

imply a larger overhead. Thus, a coarse locking granule (e.g., a file) would be more convenient for such

transactions. However, a coarse granule discriminates against transactions which only want to lock a fine

granule of the file [GLPT76]. The granular lock protocol satisfies both of these situations, allowing lockable

units of different granularities to coexist in the same system.

After choosing the lockable units, preferably fine and coarse ones, these are organized as a hierarchy.

Using our example KB (Fig. 1) as a very simple illustration for this case, we could say that each node of this

hierarchy is a lockable unit, and so each one of them can be locked. If one requests eXclusive/Shared

access to a particular node, as soon as the request is granted, the requester has eXclusive/Shared access

to that node, and implicitly to each of its descendants [GLPT76]. These two access modes lock an entire

subtree rooted at the requested node. In our example, by putting one lock at the class vehicles, we implicitly

lock all descendants of it, i.e., automobiles, bmw850, porsche959, benz500, trucks, and boats, thus saving

the locking overhead.

Moreover, in order to lock a subtree rooted at some node in shared or exclusive mode, it becomes important

to prevent locks on the ancestors of this node which might implicitly lock it in an incompatible mode. This

was achieved with the invention of a new lock mode, one different from shared or exclusive modes. This

new lock mode was called intention mode [GLPT76], and it represents the intention to set locks at a finer

granularity, thereby preventing implicit or explicit locks on the ancestors. Intention mode was refined to

Intention Share mode (IS) and Intention eXclusive mode (IX) to indicate shared or exclusive access at the

descendants. And finally, Share and Intention eXclusive mode (SIX) was introduced for transactions that

want to read an entire subtree but will update only a few of the items. The compatibility matrix for granular

locks is shown in Fig. 2, where, for completeness, a null mode (NL) is also used, to represent the absence

of requests of a resource by a transaction [GLPT76].

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

14

Figure 2: Compatibility Matrix for Granular Locks.

Summarizing, the lock modes are [GLPT76]:

• NL - Gives no access to a node, representing the absence of a resource request.

• IS - Gives intention share access to the requested node, and allows the requester to explicitly lock

descendant nodes in S or IS mode.

• IX - Gives intention exclusive access to the requested node, and allows the requester to explicitly lock

descendant nodes in X, S, SIX, IX, or IS mode.

• S - Gives share access to the requested node, and implicitly to all descendant nodes without setting

further locks.

• SIX - Gives share and intention exclusive access to the requested node (i.e., implicitly locks all de-

scendant nodes in share mode and allows the requester to explicitly lock descendant nodes in X,

SIX, or IX mode).

• X - Gives exclusive access to the requested node, and implicitly to all descendant nodes without set-

ting further locks.

In [GR93] a new lock mode was introduced to the previous basic set, namely Update (U) lock mode. The

main reason of its existence is to prevent a common form of deadlock, which appears when two transactions

read some hot-spot (frequently updated records/pages) at nearly the same time, getting a share mode lock

on it, and thereafter both convert it in exclusive mode to perform some update on it. Using the U lock mode

transforms many deadlocks into lock waits [GR93]. In summary, it gives the requester read authority to the

node and to its descendants (like S does), and prevents others from holding non-shared locks (one of {X,

U, SIX, IX, IS}) on this node or its descendants (in reality, it represents an intention to update the node in

the future). In particular, we will not give further attention to this new lock mode here, because it in fact does

not change the essence of the granular lock protocol, but, as already said, just prevents some common

deadlocks.

Finally, transactions obeying the granular lock protocol must follow the rules below:

(1) Request locks from root to leaf.

yes

no

yes

yesyesyesyesyesyes

yesyesyes

yes

yes

yes

yes yes

yes

yes

yes

yes

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

NL

NL

IS IX S SIX X

X

SIX

S

IX

IS

Granted Mode

Requested
Mode

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

15

(2) Release locks from leaf to root.

(3) Before acquiring an S or IS mode lock on a non-root node, at least one parent (and by induction a path

to a root) must be held in IS mode or higher (one of {IS, IX, S, SIX, X}).

(4) Before acquiring an X, SIX, or IX mode lock on a non-root node, all parents (and as a consequence all

ancestors) must be held in IX mode or higher (one of {IX, SIX, X}).

Notice that: first, transactions are not allowed to leap into the middle of the tree and begin locking nodes at

random (this would lead the protocol to malfunction); second, leaf nodes are never requested in intention

mode since they have no descendants. If the transactions follow this protocol, correct executions are

produced, and isolation is provided (again it is beyond our goal to prove the correctness of this protocol

here, proofs can be found in, e.g., [GLPT76], [BHG87], and [GR93]). In addition, the rules showed above

are already extended to work in DAGs 10. By this way, they may be used for hierarchies, trees, as well as

for DAGs.

The idea behind these rules is that share locks on a node require that all nodes on at least one path from

that node to a root be covered by locks chosen from the set {IS, IX, S, SIX, X}. On the other hand, exclusive

locks on a node require that all nodes on all paths from that node to all roots be covered by locks chosen

from the set {IX, SIX, X}.

Another important concept covered by the granular lock protocol is lock conversion [GLPT76]. Lock conver-

sions are normally used to increase (upgrade) the access mode a transaction has to a record (for example,

if a transaction has read some record and wants to update it afterward, it can request the system to upgrade

its lock on this record from S to X). Thus, all the system must do is a comparison between the currently

granted lock mode of the requester to the resource and the newly requested lock mode. The new mode will

be the supremeness of the old and the requested mode (see Fig. 3). So, for example, if one has IX mode

and requests S mode, then the new mode is SIX [GLPT76].

Figure 3: Lock Conversion Table for Granular Locks.

A last important issue with respect to granular locks is lock escalation [GR93, BHG87]. A system employing

granular locks must decide the level of granularity at which transactions should be locking. Generally, a fine-

granularity locking is used as default, unless the system has some hint that the transaction is likely to access

10. A tree node has only one parent, a DAG node not necessarily.

SIX

X

SIXIS

IX

SIX

S

IX

S

SIX

SIX

X

X

SIX

X

SIX

SIX

X

X

X

X

SIX

SIX

X

IS IX S SIX X

X

SIX

S

IX

IS

Old Mode

Requested
Mode

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

16

several lockable units covered by the current lock mode 11. In such cases, they may get a single, coarse-

granularity lock. The past history of a transaction’s behavior can also be used to predict the need for coarse-

granularity locks [BHG87]. After the transaction has acquired more than a certain number of locks (usually

set to 1,000 according to [GR93]) of a given granularity, then the system executes some kind of heuristic to

convert fine-granularity locks to coarse locks, requesting locks at the next higher level of granularity. This

process of trading fine-granularity locks for coarse ones is called lock escalation. Albeit it may cause waiting

or lead to deadlocks, it is an important aspect for improving the performance of the concurrency control

method and for preventing the lock system to run out of storage when millions of locks are acquired.

Summarizing, the granular lock protocol provides most of the benefits of predicate locks (among them, the

avoidance of the phantom problem), and at the same time avoids the high cost of predicate comparisons.

Clearly, the fundamental motivation of the granular lock protocol is the minimization of the number of locks

to be set in accessing the database [Gr78]. For example, when most of the instances of a class are to be

accessed, it makes sense to set one lock for the entire class, implicitly locking its instances, rather than one

lock for each instance of the class. This protocol (and some extensions of it) has been a very popular

approach in object-oriented databases. One such example is ORION [KBCGW89] which uses this protocol

with the five basic lock modes (IS, IX, S, SIX, and X), and some extensions necessary to deal with its

composite objects and class lattices [GK88].

But now, let us analyze some problems arising when the granular lock protocol is used in the context of

complex objects and so in the KBMS environment. In order to lock an object, a transaction must set intention

locks on all the parents. This is a serious limitation when an object is likely to be used by many of the parent

objects. For example, consider an aggregation relationship. An object, say screw, will be used in thousands

of assemblies all of which will be its parents. In such situations, it is very inefficient to set intention locks on

all the parents [HDKRS89].

Another shortcoming of the granular lock protocol with respect to the aggregation relationship is that it does

not recognize an object and its parts as a single lockable granule, like a class or an instance of a class

[KBCGW89]. To lock a composite object using this protocol means either locking all component classes on

an aggregation hierarchy, or locking all constituent objects within a composite object. Clearly, neither option

is satisfactory. The former results in the locking of all composite objects that belong to the composite object

hierarchy, whereas the latter can result in a large number of locks. Therefore, a composite object should be

used as a unit of locking to reduce the system overhead associated with concurrency control.

Another problem is that the implicit locks on a child object are visible only if it is accessed by a specific set.

For example, using an extension of our KB (Fig. 4), suppose we have a new automobile, say a 007 one,

which runs, sails, and flies. Thus, this new means of transportation will be an instance of automobiles, of

boats, and of airplanes, at the same time (if one wants a more realistic example, there are a lot of

amphibious vehicles which could also be used). Now, suppose one of our usual users, say John, wants to

read all instances of automobiles. All he must do is to acquire an S lock on automobiles (along with IS locks

on vehicles and means_of_transportation) and all instances of it will then implicitly be locked on share mode

without setting further locks. Note that the lock itself stays on the class automobiles, and not on its instances.

Just after John got his lock, Mary wants to update all instances of airplanes. To do so, she sets an X lock

11. As an example of a hint, in some implementations of SQL, there is an SQL statement to explicitly lock an
entire table. With such a hint, the system can immediately try to lock the whole table.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

17

on airplanes (along with IX locks on aircrafts and means_of_transportation) and in the same way all

instances of it will then implicitly be locked in exclusive mode without setting further locks. The following

scenario sketches this situation:

John Mary

begin ---
IS-lock (means_of_transportation) begin
IS-lock (vehicles) IX-lock (means_of_transportation)
S-lock (automobiles) IX-lock (aircrafts)
read (bmw850) X-lock (airplanes)
read (porsche959) write (b52)
read (benz500) write (mig25)
read (007) write (007)
--- ---
--- commit
commit ---

Figure 4: A New Example Knowledge Base.

The situation here makes clear that it is possible to have an object (007 in the example) implicitly locked in

two conflicting modes. In this way, the concurrency control problems arise again, and so we can obtain

inconsistent results with the interleaving of transactions. In general, using the granular lock protocol, if an

object has multiple parents, it may be accessed via a parent that does not have any locks on it, thus violating

the implicit locks and leading to inconsistencies 12.

A last and fatal problem to the appliance of the granular lock protocol to the KBMS environment is the own

structure assumed by this policy. The generic extension of the granular lock protocol, presented in this

section, is able to deal with directed acyclic graphs 13. As the name itself says, cycles are not allowed. It is

not difficult to see that using the locking rules of this policy, it is impossible to lock any node on a cycle.

12. ORION’s implementors have addressed this problem in their work [KBCGW87, GK88], and [GR93] have
changed a little of the semantic of the lock modes of the granular lock protocol in order to avoid such a
problem.

13. Simple versions of this protocol work only on hierarchies and trees.

means_of_transportation

vehicles aircrafts

automobiles trucks

bmw850 porsche959 benz500

boats airplanes helicopters

mig25 b52

i

sc sc scsc sc

sc sc

i
i i i

sc - subclass (generalization/classification)
i -instance (instantiation)

007

i ii

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

18

Unfortunately, the structure of a KB will contain cycles, for example, in the inference graph generated for a

collection of recursive rules [CHM92]. Another example of cycles can easily be found with user-defined

attributes. Suppose one creates an attribute likes for an object person, meaning the set of persons this

person likes. As soon as two persons like one another a cycle is found. Due to this lack of functionality, the

DAG policy cannot directly be applied to KBMSs.

In this way, the granular lock protocol in its basic essence does not seem to be appropriate for the use in

KBMSs. First of all, it cannot handle cycles in the underlying structure. Implicit locks may be violated when

some object is accessed via a parent that does not have any locks on it. Intention locks may show poor

performance when an object is likely to be used by many of the parent objects. Additionally, although not

discussed, granular locks are subject to deadlocks, especially when lock conversion is supported.

5.4 Dynamic Directed Graph Protocol

The Dynamic Directed Graph (DDG) policy is an algorithm for concurrency control specifically designed for

KBMSs. It was proposed in [CHM92] and is an extension of the locking protocol for hierarchical database

systems of [SK80]. The former is able to cope with cycles and updates in the underlying structure, what is

not considered by the latter.

First of all, the DDG policy assumes that a KB is a directed graph with a set of nodes and edges 14 (both

generally denoted entities). The operations (insert, delete, and access) to be executed against these entities

are considered to be atomic. In addition, the transactions performing these operations are assumed to be

defined in the current KB state, i.e., they do not insert (delete, access) an entity that already exists (does

not exist) in the KB 15 [CHM92]. Furthermore, lock and unlock operations for an entity are also defined,

meaning respectively the acquisition of a lock on an entity and the release of it.

The locking rules of the DDG policy assume that the underlying graph (the working structure) is always

connected and has a single root. [CHM92] present some rules for restricting the KB to a rooted and

connected graph. First, there are preprocessing rules, applied to the KB when it is initially started, to convert

its structure to this restricted form. Second, there are structure maintenance rules to guarantee that the

graph will stay in this form, as changes undergo over time. We will not give details of these rules here, and

will assume that the KB already presents this restricted form (a comprehensible description of them and

reasons for their existence can be found in [CHM92]).

Before specifying the locking rules of the DDG policy, it is necessary to give some definitions presented in

[CHM92]. First of all, a cycle is dealt with by considering the strongly connected component (SCC) of the

rooted and connected graph, a part of the graph containing all the nodes on that cycle 16. A dominator of a

set of nodes in the graph is the one such that all paths from the root node to each node of this set of nodes

14. The different types of relationships between the nodes are not taken into consideration. Thus, they do not
distinguish the different types of edges that a KB may have.

15. This may be considered a limitation of the protocol, because there may be operations which are known to
be not defined only after submitting them for execution and becoming an exception, i.e., an unexpected
return value. For example, how to know that an object X does not already exist in a KB? The only way is
to perform an access operation on it, and receive an answer, which can signal its existence or not (an
exception).

16. Just non-trivial SCCs are considered, i.e., SCCs having more than one node.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

19

pass through it. Entry point of an SCC is a node such that there is at least one edge binding this node to

some node out of the SCC. Now, the locking rules can better be understood [CHM92]:

(1) The first node to be locked by a transaction is the dominator of the set of nodes to be accessed by this

transaction with respect to the graph.

(2) Before a transaction performs any operation (insert/delete/access) on an entity (node/edge), it has to

lock this entity.

(3) A node can be locked if and only if all its predecessors in the present state of the graph, that do not lie

on the same SCC as it, have been locked by the transaction in the past, and the transaction is presently

holding a lock on at least one of them. All nodes on an SCC are locked together in one step, provided

all the entry points of that SCC have been locked. A node that is being inserted can be locked at any

time.

(4) Each node can be locked at most once by each transaction.

Following these rules, the system produces correct executions, and is free from deadlocks (proofs can be

found in [CHM92]). In addition, transactions are allowed to release locks, and proceed locking other objects.

The fact that transactions are able to acquire locks even after releasing some of them shows a clear

improvement over 2PL.

Let us consider these rules in more detail. The first rule has two basic points. First, the set of nodes to be

accessed by a transaction needs to be previously known, i.e., one always has to have at hand all nodes to

be accessed by the transaction. This has the clear shortcoming that transactions are not allowed to be open-

ended, or to acquire locks on demand. With such transactions, some important aspects of KBMSs cannot

be supported adequately, for example, the World concept [Th91, Re92]. This key restriction is due to the

second important point of this first rule, namely, a transaction has to start locking the node that dominates

the rest of the nodes that it is ever going to access. By doing this, the dominator needs to be known 17. And

if, while executing, a transaction realizes that it must access a node that is not dominated by the node from

where it started, it must be aborted and must start from a higher node [Ch93]. This proceeding may be

dangerous because, due to concurrent updates on the KB, some of the dominator information may become

stale, and so there may be a great percentage of transactions that must be aborted. Chaudhri is estimating

this effect in his current work on implementation and performance of the DDG policy [Ch93].

The second rule is basically for guaranteeing that a transaction does not operate on a node or edge not

previously locked by it. Thus, transactions are required to be well-formed. Particularly, a transaction is said

to be well-formed if all its actions on objects are covered by locks, and if each lock action is eventually

followed by a corresponding unlock action [GR93]. The former requirement is covered by this second rule,

and the latter one is satisfied because transactions can release locks on demand, or as soon as they

terminate.

The third rule is the heart of the DDG policy. First of all it assumes the present state of the rooted and

connected graph, meaning that changes on it can undergo over time, and it still works correctly. Locking

17. Dominators are found using a bit-vector algorithm given in [ASU85]. Moreover, if more than one dominator
are found, the closest dominator is used [Ch93]. For example, if a node A has two dominators B and C,
such that B is a descendant of C, then the node B is considered. This is because there is no point locking
more nodes than really needed.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

20

predecessors out of the SCC is necessary, among other things, to guarantee the correct behavior of the

policy, and so to provide isolation. Requiring all nodes on an SCC to be locked in one step (by locking

together all the entry points of the SCC) is basically needed for deadlocks avoidance. Further, the nodes to

be inserted have to be locked to maintain the correctness of this policy [Ch93]. The reason such nodes may

be locked at any time is that they are not yet a part of the structure of the graph, and therefore, the usual

locking rules (all predecessors locked in the past, and one of them currently locked) do not apply to these.

Locking predecessors works as follows [Ch93]. When a transaction begins execution, the lock manager

locks the dominator node of the transaction. For subsequent requests, if all the predecessors are not locked,

the lock manager issues requests for lock on those predecessors (this process may continue recursively,

and must terminate because the dominator is locked). Thus, there are some lock requests issued by the

transaction, and the others issued by the lock manager itself to enforce the locking rules. Lock on a prede-

cessor can be released if the transaction does not need it, and no other successor would require it to be

locked later on 18.

Particularly, the information about the entry points is generated at compile time using a depth first search

algorithm [Ch93]. This information is incrementally maintained using an incremental algorithm. So, while

enforcing the locking rules, this information is already available. The costs for generating this information

can be disregarded, because it is made only once and at compile time. Nevertheless, the costs for

maintaining this information up-to-date may consume reasonable amounts of resources, if the KB is likely

to be frequently structurally changed (although this is not always the case according to [Ma90]).

Still with respect to the third locking rule, we can see that the DDG policy is simple as it treats SCCs as a

unit of locking. It requires the entry points of an SCC to be atomically locked, providing so a one-step locking

of SCCs. This has the side effect of not permitting any concurrency within the cycles. In order to permit

concurrency within cycles, [CHM92] presented a variation of this third locking rule, reaching this goal in a

limited extent. We will not give details of this variation here, yet just some comments. First of all, this perfor-

mance improvement is only obtained for SCCs having more than one entry point, and only if some nodes

can be accessed through different entry points. Every case not satisfying these two conditions shows no

difference in the concurrency. Since this variation requires more bookkeeping effort and show performance

gains only in very specific situations, it is not likely to be an applicable one [CHM92]. Thus, it remains the

drawback of not allowing concurrency within cycles. And if cycles are too long, involving many objects, this

may show a serious limitation in the performance of this policy, because transactions are then required to

retain all the locks on an SCC, according to the fourth rule, until it has finished processing it.

Finally, the last (fourth) rule is necessary to guarantee the safety of a locking policy [Ya82a], and so to

support the proofs of the correctness of the DDG policy found in [CHM92].

With these clarifications about the DDG policy locking rules, we are able to apply them in a practical

example. Let us use our last situation mentioned in the previous section, where John wants to access the

class automobiles together with all instances of it, whereas Mary wants to access the class airplanes and

in the same way all instances of it. In summary, we have the following situation:

- John - wants to access automobiles and all instances of it, i.e., bmw850, porsche959, benz500, and

007.

18. According to [Ch93], this logic was implemented by extending the data structures of a conventional lock
manager.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

21

- Mary - wants to access airplanes and all instances of it, i.e., 007, mig25, and b52.

Due to the assumption of the DDG policy that the underlying graph must be rooted, connected, and the

edges directed, we need to modify a little bit our usual example KB by giving a direction to its edges (see

Fig. 5). Further, analyzing the set of nodes to be accessed by John’s transaction and also by Mary’s trans-

action, we can observe that the only dominator, common to both transactions, is the root node itself, namely

means_of_transportation. With respect to SCCs, we can see that this example KB does not have any of

them (we have no cycles). Now, let us try to mount an execution plan for both transactions. One possibility

is sketched below:

John Mary

begin ---
Lock (means_of_transportation) begin
Lock (aircrafts) Lock (means_of_transportation)
Lock (airplanes) wait
Unlock (airplanes) wait
Unlock (aircrafts) wait
Lock (vehicles) wait
Unlock (means_of_transportation) wait
Lock (automobiles) Lock (vehicles)
Access (automobiles) wait
Lock (bmw850) wait
Access (bmw850) wait
Unlock (bmw850) wait
Lock (porsche959) wait
Access (porsche959) wait
Unlock (porsche959) wait
Lock (benz500) wait
Access (benz500) wait
Unlock (benz500) wait
Unlock (automobiles) wait
Lock (boats) wait
Lock (007) wait
Access (007) wait
Unlock (007) wait
Unlock (boats) wait
Unlock (vehicles) wait
commit Lock (automobiles)
--- Lock (boats)
--- Unlock (boats)
--- Unlock (automobiles)
--- Unlock (vehicles)
--- Lock (aircrafts)
--- Unlock (means_of_transportation)
--- Lock (airplanes)
--- Unlock (aircrafts)
--- Access (airplanes)
--- Lock (007)
--- Access (007)
--- Unlock (007)
--- Lock (mig25)
--- Access (mig25)
--- Unlock (mig25)
--- Lock (b52)
--- Access (b52)
--- Unlock (b52)

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

22

--- Unlock (airplanes)

--- commit

Figure 5: An Example Knowledge Base with Directed Edges.

Notice that there can be more than one way to enforce the DDG locking rules 19. Therefore, the above

sketched execution plan is not the only possibility. As we can see with this example, there are some nodes

that need to be locked even though they are not needed by the transaction (this is due to the third locking

rule, which requires that a transaction must lock at least once all the predecessors of the objects being

accessed during its existence). Another important aspect which can be observed in the example is that,

albeit the transactions conflict with each other on only one object (007 in the example), they must almost be

processed serially (also due to the third locking rule). With this observation, it raises the question whether

the DDG policy can really show better performance results than the others previously explained or not.

Further, although being a very important aspect of concurrency control, the locking conflicting modes are

not taken into consideration by the DDG policy 20. It is always assumed that the operations conflict with each

other, whichsoever they are. Clearly, performance gains would be obtained if conflicting lock modes were

defined, allowing, for example, many access transactions to work concurrently, accessing their objects at

the same time. Thus, using the DDG policy, transactions that read the same set of objects, although not

conflicting with each other at all, must be processed serially. By this way, for KBs likely to be frequently

queried (the most cases according to [Ma90]), this locking policy may show very poor performance results,

due to its disregard with respect to nonconflicting operations and lock modes.

Therefore, although being tailored for KBMSs and correctly working on all situations (cycles and objects with

multiple parents are correctly handled), the DDG protocol seems not to fulfil all the requirements that a

19. There is an algorithm to come up with the above execution plan [Ch93].
20. [CHM92] ignore lock conflicting modes, but [Ch93] states that studies have been made to obtain a new

DDG policy with shared and exclusive locks, called DDG-SX, which is proven to be correct but is not dead-
lock-free. Anyway, this version has not been published yet, and we only considered then the published
one.

means_of_transportation

vehicles aircrafts

automobiles trucks

bmw850 porsche959 benz500

boats airplanes helicopters

mig25 b52

i

sc sc sc
sc

sc

sc sc

i
i i i

sc - subclass (generalization/classification)
i -instance (instantiation)

007

i ii

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

23

concurrency control method for KBMSs should have. In summary, it lacks the support to the following

important aspects:

1. No difference is made between different abstraction relationships, i.e., it does not treat, for example,

neither a class and its instances nor an aggregate and its components as a single lockable unit. Partic-

ularly with respect to the aggregates, the same previously mentioned performance problems may arise.

2. Finding dominators and entry points may be an easy task using the algorithms of [ASU85] and bit-

vectors, but maintaining these structures may not be an easy one. Furthermore, aborting a transaction

whenever it needs to lock a node not dominated by the first one it locked, may be very costly depending

on the transaction, and may also provoke a great number of aborts and lost work.

3. Not allowing any concurrency within cycles may also show very poor performance if cycles are likely to

be frequent and involving a lot of objects.

4. Lock conflicting modes should be defined. It makes no sense to prohibit two read transactions to be

performed concurrently. This may become a bottleneck for very frequently queried KBs.

5. Phantoms are not considered by the DDG policy. To avoid phantoms would require the DDG policy to

lock the index entry of the node that is being inserted, in addition to the node itself. Such attitude is not

taken by this policy, and so phantoms may happen.

6. No kind of implicit locks is defined 21. Thus, using the DDG protocol, to lock a class with thousands of

instances, thousands of locks will be necessary. This high locking cost may lead the DDG policy to its

inapplicability for KBMSs.

7. Furthermore, suppose we have a class C with thousands of instances. If we want to lock an instance

of C, first of all we must lock C, and then proceed locking the instance. However, while we are holding

the lock on C, we are avoiding the concurrent access to all other instances of it (see the last example).

Moreover, if we need later on to lock another instance of C, we must hold the lock on C until this time

comes (remember that each node can be locked at most once), avoiding so the concurrent access on

C and on all its thousands of instances during this period of time 22. This may be a fatal problem to the

performance of the DDG policy, because it just does not allow the access to the instances of some class

to be shared among multiple users.

6. Conclusions and Future Work

KBMSs are a growing research area finding applicability in many different domains. The higher its demand,

the greater the necessity for knowledge sharing. In the near future, KBMSs will more and more be applied

21. Although implicit locks may wrongly work on DAGs (see Sect. 5.3), if appropriate heeds are not taken, they
must be considered due to their nice property of significantly reducing the number of locks to be set by a
transaction. The reader is asked to see the proposed locking mechanism of ORION [GK88, KBCGW87,
KBCGW89, KBG89, Ki90], which can avoid the malfunction of implicit locks working on structures other
than hierarchies, and still provide their nice property.

22. It is not so difficult to apply the locking rules of the granular lock protocol to this situation, and to verify that
it shows much better performance than the DDG policy.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

24

in real world applications. By this way, the research for concurrency control methods tailored to the KBMS

environment plays a crucial role to this applicability.

However, knowledge sharing is not so simple as it may seem. An arbitrary interleaving of operations of

different users on the same KB can lead to many inconsistencies. Some users may read dirty objects, and

doing so inconsistently retrieve these objects. Others may have their updates lost, or even be unable to

repeat a previously issued read. Furthermore, some objects may seem to appear and disappear, creating

the so-called phantoms.

We analyzed some of the well-known concurrency control techniques, which have the main goal of synchro-

nizing access to shared data, avoiding so the above problems, which arise when resources are concurrently

accessed by multiple users. We investigated Two-Phase Locking, Predicate Locks, Granular Locks, and the

Dynamic Directed Graph Protocol. The applicability of each one to the KBMS environment was discussed.

We gave prominence to their adequacies and inadequacies, if they were to be directly applied to KBMSs.

Some of them have shown to be better suited for specific situations, whereas malfunctioning and lacking of

applicability to other ones.

Probably the main reason for their inapplicability to the KBMS environment as a whole is the inobservance

of all aspects related to it, and which could help in improving performance and adaptability. In particular, we

have the following aspects as important ones to be taken into account when designing a concurrency

control method for KBMSs:

• The semantic knowledge of transactions should be thought of, allowing semantically consistent (although

not necessarily serializable) schedules to be produced.

• Deadlocks avoidance is desirable, because detecting and resolving them consume resources.

• Phantoms should be avoided. They may cause transactions to produce incorrect results.

• The protocol should be as precise as it can, i.e., it should lock only the objects subject to anomalies, if

concurrently accessed, in each particular case. Too pessimistic protocols may lock objects having noth-

ing to do with the current situation.

• Different types of lock conflicting modes should be taken into account.

• Facilities to work with graphs is also desired, because graphs are a natural way to structurally represent

KBs.

• Implicit locks should be considered, and the appropriate heeds to their correct behavior should be taken.

They may significantly reduce the number of locks to be set by the transactions, increasing by this way

the overall performance.

• A dynamic mechanism to change the granularity of locks according to each specific situation should be

designed, e.g., to give support for lock escalation.

• Lock conversions should also be considered, meaning that a transaction should be able to upgrade

(downgrade) its locks to more restrictive (less restrictive) ones.

• Cycles in the underlying KB structure should be dealt with. Clearly, allowing concurrency within cycles is

also desired.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

25

• The protocol should allow the transactions to be open-ended, and by this way to acquire locks on de-

mand.

• Different abstraction relationships should be considered, allowing, e.g., aggregates to be handled as a

single lockable unit.

Of course, meeting all these requirements may not be so easy, and who knows probably even impossible.

Above all, the two basic laws of concurrency control should be obeyed [GR93]:

1. Concurrent execution should not cause application programs to malfunction, and

2. Concurrent execution should not have lower throughput or much higher response times than serial

execution.

Moreover, the fundamental attribute of each successful concurrency control mechanism implementation is

performance. Thus, such implementation must take into account whatever aspect it can to improve

throughput and decrease response time.

As a future work, we are interested in investigating some concurrency control mechanisms implemented in

some object-oriented database systems (e.g., ORION [GK88], O2 [BDK92], IRIS [FBCCC+87], etc.). Such

investigation should make clear the limits between desired aspects and implementable ones. Later on, we

will start designing a concurrency control mechanism tailored to KBMSs, using as a practical example our

prototypical KBMS implemented at the University of Kaiserslautern, named KRISYS (Knowledge Represen-

tation and Inference System).

Acknowledgments

This work has been supported by the CNPq (Scientific and Technological Development National Council),

of the Secretary for Science and Technology of Brazil. Prof. Dr. Theo Härder read a previous version of this

paper, and gave important contributions which led to clarifications of the exposed topics and critics. Joachim

Thomas and Clarence Huff also read a previous version of this paper and together with Stefan Deßloch,

they provided helpful comments on the elaboration of it. Finally, Vinay Chaudhri patiently explained me via

e-mail many doubts I had about their DDG policy. I would like to acknowledge all of them.

References

[ASU85] Aho, A.V., Sethi, R., Ullman, J.D. Compilers: Principles, Techniques, and Tools. Addison-
Wesley Publishing Company, Massachusetts, USA, 1985.

[BDK92] Bancilhon, F., Delobel, C., Kanellakis, P. (Eds.). Building an Object-Oriented Database Sys-
tem: The Story of O2. Morgan Kaufmann Publishers, San Mateo, California, USA, 1992.

[BHG87] Bernstein, P.A., Hadzilacos, V., Goodman, N. Concurrency Control and Recovery in Data-
base Systems. Addison-Wesley Publishing Company, Massachusetts, USA, 1987.

[BM86] Brodie, M., Mylopoulos, J. (Eds.). On Knowledge Base Management Systems: Integrating Ar-
tificial Intelligence and Database Technologies. Springer Verlag, 1986. (Topics in Information
Systems).

[BSW79] Bernstein, P.A., Shipman, D.W., Wong, W.S. Formal Aspects of Serializability in Database
Concurrency Control. IEEE Transactions on Software Engineering, Vol. 5, No. 3, May 1979,
pp. 203-216.

[Ch91] Chaudhri, V.K. Designing Multi-User Knowledge Base Management Systems. Internal Re-
port, University of Toronto, Toronto, Canada, Feb. 1991.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

26

[Ch93] Chaudhri, V.K. Communication via Internet, May 1993. (e-mail: vinay@cs.toronto.edu).
[CHM92] Chaudhri, V.K., Hadzilacos, V., Mylopoulos, J. Concurrency Control for Knowledge Bases.

In: Proc. of the 3rd International Conference on Principles of Knowledge Representation and
Reasoning, Cambridge, MA, USA, 1992, pp. 762-773.

[Co70] Codd, E.F. A Relational Model of Data for Large Shared Data Banks. Communications of the
ACM, Vol. 13, No. 6, June 1970, pp. 377-387.

[Da73] Davies, C.T. Recovery Semantics for a DB/DC System. In: Proc. of the ACM 73 National
Conference, Atlanta, GA, USA, Aug. 1973, pp. 136-141.

[Da78] Davies, C.T. Data Processing Spheres of Control. IBM Systems Journal, Vol. 17, No. 2, 1978,
pp. 179-198.

[EGLT76] Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L. The Notions of Consistency and Predicate
Locks in a Database System. Communications of the ACM, Vol. 19, No. 11, Nov. 1976, pp.
624-633.

[FBCCC+87] Fishman, D.H., Beech, D., Cate, H.P., Chow, E.C., Connors, T., Davis, J.W., Derret, N.,
Hoch, C.G., Kent, W., Lyngbaek, P., Mahbod, B., Neimat, M.A., Ryan, T.A., Shan, M.C. Iris:
An Object-Oriented Database Management System. ACM Transactions on Office Informa-
tion Systems, Vol. 5, No. 1, Jan. 1987, pp. 48-69.

[FÖ89] Farrag, A.A.; Özsu, M.T. Using Semantic Knowledge of Transactions to Increase Concurren-
cy. ACM Transactions on Database Systems, Vol. 14, No. 4, Dec. 1989, pp. 503-525.

[Ga83] Garcia-Molina, H. Using Semantic Knowledge for Transaction Processing in a Distributed
Database. ACM Transactions on Database Systems, Vol. 8, No. 2, June 1983, pp. 186-213.

[GK88] Garza, J.F., Kim, W. Transaction Management in an Object-Oriented Database System. In:
Proc. of the ACM SIGMOD International Conference on Management of Data, Chicago, USA,
June 1988, pp. 37-45.

[GLPT76] Gray, J.N., Lorie, R.A., Putzolu, G.R., Traiger, I.L. Granularity of Locks and Degrees of Con-
sistency in a Shared Data Base. In: Proc. of the IFIP Working Conference on Modeling in
Data Base Management Systems, Freudenstadt, Germany, Jan. 1976, pp. 365-394.

[GR93] Gray, J.N., Reuter, A. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann Publishers, San Mateo, CA, USA, 1993.

[Gr78] Gray, J.N. Notes on Database Operating Systems. In: Operating Systems: An Advanced
Course, Springer Verlag, Berlin, 1978. (Lecture Notes in Computer Science No. 60).

[HDKRS89] Herrmann, U., Dadam, P., Küspert, K.M., Roman, E.A., Schlageter, G. A Lock Technique for
Disjoint and Non-Disjoint Objects. Technical Report No. TR.89.01.003, IBM Heidelberg Re-
search Center, Heidelberg, Germany, Jan. 1989.

[Ho72] Holt, R.C. Some Deadlock Properties in Computer Systems. ACM Computing Surveys, Vol.
4, No. 3, Sep. 1972, pp. 179-196.

[HR83] Härder, T., Reuter, A. Principles of Transaction-Oriented Database Recovery. ACM Comput-
ing Surveys, Vol. 15, No. 4, Dec. 1983, pp. 287-317.

[KBCGW87] Kim, W., Banerjee, J., Chou, H.-T., Garza, J.F., Woelk, D. Composite Objects Support in an
Object-Oriented Database System. In: Proc. of the 2nd International Conference on Object
Oriented Programming Systems, Languages and Applications, Orlando, FL, USA, Oct. 1987.

[KBCGW89] Kim, W., Ballou, N., Chou, H.-T., Garza, J.F., Woelk, D. Features of the ORION Object-Ori-
ented Database System. In: Kim, W., Lochovsky, F. (Eds.), Object-Oriented Concepts, Data-
bases, and Applications, ACM Press, New York, USA, 1989, pp. 251-282. (Chapter 11).

[KBG89] Kim, W., Bertino, E., Garza, J.F. Composite Objects Revisited. In: Proc. of the ACM SIGMOD
International Conference on the Management of Data, Portland, Oregon, USA, 1989, pp.
337-347. ACM SIGMOD Record, Vol. 18, No. 2, June 1989.

[Ki90] Kim, W. Introduction to Object-Oriented Databases. MIT Press, Cambridge, MA, USA, 1990.
(Series in Computer Systems).

[Ly83] Lynch, N. Multilevel Atomicity - A New Correctness Criterion for Database Concurrency Con-
trol. ACM Transaction on Database Systems, Vol. 8, No. 4, Dec. 1983, pp. 484-502.

[Ma88] Mattos, N.M. Abstraction Concepts: The Basis for Data and Knowledge Modeling. In: Proc.
of the 7th International Conference on Entity-Relationship Approach, Rom, Italy, Nov. 1988,
pp. 331-350.

In: RITA - Journal for Theoretical and Applied Computer Science, Vol. 2, No. 1, Brazil, Jan. 1995. pp. 37-76.

27

[Ma90] Mattos, N.M. Performance Measurements and Analyses of Coupling Approaches of Data-
base and Expert Systems and Consequences to their Integration. In: Proc. of the 1st Work-
shop in Information Systems and Artificial Intelligence, Ulm, Germany, March 1990.

[Ma91] Mattos, N.M. An Approach to Knowledge Base Management. Springer Verlag, Berlin, Ger-
many, 1991. (Lecture Notes in Artificial Intelligence Vol. 513).

[MB90] Mylopoulos, J., Brodie, M. Knowledge Bases and Databases: Current Trends and Future Di-
rections. In: Proc. of the Workshop on Artificial Intelligence and Databases, Ulm, Germany,
1990.

[Mo85] Moss, J.E.B. Nested Transactions: An Approach to Reliable Distributed Computing. MIT
Press, Cambridge, MA, USA, 1985. (Series in Information Systems).

[Mo90] Mohan, C. ARIES/KVL: A Key-Value Locking Method for Concurrency Control of Multiaction
Transaction Operating on B-Tree Indexes. In: Proc. of the 16th International Conference on
Very Large Data Bases, Brisbane, Australia, Aug. 1990.

[Pa79] Papadimitriou, C.H. Serializability of Concurrent Database Updates. Journal of the ACM, Vol.
26, No. 4, Oct. 1979, pp. 631-653.

[Re92] Rezende, F.F. A Transaction Model to Support the World Concept of KRISYS. Federal Uni-
versity of Rio Grande do Sul, Porto Alegre, RS, Brazil, May 1992. (Master Dissertation).

[SK80] Silberschatz, A., Kedem, Z. Consistency in Hierarchical Database Systems. Journal of the
ACM, Vol. 27, No. 1, Jan. 1980, pp. 72-80.

[Th91] Thomas, J. An Approach to the Representation of Worlds and Viewpoints in the KBMS KRI-
SYS (in German). University of Kaiserslautern, Kaiserslautern, Germany, June 1991. (Diplo-
marbeit).

[Ya82] Yannakakis, M. Freedom from Deadlock of Safe Locking Policies. SIAM Journal of Comput-
ing, Vol. 11, No. 2, May 1982, pp. 391-408.

[Ya82a] Yannakakis, M. A Theory of Safe Locking Policies in Database Systems. Journal of the ACM,
Vol. 29, No. 3, July 1982, pp. 718-740.

